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Commentarii Mathematici Helvetici

Solutions nodales sur les vari¶et¶es Riemanniennes non locale-
ment conform¶ement plates µa bord
David Holcman

Abstract Dans cet article on considµere le problµeme de Dirichlet pour une EDP non lin¶eaire

avec une donn¶ee au bord qui change de signe L'existence d'une famille de solutions minimisantes

est obtenue sur les vari¶et¶es riemaniennes compactes non localement conform¶ement plates µa bord

This paper deals with solutions of Dirichlet problem for a nonlinear PDE with boundary data
changing of sign A family of minimizing nodal solutions are found on nonlocally conformally
°at manifolds with boundary

Mathematics Subject Classi¯cation 2000 53C21 58J05

Keywords Nonlinear PDE critical exponent Riemannian manifolds boundary value problem
variational methods

1 Introduction

Soit Vn; g une vari¶et¶e riemannienne compacte µa bord C1 de dimension n ¸3 Soient a et f deux fonctions dans C1 Vn et Á une une fonction dans

C1 @Vn La fonction f est suppos¶ee positive sur Vn
On ¶etudie l'existence d'un r¶eel positif ¸ et d'une solution minimisante u de

l'¶equation

¢gu + au ¸f j u j
4

n¡2 u sur Vn 1

u Á sur @Vn

L'¶equation ¶etudi¶ee contient l'exposant critique dans l'inclusion de Sobolev
Une large famille de problµemes est d¶edi¶ee µa ce type d'¶etude nous allons en rappeler
quelques-uns Le r¶esultat de cet article est ¶enonc¶e dans le th¶eorµeme 1 et il est µa
noter que la solution obtenue minimise une fonctionnelle d'¶energie

Rappelons qu'une solution non minimisante a ¶et¶e obtenue par une analyse

¶el¶ementaire lorsque la donn¶ee au bord Á n'est pas identiquement nulle: il a ¶et¶e
montr¶e [8] que pour tout ² > 0 il existe un r¶eel ¸² 2 0; ² et une fonction u²
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de classe C2 tels que

¢gu² + au² f j u² j
4

n¡2 u² sur Vn 2

u² ¸²Á sur @Vn

La preuve est donn¶ee lorsque Vn est un ouvert born¶e ­ de Rn et g une m¶etrique

Riemannienne d¶e¯nie dans un voisinage de ¹­ Dans ce travail rien ne dit que la
solution soit le minimum d'une fonctionnelle d'¶energie

Le r¶esultat complµete aussi celui obtenu par Ca®arelli-Spruck [5] qui se limite

aux ouverts µa bord de Rn lorsque f est constante et la donn¶ee au bord Á est
positive L'ingr¶edient essentiel de la preuve est la m¶ethode de r¶e°exion [6] Ici on
montre l'existence d'une famille de solutions minimisantes pour une classe assez

vaste de fonctions r¶eguliµeres f Le r¶esultat pr¶esent¶e ici g¶en¶eralise aussi celui
obtenu par Brezis [4] sur les ouverts born¶es de Rn

Ce travail a ¶et¶e annonc¶e dans [9] et l'originalit¶e r¶eside dans l'analyse du possible
ph¶enomµene de concentration Les conditions mises en ¶evidence dans la proposition
1 sont nouvelles g¶en¶eralisant celle sur le minimum de la fonctionnelle de Yamabe

[1] Cela permet de trouver des solutions minimisantes de 1 sous des conditions

g¶eom¶etriques On peut dire sous les hypothµeses du th¶eorµeme 1 que la condition
g¶eom¶etrique sur le tenseur de Weyl l'emporte sur la donn¶ee au bord non nulle pour
obtenir les solutions minimisantes

Th¶eorµeme 1 Soit Vn; g une vari¶et¶e Riemannienne compacte µa bord de cour-
bure scalaire R sur laquelle on considµere l'¶equation 1 On suppose que la
premiµere valeur propre de l'op¶erateur ¢g + a est positive et que f atteint un
de ses maxima en un point int¶erieur P pour lequel ¢gf P 0 Si l'une des

deux conditions suivantes est v¶eri¯¶ee

² a n¡2
4 n¡1

R dimVn n > 6 ¢2
gf P 0 et le tenseur de Weyl ne s'annule

pas en P ce qui exclut les ouverts de Rn standard ;

² a
6

n¡2
4 n¡1

R dimVn n > 4 et a P < n¡2
4 n¡1

R P ;

alors il existe un r¶eel positif °0 d¶ependant de Á une famille de nombre r¶eels
¸p;° °>°0

et une famille de fonctions u° °>°0 telles que pour tout ° > °0

1 ¸p;° et u° sont solutions de l'¶equation 1
2 u° est une solution minimisante de la fonctionelle I d¶e¯nie ci-dessous:

La fonctionnelle I est d¶e¯nie sur
o

H1 Vn par I u
RVn jru j

2 + au2 sous la
contrainte

RVn f j u + h j
2n n¡2 ° oµu h est l'unique solution de l'¶equation

¢gh + ah 0 sur Vn 3

h Á sur @Vn 4

En particulier la solution u° est nodale si la donn¶ee au bord Á change de signe
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Remarque Les conditions donn¶ees en hypothµese lorsque a n¡2
4 n¡1

R ne

d¶ependent que de la structure conforme de la vari¶et¶e On remarquera ¶egalement
qu'il n'est pas n¶ecessaire que la donn¶ee au bord Á ne soit pas nulle pour obtenir
un th¶eorµeme similaire: dans le cas ou Á est identiquement nulle des r¶esultats sont
connus voir [1]

Le plan de la d¶emonstration du th¶eorµeme 1 est le suivant: dans le paragraphe

2 on construit par minimisation une suite de solutions aux ¶equations du type

1 avec exposant sous-critique Le paragraphe 3 donne le comportement possi-
ble de cette suite de solutions minimisantes lorsque l'exposant sous-critique tend
vers l'exposant critique Le paragraphe 4 met en ¶evidence des conditions dites de

non-concentration En¯n la derniµere partie est consacr¶ee au ph¶enomµene de con-
centration Des conditions sur la fonction f et sur la g¶eom¶etrie conforme sont
introduites pour empêcher l'existence de points de concentration

2 Construction de solutions sous-critiques

Dans cette partie nous allons consid¶erer l'¶equation 1 avec un second membre

de la forme ¸f j u j
p¡2u et p sous-critique c'est-µa-dire p < N oµu l'on a not¶e

N 2n
n¡2

Dans le but de transformer l'¶equation 1 nous commen»cons par ¶etendre la
donn¶ee au bord Á par l'unique fonction r¶eguliµere h d¶e¯nie Vn par

¢gh + ah 0 sur Vn et h Á sur @Vn 5

dont l'existence est assur¶ee par la coercivit¶e de l'op¶erateur ¢g +a Construisons

maintenant la solution avec exposant sous-critique Nous supposons ici que a
n¡2

4 n¡1
R ¹R et consid¶erons la fonctionnelle d'¶energie I d¶e¯nie par

I u Z
Vn

j ru j
2 + ¹Ru2 6

Soit Ap;° fu 2
o

H1 Vn j R f j u + h j
p °g oµu p < N est voisin de N et h a

¶et¶e d¶e¯nie dans le paragraphe pr¶ec¶edent
D¶e¯nissons en¯n le minimum de la fonctionnelle d'¶energie I u

¹p;° inf
Ap;°

I u inf
Ap;°

Z
Vn

j ru j
2 + ¹Ru2 7

Comme l'op¶erateur ¢ + ¹R est coercif ¹p;° est positif
V¶eri¯ons maintenant que si la condition suivante

Z
Vn

f j h j
N < ° 8

est satisfaite alors Ap;° est un ensemble non vide On supposera d'ailleurs dans

la suite que cette condition sur ° est toujours v¶eri¯¶ee Pour montrer que Ap;°
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est non vide soit Á1 une fonction propre associ¶ee µa la premiµere valeur propre ¸1
du Laplacien d¶e¯nie par:

¢Á1 ¸1Á1 sur Vn

Á1 0 sur @Vn 9

La fonction continue F t RVn f j tÁ1 + h j
p v¶eri¯e

² limt +1 F t 1
² F 0

RVn f j h j
N < °

Ainsi il existe un r¶eel tp;° tel que F tp;° RVn f j tp;°Á1 + h j
p ° Ce qui

prouve que la fonction tp;°Á1 2 Ap;° :
Montrons maintenant qu'il existe une fonction wp;° telle que I wp;° ¹p;°

Pour cela soit wk une suite de fonctions dans Ap;° minimisante pour I Cette

suite est born¶ee dans
o

H1 on utilise l'in¶egalit¶e de Poincar¶e pour majorer la norme

L2 On peut donc en extraire une sous-suite qui converge faiblement dans
o

H1
fortement dans Lp avec p < N et presque partout sur Vn vers une fonction
wp;° voir [1]
Le calcul des variations donne alors l'existence d'un multiplicateur de Lagrange

¸p;° tel que la limite wp;° v¶eri¯e faiblement

¢wp;° + ¹Rwp;° ¸p;°f j wp;° + h j
p¡2 wp;° + h sur Vn

wp;° 0 sur @Vn 10

En¯n comme j wp;° + h j
p¡2 wp;° + h est dans C1;® Vn les th¶eorµemes de

r¶egularit¶e montrent que j wp;° + h j
p¡2 wp;° + h est dans C3;® Vn voir [7]

3 Convergence vers une solution

Dans cette partie on ¶etudie le comportement de la suite wp;° lorsque p tend vers

l'exposant critique N Nous commen»cons par montrer deux lemmes

Lemme 1 Lorsque la condition 8 est v¶eri¯¶ee ° ¶etant ¯x¶e le multiplicateur
de Lagrange ¸p;° est positif ¸p;° > 0 et la suite ¸p;° pour la variable p est
born¶ee De plus la suite wp;° est born¶ee dans H1

Preuve Comme limp N RVn fj h j
p < ° l'in¶egalit¶e stricte reste vraie pour p

proche de N Ainsi en multipliant l'¶equation 10 par wp;° et en utilisant la
d¶e¯nition du minimum d'¶energie ¹p;° :

0 · ¹p;° R j rwp;° j
2 + ¹Rw2

p;°

¸p;° ° ¡ R f j wp;° + h j
p¡2 wp;° + h h 11
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Or pour p voisin de N l'in¶egalit¶e de HÄolder donne

Z f j wp;° + h j
p¡2 wp;° + h h · °1¡1 p Z f j h j

p 1 p < ° 12

Comme ¹p;° ¸ 0 on en d¶eduit que ¸p;° ¸ 0 Si ¸p;° 0 alors wp;° 0 ce qui
provient de l'¶equation 10 et de la condition 8 On en d¶eduit une contradiction
avec le fait que wp;° 2 Ap;° Montrons maintenant que la suite ¸p;° est born¶ee

En utilisant la fonction ayant servi µa montrer que Ap;° est non vide on obtient
la majoration

Z j rwp;° j
2 + ¹Rw2

p;° · I tp;°Á1 · Ct2
p;° 13

oµu C est une constante ind¶ependante de p et ° Fixons ° comme tp;°Á1 2 Ap;°
on a

RVn f j tp;°Á1 + h j
p ° et

RVn f j Á1 j
N > 0 On en d¶eduit que la suite tp;°

ne peut pas tendre vers l'in¯ni quand p tend vers N La suite tp;° est donc
born¶ee quand p tend vers N Maintenant comme l'op¶erateur ¢ + ¹R est coercif
on en d¶eduit que la suite wp;° est born¶ee dans H1 quand p tend vers N En
combinant alors 11 et 12 on obtient la majoration:

0 < ¸p;° ·
C °

° ¡ °1¡1 p
R fj h j

p 1 p · C0 °; h 14

Ce qui prouve que la suite ¸p;° est born¶ee quand p tend vers N Pour ° ¯x¶e
on obtient donc une borne dans H1 Vn pour la suite wp;° lorsque p tend vers

N Ce lemme 1 nous permet alors d'extraire une sous-suite wp;° telle que

² k wp;° kH1 · C

² wp;° w0 dans
o

H1 faiblement
² wp;° w0 dans Lr Vn fortement oµu r sup 2; N ¡ 1

² wp;° w0 presque partout sur Vn

Lemme 2 Pour ° assez grand ¸p;° ne tend pas vers 0 quand p tend vers N

Preuve Supposons que la suite ¸p;° 0 quand p N alors en utilisant
l'¶equation 10 on en d¶eduit que

R j rwp;° j
2 + ¹Rw2

p;° 0 quand p tend vers N
Comme l'op¶erateur ¢ + ¹R est coercif on en d¶eduit que la suite wp;° tend vers

0 dans H1 quand p tend vers N Finalement en utilisant l'in¶egalit¶e de Sobolev
[1] on en d¶eduit que wp;° 0 quand p N dans LN On en d¶eduit donc:

Z f j wp;° + h j
p

Z f j h j
N 15

quand p N Mais comme wp;° 2 Ap;° °
R f j wp;° + h j

p ce qui est en
contradiction avec la condition 8 Finalement la suite ¸p;° ne tend pas vers 0
quand p N
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Ainsi ¸p;° reste born¶ee et ne tend pas vers 0 si ° est assez grand Quitte µa
extraire une sous-suite ¸p;° converge vers ¸ > 0 et wp;° vers w0 une solution

faible dans
o

H1 de l'¶equation suivante:

¢w0 + Rw0 ¸f j w0 + h j
4 n¡2 w0 + h sur Vn

w0 0 sur @Vn 16

Comme le second membre est de classe C1;® on en d¶eduit que w0 2 C3;® ¹Vn et
n'est pas nulle car h ne l'est pas

Remarque Dans le cas particulier de l'¶equation 1 sur les ouverts born¶es de

Rn et lorsque la fonction f est constante la m¶ethode de r¶e°exion d¶evelopp¶ee par
Nirenberg [6] et utilis¶ee dans [5] donne les estim¶ees n¶ecessaires pour empêcher
toute concentration de la suite wp Dans le cas plus g¶en¶eral ¶etudi¶e ici nous avons

seulement pour l'instant montr¶e l'in¶egalit¶e:

Z
Vn

f j w0 + h j
N · lim inf

p N
Z

Vn
f j wp + h j

p ° 17

Des hypothµeses g¶eom¶etriques nous permettront d'¶eliminer les ph¶enomµenes de con-
centration ce qui nous donnera l'¶egalit¶e dans la relation 17

4 Concentration-Minimisation

Cette partie concerne l'analyse de la concentration qui peut avoir lieu lorsque

l'exposant p tend vers l'exposant critique N: Rappelons la d¶e¯nition suivante

[12]:

D¶e¯nition 1 Un point Q est dit de concentration pour la suite Áp avec Áp

wp + h si

9² > 0 tel que 8± > 0 lim
p N

Z
BQ ±

j Áp j
p > ²: 18

Supposons qu'il existe un point de concentration P Dans ce qui suit suivant
que P est sur le bord ou µa l'int¶erieur de Vn on met en ¶evidence une condition
qui amµene µa une contradiction Nous allons montrer la proposition suivante:

Proposition 1 Soit w0 6 0 la limite faible de la suite minimisante wp obtenue

quand p tend vers N Posons ¹ ° limp N ¹p;° K d¶esigne la meilleure con-
stante dans l'inclusion de Sobolev H1 dans LN Si les deux conditions suivantes

sont v¶eri¯¶ees

K2¹ ° sup f 2 N ° 1¡2 N

°¡RVn f jw0+hjN¡2 w0+h h < 1 19

dite condition int¶erieure
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K2

°¡R f jw0+hjN¡2 w0+h h¹ ° sup f 2 N £
° + C1 RVn

hN + C2 RVn
w0

N¡1
j h j

1¡2 N < 1

dite condition au bord 20

oµu C1 et C2 sont deux constantes ind¶ependantes de p alors la suite des min-
imiseurs wp n'a pas de point de concentration et la limite w0 est une solution
minimisante pour la fonctionnelle d'¶energie I u

R j ru j
2 +¹Ru2 sur l'ensemble

AN;°

La preuve est compos¶ee de plusieurs ¶etapes : le passage µa la limite quand
il n'y a pas concentration l'expression des conditions de non-concentration et
l'impossibilit¶e de concentration sous les conditions

Preuve Quand l'exposant reste sous-critique la convergence de wp est forte

donc

lim
p N

Z
Vn

f j wp + h j
p¡2 wp + h h Z

Vn
f j w0 + h j

N¡2 w0 + h h 21

Il en est de même lorsque l'exposant est critique et qu'il n'y a pas de ph¶enomµene

de concentration Il en r¶esulte

lim
p N

° ¡ Z
Vn

f j wp + h j
p ° ¡ Z

Vn
f j w0 + h j

N 22

Les conditions de la proposition sont obtenues de la maniµere suivante:

4 0 1 Point de concentration dans
o

Vn

Supposons que P soit un point de concentration dans
o

Vn Soit ´ 2 C1 Vn
une fonction µa support compact dans une boule BP ± ¶egale µa 1 sur une boule
B ± 2 P En multipliant l'¶equation 10 par ´2

j wp + h j
k¡1 wp + h k > 1

puis en int¶egrant on obtient:
quel que soit ² > 0 il existe C² tel que:

4k
k+1 2 ¡ 2 k¡1 ²

k+1 2
RBP ± j r´Á k+1 2

p j
2

· C² RBP ± j Áp j
k+1 +

¸p;°sup f2 p
j ´Á k+1 2

p j
2

p RBP ± f j Áp j
p 1¡2 p 23

oµu l'on a pos¶e Áp wp + h Or comme

¸p;°
¹p;°

RVn j wp + h j
p¡2 wp + h wp

24

en utilisant l'in¶egalit¶e de Sobolev classique avec les meilleures constantes voir
[1] on obtient pour toute fonction u dans H1 :

k u k
2
LN · K2

k ru k
2
L2 + Ak u k

2
L2

25
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K repr¶esente la meilleure constante dans les inclusions de Sobolev K ne d¶epend
que de la dimension n On obtient en posant u ´Á k+1 2

p

k ´Á k+1 2
p k

2

p · Volg Vn ¯ K2
k r ´Á k+1 2

p k
2

2 + Ak ´Á k+1 2
p k

2

2
26

Ici ¯ 2 1
p ¡ 1

N En combinant ces deux derniµeres relations et en tenant
compte du fait que

RBP ± f j Áp
p j

1¡2 p ° ¡ RVn¡BP ± f j wp + h j
p 1¡2 p il

s'ensuit que si

¹lim
p N

K2 sup f2 p¹p;°

RVn j wp + h j
p¡2 wp + h wp

° ¡ Z
Vn¡BP ±

f j wp + h j
p 1¡2 p < 1 27

alors

k ´w k+1 2
p k

2

p
et k r ´w k+1 2

p k
2

2
28

sont born¶ees pour k voisin de 1 donc aussi

Z
BP ± 2

´N
j wp j

n k+1 n¡2 29

ceci en utilisant les injections continues de Sobolev

4 0 2 Point de concentration sur @Vn

Supposons que P soit un point de concentration sur @Vn Comme dans la partie
pr¶ec¶edente on cherche µa obtenir des estim¶ees locales sur la norme Lp de la solution
wp dans une boule centr¶ee en P de rayon petit

Soit ´ 2 C1 une fonction d¶e¯nie par

´ 1 sur BP ± 2

´ 0 sur Vn ¡ BP ± 30

Comme ´ n'est pas nulle sur @BP ± contrairement au cas pr¶ec¶edent on multi-
plie cette fois-ci l'¶equation:

¢wp + ¹Rwp ¸p;°f j wp + h j
p¡2 wp + h 31

par la fonction ´2
j wp j

k¡1wp avec k > 1 On notera B+
P la demi-boule rieman-

nienne centr¶ee au point P de rayon petit
Comme dans le paragraphe pr¶ec¶edent on obtient aprµes calculs:

4k
k+1 2 ¡ 2 k¡1 ²

k+1 2
RB+

P r´w k+1 2
p

2 · C² RB+
P

j wp j
k+1 +

¸p;° RB+
P
f´2

j wp j
k
j wp + h j

p¡2 wp + h 32

En utilisant l'in¶egalit¶e suivante:

8x; y j x + y j
p · Cp j y j

p + j x j
p 33

le second membre de 32 devient:
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Z
B+

P

j wp j
k+1 + C¸p;° Z

B+
P

´2
j wp j

kf j h j
p¡1 + ¸p;° Z

B+
P

f´2
j wp j

k+p¡1 34

Lorsque p tend vers N ¸p;° et
RB+

P
f j wp j

k sont born¶es On ¶etudie alors le dernier
terme de 34 En utilisant l'identit¶e de HÄolder et l'expression du multiplicateur
de Lagrange ¸p;° on obtient:

¸p;° RB+
P
f´2

j wp j
k+p¡1 · ¹p;°f P 2 p

°¡R f jwp+hjp¡2 wp+h h j ´w k+1 2
p j

2

p £
RB+

P
fj w j

p
p

1¡2 p 35

En utilisant les in¶egalit¶es de Sobolev et la majoration j x j
p · j x + h j

p+C1j h j
p+

C2j x j
p¡1

j h j on a

Z
B+P

f j w j
p
p · Z

B+P
f j wp + h j

p + C1 Z
B+

P
j h j

p + C2Z
B+

P
j wp j

p¡1
j h j 36

oµu C1 et C2 sont deux constantes positives ind¶ependantes de p pour p
proche de N On peut maintenant identi¯er une condition pour qu'il n'y ait pas

de point de concentration sur @Vn pour la suite wp ou wp + h :

¹limp N¸p;°f P 2 pK2 ° + C1 Z
B+

P
j h j

p + C2 Z
B+

P
j wp j

p¡1
j h j

1¡2 p < 1 37

soit en passant µa la limite
K2

°¡R f jw0+hjN¡2 w0+h h¹ ° f P 2 N £
° + C1 RVn j h j

N + C2 RVn j w0 j
N¡1

j h j
1¡2 N < 1 38

4 0 3 Non concentration

Montrons qu'il n'y a pas de point de concentration lorsque les quantit¶es 28 sont
born¶ees Supposons que P soit un point de concentration En utilisant la d¶e¯nition
18 de concentration l'in¶egalit¶e de HÄolder permet d'obtenir la majoration suivante

² <
RBP ± j wp + h j

p · C
RBP ± j wp + h j

N p N

C
RBP ± j wp + h j

N¡1
j wp + h j

p N

· fRBP ± j wp + h j
n k+1 n¡2

g
p n+2

nN k+1 £

fRBP ± j wp + h j
n k+1 kn¡2

g
p nk¡2
nN k+1 39

C d¶esigne une constante ind¶ependante de p D'oµu en utilisant 29

² < Z
BP ±

j wp + h j
p · C Z

BP ±
j wp + h j

k1 p k1 40
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avec k1 n k + 1 kn ¡ 2 < N puisque k > 1: Alors pour p > k1 p tend
vers N

RBP ± j wp + h j
k1 · Cte

RBP ± f j wp + h j
p k1 pVol1¡k1 p

g BP ± ·
C°k1 p±n 1¡k1 p 41

Le terme de droite de 41 est rendu arbitrairement petit par le choix de ± ce

qui est en contradiction avec la d¶e¯nition de la concentration puisque ² > 0 ne

d¶epend pas de ±

4 1 Convergence des minima ¹p;°

Une minoration du minimum d'¶energie est utilis¶ee maintenant pour obtenir la
limite de ¹p;° quand p tend vers N On note ¹ ° ¹ °; N

Lemme 3 Il existe une suite °p ° telle que limp N ¹p;°p · ¹ °

Preuve Soit ² > 0 il existe une fonction ´ 2 AN;° telle que :

¹ ° · Z j r´ j
2 + Z ¹Ŕ 2 · ¹ ° + ² 42

Posons °p R f j ´ + h j
p Comme

lim
p N

Z f j ´ + h j
p

Z f j ´ + h j
N ° > Z f j h j

N 43

°p > R f j h j
N pour p proche de N La contrainte sur ° est donc v¶eri¯¶ee pour les

suites sous-critiques Soit une suite de minimiseurs wp 2 Ap;°p Par hypothµese

¹p;°p Z jrwp j
2 + Z Rwp

2 · Z j r´ j
2 + Z ¹Ŕ 2 44

Donc ¹lim¹p;°p · ¹ ° Le lemme 3 sera alors utilis¶e pour l'¶etude de la convergence

de la suite sous-critique puisqu'il est maintenant possible de choisir des solutions

dans l'ensemble Ap;°p qui convergeront vers la solution voulue

5 Conditions g¶eom¶etriques et fonctions tests

L'objet de cette partie est de montrer que sous les hypothµeses du th¶eorµeme 1
les deux conditions de la proposition ¶enonc¶ee pr¶ec¶edemment sont v¶eri¯¶ees lorsque

l'on a choisi un paramµetre ° su±samment grand
Pour montrer que la premiµere condition est v¶eri¯¶ee deux quantit¶es vont être

¶evalu¶ees °² RVn f j u² + h j
N et ¹² R j ru² j

2+¹Ru2²
en utilisant les fonctions
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de
o

H1 Vn suivantes:

u² r 1
r2+²2 n¡2 2 ¡ 1

±2+²2 n¡2 2 sur BP ± 45

u² P 0 sur Vn ¡ BP ± 46

oµu r repr¶esente la distance g¶eod¶esique au point P Ces fonctions introduites dans

[2] sont radiales en P nulles en dehors de la boule de rayon ± ± ¶etant choisi plus

petit que le rayon d'injectivit¶e Ces deux quantit¶es °² et ¹² serviront µa montrer
que le quotient Q² :

Q² supf 2 N K2¹²
°²

1¡2 N

°² ¡ RVn f j w0 + h j
N¡2 w0 + h h

47

est strictement plus petit que 1

5 1 Evaluation du quotient Q²

Dans ce paragraphe on etudie le d¶eveloppement asymptotique de °² et ¹² Dans

la suite d­ d¶esigne l'¶el¶ement de volume de la sphµere Sn¡1 1

°² Z
Vn

f j u² + h j
N Z

±

0
rn¡1dr Z

S r
f j u² + h x j

N d­ 48

Posons x ²u

°² Z
± ²

0
²nun¡1du Z

S r
f ²u pg ²u ²¡2n

j v + ²n¡2h ²u j
N

d­ 49

oµu

v r 1
r2+1 n¡2 2 ¡ ²n¡2

±2+²2 n¡2 2 sur BP ± 50

0 sur Vn ¡ BP ± 51

Pour ¶evaluer °² on ¶etudie plus pr¶ecisement le d¶eveloppement de

G u Z
S r

f ²u pg ²u ²¡2n
j v + ²n¡2h ²u j

N
d­: 52

En utilisant le d¶eveloppement de Taylor suivant

j v + ²n¡2h ²u j
N

j v j
N +

²n¡2
R

1
0 N j v + t²n¡2h ²u j

N¡2
v + t²n¡2h ²u h ²u dt 53

on obtient
G u Z

S r
f ²u pg ²u ²¡2n

j v j
N d­+ R² u 54
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avec

R² u ²¡n¡2
RS r f ²u pg ²u

R

1
0 N

j v + t²n¡2h ²u j
N¡2

v + t²n¡2h ²u h ²u dtd­ 55

puis

R² ° Z
± ²

0
²nun¡1duR² u 56

Alors

R² ° · C²¡2 Z
± ²

0
un¡1du Z

S u
j f j j v + ²n¡2

j sup h jj
N¡1

j suph jd­ 57

C est ici une constante qui ne d¶epend pas de ² et qui majore pj g j Ainsi en
posant °̂² RVn fu²N et en revenant µa la d¶e¯nition de °² on obtient

°² °̂² + R² ° 58

Or °̂² 0 ²¡n car

°̂² ²¡n Z
± ²

0
rn¡1dr Z

S r²
f ²x vN

² · C²¡n Z
± ²

0
rn¡1drvN

² 59

De plus
R

± ²
0 rn¡1drvN

² · C puisque vN
² · vN

² 0 est int¶egrable De même pour le
reste R² u qui est int¶egrable

R² ° · ²¡2C Z
± ²

0
un¡1duj v² + ²n¡2

j sup h j j
N¡1 · C²¡2 60

Ainsi

°² °̂² 1 + O ²n¡2 61

5 2 Conditions g¶eom¶etriques

Compte tenu de l'hypothµese faite sur la non nullit¶e du tenseur de Weyl en un
point seuls les termes jusqu'µa l'ordre ²4 auront de l'int¶erêt Si l'on pose

S² sup f 2 NK2¹²°̂ u² ¡2 N 62

en dimension plus grande que 6 et en utilisant l'estimation 61 sur °² on obtient
Q² S² + o ²4 : Les calculs explicites de S² ont ¶et¶e e®ectu¶es dans [2] on pourra
s'y r¶ef¶erer Donnons simplement les r¶esultats:

Q² Q0 + Q1² + Q2²2 + Q3²3 + Q4²4 + o ²4 63

Les calculs sur les termes du premier ordre montrent que Q0 1 puis Q1

Q3 0 puisque il n'y a pas de terme d'ordre impair En¯n Q2 0 grâce µa
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l'hypothµese ¢gf P 0 De plus:

Q4 T n+2 10
n¡4 n¡6 ¡ R2

6n + ¢R
6n

1
2n n¡4 n¡6 ¡ n+2

n¡4
¢2f

4 n n+2 +
n¡1

36n2 n¡2
R2 64

avec

T
1

n + 2 n4

6¢R
5 ¡

2RijRij
15 ¡

R2
ijkl
5

+
2RijRij

3
+

R2

3
65

Les hypothµeses ont ¶et¶e choisies pour que Q4 soit non nul Pour simpli¯er
ce terme remarquons qu'il existe une m¶etrique conforme µa la m¶etrique initiale
g0 eÃg telle que R g0 P 0 et Rij g0 0 [2] Ã est choisie nulle en dehors

d'une boule de centre P L'invariance conforme de la fonctionnelle I montre alors

que les calculs pr¶ec¶edents faits en utilisant u²
eÃ comme fonctions tests au lieu des

u² donnent les mêmes r¶esultats

Remarquons de plus que les conditions sur f au point du maximum sont bien
invariantes par changement de m¶etrique conforme: au maximum de f ¢gf P
0 ¢g0f P et comme les d¶eriv¶ees d'ordre plus petit que 3 en P sont nulles

¢2
gf 0 ¢2g0f L'invariant conforme du tenseur de Weyl W g nous permet

alors d'¶ecrire

Q4
1

12n n¡ 4 n¡ 6 ¡eÃ
j W2 g jg ¡

¢2
g

0f P
4 n n¡ 4

66

Finalement lorsque ¢2
g

0f 0 on a bien Q4 < 0 et Q² < 1

Remarque 1 Lorsque ¢2
g

0f reste petit devant le module du tenseur de Weyl la
proposition reste valable mais elle ne se quanti¯e pas ais¶ement en termes g¶eom¶et-
riques

La condition de bord de la proposition 1 est satisfaite de la même fa»con En
e®et les termes oµu apparaissent les constantes C1 et C2 sont born¶es ils sont donc
n¶egligeables devant le terme en °² O ²2¡n La condition de non concentration
au bord est encore v¶eri¯¶ee grâce µa la non nullit¶e du tenseur de Weyl au point P
Remarque 2 Quand le tenseur de Weyl est nul au point P il faut alors pousser
plus loin les d¶eveloppements Les conclusions sont les mêmes tant que le seuil de

l'exposant du d¶eveloppement limit¶e n'excµede pas n-2 Dans le cas contraire c'est
la masse positive voir [11] qui apparâ³t avant le terme contenant le tenseur de

Weyl W Ce cas a ¶et¶e trait¶e dans [10]

5 2 1 Quand a
6 ¹R

Pour montrer que le quotient Q² est plus petit que 1 on utilise la non nullit¶e du
terme d'ordre 2 dans le d¶eveloppement qui provient de l'in¶egalit¶e:

cna P + n¡ 4 ¢f P
2f P < R P 67
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En imposant les mêmes conditions sur f que celles ¶enonc¶ees au th¶eorµeme 1

la condition 67 au point P s'¶ecrit a P < ¹R Dans ce cas le th¶eorµeme est vrai
µa partir de la dimension 5

6 Questions ouvertes

² Trouver le plus petit ° tel que la condition de non-concentration soit v¶eri¯¶ee

² Lorsque le maximum de f est atteint uniquement sur le bord comment satisfaire

la condition de non-concentration

² Que dire des cas oµu la dimension est inf¶erieure µa 6 lorsque la vari¶et¶e n'est pas

localement conform¶ement plate

Terminons par une remarque concernant la convergence d'une famille de so-
lutions de l'¶equation 1 lorsque la donn¶ee au bord est une suite de fonctions

qui tend uniform¶ement vers 0 En fait il n'est pas possible par cette m¶ethode

d'obtenir des solutions nodales nulles sur le bord car lorsque le ph¶enomµene de con-
centration est ¶evit¶e les seules solutions minimisantes nulles au bord sont positives

On pourra se reporter µa [10]
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