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Solutions nodales sur les variétés Riemanniennes non locale-
ment conformément plates a4 bord

David Holeman

Abstract. Dans cet article, on considere le probleme de Dirichlet pour une EDP non linéaire
avec une donnée au bord qui change de signe. L’existence d’une famille de solutions minimisantes
est, obtenue sur les variétés riemaniennes compactes non localement conformément plates a bord.

This paper deals with solutions of Dirichlet problem for a nonlinear PDE with boundary data
changing of sign. A family of minimizing nodal solutions are found on nonlocally conformally
flat manifolds with boundary.

Mathematics Subject Classification (2000). 53C21, 58J05.

Keywords. Nonlinear PDE, critical exponent, Riemannian manifolds, boundary value problem,
variational methods.

1. Introduction

Soit (V,,,g) une variété riemannienne compacte & bord C°, de dimension n >
3. Soient a et f deux fonctions dans C>*(V,) et ¢ une une fonction dans
C*>(dV,,) . La fonction f est supposée positive sur V,, .

On étudie I'existence d'un réel positif A et d’une solution minimisante « de
I’équation

Agu+ au = )\f|u|$u sur V,, (1)
u = 10 sur 9V,

L’équation étudiée contient 'exposant critique, dans l'inclusion de Sobolev.
Une large famille de problemes est dédiée a ce type d’étude, nous allons en rappeler
quelques-uns. Le résultat de cet article est énoncé dans le théoreme (1) et il est &
noter que la solution obtenue minimise une fonctionnelle d’énergie.

Rappelons qu’une solution non minimisante a été obtenue par une analyse
élémentaire lorsque la donnée au bord ¢ n’est pas identiquement nulle: il a été
montré [8] que pour tout e > 0, il existe un réel A € (0,€) et une fonction w.
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de classe C? tels que

Ague + aue = f| ue |ﬁuE sur V,, (2)
Ue = A sur 0V,

La preuve est donnée lorsque V,, est un ouvert borné Q de R™ et g une métrique
Riemannienne définie dans un voisinage de Q. Dans ce travail, rien ne dit que la
solution soit le minimum d’une fonctionnelle d’énergie.

Le résultat complete aussi celui obtenu par Caffarelli-Spruck [5] qui se limite
aux ouverts & bord de R™ lorsque f est constante et la donnée au bord ¢ est
positive. L’ingrédient essentiel de la preuve est la méthode de réflexion [6]. Ici on
montre l'existence d’une famille de solutions minimisantes pour une classe assez
vaste de fonctions régulieres f. Le résultat présenté ici généralise aussi celui
obtenu par Brezis [4], sur les ouverts bornés de R"™ .

Ce travail a été annoncé dans [9] et ’originalité réside dans I’analyse du possible
phénomene de concentration. Les conditions mises en évidence dans la proposition
1 sont nouvelles, généralisant celle sur le minimum de la fonctionnelle de Yamabe
[1]. Cela permet de trouver des solutions minimisantes de (1) sous des conditions
géométriques. On peut dire, sous les hypotheses du théoreme (1), que la condition
géométrique sur le tenseur de Weyl I’emporte sur la donnée au bord non nulle pour
obtenir les solutions minimisantes.

Théoréme 1. Soit (V,,g) une variété Riemannienne compacte & bord, de cour-
bure scalaire R sur laquelle on considére Uéquation (1). On suppose que la
premiére valeur propre de Uopérateur (Ag + a) est positive et que f atteint un
de ses mazima en un point intérieur P, pour lequel Ayf(P) = 0. Si l'une des
deux conditions suivantes est vérifiée

e a= = 1)R dimVy, =n>6, A2f(P) =0 et le tenseur de Weyl ne s’annule
pas en P (ce qui exclut les ouverts de R™ standard );

. a#4( R, dimVy, =n >4 et a(P) < ("2 R(P);

alors il e:mste un réel positif ~vo, dépendant de ¢, une famille de nombre réels
(Apy)ysr, €t une famille de fonctions (uy)ys~, telles que pour tout v > ~o

1. Xpy et uy sont solutions de l'équation (1)
2. uy est une solution minimisante de la fonctionelle I définie ci-dessous:

La fonctionnelle 1 est définie sur Hy (V,,) par 1(u fV | Vu [ + au? sous la
contrainte fV flu+h |2n/(n72) = ou h estlunique solution de l’équation

Agh+ah =0 sur V, (3)

h=¢ sur OV, (4)

En particulier, la solution u., est nodale si la donnée au bord ¢ change de signe.
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Remarque. Les conditions données en hypothese lorsque a = 4(’;—121)1{ ne
dépendent que de la structure conforme de la variété. On remarquera également
qu’il n’est pas nécessaire que la donnée au bord ¢ ne soit pas nulle pour obtenir
un théoreme similaire: dans le cas ou ¢ est identiquement nulle, des résultats sont
connus, voir [1].

Le plan de la démonstration du théoreme 1 est le suivant: dans le paragraphe
2 , on construit par minimisation une suite de solutions aux équations du type
(1) avec exposant sous-critique. Le paragraphe 3 donne le comportement possi-
ble de cette suite de solutions minimisantes lorsque l’exposant sous-critique tend
vers I'exposant critique. Le paragraphe 4 met en évidence des conditions dites de
non-concentration. Enfin la derniére partie est consacrée au phénomene de con-
centration. Des conditions sur la fonction f et sur la géométrie conforme sont
introduites pour empécher 'existence de points de concentration.

2. Construction de solutions sous-critiques

Dans cette partie, nous allons considérer Iéquation (1) avec un second membre
de la forme Af|u |’9727L7 et p sous-critique c’est-a-dire p < N, ou l'on a noté
_ 2
N ==,
Dans le but de transformer I'équation (1), nous commengons par étendre la
donnée au bord ¢ par 'unique fonction réguliere h définie V,, par

Agh+ah=0sur V,, et h = ¢ sur 9V, (5)

dont 'existence est assurée par la coercivité de 'opérateur (Ay+a). Construisons

maintenant la solution avec exposant sous-critique. Nous supposons ici que a =
H~—~2 _ P s34 . 34 . 5

mR = R et considérons la fonctionnelle d’énergie 1 définie par

I(u) = / (I Vu [ + Ru?) (6)

n

o
Soit A,y ={ueH; (V)| [flu+h|" =~} ot p <N est voisinde N et h a
été définie dans le paragraphe précédent.
Définissons enfin le minimum de la fonctionnelle d’énergie 1(u) ,

tipy = inf I(u) = inf / (| Vu [* + Ru?) (7)
iz Ape Jv,

Py

Comme 'opérateur A + R est coercif, fp~ est positif.
Vérifions maintenant que si la condition suivante

/Vf|h|N<v (8)

est satisfaite alors A, ., est un ensemble non vide. On supposera d’ailleurs dans
la suite que cette condition sur v est toujours vérifiée. Pour montrer que A, .
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est non vide, soit ¢; une fonction propre associée a la premiere valeur propre Ay
du Laplacien définie par:

Ad)l = )\1(/)1 sur Vn
p1= 0 sur OV, (9)
La fonction continue F(t) = an fltor + h|F vérifie
o limi, o F(t) =
o FO)= [, fIn]" <~y
Ainsi il existe un réel ¢, tel que F(t,,) = [, fltpy¢1+h[F =~. Ce qui
prouve que la fonction ¢, y¢1 € A, .

Montrons maintenant qu'il existe une fonction wy, ., telle que L{w, ) = pp - -
Pour cela soit w; une suite de fonctions dans A, ., minimisante pour I. Cette

o
suite est bornée dans H; (on utilise 'inégalité de Poincaré pour majorer la norme

Lo ). On peut donc en extraire une sous-suite qui converge faiblement dans 11(; 1,
fortement dans L, avec p < N et presque partout sur V, vers une fonction
Wy~ , VoIr [1].

Le calcul des variations donne alors 1’existence d’un multiplicateur de Lagrange
Ap~ tel que la limite w,, vérifie faiblement,

Awp y + pr,v = Apyflwpy th |p_2(wzw + k) sur V,,
wp = OsurdV, (10)

Enfin comme |w,~+ h |p72(wp77 + h) est dans ChH¥(V,,) les théorémes de
régularité montrent que | wy, .~ + h |p72(wp77 +h) est dans C>(V,,), (voir [7]).

3. Convergence vers une solution

Dans cette partie, on étudie le comportement de la suite w, , lorsque p tend vers
I'exposant critique N . Nous commencons par montrer deux lemmes,

Lemme 1. Lorsque la condition (8) est vérifiée, ~ étant fixé, le multiplicateur
de Lagrange A, est positif A\, > 0 et la suite (N, ) pour la variable p est
bornée. De plus la suite (wp~) est bornée dans Hj .

Prevve. Comme lim, ,y fv fIlh P < 7, Iinégalité stricte reste vraie pour p
proche de N. Ainsi en multipliant ’équation (10) par w,~ et en utilisant la
définition du minimum d’énergie fu, , :

5
0< ppy = J| Vwpy |”+ szw -
Ap (7 = ff| wpy + R |p;2(wp,7 + h)h) (11)
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Or pour p voisin de N, lI'inégalité de Holder donne

/f| Wyy + b P (wyy + BB < wH/P(/fI h[P)YP < (12)

Comme iy, 4 > 0, on en déduit que A, ., > 0. Si A, , =0 alors w,, =0, ce qui
provient de ’équation (10) et de la condition (8). On en déduit une contradiction
avec le fait que wy .~ € A, . Montrons maintenant que la suite A, est bornée.
En utilisant la fonction ayant servi & montrer que A, . est non vide, on obtient
la majoration

[ 190 P4 B, < 10500 <82 (13)

oll C est une constante indépendante de p et v. Fixons v, comme ¢, v¢1 € A,
ona [, fltpadr+h|P=yet [, flen IV > 0. On en déduit que la suite ()
ne peut pas tendre vers l'infini quand p tend vers N . La suite (¢,.) est donc
bornée quand p tend vers N. Maintenant comme opérateur A + R est coercif,
on en déduit que la suite (w, ) est bornée dans Hy quand p tend vers N . En
combinant alors (11) et (12), on obtient la majoration:

C()

o < <C'(v,h) (14)
P oy =yt ([ I B P) e
Ce qui prouve que la suite (A, ~) est bornée quand p tend vers N . Pour v fixé
on obtient donc une borne dans H;(V,,) pour la suite (w, ) lorsque p tend vers
N. Ce lemme 1 nous permet alors d’extraire une sous-suite (wp ) telle que

0<A

o |wpy ||H1 <C

o
e w,,— wy dans H; faiblement
o wp,— wy dans L,(V,) fortement ot r =sup(2, N — 1)
® w,, — wo presque partout sur Vi,

Lemme 2. Pour v assez grand, A, . ne tend pas vers 0 quand p tend vers N.

Preuve. Supposons que la suite A, , — 0 quand p — N, alors en utilisant
Péquation (10) on en déduit que [ | Vi, | + Rw?_ — 0 quand p tend vers N.
Comme l'opérateur A + R est coercif, on en déduit que la suite w, . tend vers
0 dans H; quand p tend vers N . Finalement en utilisant I'inégalité de Sobolev
[1] on en déduit que wp~, — 0 quand p — N dans Ly . On en déduit donc:

/ﬂww+hP~/ﬂhW (15)

quand p — N. Mais comme wp, € Ay, v = [ flwp~+ k' ce qui est en
contradiction avec la condition (8). Finalement la suite A, , ne tend pas vers 0
quand p — N .
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Ainsi (A\p~) reste bornée et ne tend pas vers 0 si + est assez grand. Quitte &
extraire une sous-suite, A, converge vers A > 0 et (wp~) vers wq, une solution

o
faible dans H; de ’équation suivante:

Awg+Ruwg = Aflwo+h [V D(wo+ k)  sur V,
wy = 0 sur OV, (16)

Comme le second membre est de classe C1%, on en déduit que wy € C3(V,,) et
n’est pas nulle car h ne ’est pas.

Remarque. Dans le cas particulier de I’équation (1) sur les ouverts bornés de
R™ et lorsque la fonction f est constante, la méthode de réflexion développée par
Nirenberg [6] et utilisée dans [5], donne les estimées nécessaires pour empécher
toute concentration de la suite w, . Dans le cas plus général étudié ici, nous avons
seulement, pour l'instant, montré 'inégalité:

/ f|wo+h|N§Iiminf/ flwp +h|P =~ (17)
Vn pHN Vn

Des hypotheses géométriques nous permettront d’éliminer les phénomenes de con-
centration, ce qui nous donnera 1’égalité dans la relation (17).

4. Concentration-Minimisation

Cette partie concerne l'analyse de la concentration qui peut avoir lieu lorsque
I'exposant p tend vers 'exposant critique N. Rappelons la définition suivante

[12]:

Définition 1. Un point Q est dit de concentration pour la suite (¢p) avec ¢p =
wp +h s

Je >0 tel que V6 >0 lim | ¢p ! > e (18)
PN JBa(9)

Supposons qu’il existe un point de concentration P. Dans ce qui suit, suivant
que P est sur le bord ou a l'intérieur de V,,, on met en évidence une condition
qui amene & une contradiction. Nous allons montrer la proposition suivante:

Proposition 1. Soit wo # 0 la limite faible de la suite minimisante w, obtenue
quand p tend vers N. Posons p(vy) = lim,_n pp~ . K désigne la meilleure con-
stante dans Uinclusion de Sobolev H| dans Ly . Si les deux conditions suivantes
sont vérifiées

1-2/N

K2 () (sup f)Q/Nvfan ey R (19)

dite condition intérieure
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K2 2/N
'yfff‘w0+h‘N—2(w0+h)hN(7)(Supf) / X

(v+Ci fy PV +Ca [y woV T R )TN <1
dite condition au bord, (20)
ou Cq1 et Co sont deur constantes indépendantes de p, alors la suite des min-
imiseurs w, n'a pas de point de concentmt@'on et la limite wo est une solution
minimisante pour la fonctionnelle d’énergie 1(u) = [ | Vu | +Ru? sur lensemble
Ayn..

La preuve est composée de plusieurs étapes : le passage a la limite quand
il n’y a pas concentration, l’expression des conditions de non-concentration et
I'impossibilité de concentration sous les conditions.
Preuve. Quand I'exposant reste sous-critique la convergence de (wy) est forte,
donc

hm/ flwy 4+ b P72 (wp + h)h /f|wo+h| lwo+h)h (21

Il en est de méme lorsque 'exposant est critique et qu’il n’y a pas de phénomene
de concentration. Il en résulte

lim'y—/ f|wp+h|p:'y—/ flwo+h Y (22)
p—N Vo Vo
Les conditions de la proposition sont obtenues de la maniere suivante:

o
4.0.1. Point de concentration dans V,

o
Supposons que P soit un point de concentration dans V,, . Soit n € C®(V,,)
une fonction & support compact dans une boule Bp(d), égale & 1 sur une boule
B(6/2)(P). En multipliant Péquation (10) par n?| wy, + h |k71(wp +h), k>1
puis en intégrant, on obtient:
quel que soit € > 0 il existe C. tel que:

Ak 2(k—1) e (k+1)/2 k+1
(wtay — T7%) Sy | V90 < CeJppiey | 0 |

k+1)/2 -
Ap ~SUP fZ/p| n ; o |p(f]3p(5) fl ¢p P)* 2/r (23)

ol I'on a posé ¢, = wp + h. Or comme

Hop,y (24)

Ay 0 =
T fe lwp B P (wp o+ h)wy

en utilisant I'inégalité de Sobolev classique avec les meilleures constantes, (voir
[1]) on obtient pour toute fonction v dans Hj :

2 2 2
lullt, <K Vu g, + Al g, (25)
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K représente la meilleure constante dans les inclusions de Sobolev ( K ne dépend

que de la dimension n ). On obtient, en posant « = n¢,(,k+1)/2 i

2 2 2
It < Volg(Va) (K2 Vngg ™t V2) Il + Al gl 021, (26)

Iei, g = 2(% — %) En combinant ces deux derniéres relations et en tenant
compte du fait que (pr(ﬁ) flép N2/ = (4 — anpr(é) flwp+h [PY127P il
s’ensuit que si
B KZ Zifp
iy P
PHNan|wp+h| (wp + h

o= fuprhPyr<r e
Jwy V,.—Bp(4)

alors ) )
|| /2 I, et |l V(o tO2) | (28)

sont bornées pour k voisin de 1, donc aussi

/ | gy [P (29)
Bp(4/2)

ceci en utilisant les injections continues de Sobolev.

4.0.2. Point de concentration sur 0V,

Supposons que P soit un point de concentration sur dV,, . Comme dans la partie
précédente on cherche & obtenir des estimées locales sur la norme LP de la solution
wp , dans une boule centrée en P de rayon petit.

Soit 7 € C*° une fonction définie par

n=1sur Bp(4/2)
n=0sur V, —Bp(d) (30)
Comme 7 n’est pas nulle sur dBp(d), contrairement au cas précédent, on multi-
plie cette fois-ci I’équation:
Awy + Ruwp = Apy f| wp + b [P (wp + h) (31)
par la fonction 7%| w, |k71wp avec k > 1. On notera B la demi-boule rieman-

nienne centrée au point P de rayon petit.
Comme dans le paragraphe précédent, on obtient apres calculs:

2(k—1)e k+1)/2 k+1
(Tt — o) Jos (Vo ™22 < C fye [ M7+

k -2
Ap(fg F1°) wp " wp + b P77 (wp + 1) (32)
En utilisant 1'inégalité suivante:
Ve, y, lz+y P <Clly P+ 2 [F) (33)

le second membre de (32) devient:
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k+1 k <, BB
J YRR o I T Y e Y A e B Y1
B

B P

Lorsque p tend vers N, A, et fB; flwp |k sont bornés. On étudie alors le dernier

terme de (34). En utilisant I'identité de Holder et I’expression du multiplicateur
de Lagrange A, . , on obtient:

ktp—1 b3 (D)2 12 k+1)/2 2
/\m(fBﬁ FrPwp |77 < T f\g)p+iflip’)2(wp+h)h| 77“’1(» t lp
o S0 5 (5

En utilisant les inégalités de Sobolev et la majoration |z |¥ < |z +h [P4+Cq| b |P+
Colz [P~ ||, ona

/flwlpé/ flwp+h|”+01/ |h|”+cz/ lwp P7Y B (36)
B B BS B

P

ou C; et Cy sont deux constantes positives, indépendantes de p (pour p
proche de N ). On peut maintenant identifier une condition pour qu’il n’y ait pas
de point de concentration sur 9V, pour la suite w, (ou w,+ h):

nfm,HNAMf(P)?/PKQ(7+(31/B+ | h|P+Cy /B+|w,, P R|)HP <1 (37)
P P

soit en passant a la limite

2
7=/ f\wo+If<|N*2(wo+h)h“(7)f(P)2/N X
(o Cofy, LRI Ca fy Lo IV RV <1 (38)

4.0.3. Non concentration

Montrons qu’il n’y a pas de point de concentration lorsque les quantités (28) sont
bornées. Supposons que P soit un point de concentration. En utilisant la définition
(18) de concentration, I'inégalité de Holder permet d’obtenir la majoration suivante

€< pr(a) | wy+h |7 < C(pr(é) | wp + b [V )N =
C(pr(5) | awp + b |V [+ b PN

7 e p(n+2)
< {op(e) | wp 1 MDY ENGED

p(nk—2)

e LR Y e (39)

C désigne une constante indépendante de p. D’ou en utilisant (29)

e</ |wp+h|Psc</ w1 b PPk (40)
Bp(d) Bp(d)
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avec k1 = n(k+1)/(kn —2) < N puisque k > 1. Alors pour p > ki, (p tend
vers N)

Jonsy | wp + 01" < Cte(fy 5 flwp + b [)1/2Volg™ /P (Bp () <
Cykr/pgn(1—k1/p) (41)

Le terme de droite de (41) est rendu arbitrairement petit par le choix de 4, ce
qui est en contradiction avec la définition de la concentration, puisque ¢ > 0 ne
dépend pas de §.

4.1. Convergence des minima , -

Une minoration du minimum d’énergie est utilisée maintenant pour obtenir la
limite de pp~ quand p tend vers N. On note u(vy) = u(y, V).

Lemme 3. [l existe une suite v, — v telle que limy ,n pip , < pu(7y)

Preuve. Soit ¢ > 0, il existe une fonction n € Ay, telle que :

() §/|V77|2+/R772 <uly) +e (42)

Posons v, = [ fln+h |’ Comme
tim [ enl = [finen® => [an (43)

Y > [ flh |N pour p proche de N . La contrainte sur « est donc vérifiée pour les
suites sous-critiques. Soit une suite de minimiseurs w, € A, . Par hypothese,

o= [ 1V Pt [ Ruog? < [ 1904 [ R (44)

Donc li}n,upﬁp < w(7y) . Lelemme 3 sera alors utilisé pour I’étude de la convergence
de la suite sous-critique, puisqu’il est maintenant possible de choisir des solutions
dans I’ensemble A, . , qui convergeront vers la solution voulue.

5. Conditions géométriques et fonctions tests

L’objet de cette partie est de montrer que sous les hypotheéses du théoreme (1),
les deux conditions de la proposition énoncée précédemment sont vérifiées lorsque
I’on a choisi un parametre ~ suffisamment grand.

Pour montrer que la premiere condition est vérifiée, deux quantités vont étre
évaluées, ve = [, fluec+h IV et pe = [| Vue |"+Ru2, en utilisant les fonctions
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de H; (V,,) suivantes:

ue(r) = ((T2+E2)1(n—2)/2 - (52+52)1(n72)/2) sur Bp(4) (45)
ue(P) = 0 sur V,, —Bp(d) (46)

ol r représente la distance géodésique au point P. Ces fonctions introduites dans
[2], sont radiales en P, nulles en dehors de la boule de rayon §, ¢ étant choisi plus
petit que le rayon d’injectivité. Ces deux quantités ~. et . serviront a montrer
que le quotient Q. :

1-2/N

Qe = (sup F)* VK’ pie L

47
Ye = fy. flwo+ k"2 (wo + h)h s

est strictement plus petit que 1.

5.1. Evaluation du quotient Q.

Dans ce paragraphe, on etudie le développement asymptotique de . et .. Dans
la suite, dQ) désigne I’élément de volume de la sphere S”~ (1),

é
ve= [ Alucn = [t [ flucen@ e @)
Vo 0 S(r)
Posons z = eu
d/e N
Ve :/ "u" Ldu fleu)/glew)e | v + " 2h(eu) | dQ (49)
0 S(r)

ou

n—2

o(r) = ((r2+1)%n—2)/2 - (6‘2+:2)(n—2)/'2) sur Bp(4) (50)
= 0 sur V,, — Bp(9) (51)

Pour évaluer ~., on étudie plus précisement le développement de

G(u) = . )f(eu) glew)e™ | v+ " 2h(eu) |NdQ. (52)

En utilisant le développement de Taylor suivant

|+ e 2h(eu) | = v |V +

2 [N o+t 2h(eu) |V (0 + ter2h(eu))h(eu)dt (53)
on obtient
Glu) = [ fleu)Vgleu)e ™| v [VdQ + Re(u) (54)

S(r)
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Re(u) = ™2 ooy flew)y/glew) fy N
| v+ te"2h(ew) |¥ (v + te2h(eu) ) h(ew)dtdQ (55)
puis "
— "u" TduR (u
R() = | duR(w) (56)
Alors

é/e
Re(7) 506*2/ unfldu/ 1 Fllote 2| suph||N Y suph|d? (57)
0 S(u)

C est ici une constante qui ne dépend pas de e et qui majore +/| g |. Ainsi en
posant d. = fvn fuc™ | et en revenant & la définition de ~., on obtient,

Ye = ﬁ/e = RE(’Y) (58)
Or 4. =0(¢™™) car

é/e 8/e
de=en [Tt [ pepl scen [Tl (s9)
0 S(re) 0

N
e=

De plus foé/e " tdrolN < C puisque vV <wv
reste Re(w) qui est intégrable.

o est intégrable. De méme pour le

d/e
Re(7) < e*QC/ u™ tdu| ve + €2 sup h | |N_1 < Qe 2 (60)
0
Ainsi

Ye :'3/6(1+O(6n_2)) (61)

5.2. Conditions géométriques

Compte tenu de ’hypothese faite sur la non nullité du tenseur de Weyl en un
point, seuls les termes jusqu’a l'ordre €* auront de l'intérét. Si I'on pose

Se = (sup /)Y VK2 peA(ue) N (62)

en dimension plus grande que 6 et en utilisant I’estimation (61) sur ~. on obtient
Qe = Se + o(€*). Les calculs explicites de S, ont été effectués dans [2], on pourra
s’y référer. Donnons simplement les résultats:

Qe = Qo + Qre+ Qae® + Qae® + Que* + o) (63)

Les calculs sur les termes du premier ordre montrent que ¢g = 1, puis Q1 =
@3 = 0 puisque il n’y a pas de terme d’ordre impair. Enfin, Qo = 0 grace a
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Phypothese A, f(P) = 0. De plus:

- (n+2)10 2 A (n+2) A2
Qi =Term—e — (ST G_S)Qn(n—j)(n—G) - (n—4)(4zn(ni2) +
36n2(n1—2) Rz) (64)
avec
1 6AR 2R¥R;; R, 2RYR,; R2
T*(n+2)n4l( 515 s T3 ) Vi)

Les hypotheses ont été choisies pour que @4 soit non nul. Pour simplifier
ce terme, remarquons qu’il existe une métrique conforme a la métrique initiale
g =e%g, telle que R(g’)(P) =0 et Ry;(g’) =0 [2]. ¢ est choisie nulle en dehors
d’une boule de centre P . L’invariance conforme de la fonctionnelle I montre alors
que les calculs précédents faits en utilisant 5 comme fonctions tests au lieu des
ue donnent les mémes résultats.

Remarquons de plus que les conditions sur f au point du maximum sont bien
invariantes par changement de métrique conforme: au maximum de f, A, f(P) =
0 = Ay f(P) et comme les dérivées d’ordre plus petit que 3 en P sont nulles,
Ag f=0= Ag, f . L’invariant conforme du tenseur de Weyl W(g) nous permet
alors d’écrire

1

A2 £(P)
" 12n(n — 4)(n — 6)

~ 4ln(n —4)

Qu (—e?| W2(g) |,) (66)
Finalement lorsque Ag,f =0,onabien Q4 <0 et Q. < 1.

Remarque 1. Lorsque Ag/ f reste petit devant le module du tenseur de Weyl, la
proposition reste valable, mais elle ne se quantifie pas aisément en termes géomét-
riques.

La condition de bord de la proposition 1 est satisfaite de la méme facon. En
effet les termes oul apparaissent les constantes C; et Cs sont bornés, ils sont donc
négligeables devant le terme en 7. = O(¢>~") . La condition de non concentration
au bord est encore vérifiée grace a la non nullité du tenseur de Weyl, au point P.
Remarque 2. Quand le tenseur de Weyl est nul au point P, il faut alors pousser
plus loin les développements. Les conclusions sont les mémes tant que le seuil de
I'exposant du développement limité n’excede pas n-2. Dans le cas contraire, c’est
la masse positive (voir [11]) qui apparait avant le terme contenant le tenseur de
Weyl W. Ce cas a été traité dans [10].

5.2.1. Quand a#R

Pour montrer que le quotient Q. est plus petit que 1, on utilise la non nullité du
terme d’ordre 2 dans le développement qui provient de l'inégalité:

(n—4)Af(P)

cna(P) + 370P)

< R(P) (67)
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En imposant les mémes conditions sur f que celles énoncées au théoreme 1,
la condition (67) au point P s’crit a(P) < R. Dans ce cas, le théoréme est vrai
a partir de la dimension 5.

6. Questions ouvertes

Trouver le plus petit v tel que la condition de non-concentration soit vérifiée.

Lorsque le maximum de f est atteint uniquement sur le bord, comment satisfaire

la condition de non-concentration 7
¢ Que dire des cas ol la dimension est inférieure a 6, lorsque la variété n’est pas

localement conformément plate 7

Terminons par une remarque concernant la convergence d’une famille de so-
lutions de Iéquation (1), lorsque la donnée au bord est une suite de fonctions
qui tend uniformément vers 0. En fait, il n’est pas possible par cette méthode
d’obtenir des solutions nodales nulles sur le bord car lorsque le phénomene de con-
centration est évité, les seules solutions minimisantes nulles au bord sont positives.
On pourra se reporter & [10].
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