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Une infinité de structures de contact tendues sur les variétés
toroidales

Vincent Colin

Abstract. We show that every closed, toroidal, irreducible, orientable 3 -manifold carries in-
finitely many universally tight contact structures.

Résumé. On démontre que toute variété orientable, irréductible, close et toroidale de dimen-
sion 3 porte une infinité de structures de contact universellement tendues.

Mathematics Subject Classification (2000). 57R17, 53D10.
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1. Introduction

Une variété de dimension 3 est dite toroidale si elle contient un tore incompress-
ible, c’est-a-dire plongé et 7y -injecté. L’objectif de ce texte est de démontrer le
théoréme suivant, qui répond partiellement & une conjecture d’E. Giroux [Gi5, Gi6]
pronostiquant qu 'une variété de dimension 3-orientable, irréductible et close porte
une infinité de structures de contact tendues si et seulement si elle est toroidale :

Théoreme 1.1. Toute variété de dimension 3, orientable, irréductible, close
(compacte sans bord) et toroidale porte une infinité de structures de contact uni-
versellement tendues deur a deux non isomorphes.

Jusqu’ici, les principaux résultats établis concernaient les fibrés en tores sur
le cercle [Gi3, Gi4, Gi5] et les variétés irréductibles contenant un tore normal
[Co2]: un tore est normal §’il est incompressible et si on ne peut pas le disjoin-
dre par isotopie d’un autre tore incompressible. Cette propriété caractérise des
variétés dans lesquelles se plongent de maniere 7y -injective un fibré de Seifert de
base “assez large”. Dans [Co2], on démontre ainsi que toute variété orientable et
irréductible qui contient un tore normal porte une infinité de structures de contact
universellement tendues.

Comme dans ce premier travail, la démonstration du théoréeme 1.1 repose sur
la notion de torsion, introduite par E. Giroux [Gi3, Gi4, Gi5], et sur I’étude qu’il
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en a faite dans le cas du tore épais.

Avant de poursuivre plus avant la discussion, on rappelle quelques notions de
géométrie de contact.

Une structure de contact sur une variété V de dimension 3 est un champ de
plans £ qui possede une équation locale oo =0 telle que la 3-forme « A da soit
une forme de volume. En particulier, sur une variété orientée, toute structure de
contact possede un signe (donné par celui de « A da qui se révele indépendant
du choix de « ). Par défaut, toutes les variétés de contact rencontrées par la suite
sont supposées orientées et les structures de contact positives.

En dimension 3, les structures de contact se scindent en deux catégories
complémentaires: les structures vrillées et les structures tendues. Une structure
& sur une variété V est vrillée g’il existe un disque D plongé dans V tel que
&lop = TopD . Si le rappel dans tout revétement de V d'une structure vrillée est
une structure vrillée, ce n’est pas toujours le cas des structures tendues (voir par
exemple [Col]) ; ¢’est pourquoi on distingue comme sous-catégorie de ces derniéres
les structures universellement tendues, qui restent tendues apres un passage au
revétement universel. Aujourd’hui, les structures vrillées sont parfaitement com-
prises grace au travail de Y. Eliashberg [El1]. Les structures tendues en revanche
restent en partie mystérieuses. Leur étude est d’autant plus intéressante qu’elle se
situe a l'intersection de nombreuses branches de la géométrie: théorie des nceuds,
théorie des feuilletages, géométrie symplectique...

On décrit a présent des outils intervenant dans 1’étude des variétés de contact.

Si S est une surface orientée dans V et si £ est orientée prés de S, en dehors
des points (z;);e1 de S, génériquement isolés, ot £(z;) = T,,S, l'intersection de
¢ et de TS est un champ de droites orientées qui s’integre en un feuilletage de
S, appelé feuilletage caractéristique de S et noté £S. Il est singulier en les points
z; . Le feuilletage caractéristique tracé par une structure ¢ sur une surface S
détermine ¢ pres de S. En particulier, pour recoller deux structures de contact
de méme signe situées de part et d’autre d’'une surface, il suffit que leurs feuilletages
caractéristiques coincident.

Toute courbe intégrale de & est dite legendrienne. Si une courbe legendrienne
orientée v est contenue dans une surface S, on définit son invariant de Thurston-
Bennequin relatif, noté tb(~y,S), comme la moitié de la somme algébrique, le long
de «, des intersections entre £ et TS. Si v est une courbe positivement trans-
verse & £ et borde une surface orientée S, le champ de plans ¢|s admet une section
non singuliere X . On appelle autoenlacement de ~y, noté [(~), 'enlacement entre
~ et toute courbe obtenue en poussant un peu v par X .

Pour différencier les structures de contact tendues, E. Giroux [Gi3, Gi4, Gi5]
a introduit la notion de torsion. Si T C (V,£) est un tore incompressible dans
une variété de contact, on cherche a plonger, pour le plus grand entier naturel
n possible, le produit de contact (T? x [0, 27], ker(cos ntdx + sinntdy)) dans la
méme classe d’isotopie C que celle d’un voisinage tubulaire de T . Cet entier
(éventuellement nul, si de tels plongements n’existent pas, ou infini) est la torsion
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de ¢ dans la classe C et est noté Tor(V,£,C), ou Tor(V,§) ¢l n’y a pas
d’ambiguité. On a vu dans [Co2] comment lire cet invariant sur le nombre de
Thurston-Bennequin relatif d’'un certain type de courbe. C’est cette stratégie que
I’on va a nouveau appliquer pour démontrer le théoreme 1.1.

Pour de plus amples détails sur les notions de base de la géométrie de contact,
et notamment sur la création et I’élimination de singularités d’un feuilletage &S
par isotopie de S, on renvoie & [Gi2].

Le théoreme 1.1 a été tout récemment annoncé par K. Honda, W. Kazez et
G. Matié.

Je remercie chaleureusement Emmanuel Giroux de 'aide qu’il m’a apportée
dans la recherche de cette démonstration. Je lui dois notamment l'idée de se
placer sur un revétement de groupe 71(T) ainsi que de distinguer les différentes
possibilités pour le rappel de T. Une partie de la rédaction de ce texte a été
effectuée lors d’un séjour & l'université de Stanford et & I’American Institute of
Mathematics. Je remercie ces deux institutions de leur soutien.

2. Recueil de résultats sur la torsion

L’objet de cette section est de répertorier des résultats, principalement dus a
E. Giroux, K. Honda et Y. Eliashberg, concernant la torsion des structures de
contact universellement tendues sur le tore épais, I'anneau épaissi et le demi-
espace. On donne si nécessaire des esquisses de preuves permettant d’expliciter le
lien a ces travaux lorsqu’il n’est pas totalement transparent. Le lemme 2.8 peut
étre également déduit des arguments développés dans [Co2].

2.1. Structures de contact universellement tendues sur le tore épais

A. Calcul de la torsion sur un modele

Lemme 2.1. [Gi5] Soit ¢ la structure de contact définie sur T? x [—1,1] =
{(z,v,0)} par Uéquation cos f(0)dz +sin f(0)dy =0, ot f:[-1,1] = R esta
dérivée strictement positive et vérifie: f(—1) € [0,2x[ et f(1) € [2nx,2(n+ 1)x[,
n € N. Alors Tor(T? x [—1,1],¢€) est la partie entiére de (f(1) — f(—1))/2m,
c’est-a-dire n ou n—1.

B. Addition des torsions

Lemme 2.2. [Gi5] Soit £ une structure de contact universellement tendue sur
T2 x R telle que £T? x {1} soit un feuilletage linéaire. On a:

Tor(T? x R, |2 xr) = Tor(T?x] — 00, =1}, |12 x)—00,1])
+Tor(T? x [=1,1], €| 12 x[—1,1)) + Tor(T? x [1,+00[, €| x 1, 400f) + &,
ou k=0,1, ou 2.
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C. Critere d’annulation de la torsion

Lemme 2.3. Soit £ une structure universellement tendue sur T? x [=1,1] qui
trace sur T? x {1} wun feuilletage sans singularité ni composante de Reeb avec
un nombre fini d’orbites périodiques non dégénérées et un feuilletage linéaire sur
T? x {1} . On note A =S' x {x} x [-1,1] € T? x [-1,1]. On suppose que A
est transverse, ou éventuellement tangent le long de T? x {1} NOA, a &. S’il
eziste un arc legendrien v plongé dans A joignant un bord de A a Uautre et tel
que th(vy,A) = =3, alors Tor(T? x [-1,1],£) =0.

Démonstration. On peut toujours supposer que, quitte & changer A en con-
servant v, le bord de A est paralléle aux orbites de €T? x {1}. Apres cette
modification, on est assuré que tb(y,A) = 0, —% ou —1. Des lors, pour
tout feuilletage non singulier F de T? x {1}, transverse & A, dont les orbites
fermées sont non dégénérées et coincident avec celles de A (avec une orienta-
tion éventuellement différente, mais les orbites attractives restent attractives et
les répulsives, répulsives), il existe (voir [Gil]) une isotopie C”-petite de T? x {1}
fixant A, telle que le feuilletage caractéristique du nouveau tore soit F (ce feuil-
letage comporte éventuellement des composantes de Reeb). Ce faisant, d’apres
[Gi5], la torsion du produit délimité par T? x {—1} et I'image de T? x {1} est la
méme que celle de (T? x [~1,1],€). On note (T? x [~1,1],&r) ce nouveau pro-
duit. Par construction, 'anneau A et I’arc legendrien ~ inclus dans A joignent
tous deux un bord de (T? x [~1,1],&p) a l'autre. On a de plus th(y, A) =0, —%
ou —1.

Toujours d’apres [Gi5] et sa description compléte des structures de contact
tendues sur le tore épais, si n désigne la torsion de &, il existe un feuilletage F de
T2 x {1}, un entier k, unréel 6y et une fonction f strictement supérieure & 2nm
tels que (T2 x [—1,1],¢p) = {(z,v,0 < f(y))} C (T? x [0,2(n + k)], ker(cos(# +
Oo)dz + sin(@ + 0p)dy)) . Dans ces coordonnées, on prolonge A par l’anneau
produit (0AN{0 = f(y)}) x{f(y) <0 <2(n+k)r}, et 'arc yp par (dywN{0 =
FW) ) x{f(y) <0 <2(n+k)r}. On obtient ainsi un anneau Ap portant un arc
legendrien yp qui joignent tous deux un bord & l'autre de T? x [0,2(n + k)7] .
Par construction, ¢b(yp, Ar) > —k — % et, comme JAp est transverse a £, on
peut également supposer, quitte a effectuer une isotopie de Ap relative & g ne
modifiant pas tb(vyr, Ar), que JAfr est transverse (ou éventuellement partout
tangent) & la structure.

D’apres [Ka] (théoréme 7.6), on a alors tb(yp, Ap) < —n — k. On en déduit
que n < 3, ce qui implique que I'entier naturel n est nul. O
D. Lemme de réalisation
Lemme 2.4. [Gi5] Soit & une structure de contact universellement tendue sur
T2 x [0, 400 qui trace un feuilletage linéaire sur T? x {0} . Si & est de torsion
finie n , il existe (c,00) € R? tel que pour tout k € N, il existe un plongement
¢ de T? x [0,k] dans T? x [0,c] laissant invariant T? x {0}, et tel que ¢.&
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ait pour équation cos(6 + 0g)dz + sin(f + 0p)dy = 0. On peut méme imposer que
c=2n(n+2).

On indique simplement comment se ramener a des résultats d’E. Giroux.

D’apres [Gil], quitte & effectuer des isotopies C° -petites sur les tores T? x {k},
on peut toujours supposer que le feuilletage ¢T? x {k} comporte un nombre fini
d’orbites périodiques non dégénérées. On se place dans cette situation. La struc-
ture &|p2y (o, est alors completement décrite (voir [Gi5]) par — outre la torsion
n et €T? x {i}, pour i = 0,k — la donnée d’une famille d’anneaux (A;)i<;<x
deux & deux disjoints dans T? x [0, k], s’appuyant sur les orbites périodiques
de ¢T? x {k}. On considere le produit T? x [0,%k] comme naturellement in-
clus dans T? x [0,k + 1]. Toujours d’aprés [Gi5], plonger (T? x [0,k],£) dans
(T2 x [0, 27 (n+2)], ker(cos(8+ 0 )dz +sin(8+6;)dy)) revient a trouver une famille
d’anneaux (Al)1<;<; deux a deux disjoints dans T? x [k, k + 1] dont les bords
coincident avec ceux des anneaux de la famille (A;);<;<; et telle que la réunion
des deux familles constitue un ou deux tores incompressibles dans T? x [0,k + 1] .

En d’autres termes, la preuve du lemme 2.4 se réduit a la démonstration du
lemme suivant, laissée a la sagacité du lecteur:

Lemme 2.5. Soit (oy)1<i<; une famille d’arcs deuz d deuz disjoints inclus dans
St x [0,1], dont les extrémités sont incluses dans S' x {1} . Il existe une famille
d’arcs (al)1<i<i inclus dans S x [1,2], dont les extrémités coincident avec celles
des arcs de la famille (o5)1<i<i , et telle que la réunion des familles (o4)1<i<i et
(af)1<i<i forme un ou deux cercles non contractiles dans S* x [0,2].

E. Elimination des singularités

Lemme 2.6. Soient £ une structure universellement tendue sur V=T?x R, et
A=S"x{x}x[-1,1] C T?x[-1,1] C T2xR.. On suppose que A est transverse
a EA avec un signe constant et que EA ne contient que des singularités de méme
signe. On supppose de plus que €T? x {1} est un feuilletage sans singularité ni
composante de Reeb.

Il existe une isotopie C -petite de T? x [—1,1] fizant un voisinage de A U
T2 x {1} telle que Uimage de T? x {—1} porte un feuilletage sans singularité ni
composante de Reeb.

Démonstration. On utilise des techniques développées dans [Gil]. On se place
sur un revétement de degré deux p: V' — V de V dans lequel la préimage de
A est constituée de deux anneaux disjoints A; et Ao . En particulier, dans ce
revétement, p~!'(A) découpe p~1(T? x [~1,1]) en deux tores solides, dont un est
dénoté T . Le bord de T est constitué de la réunion de p~*(A) et de deux anneau
B_i et B; quisont envoyés par p respectivement sur T? x {—1} et T? x {1}.
On sait par hypothese que, si ¢ désigne le rappel de £ dans V', le feuilletage
&'(A2 U B1) ne porte que des singularités de méme signe et est soit sortant, soit
rentrant le long du bord. En particulier, {(9(A2 UB;)) = 0. On a donc aussi
{(0(A; UB_1)) = 0. Comme &A; ne présente que des singularités de méme
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signe et que £’A; est soit rentrant, soit sortant le long de 9A{, ces singularités
s’éliminent toutes par une isotopie de A; fixant B_y (voir [Gil]). On en déduit
que les singularités de B_; s’éliminent par une isotopie C°-petite de B_; fixant
un voisinage de son bord (voir [Gil]), ce qui, transcrit dans V, fournit le résultat
recherché. O

2.2. Structures universellement tendues sur R x S' x [0, 1]

On étend la notion de torsion aux structures définies sur, respectivement, R xS! x
St = {(z,y,0)} et RxS'x|[0,1] (avec des coordonnées similaires), en remplacant
la recherche de plongements de T? x [0, 2] par celle de plongements (propres et
71 -injectifs) de (R x S x [0, 27], ker(cos nfdz + sinnfdy)) respectivement non
séparant et paralleles au bord. On parle alors de torsion annulaire. Le résultat
suivant découle de [Co2]. Il peut étre également déduit des techniques développées
dans [Gi5].

Lemme 2.7. [Co2, Gi5] Toute structure de contact universellement tendue sur
R x S! x S est de torsion annulaire finie.

Corollaire 2.8. Toute structure de contact universellement tendue & sur V =
RxS!'x[-1,1] = {(z,v,0)} qui a pour équation cos f(x,y,0)dz+sin f(z,y,0)dy =
0 sur RxS!x[~1,-1+¢JURXS! x[1 —¢1], 00 f:RxS'x[-1,-1+¢U
R xS'x [l —¢,1] = [a,b] vérifie f(z,y,0) = f(0) sur RxS!'x[-1+e—¢, -1+
JUR X S! x [1 —¢,1 — e+ €], aune torsion annulaire finie.

Démonstration. L'image de f est incluse par hypothése dans un intervalle [a, b]
compact. On note g : R x S! x [2,3] — R une fonction dont la dérivée par-
tielle par rapport a la troisieme variable est strictement positive avec g(z,y,2) =
flz,y,1) mod 27 et g(x,y,3) = f(z,y,—1) mod 27 . Le champ de plans ¢ donné
par I'équation cos g(zx,y,0)dx +sing(x,y,0)dy = 0 est une structure de contact
sur RxS'x[2,3] = {(z,v,0)} . Enidentifiant RxS!'x {1} C V avec RxS!x {2}
d’une part, et RxS!x{—1} CV avec RxS!x {3} C V d’autre part, on obtient,
en prolongeant & par ¢, une structure de contact n sur W =R x 8! x S'. La
structure 7 est universellement tendue par application d’une version annulaire du
théoreme de recollement 4.3 (voir [Col]). On applique alors le lemme 2.7 pour
conclure. (Il

2.3. Structures tendues sur le demi-espace R? x [0, + 00|

Sur le demi-espace R? x [0, +o0|, la notion de torsion disparait comme le montre
le théoreme de classification suivant, da a Y. Eliashberg.

Lemme 2.9. [E-T| Si & est une structure tendue sur R? x [0, +oo[= {(z,y,t)}
qui a pour équation costdz +sintdy =0 sur R? x [0, ¢[, alors elle est conjuguée
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a la structure définie globalement par la méme équation par un difféomorphisme
qui est Uidentité prés du bord.

3. Décomposition topologique du probleme

Soit V une variété de dimension 3-orientable, irréductible et close qui contient
un tore incompressible.

On sait d’apres W. Jaco, P. Shalen et K. Johannson [Ja, J-S, Jo] qu’il existe
une collection minimale finie (T;)o<;<, de tores incompressibles deux a deux
disjoints, unique & permutation et isotopie pres, telle que toute composante de
V\ (Up<i<nT;) soit ou un fibré de Seifert, ou atoroidale (c’est-a-dire dans laquelle
tout tore incompressible est parallele & une composante de bord).

Si 'V est un fibré de Seifert, on note T un tore incompressible quelconque de
V. Dans le cas contraire, la collection (T;)o<i<n découpant V est non vide. On
distingue alors deux types de variétés:

o Type A: une des composantes de V \ (Up<;<,T;) est atoroidale (et n’est

pas un fibré de Seifert) ; on note T un tore de la famille (T;)o<;<, adjacent

a une de ces composantes ;

o Type B (variétés graphées): toutes les composantes de V \ (Up<i<nT5)

sont des fibrés de Seifert ; on pose T =Ty .

On note 7 : V — V le revétement de V de groupe m((T).

Dans le cas A, deux situations peuvent se produire:

e a) tous les relevés de T dans V sauf un sont des plans ;

e b)il existe un revétement p: V — V de groupe Z dans lequel deux relevés

Tl et ’fg de T sont des anneaux conjugués a S' x R..

On note T un relevé compact de T dans V.

Remarque 3.1. Tout tore incompressible non isotope a l'un des tores T; de
la. décomposition de Jaco-Shalen-Johannson est automatiquement normal. Si un
tel tore existe, la démonstration du théoreme 1.1 découle alors de [Co2]. Les
seuls cas a considérer sont donc ceux ol les composantes de Seifert ont pour base
soit une sphere épointée, la somme du nombre de points retirés et du nombre de
fibres singulieres étant inférieure a 3, soit le plan projectif épointé, la somme du
nombre de points retirés et du nombre de fibres singulieres étant inférieure a 2.
Les arguments développés par la suite ne tiennent pas compte de cette réduction.

Les deux lemmes qui suivent concernent les couples (V,T) de type A.
Lemme 3.2. Dans le cas a), on note Vi et Vo ladhérence dans V des deux
composantes de 7Y (V\ T) adjacentes & T . La variété V est alors obtenue en
recollant & chaque composante de d(V1UVs) un demi-espace (~ R?x[0,00[ ). En
particulier, V est difféomorphe & Vintérieur de ViU Vo dans V. Topologique-
ment, elle est également conjuguée & T> x R..

Démonstration. Comme V est Haken, elle est revétue par R® (voir par exemple
[He]) et tout relevé P de T dans R?® découpe R® en deux demi-espaces. En
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recollant, suivant les cas, un de ces deux demi-espaces aux composantes de bord
non compactes de Vi et Vi, on obtient un revétement de V , qui est de groupe
71(T) d’aprés le théoréme de Van Kampen. Il est donc conjugué a V.

Le fait que V soit conjugué & T? x R est un résultat classique de topologie
démontré dans [Si, Ja]. O

De la méme maniere, on montre le résultat suivant:
Lemme 3.3. Dans le cas b), la variété V est conjuguée & R x S x R et les
deuz anneaur T1 et Ty & RxS'x {—1} et RxS'x{1}. On note V; et Vy
Uadhérence des composantes de p~'(V\ T) adjacentes a, respectivement, T, et
Ty, et qui ne rencontrent pas le produit R x S'x] —1,1[. Nécessairement, une
composante de V \ (Uo<i<nTi) adjacente & T est un fibré de Seifert. Deux cas
peuvent alors se produire:
o by) La composante de Seifert adjacente & T ne fibre pas au-dessus d’une
bande de Maebius et, pour i = 1,2, les composanles de av; \ T, sont toutes
des plans. La variété V est alors obtenue a partir de R x St x [=1,1] en
recollant Vi sur T2 x {—1} et }72 sur T? x {1}, puis en recollant & chaque
composante de bord restante de Vi et Vo des demi-espaces (~ R? x [0, 0] ).
Dans ce cas, on note q: V — V Uapplication de revétement qui envoie T
sur T. L’mage de Vi par q est conjuguée o T? x [0,400] et q induit un
difféomorphisme de Vo sur son image. Toutes les composantes de bord de
g(ViUR x S! x [-1,1]uU V) sont des plans et on a: V =~ Int(q(V; U (R x
St x [-1,1]) U V).
e b)) La composante de Seifert M adjacente a T fibre au-dessus d’un ruban
de Miebius et deux relevés consécutifs T et T/ de T dans V sont des tores.
On note Vi et Vy les deur composantes de 71 (V\T) attachées a l’extérieur
du produit P relevant M et délimité dans V par ces tores. Les composantes
de bord de V1 et Vo autres que T et T’ sont toutes des plans. La variété V
est alors conjuguée a Int(Vi UP U Vy).

Démonstration. Dire que deux anneaux proprement plongés et 7y -injectés dans
R x S! x R bordent un produit est un résultat classique pour lequel on renvoie
[Wal.

On est par hypotheses dans le cas o T est isotope & un des tores de la
décomposition de Jaco-Shalen-Johannson et ot une composante de V\ (Up<;<nT;)
adjacente & T est atoroidale (et n’est pas un fibré de Seifert).

Soit T’ un relevé de T dans V, distinet de T, qui est un anneau infini
(conjugué & R x S') ou un tore. On note K l'adhérence de la composante
de V\ (TUT') quirencontre T et T’. D’apres le théoreme de Van Kampen,
71 (K) = 71(V) = Z2 . 1l existe alors dans T’ une courbe fermée simple homologue
4 une courbe fermée simple de T . Ces deux courbes bordent une surface dans
K que I'on peut toujours rendre incompressible et qui est donc un anneau, car
71 (K) = Z? . Comme une composante du découpage adjacente & T est atoroidale
(et n’est pas un fibré de Seifert), d’apres le théoreme de ’anneau VIII.10 de [Ja],
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T et T/ doivent border un méme relevé d’une composante du découpage de Jaco-
Shalen-Johannson qui est un fibré de Seifert M . En particulier, tous les relevés
de T dans V qui ne sont pas des plans doivent border I’adhérence d’une méme
composante de 7~V \ T).

e Si T’ est un tore, la composante de Seifert M possede un revétement de degré
deux conjugué & T? x [0,1]: il s’agit d’une fibration en cercles sur un ruban de
Moebius (cf. [Ja]). Tous les relevés de T autres que T et T’ sont, d’apres ce
qui précede, des plans. La méme étude que celle de la configuration a) permet de

terminer la démonstration dans ce cas.

e Si T/ est un anneau, par passage au revétement, on obtient que tous les relevés
de T dans V qui ne sont pas des plans doivent border ’adhérence d’une méme
composante de p~*(V\T), ce qui suffit & ramener la démonstration, comme dans
le cas du lemme précédent, a une utilisation du théoreme de Van Kampen et a
des raisonnements élémentaires sur les revétements: par exemple, en recollant des
demi-espaces, judicieusement choisis dans le revétement universel de V , aux com-
posantes de bord de ViU (R xS x [—2,2])UV, (qui sont toutes planes d’aprés ce
quinrécéde)7 on obtient un revétement de V de groupe Z qui est donc conjugué
a V. O

4. Construction de la suite d’exemples

Plus généralement que dans le cas du tore, une surface S (# S2, D?) plongée dans
une variété V de dimension 3 est dite incompressible si son groupe fondamental
s’injecte dans celui de V.

Pour construire des structures de contact tendues, on dispose d’'un important
travail effectué par D. Gabai [Ga] d’une part et par Eliashberg-Gromov [El3, Gr]
et Eliashberg-Thurston [E-T] d’autre part.

Un feuilletage est dit tendu s’il possede une transversale fermée qui rencontre
toutes ses feuilles. L’existence des feuilletages tendus a été largement étudiée
par D. Gabai. On rappelle qu'une surface (orientable) est dite minimale si elle
est incompressible et si elle minimise le genre dans sa classe d’homologie. Ici,
la surface n’est pas supposée connexe, mais on suppose qu’aucune composante
n’est une sphere ou un disque, et le genre désigne alors la somme des genres des
composantes connexes.

Théoreéme 4.1. [Ga] Soient V une variété compacte irréductible de dimension 3
bordée par une réunion non vide de tores el S une surface minimale dans V qus
représente un élément non nul de Ho(V,0V,Z) . Il existe un feuilletage tendu dont
une feuille est S et qui trace sur OV un feuilletage sans singularité ni composante

de Reeb.

Un feuilletact est un champ de plans £ = kera tel que la 3-forme o A do
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soit de signe constant. Cette notion interpole entre les notions de feuilletage (ot
aAda est identiquement nulle) et de structure de contact (ol A de ne s’annulle
pas).

Théoréme 4.2. [E-T] Tout feuilletact ¢ est limite C° de structures de contact
qui coincident avec £ sur un compact ou il est déja de contact.

Pour prouver qu’une variété de contact (V,£) est tendue, on dispose d'un
critere dti & Y. Eliashberg et M. Gromov [El3, Gr]: il suffit qu’il existe une variété
symplectique (W,@) (& est une 2-forme fermée non dégénérée) qui remplisse
(V,€), ce qui signifie que W =V, que ©| est non dégénérée et que w oriente
V =90W comme £.

En particulier (voir [E-TY), il suffit qu’il existe une 2-forme fermée w sur V
qui domine &, c’est-a-dire telle que w|e soit non dégénérée, ainsi qu’une structure
négative ¢’ également dominée par w .

Dans ce cas en effet, la 2-forme © = p*w + edsa obtenue a partir de w
sur V x [0,1] — s est la coordonnée sur [0,1], e est un réel positif assez petit,
p:Vx[0,1] — V laprojectionsur V et oz =0 est une équation de { — détermine
un remplissage symplectique de (V,&)[[(V, &) et le théoreme de remplissage de
[E13, Gr] assure alors que & et & sont tendues.

Plus généralement, dans le cas ot (V,&) = (W, &) n’est pas compacte, il faut
supposer de plus, outre le fait que @|¢ > 0, qu'’il existe une structure presque com-
plexe J sur W qui préserve ¢ et telle que @(x,J) soit une métrique riemanienne
g avec les propriétés suivantes:

e g est complete ;

e le rayon d’injectivité de g est minoré par un réel strictement positif ;

e la courbure sectionnelle de ¢ est majorée.

On dit alors que (W, &) & une géométrie finie a Uinfini, et, d’apres [El3, E-T, Gr],
toute variété de contact bordée par une variété symplectique qui possede une
géométrie finie a I'infini est tendue.

Un travail de D. Sullivan [Su] fait le lien entre ces résultats de remplissage pour
les structures de contact et le monde des feuilletages: imposer l'existence dune
2 -forme fermée w dont la restriction au plan tangent d’un feuilletage est non
dégénérée équivaut a dire que ce feuilletage est tendu.

Une autre stratégie pour construire des structures tendues est de déterminer
leur comportement par rapport a certaines opérations de chirurgies.

Théoréme 4.3. [Col]| Soient (V,&) une variété de contact et T C V un tore
incompressible. Si T est un feuilletage linéaire et si la variété (V\'T,Ely\7) est
universellement tendue, alors (V,§) lest aussi. La conclusion est la méme si T

est un anneau incompressible plongé qui posséde un voisnage tubulaire conjugué a:
(R x S x [—¢,¢] = {(=,y,0)}, ker(cos(8 + 6g) +sin(0 + 6p))) , avec ¢, Oy ER.

C’est sur cette chaine de résultats qu’on se fonde pour prouver le lemme suivant,
légere adaptation d’un énoncé de K. Honda, W. Kazez et G. Mati¢ [HKM], qui
précise le travail d’Eliashberg et Thurston.
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Lemme 4.4. (voir [HKM]) Soit V une variété orientée de dimension 3, qui
est irréductible, compacte et dont le bord est une réunion non wvide de tores in-
compressibles. Soit S wune surface minimale plongée dans V , chaque composante
connexe de S étant de bord non vide plongé dans OV . Il existe une structure de
contact universellement tendue positive £ sur V , qui trace sur OV un feuilletage
linéaire et sur chaque composante de S wun feuilletage transverse au bord avec un
signe constant, sans orbite périodique et dont toutes les singularités sont de méme
signe.

Démonstration. D’apres le théoreme 4.1 de Gabai, il existe un feuilletage tendu
F dont S est une feuille et qui trace sur dV un feuilletage sans singularité ni
composante de Reeb. Quitte a modifier F, on peut supposer qu’il est conjugué a
un feuilletage produit S x [—1,1] pres de S~ S x {0}.

Soit alors w une 2-forme fermée, donnée par [Su|, qui domine F. On modifie
w pres de chaque composante T de 9V de la maniére suivante. Soit T x[—1,0] =
{(z,v,0)} un systeme de coordonnées pres de T =~ T x {0} tel que F soit tangent
& 0Op et transverse & Jy (FNT est sans composante de Reeb). On suppose de
plus que S x [-1,1]NT est donné par équation dy = 0. La 2-forme w est
fermée et s’écrit donc dans ces coordonnées: w = adz A dy + dn pour un certain
réel a et une certaine 1-forme 7.

Si g:[—1,0] — R est une fonction positive, nulle prés de —1 et strictement
positive sur [—%,O] , qui vaut 1 au voisinage de 0, et si x :[-1,0] = R vaut 1
sur [—1, —i] et 0 pres de 0, on pose, pour t € R,

wy = adzx A dy + d(xn) +tg(0)do A dz.

Cette forme w; est fermée, coincide avec w pres de T x {—1} et, si ¢ est assez
grand, domine F . On fixe un tel réel ¢, assez grand pour chaque composante de
bord, et on note w;, la 2-forme obtenue en raccordant w; & w pres de chaque
composante de bord. On colle alors a chaque composante de bord T un produit
T x [0, 4o0o[= {(z,y,8)} (les coordonnées prolongent celles déja construites sur
T x [—1,0] ) sur lequel on prolonge F par un feuilletage produit et wj par la
2-forme adz A dy +tdf A dz . On note V' cette nouvelle variété, I’ le nouveau
feuilletage et w;’ la nouvelle forme.

On revient & présent sur V. On trace sur S un feuilletage orienté L transverse
a dS, dont les singularités sont des selles ou des foyers de divergence positive (pour
une certaine orientation de S fixée) et ne présentant pas d’orbite périodique. On
choisit L sortant le long de 9S. Un tel feuilletage est donné par le noyau d’une
1-forme B avec dB > 0 (voir par exemple [Gi2]). Soit alors f : [-1,1] = R
une fonction lisse, nulle en +1 et strictement positive a l'intérieur. Si ¢ désigne
la coordonnée transverse & S dans son voisinage S x [—1,1], la 1-forme o =
dt + f(t)p vérifie: a Ada = f(t)dt AdB. Le noyau de « est donc une structure
de contact sur Sx| — 1,1 qui trace L sur S, et coincide avec F au bord. On
construit ainsi sur V un feuilletact positif & qui trace le feuilletage désiré sur
S. La proximité de & a F est donnée par la taille de f.
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Soit & nouveau T une composante de 9V et {z = z¢} une équation de
SNT. Le feuilletage &T a une équation de la forme dy + h(z,y)dz = 0, avec
h(zo,y) > 0. Soit alors H : T? x [0,00[— R une fonction lisse qui possede les
propriétés suivantes:

S5 (,9,6) >0 ;

[ lime_.+ooH:Co, co cR "

e H(z,y,1)=¢1, € R ;

e H(z,y,0)=h(z,y).

Le champ de plans défini sur T? x [0, +oo[ comme {dy + Hdx = 0} est une
structure de contact qui prolonge &y en un feuilletact. Elle est transverse & 9, et
trace sur chaque tore T x {1} un feuilletage linéaire d’équation dy + cidz = 0.
Elle trace de plus sur (SN T) x [0,1] un feuilletage non singulier, dirigé par 9,
et donc sans orbite périodique.

On effectue ce prolongement pres de chaque composante de 9V pour obtenir un
feuilletact sur V. Si ¢ est choisi assez grand, la 2-forme w; domine ce champ
de plans. Le feuilletact ainsi construit sur V’/ peut étre approximé, d’apres le
théoreme 4.2, par une structure de contact £. Comme la condition de domination
est ouverte pour la topologie C°, la structure ¢ est dominée par w;’ . Pour con-
struire une structure de contact négative ¢’ dominée par wy’, il suffit d’appliquer
4 nouveau le théoréme 4.2 pour approximer le feuilletage F’ par une structure
négative. La variété V' n’est pas compacte, mais la forme w} est “constante” a
Iinfini. On peut appliquer le théoréme de Gromov et Eliashberg [Gr, El3] pour
conclure que (V/,§) est universellement tendue: on s’apergoit que la forme sym-
plectique @ = p*w; + edsa obtenue & partir de w; sur V x [0,1] — s est la
coordonnée sur [0,1], € est un réel positif assez petit, p : V x [0,1] — V la
projection sur V et a = 0 est une équation de ¢ —, ainsi que son rappel dans
le revétement universel de V x [0, 1], a une géométrie finie & 'infini (cf. [E-T]).

Pour conclure, il suffit de remarquer que V est conjuguée a
V' (UrcavTx]1,00]) . Il

4.1. Fibrés de Seifert et variétés de type A

Ici, V désigne une variété irréductible, orientée, close, qui est soit un fibré de
Seifert, soit de type A ; T C V est un tore incompressible défini comme dans la
section précédente et T x [—1,1], T x {0} ~ T, un voisinage tubulaire de T .
On note S € V\ Tx] —1,1] une surface minimale (dont ’existence est assurée
dans [He]) qui rencontre les deux tores T x {1} et dont toutes les composantes
connexes sont a bord.

D’apres le lemme 4.4, il existe une structure de contact universellement tendue
€% sur V\ Tx] —1,1] avec les propriétés suivantes:

o ¢° trace un feuilletage linéaire sur T x {£1} ;

o ¢V est transverse & 9S et trace sur S un feuilletage sans orbite périodique

dont toutes les singularités ont le méme signe.
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Sur T x [—1, 1], muni des coordonnées (z,y, ), on prolonge £° par une structure
d’équation cos f,,(0)dz +sin f,,(0)dy = 0, ot f,[—1,1] — R est une fonction de
dérivée strictement positive qui vérifie: f,(—1) € [0,2x] ; f.(1) € [2n7,2(n +
1)w[, ces valeurs étant telles que les feuilletages tracés sur T x {£1} par les
structures situées de part et d’autre coincident.

D’apres le théoreme de recollement 4.3, toute structure &, ainsi construite sur
V est universellement tendue.

4.2. Variétés de type B

Ici, chaque composante de V \ (Up<i<nT;) est un fibré de Seifert et T = Ty .
Pour ¢ =0,...,n, onnote T; x [-1,1], T; ~ T; x {0}, un voisinage tubulaire de
T, (ces voisinages sont choisis deux & deux disjoints). Toute composante de V '\
(Uo<i<nTix]—1,1[) est un fibré de Seifert & bord non vide: c’est également un fibré
en surfaces (éventuellement tordu) sur le cercle [Ja], toutes les surfaces intersectant
transversalement les cercles de la fibration de Seifert. D’apres [Col, Gi2, E-TJ, il
existe une structure de contact universellement tendue £° sur V'\ (Uo<i<nTix] —
1,1[) , obtenue par déformation du feuilletage donné par les fibres de la fibration
sur le cercle, qui trace un feuilletage linéaire sur chaque tore T; x {£1} et qui
est transverse aux fibres de la fibration de Seifert. On complete £° sur chaque
produit T; x [—=1,1], 4 # 0, par une structure dont 1’équation est de la forme
(quitte & reparamétrer T; x [—1,1] pour que le feuilletage £°T; x {£1} soit donné
par une équation de ce type): cos f1(0)dz + sin f1(0)dy = 0.

De la méme maniere que précédemment, on prolonge la structure ainsi obtenue
sur V\ (T x [-1,1]) (T = To), par une structure d’équation cos f,,(0)dz +
sin f,(@)dy =0 sur T x [—1,1], ot f, :[-1,1] — R est une fonction de dérivée
strictement positive qui vérifie: f,(—1) € [0,2r[ ; fn(1) € [2n7,2(n+ 1)x[. On
note &, cette structure. Elle est universellement tendue d’apres le théoreme 4.3.

4.3. Traduction du théoréme 1.1

Théoréme 4.5. La suite (§,)neN comporte une infinité de structures de contact
deur & deux non isomorphes.

Onnote C la classe d’isotopie du tore T dans V. Pour montrer le théoreme 4.5,
il suffit de démontrer le résultat suivant:

Théoréme 4.6. Tor(V,¢,,C) < oo.

Voici, en effet, comment déduire le théoreme 4.5 du théoreme 4.6.

D’apres [Co2], si € est une structure universellement tendue sur V seul un
nombre fini (& reparamétrisation pres) de classes d’isotopie D de plongements de
T2 x [0,27] dans V fournissent une torsion Tor(V,£,D) non nulle. On note
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(CM)i<i<k, ces classes pour (V,§,), C=Cf, et

T, = sup {Tor(V,&,,CI), avec Tor(V,§&,,Cl) < oo},
1<i<kn

qui est bien défini et supérieur & n car n < Tor(V,&,,Cl) < oo. Ainsi, si pe N
est choisi assez grand, T, > T, . Si w, est une suite d’entiers telle que la suite
T, soit strictement croissante, on est alors assuré que les structures de contact
&, sont deux a deux non isomorphes.

Remarque 4.7. Dans [Co3|, on décrit une méthode alternative qui permet de
munir toute variété orientable, irréductible et toroidale d’une structure de con-
tact universellement tendue et qui évite tout recours a l'usage d’'un remplissage
symplectique non compact.

5. Preuve du théoréme 4.6
5.1. Fibrés de Seifert

Ici, V est un fibré de Seifert. Dans cette situation, V possede un revétement fini
A qui est un fibré en cercles. Quitte a considérer un revétement de degré 2 de
\77 on se ramene au cas ot V fibre au-dessus d’une surface orientable S. Tout
rappel T de T dans V est alors incompressible et est, & isotopie prés, ou saturé
pour cette fibration, ou transverse & la fibration (cf. [He]).

Si T est transverse & la fibration, V est un fibré en tores sur le cercle et donc
la torsion de fn est finie dans la classe de T d’apres [Gi3, Gi4, Gi5]. Cest donc
aussi le cas de la torsion de ¢, dans la classe de T .

Si T est saturé, la base S est de genre strictement positif. Soit « une courbe
fermée simple dans S telle que T soit isotope au rappel de o dans V. On note
(3 une courbe fermée simple dans S (dont I’existence est assurée par la minoration
du genre de S) que 'on ne peut pas disjoindre de « par isotopie et T’ le rappel
de ( dans V. Il n'existe alors pas d’isotopie de disjonction de T et T , et T
est un tore normal. Ainsi, d’aprés [Co2|, la torsion de &, dans la classe de T est
finie ; c’est donc aussi le cas de la torsion de §,, dans la classe de T .

5.2. Variétés de type A

Configuration a)
Dans cette partie, on va montrer que Tor(V,&,,C) vaut n—1, n, n+1 ou
n+2.

Soient T C V un tore incompressible dans la configuration a) et &, une
structure de contact universellement tendue construite selon la méthode proposée
plus haut. On note &, lerappel de &, sur V et Tx[—1,1] lerelevéde Tx[—1,1]
qui contient T ~ T x {0}. On note de plus Vi’ et Vy' les deux relevés de
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V\Tx]—1,1[ dans V adjacents & T x [—1,1].
Lemme 5.1. (V,¢,) est contactomorphe a (Int(Vy U (T x [-1,1)) U V3),
Enltne (v U(Tx [~ 1,1)uVs")) -

Démonstration. On sait par construction que les relevés non compacts de Tx {1}
dans V ont des voisinages tubulaires disjoints conjugués & (R?x [—e, a], ker(costdx
+sintdy)) .

On remarque alors & 'aide du lemme 2.9 (et du lemme 3.2) que la structure
&, est conjuguée, sur chaque composante de V'\ Imﬁ(Vl/ U(T x [-1,1) U \72/) .

N

a (R? x [0,00[, ker(costdr + sintdy)). Dans V, on a donc un plongement de
(R? x [—a, 00|, ker(costda + sintdy)) prés de chaque composante de bord non
compacte de V" et V,' (celles-ci étant identifiées avec R? x {0} ). On conclut
grace & un changement de variable explicite bien connu (voir par exemple [Col],
remarque 4.3), ou par une nouvelle application du lemme 2.9, qui envoie (R? x
[, oo|, ker(costdz+sintdy)) sur (R?x [—a, 0], ker(costdz+sintdy)) en laissant
invariant un voisinage de R? x {—a}. O

Par la suite, M désigne la variété V;' ou V,' privée de ses composantes de
bord non compactes, et ¢ la structure induite par &, sur M. On rappelle que
M est difféomorphe & T? x [0, +-o0] .

Lemme 5.2. La variété (M, () est de torsion nulle.

N

Démonstration. Quitte a changer 'orientation de S, on suppose que toutes les
singularités de (S sont positives. On note S’ un rappel de S dans M, de
groupe fondamental Z . La surface S’ est difféomorphe & un demi-anneau infini
St x [0, 00[. Son bord est inclus dans celui de M. Le feuilletage de S’ est formé
de singularités positives, et toute feuille de ce feuilletage aboutit en un temps fini
a l'une des singularités. Il contient un unique cycle fermé, parallele au bord.

Par une isotopie CU-petite de S’ on fait apparaitre, sur chaque liaison entre
deux selles de ¢S, un foyer et une selle positives. On note S’ cette nouvelle
surface. Dans ¢S” on ne peut pas trouver de chemin formé de liaisons contenant
4 selles consécutives.

Pour tout anneau A C S”, 9S” C A, 'ensemble w_ -limite de A par le flot
de CA est un graphe de singularités fini I', formé d’arbres venant se greffer sur
le cycle fermé. Soit s une selle de ce graphe et [ une séparatrice stable de s. La
séparatrice [ provient alors soit d’un foyer, soit d’une selle s . A leur tour, les
séparatrices stables de s’ proviennent soit d’un foyer, soit d’une selle dont chaque
séparatrice stable provient alors d’un foyer.

Le graphe I’ est donc inclus dans un graphe I fini dont toutes les extrémités
sont des foyers et qui contient toutes les séparatrices stables de ses sommets.
Le graphe T possede alors un voisinage tubulaire (qui est un anneau) de bord
transverse & CA .

On déduit de ces remarques qu'il existe une exhaustion de S’ par une suite
d’anneaux emboités (A;)ien , telle que:
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e pour tout 1 € N, 9S” C dA; ;
e pour tout i € N, JA,; est transverse & ( et le feuilletage (A; est sortant
sur les deux bords.

Comme A est proprement plongé et my-injecté dans M, on peut montrer, a
Paide des techniques développées dans [Wal, que le couple (M, A) est conjugué &
(S x S! x [0, +oo[, {*¥} x S* x [0, +cc[) . En particulier, il existe une exhaustion
de M par une famille de tores épais (conjugués & T? x [0,1]) (T;)ien telle que:
e OM CIT; ;
e T, rencontre transversalement S” le long de A, .

D’apres le lemme 2.6 déduit des travaux de E. Giroux, on peut supposer de plus
que JT; présente un feuilletage sans singularité ni composante de Reeb.

Pour conclure, on remarque que chaque anneau A; porte un arc legendrien
~; , défini comme réunion de feuilles de (A;, qui joint un bord de A; & Dautre, et

tel que th(v;, A;) = —-21- car toutes les singularités de (A; ont le méme signe. En
particulier, le lemme 2.3 permet de conclure que la torsion de T; est nulle pour
tout 4. C’est donc aussi le cas pour M. O

On applique le lemme 2.2 d’addition des torsions a la décomposition:
Int(Vy U (T x [-1,1]) U V,)).

On note que la torsion de (T x [=1,1], &5y —1,1) est n—1 ou n d’apres le
lemme 2.1 et que celle des deux autres composantes de la décomposition est nulle
d’apres le lemme 5.2. On en déduit que la torsion de Int(Vy U (T x [-1,1]) U
VZ,)vgn|Int(\71/U(Tx[fl,l])u\ﬁ/)) vaut n — 1, n, n+1 ou n+ 2. D’apres le
lemme 5.1, c’est aussi le cas pour (V,&,).

On conclut en remarquant que:

n—1<Tor(V,&,C) < Tor(V,&).

Configuration b)
i. Cas by)

Cette fois, on suppose qu’il existe un revétement p : VoVdeV conjugué au
produit Rx S! xR ott T posséde deux relevés T et Ty qui sont des anneaux.
Dans la construction de &, sur V, on part d’un voisinage tubulaire T x [—1,1]
de T. Dans V, on note Ty x [—1,1] et Ty x [—1,1] les deux voisinages de
Ty et Ty qui relevent T x [—1,1]. D’apres le lemme 3.3, on peut supposer que
V =R x S! x R avec, pour tout ¢ € [-1,1], Ty x {t} = R x S! x {-2 1}
et Ty x {t} = R x S' x {24t}. On note Vi et V,' les deux composantes de
p YV \ (Tx] —1,1[)) adjacentes &, respectivement, T; x [—1,1] et Ty x [—1,1]
et qui ne rencontrent pas le produit R x S'x| —3,3[.

On remarque que pour ¢ = 1,2, il existe j; € {1,2} tel que \7/ revéte V;/
On note p;, l'application de revétement.
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Comme, hormis T; x {£1}, les composantes de 8\7/ sont des plans, la méme
démonstration que celle du lemme 5.1, basée sur le lemme 2.9 de classification des
structures tendues sur le demi-espace, fournit que les sous-variétés (R x S'x] —
00, —3],&,) et (R x S!x [3,+00[,&,) de V=R x S! x R sont conjuguées aux
variétés (\71/,£;|\;1/) et (\72/7§;|\;2/) privées de leurs composantes de bord non
annulaires, et donc que:

o 30 ~ 7 5 R B
(V,&) = (Int(Vy UR x S x [-3,3]) UV, ) &nline (v LR xS [-3,3))UVR "))

On note ¢, comme dans le lemme 3.3, I'application de revétement de V osur V
qui envoie Ty sur T. De la méme facon que précédemment, comme, d’apres le
lemme 3.3, toutes les composantes de 8(q(Int(\71/ U(R xS x [-3,3]) U\72/)) sont
des plans, on obtient que:

o -y -y .
(V7 gn) = (q(I?’Lt(V]_ U (R X Sl X [_373]) U VQ ))7 q*gn”nt(\;l/u(RXSlx[73,3])U\72))'

Remarque 5.3. On prendra garde que, si ¢(Vy ) = Vi ou \72/7 on n’a pas en
revanche q(\72,) =V, ou V.

Pour simplifier les notations, on suppose que q(\71/) =V , et donc en partic-
ulier que j; =1.

On veut montrer que la torsion est finie sur V. D’apres l'isomorphisme
précédent, il suffit de considérer un produit P = T?x [0, 27] plongé de maniere 7 -
injective dans (q(Imﬁ(Vl/U(RxS1 x[—3, 3])UV2/))7 q*gn|Im(\71fU(RxS1 X[=3,3)UVa")) -

Soient V;” et V)", les sous-variétés de V obtenues en retirant & V;' et V'
les composantes de bord autres que T x {#1}. On rappelle que, d’apres [Si],
pour i =1,2, V;" ~ T2 x [0,+00[. D’apres I’étude du cas a), et notamment le

lemme 5.2, la torsion est nulle sur Vi”

On remarque alors que si ky, ko € N sont assez grand, P N g( Ni/) est inclus
dans T2 x [0,ky] € Vi" ~ T2 x [0,400[ si i = 1, et dans pjle(T2 x [0, ko)) C
q(Va) =V pour i =2, 0l T2 x [0,ks] € V" ~ T2 x [0, 400] .

De plus, d’apres le lemme 2.4, il existe (cq,c2,01,02) € R* (indépendant de
k1 et ko) tel que, pour i =1,2, (T? x [0, k], &nlr2x(o,k,]) se plonge dans (T? x
[0, ¢;], ker(cos(8 + 6;)dx + sin(0 + 6;)dy)) .

Ainsi, par passage au revétement, on en déduit que le rappel par ¢ de P dans
V se plonge dans le modgle

(W,¢) =~ (R x S' x [0, ¢1], ker(cos(8 + 81)dx 4 sin(0 + 01 )dy))
U(R x S' x [_373]7§n|R><Sl><[73,3])
U(R x St x [0, ca], ker(cos( + 02)da + sin(0 + 02)dy))

(o1 on identifie R xS x {0} avec R xS' x {—3} d’une part, et avec R xS! x {3}
d’autre part). La variété (W,() est obtenue par collage de trois variétés de
contact universellement tendues le long d’anneaux (R x S' x {£3}) dans un
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voisinage tubulaire desquels la structure a par construction une équation du type
cos(0+6p)dx+sin(0+6p)dy = 0, ot 8 € [—¢, €] désigne la coordonnée transverse.
En particulier, la version annulaire du théoreme de recollement 4.3 fournit que
(W, () est universellement tendue.

On est de plus bien dans les hypotheses du lemme 2.8: sa conclusion s’applique
et la torsion annulaire est finie sur (W, ().

On conclut la démonstration du théoreme 4.6. en remarquant que:

Tor(V,&,,C) < Tor(V,&,) < Tor(W, ().

ii. Cas b9)

L’étude dans ce cas est essentiellement un mélange de celle des configuration
a) et by), c’est pourquoi on se contente d’en résumer les étapes. On note Vi et
V' les deux relevés de V\ (Tx|—1,1[) dans V inclus dans V, et V5. On note
P’ le produit bordé dans V par les composantes toriques de AV, . Comme les
composantes de bord de Vi UP' UV, sont des plans, on obtient, comme dans
Pétude du cas a), un isomorphisme:

(V,6n) = (Int(Vl/ UP'U VQ,) £n|1nt(\71/UP’U\72'))‘
Pour conclure il faut rappeler que, pour i = 1, 2, la variété obtenue en retlrant
a V; ses composantes de bord non compactes est conjuguée & T? x [0, +oo| e
que la torsion y est finie (lemme 5.2). La torsion est également finie sur P’ par
exemple par application du corollaire 2.8 & un revétement cyclique de P’. On
applique alors le lemme d’addition des torsions 2.2 a la décomposition ci-dessus

pour obtenir que la torsion de (V,&,) est finie, et donc aussi celle de (V,¢) dans
la classe C de T.

5.3. Variétés de type B
On note Vi et Vg les composantes de V \ (Up<;<,Tix] — 1,1[) adjacentes a
T x [-1,1] (on peut avoir Vi = V3 ). Ce sont des fibrés de Seifert a bord, qui
fibrent également sur le cercle (éventuellement de maniére tordue). Si la fibre est
un anneau, la composante est conjuguée soit & un produit T? x [0, 1] , soit & un fibré
en cercles sur une bande de Moebius. Sinon, comme le bord est incompressible, la
fibre est une surface de caractéristique strictement négative.

Si Vi (ou Vy) est conjugué & un produit T? x [0,1], par minimalité de la
décomposition, c’est aussi le cas de Vo et V est un fibré en tores sur le cercle.

Si Vi et Vy sont des fibrés en cercles au-dessus d’'un ruban de Moéebius, V
possede un revétement de degré 4 qui fibre en tores sur le cercle.

Dans ces deux cas, le théoreme 4.6 découle immédiatement de [Gi3, Gi4, Gi5].

On suppose a présent que ni Vi ni V, ne sont conjugués a un produit ou a
un fibré sur un ruban de Moebius. Si « est une courbe fermée simple dans T
qui n’est isotope ni & une fibre de Vi ni & une fibre de Vy (vus comme fibrés de
Seifert), on note:



Vol. 76 (2001)  Une infinité de structures de contact tendues sur les variétés toroidales 371

e V un revétement de V de groupe Za] ;
o Tx[-1,1] unrelevé de T x [~1,1] dans T conjugué & Rx S' x [-1,1] ;
e V, et Vy les relevés de Vi et Vo dans V adjacents & T x [-1,1].
Comme les fibres de Vi et Vo (vu comme fibrés — ou fibrés tordus — sur le
cercle) sont de caractéristique strictement négative, on vérifie que les composantes
de
AVIUT x [-1,1]U Vy)

sont toutes des plans. On a alors, de la méme facon que dans le lemme 5.1:
(\77 én) = (Int(vl U T X [_1) 1] U v2)7§;|Int(V1UTX[7171]UV2))‘

Par construction, la structure &, est transverse a la fibration de Vi et Vi, et
on vérifie alors aisemment (voir par exemple [Co3]) que & asur V; ~ R x
S'x [-1,1] = {(z,4,0)}, i = 1,2, une équation de la forme cos h;(z,y, 0)dx +
sin h;(z,y, 0)dy = 0, ot h;(x,y,0) = h;(0) sur RxS!x[-1, —14¢ (Tx{£l} ~
R x St x {—1}) car le feuilletage &,T x {&1} est linéaire, et on h; est & valeur
dans [0, 27] . A T'aide du lemme 2.8, on conclut que la torsion annulaire est finie
sur (V,&,). La torsion de (V,&,) est donc finie dans la classe de T .

Reste le cas o Vi est un fibré en cercles sur un ruban de Moebius et ou
la fibre de V5 est de caractéristique strictement négative. Sous ces hypotheses,
Vi posséde un revétement de degré 2 qui est un produit T? x [0,1], et donc
V posséde un revétement de degré 2 dans lequel le rappel Vi de Vi est un
produit. Dans ce revétement V', on considere les deux rappels T; x [—1,1]
et T) x [-1,1] de T x [—1,1] adjacents & V. On constate alors que P’ =
T) x [-1,1] UV, U Th x [-1,1] est conjugué au produit T? x [-1,1]. Dans V’,
on se ramene au cas précédent en considérant les deux rappels de Vo adjacents a
P’ (P’ jouelerédle de T x [—1,1]). On en déduit que la torsion de (V’,¢],) dans
la classe d’isotopie de P’ est finie et donc également que la torsion de &, dans la
classe C de T est finie.
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