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The lower algebraic K-theory of Fuchsian groups

Ethan Berkove, Daniel Juan-Pineda and Kimberly Pearson

Abstract. Let I' be a cocompact Fuchsian group. We calculate the lower algebraic K -theory
of the integral group ring ZI' and find an explicit formula for K;(ZI'), ¢ < 1, in terms of the
lower K -groups of maximal finite cyclic subgroups of I'.
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1. Introduction

For aring R with unit, K;(R) denotes the algebraic K-groups of R, for i € Z.
The lower algebraic K-theory (¢ < 1) of integral group rings ZG is reason-
ably understood for G finite, and the lower Whitehead groups Wh;(G) (a re-
duced K;(ZG)) are conjectured to be trivial for G torsion-free, but the groups
K;(ZG) for G infinite with torsion for the most part remain unknown. Results in
this latter case include work of Bass-Murthy on finitely generated abelian groups
[3], Berkove-Farrell-Juan-Pearson on Bianchi groups [5], Burgisser on arithmetic
groups [6], Connolly-Kozniewski, Pearson and Tsapogas on crystallographic groups
([7], [19] and [25]), Farrell-Hsiang and Farrell-Jones on virtually cyclic groups ([11]
and [13]), Hu on some subgroups of SL, (Q,) [16] and Upadhyay on discrete sub-
groups of SLs(Z) [26]. However, few of the papers listed above contain a complete
description of Ko(ZG) or Wh(G) where the result is non-vanishing. In this paper
we concentrate on the lower algebraic K-theory of cocompact Fuchsian groups I',
and obtain an explicit formula for Wh(IT'), Ko(ZI'), and the negative K-groups
of ZI' in terms of the K -groups of the maximal finite cyclic subgroups of I'. As
Wh(G), Ko(ZG), and K_1(ZG) are usually non-trivial for finite cyclic groups
G , we consequently find the lower algebraic K-theory of ZI' to be non-trivial for
most Fuchsian groups I'.

A Fuchsian group is a discrete subgroup of PSLy(R) or a conjugate of such a
group in PSL2(C). As PSLy(R) can be identified with the orientation-preserving
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isometries of the hyperbolic plane H? , the Fuchsian groups act in a natural way
on H?. We say a Fuchsian group I' is cocompact if the orbit space ]HIQ/F is
compact. Farrell and Jones [12] have proved there is a significant simplification
in calculating the lower algebraic K-theory of discrete cocompact subgroups of
virtually connected Lie groups and their subgroups. Specifically, if I' is such a
group, the computations of K;(ZI') for ¢ < 1 can be reduced to a calculation
based on the K-groups of the virtually cyclic subgroups of T', where a group
is virtually cyclic if it contains a cyclic subgroup of finite index. The cocompact
Fuchsian groups provide a large class of examples to which the results of Farrell-
Jones can be applied.

We show in this paper that a further reduction can be made: the lower algebraic
K -theory of a cocompact Fuchsian group depends on the K-theory of its finite
subgroups. Having reduced to finite subgroups, we use spectral sequences to prove
our

Main Theorem. Let I' be a Fuchsian group such that the orbit space H?/T is
compact. Let {v;} be the vertices of H?>/T and let Z/m; be the stabilizer of a
lift v; . Then

K_1(ZD) =~ &K _(Z[Z/m]),

Ko(ZI') = @Ko(Z[Z/m;)),
and
Wh(T') = @Wh(Z/m;).

It is well-known that given a collection of integers {g; m1,ma, ..., m;} satisfying
m; > 2 and 2g — 2+ %(1 —1/m;) > 0, there exists a Fuchsian group I' and a
compact fundamental polygon with & vertices in H? such that the stabilizer of
the ith vertex is Z/m;. Furthermore, H?/T has genus g. Thus our result
provides an infinite collection of examples with non-vanishing Whitehead group,
non-vanishing reduced projective class group, and non-vanishing K_; . As specific
examples, if any m; = 5 then Wh(I') # 0, if any m; = 23 then Ko(ZI') # 0,
and if any m; = 6 then K_;(ZI') # 0. Fuchsian groups I' with Whitehead
groups of arbitrarily high rank can be produced by choosing appropriate & and
my,ma,...,myg . Using different methods, Liick and Stamm have confirmed the
main result of this paper in ([18], Theorem 1).

This paper is organized as follows: In Section 2 we recall the fundamental re-
sults of Farrell and Jones and other necessary background material. In Section 3
we find that the only possible virtually cyclic subgroups of Fuchsian groups are fi-
nite cyclic groups Z/n , the infinite cyclic group Z , and the infinite dihedral group
Do, . We then use this classification to prove that the lower algebraic K-theory
of any cocompact Fuchsian group comes from its finite subgroups in a “spectral
sequence sense.” In Section 4 we perform the spectral sequence computations
needed to complete the proof of the main result.
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2. Preliminaries

In this section we discuss the key results of Farrell-Jones and Davis-Liick needed
to prove the main theorem. We begin by establishing notation and recalling some
definitions.

Denote by O(I") the orbit category of I', introduced by Bredon. Its objects are
the homogeneous spaces I'/H regarded as left I'-spaces, and its morphisms are
I'-maps. Denote by O(I',F) € O(I') the full subcategory consisting of objects
I'/H ,where H € F and F is a family of subgroups of I' closed under conjugation
and inclusion. Let K: O(I") — Q—SPECTRA be the algebraic K-theory functor
of Davis-Liick [8]. A key property of this functor is that =, (K(I'/H)) = K,(ZH) .
In fact, K(I'/H) has the weak homotopy type of the classical delooping spectrum
K(ZH) ([15],]27]). Let hg((:Fol}’T K be the homotopy colimit of the functor K

over the category O(I', F) as defined in [8].
Given two families F C F’ of subgroups of I', the inclusion of subcategories
induces a map

vr 70 hocolim K — hocolim K,
O, F) O(T, F?)

and corresponding maps

Ar ﬂn(hg(cg,l%n K) — Wn(hg(cgl}gz K).
These are collectively known as assembly maps ([8], [12]). If we set F' = Fuy,
the family of all subgroups of I', then O(I',F’) = O(I') and we can identify
Wn(g?coflin;b K) with K, (ZI') via the final object TI'/T". If in addition we set

1 all

F = F., the family consisting of the trivial subgroup only, then Ar 7 is the
classical assembly map

A : H,(BT;K(Z)) — K, (ZI).

Assembly maps have the property that given families F; C Fy C F3 of subgroups
of T', then

Ar,F = AR F OAR .

In general, assembly maps need not be isomorphisms, but they are key maps when
trying to understand K, (ZI") through a collection of subgroups of I'. We focus
on the family of virtually cyclic subgroups.
Definition 1. A group G is virtually cyclic if it contains a cyclic subgroup of
finite index, i.e. if it is finite or contains a subgroup of finite indexr which is
isomorphic to 7 .
For the rest of this paper, let Fyc denote the family of virtually cyclic subgroups
and Fp;, the family of finite subgroups.

Let X be a connected CW-complex, and let F.() be one of the following
spectrum-valued functors: P,() (P277()) which maps X to the Q-spectrum
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of stable topological (smooth) pseudo-isotopies on X , K.() the functor mapping
X to K(Zm X)), or £,°°() the L™ -surgery functor. In [12], Farrell and Jones
introduce “The Isomorphism Conjecture,” which postulates that F,(X) can be
computed in terms of spectra {F.(Xg)}, where H ranges over all virtually cyclic
subgroups of m1(X). In that paper Farrell and Jones also prove the conjecture
for the pseudo-isotopy and smooth pseudo-isotopy functors when 7(X) =T is
a subgroup of a discrete cocompact subgroup of a virtually connected Lie group.
The work of Davis-Liick ([8], also see [24]) reformulates the K- and L-theoretic
versions of the Isomorphism Conjecture in a manner well-suited to concrete com-
putations. In terms of the Davis-Liick functor, the Isomorphism Conjecture in
algebraic K -theory states:

Farrell-Jones Isomorphism Conjecture. The assembly map

Ape b Wn(g?rc‘o]%g K) — Wn(hog?rl‘gm K) = K, (ZI')

is an isomorphism for all n .

The results of [12] yield
Farrell-Jones Theorem. Let I' be a subgroup of a cocompact discrete subgroup
of a virtually connected Lie group. Then

A : 70y (hocolim K) — K, (ZT
Fva,Fatt Wn(o?ﬁofircrg )_> n( )

is an isomorphism for n <1.

The validity of the Isomorphism Conjecture for the pseudo-isotopy functor
(Theorem 2.1 of [12]), together with Anderson-Hsiang’s identification of the lower
homotopy groups of the pseudo-isotopy spectrum and reduced lower algebraic K-
theory,

75 (PL(X)) 2 Whys (Zm (X)) for j < —1,

(Theorem 3 of [1]) implies the above theorem, essentially following the argument
of 1.6.5 in [12]. Furthermore, Theorem A.8 of [12] states that if the Conjecture
holds for a group I', then it holds for any subgroup of I'.

Our next objective is to further reduce the problem from a computation involv-
ing the virtually cyclic subgroups of I" to one involving only the finite subgroups
of I'. We use the following result contained in the appendix of [12].

Theorem 2. ([12] A.10, also [26]) Let F C F' be two families of subgroups of
I'. For each Q € F' — F, define the induced family of subgroups Fo of Q as
Fo={GNQ|G € F}. The assembly map Ax y is an isomorphism for j <mn
and is a surjection for j =mn provided the assembly maps

i hocolim K) — K, (ZQ)

A
A D0 F0)

Fall(q)

are isomorphisms for all Q € F' — F and all 7 < n.
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In order to apply Theorem 2 to the case of F = Fpy and F' = Fye, our
first task is to determine up to isomorphism all infinite virtually cyclic subgroups
of the Fuchsian groups. Once this is established, we must check the assembly map
condition given in Theorem 2 for each such subgroup. We accomplish these tasks
in the next section.

3. Reduction to Finite Subgroups

A general description of infinite virtually cyclic groups is given in the following
structure theorem due to P. Scott and C.T.C. Wall:
Theorem 3. [22] The following conditions on a finitely generated group G are
equivalent:

TF1 G contains an infinite cyclic subgroup of finite index (i.e. G is an infinite

virtually cyclic group).
TF2 G has a finite normal subgroup with quotient isomorphic to Z or D .
TF3 G is isomorphic to an HNN extension of the form F h with ¥ a finite group

when the quotient is Z , and to an amalgamated product
AxB
F

where F s finite and |A : F| = |B: F| =2 when the quotient is Dy .

In light of TF2, it is desirable to understand the finite subgroups of Fuchsian
groups, as described by the following
Theorem 4. (see 14], 2.2.7) All finite subgroups of Fuchsian groups are cyclic,
and all abelian subgroups of Fuchsian groups are cyclic.

These two results imply

Theorem 5. If G is an infinite virtually cyclic subgroup of a Fuchsian group T’
then G=7Z or G= Dy .

Proof. By TF2 in Scott and Wall’s theorem, G fits into an extension 1 — Z/n —
G—Z—1or1—-2Z/n—G—Dyx — 1. Let t be an element of infinite order
in G and h be a generator of the normal subgroup Z/n . The element ¢ acts by
conjugation on h with finite order, say k. The subgroup < h,t* >2 Z/nxZ and
thus cannot occur in a Fuchsian group except in the degenerate case n=1. @O

Remark 6. More involved but similar techniques can be used to classify all vir-
tually cyclic subgroups of PSL2(C), which may be of use in future computations,
and we state the result here without proof. Using arguments as in [5], one can show
that the possible infinite virtually cyclic subgroups of PSLs(C) are the following:
Z, Do, Z/nXZ, Z/nXZ, D, 27 D, ,and D, Zi; Z/2n .

We now prove that Theorem 2 applies to any Fuchsian group I' with F =
Ftin, F' = Fvc, and n=2. Given the classification result, all that remains is
to show is
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Proposition 7. The assembly map

AFpin Fau Wj(g(og%m) K) — K;(ZQ)

is an isomorphism for all 7 <2 and Q 2 Z, Dy .

Proof. As Z has no non-trivial finite subgroups, the assembly map above is the
classical assembly map, which is well-known to be an isomorphism for 7 < 2.

For the case of Do, =2 Z/2 x Z/2 , the Gersten/Stallings/ Waldhausen theorem
for K-groups of free products (see [2] pages 659, 697) shows that Wh(D),
Ko(Z|Dw]) , and the negative K -groups of Z[Do| vanish. This implies the classic
assembly map Agx, r, is an isomorphism for j < 1. We claim the assembly
map Az, 7, is also an isomorphism for 7 < 1. Note that Z/2 is the only
non-trivial finite subgroup of Do, . As Z[Z/2] has trivial Whitehead group, Ko,
and negative K -groups, an application of Theorem 2 to the infinite dihedral group
with F = F. and F' = Fpi, yields the result. Finally, Ax,, ., must also be
an isomorphism for 7 <1 since

Afe’fazz = Afc7ffin @ Affimfazz .

To complete the proof of the proposition it remains to check the assembly map
condition for Q = D, and 7 = 2. The argument is similar to the cases 7 <1
but a bit more involved. Letting G = Z/2 , Dunwoody’s calculations in [10] imply
the assembly map A : Hy(G;KZ) — Ka(ZG) is an isomorphism. Again, since
Z/2 is the only finite subgroup of Do, we apply Theorem 2 to conclude that
Ar, 7, s anisomorphism for @) = Do, j=2.

Now consider the commutative diagram

Hy(Z/2;KZ) & Ha(Z)2:KZ) 2 Ko (Z[Z/2) & K2 (Z[Z/2))
i1 ] in |
Hy(Doo; KZ) - K»(Z[Doo))
where 41 and ¢9 are induced by inclusions Z/2 < D, on each factor, and A
denotes assembly maps. At the group level this diagram looks like

Z/22 @ (Z/2)2 2 (2/2)* @ (2/2)?

i1 | is | (3)
Hy(Doo;KZ) 2 Ks(Z[Do)),

with the top map an isomorphism. By the Gersten/Stallings/Waldhausen theorem
28], K2(Z[Doo]) =2 (Z/2)® and iy is surjective. Therefore i50 A is surjective, so
the bottom map is surjective, and consequently Hz(Doo; KZ) is at least (Z/2)3.
The Atiyah-Hirzebruch spectral sequence shows Ha(Doo; KZ) is at most (Z/2)2 .
We conclude that the lower assembly map in (3) must be an isomorphism.

As in the case for j <1, Agx, 7, and Ag, r,, areisomorphisms for @ =
Do, j=2,s80 Apg,,, 7., must be an isomorphism also. O
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Applying Proposition 7 together with Theorem 2 we have
Corollary 8. Let I be any cocompact Fuchsian group. Then
Ay, : hocolim K hocolim K
FpinFvo - T Jouoliiny ) — gl ]
is an isomorphism for all n <1.
Furthermore, combining this corollary with the isomorphism from the Farrell-
Jones Theorem we have the desired
Corollary 9. Let T' be any cocompact Fuchsian group. Then

AFpin Fau Wn(gor‘,:g!fi?n) K) — Kn(ZI)

is an isomorphism for all n <1.

4. Spectral Sequence Computations

We quickly review some results concerning Fuchsian groups that we use in this
section. We state these results without proof; the interested reader should consult
[4] or a similar text for details. A Fuchsian group I' is a discrete subgroup of
PSL2(R), and thus can be considered as a group of orientation-preserving isome-
tries of the hyperbolic disc H? . The elements of finite order have geometric sig-
nificance, as each maximal finite subgroup forms the stabilizer of a vertex in H? ,
where H? has a simplicial decomposition determined by a fundamental polygon.
Each cocompact Fuchsian group is classified by its signature, {g;m1,ma,...,my},
which enumerates the k conjugacy classes of maximal finite subgroups Z/m; and
contains the genus g of the orbit space H?/T .

Furthermore, given any collection of integers {g;m1,ma,...,mp} with m; > 2
and 29 —2+ (1 —1/m;) > 0, there is a Fuchsian group and compact polygon in
H? such that Z/m; are the vertex stabilizers and the quotient space has genus
g. One can thus find cocompact Fuchsian groups which have, up to conjugacy,
an arbitrary finite number of torsion elements of any order. Since the K-theory
of Fuchsian groups comes from its finite subgroups, this implies that the lower
algebraic K-theory of Fuchsian groups can be very complicated indeed.

We use this geometric information to compute the initial term of a spectral
sequence converging to m,( g(ocolim K) = K,(ZI') and obtain our main result,

Frin

stated here.

Main Theorem. Let I' be a Fuchsian group such that the orbit space H?/T is
compact. Let {v;} be the vertices of H?>/T and let Z/m; be the stabilizer of a
lift v; . Then

K_1(ZD) =~ &K _(Z[Z/m)),

Ko(ZT') = ®Ko(Z[Z/m4]),
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and
Wh(I') 2 &Wh(Z/m;).

Additionally our proof shows K,,(ZI') vanishes for all n < —2, but this is already
known from ([13], 2.3).

To compute 7y, ( g(orcolim K) for all cocompact Fuchsian groups I" and n <1,

»Frin

we use the p-chain spectral sequence developed by Davis and Liick in [9]. As this
work is yet to appear we outline its setup. The p-chain spectral sequence converges
to the homology of a space over a category with coefficients in a spectrum, using the
homology of a space over a group as input. Technically, if C is a small category, X
a contravariant C-space (i.e. a functor from C to {spaces}) and E a covariant
C-spectrum, then the spectral sequence converges to HS(X;E) as defined in [8].
Our key application is in the case of the trivial C-space X = pt, where the
homology groups HS(X;E) are just the homotopy groups Wn(hocglim E). To

describe the E'-term we establish some notation.

Let C be a small free El-category, i.e. a small category such that every
endomorphism z — z is an isomorphism and Aut (y) acts freely on Mor(z,y )
(that is, fog=g implies f=1d). In such a category two objects = and y are
isomorphic if there are morphisms = — y and y — x . Define a partial ordering
on isomorphism classes z < gy if there is a morphism z — y, and z < g if
there is a morphism z — y but no morphism y — x. Note that the restricted
orbit category O(I', Ff;) is a free El-category, though in general O(I'") is not.
Furthermore, I'/Q and I'/K are isomorphic in O(I', Ff;,,) if and only if @ and
K are conjugate, and T'/Q < T/K if and only if Q is subconjugate to K .

Definition 10. The sequence
c={Z0 <& < ...<Zp}
is called a p-chain. For any p-chain ¢ with p > 2, define

S(c) = Mor(zp—1,z % Mor(zp—92,2p1 X - X Mor(zg,z1),
(c) (zp P)Aut(zp_1> (zp-2,7p )Aump_z) Aty ( )

S(¢) = Mor(zo,x1) if ¢ is a 1-chain, and S(c) = Aut(zg) if ¢ is a 0-chain.

In the orbit category, a p-chain can be thought of as a chain of subgroups
Qo < Q1 < ... <Qp of I', with each Q; strictly subconjugate to Q;; 1. However,
to emphasize that we are working with homogeneous spaces, we continue to write
objects in the category as quotients I'/Q . For simplicity we suppress notation
and write I'/Q for I'/Q.

The p-chain spectral sequence is defined in [9] in generality for any small
category C, but there are significant simplifications when C is a free El-category
and we state that case here. We also specialize to the special case of a trivial C-
space, when the sequence converges to the homotopy colimit.
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Theorem 11. 9] Let C be a small free El-category and E a covariant C -
spectrum. Then there exists a spectral sequence

El = EB Hfut(’”")(pt X S(c);E(xo)):Wpﬂ(hocglim E).

y2U
p—chains ¢ Aut(zp)

This is not an Atiyah-Hirzebruch type spectral sequence (as that in 8.7 of
[21] or 4.7 of [8]), but generalizes the spectral sequence of Liick ([17], 17.18 and
17.28), essentially replacing the RC-modules M and N by a C-space X and
C-spectrum E in the fashion of ([8], Section 2). In this analogy, TorR¢(M, N)
becomes HS(X;E). Another spectral sequence of this type is described in [23].

For our computations we apply Theorem 11 using C = O(I', Ff;,,) with coef-
ficients in the C-spectrum K. Then

E! = HA@/Q)(pr x S(e);K(T = hocolim K).
P D H (p A () K(T'/Qo)) Wp+q(gg§<>f;g) )

p—chains ¢
When I' is a cocompact Fuchsian group the E!-term can be described as follows.

Proposition 12. Let ¢ = {I'/Qo < I'/Q1 < -+ < I'/Qp} be a p-chain in
O, Fpin) , and fir a fundamental polygon in H> for T'. Then if Q, # ¢ there
erists a unique verter v in H2/T such that T'/Q, < T'/V where V is the sta-
bilizer of a lift of v. The summand of the E}o’q -term in the p-chain spectral
sequence corresponding to ¢ is

H, (BT, K(Z)), if Qo=e,p=0;

H,(B(V/Qo0); K(ZQo)), otherwise.

Here K(R) denotes Gersten’s algebraic K -theory spectrum [15]. Note in the spe-
cial case of a 0-chain ¢ = I'/V, the last line simplifies to Ky (ZV) .

Proof. Let H be any non-trivial finite subgroup of I' and V be a maximal finite
subgroup containing H . As V is the stabilizer of a lift of some vertex in H?/T
and the stabilizers of edges are trivial, each H must be contained in a unique
V. Furthermore (see Corollary 10.3.3 in [4]), N(H) =V, where N(H) denotes
the normalizer in I' of H . It is then straightforward to check that in the orbit
category, Aut(I'/H) = V/H and if I'/H < I'/H’ then Mor (I'/H,T'/H') =
V/H’. Consequently, most of the terms of S(c) collapse. There are slightly
different results depending on whether or not Qo =ce¢.

If Qo # e, then S(c) = V/Q, and the component of E;l;,q corresponding to
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El = gAuT/Qo)(pt X S(c); K(T'/Qo
P,q q ( Au(T/Qyp) (e IR/ )

=H)/®@pt x V/QpiK(I'/Qo))
v/Q

= H,/ (pt; K(T/Qo))
= Hy(B(V/Q0); K(Qo/ Qo))
= Hy(B(V/Qo); K(ZQo)).
The isomorphism from equivariant to regular homology above is induced by the
natural V/Qq -equivariant map K(I'/Qo) — K(Qo/Qp), with trivial action on
the target (see [19], 3.7 and [8], 5.5).

If Qo =-e,then Aut(I'/Qo) = I' and Mor(I'/Qo,I'/Q1 ) = I'/Q1; thus S(¢)
simplifies to V/Q, x I'/Qi. For p > 0, the corresponding summand in E}J g
V/@Q1 ’

is
Bpg = HR Ot x| S(EK(T/Qo)
=H (pt % (V/Qp x T/Qi);K(I'/e))
V/Qp V/@1
= H, (T/V;K(T/e))

= Hq(BV;K(e/e))

=~ H,(BV; K(Z)).
In the degenerate case p =0,

Hy (pt; K(T'/e)) =2 Hy(BT; K(e/e)) 22 Hy(BT; K(Z)).
O

In the next two propositions, we show that for Fuchsian groups the p-chain
spectral sequence collapses at E? | and we compute the E2 = E® -term.
Proposition 13. Let I' be any cocompact Fuchsian group. Then E;q =0 if

p > 2 in the p-chain spectral sequence and thus the spectral sequence collapses at
E?.

Proof. We start by giving some background about the differential d1177q : Ezlnq —
E, ;, in the p-chain spectral sequence as described in [9] and ([17], 17.27 and
17.28). Let d be a p-chain and let ¢ be a (p — 1)-chain that arises from d
by omitting some non-initial object; let 3, and z, i denote the final objects of
d and c¢. There is a natural map from S(d) to S(c¢) through composition of
the appropriate terms in S(d), or by dropping the appropriate morphism if ¢ is
obtained by omitting the final object of d (defined up to Aut (z,—1) ). This yields
a map

pt x S(d) — pt x  S(e).
Aut(yp) Aut(zp—1)



Vol. 76 (2001) Lower algebraic K -theory 349

The induced homomorphism on homology, together with a plus or minus sign
arising from the standard degeneracy operator at the level of chains, is the d!
differential on the summands of E! corresponding to d and c¢. If ¢ is obtained
by omitting the initial object of d, then the differential on the corresponding
summands is more complex as it involves a change of coefficients, but we do not
need this case to prove the Proposition. If ¢ is not a chain obtained by omitting
some object of d, then the differential restricted to those summands is zero.

There is a useful relationship between chains in O(I', Ffi,) when I' is a co-
compact Fuchsian group. Let p > 1, ¢ be a p-chain such that @, is not a
maximal finite subgroup, and ¢+ V be the (p+ 1)-chain obtained by adding to
¢ the maximal finite subgroup V containing @, , so that

c={T/Qo <T/Q1 <--- <T/Qy},

e+ V={T/Qo<T/Q1 < <T/Qp <T/Qpi1=T/V}.

Recall from Proposition 12 that if @, # e, then there is a unique maximal finite
subgroup V containing ), . This uniqueness guarantees that for p > 1 there
is a one-to-one correspondence between such chains ¢ and ¢+ V. First suppose
Qo # e. By Proposition 12, the E! summands corresponding to ¢+V and ¢ are
both equal to H(Y/Q°(pt;]K(F/Qo)) . The d' differential is induced by the trivial
map pt — pt, and is plus or minus the identity when restricted to these summands.
Similarly, if Qo = e, then d; restricted to the summands corresponding to ¢+ V
and ¢ is also (plus or minus) the identity.

Write B, , = A,, @ B,,, where A (resp. B) consists of the summands
arising from p-chains such that @, is a maximal finite subgroup (resp. @, is
not maximal). Take an element z € Ezl,’q, p >0, and express it as z = a+ b,
with a € A, 4,b € B, 4. As b arises from some sum of chains v, create a new
sum of (p+ 1)-chains ' by adding the appropriate maximal V to the end of
each chain in ~. Since d' restricted to E' summands of the type ¢ and ¢+ V
described above is plus or minus the identity, we can choose a class a’ € Apiq,4
arising from +' such that d*(a’) =b+a”, with a” € A, ;. This follows from the
action of the degeneracy operator; when it is applied to a (p + 1)-chain ending
with a maximal V, all but one of the resulting p-chains will end in V as well.
Then

at+b=a+ (d(a) —d") = (a—a")+ d ().

Thus any element z of Ezl,’q can be expressed as a sum z = a + d'(a’) with
a€hApg,d €Apyig.

We complete the proof by showing that d' is injective when restricted to Apg
for p > 2. A class of the form (a,0) € A,,® B,, = Ezlo,q has a non-zero
component arising from a chain ¢+ V if and only if d'(a,0) has a non-zero
component in the summand corresponding to ¢. There can be no cancellation of
such terms since if ¢/ + V' #£ ¢+ V, then d'(¢/ + V') is zero on the ¢ summand.

Again this is a consequence of each non-trivial finite subgroup of I' being contained



350 E. Berkove, D. Juan-Pineda and K. Pearson CMH

in a unique maximal finite subgroup. Thus no non-trivial class of the form (a,0)
is in the kernel of d'.

Therefore the intersection of A, , and d'(A,;1,) is trivial and we can write
E}g}q = A, ®d (Api1,q) for p>2. As an immediate consequence, Ei,q vanishes
for p > 2 and the spectral sequence collapses at E?. O

Proposition 14. Let I' be any cocompact Fuchsian group. Then in the p-chain
spectral sequence converging to Wp+q(g?1§olim K) =2 K, 4(ZI") we have
Frin
Ef, =0,4¢<1,
0-T*®Z/2— E}, — &;Wh(Z/m;)—0,
0—27Z— an — éBif(o(Z[Z/mi]) — 0,
Ej 1 = @K 1(Z[Z/m;]),
and an =0 for g < —2.

Proof We need only determine d' : Eiq — E})’q to complete the proof. As in
the proof of Proposition 13, we write Ef , = Ay , + d*(Ay ), and show that df
restricted to Aj 4 is injective provided ¢ < 1 (the range in which we are inter-
ested). The case {I'/Q < I'/V} — I'/Q when Q # e is covered by Proposition
13, and terms corresponding to these chains do not survive to E?. Next consider
differentials arising from chains of the type {I'/e < I'/V} — I'/V, where we have
di o« Hy(BV; K(Z)) — K,(V) . Following the general description in [9] and ([17],
17.27), the differential in this particular case is shown in ([19], 3.10) to be the
classic assembly map, which is injective for ¢ < 1. Therefore d! restricted to
Ay 4 is injective for ¢ <1 and so E%)q vanishes for ¢ <1.

From the description of Eé,q in Proposition 12 and the above analysis of d',
we have

0 — @;Hy(BV; K(Z)) — Hy(BL; K(Z)) & (@:Ky(ZV1)) — Ef ; — 0,
where the maps from H,(BV;;K(Z)) are assembly maps and inclusions on ho-
mology, and 7 runs over conjugacy classes of maximal finite subgroups V;. As
V; = Z/m; is abelian, Ky(ZV;) = V, & Z/2 ® Wh(V;) and the image of the
assembly map H1(BV;;K(Z)) — Ki(ZV;) splits for each ¢. As H,(BG;K(Z)) =
G @ Z/2 in general, we get a short exact sequence
0-TI%®7Z/2 — E%,l — @;Wh(V;) — 0.
When g =0 we obtain
0—Z— an — @iKO(Z[Z/mi]) — 0,
the E?-term described in the proposition. O

Finally, the standard reductions from Ky to Ko and from K; to Whitehead
groups immediately yield our main result.
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Remark 15. The calculations can also be performed using Quinn’s spectral se-
quence ([21], 8.7). One obtains the same results for Ky and the negative K-
groups, but a non-zero d? differential prevents the determination of the White-
head group. For Fuchsian groups, that spectral sequence collapses at E? .
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