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The residual ¯niteness of positive one-relator groups

Daniel T Wise

Abstract It is proven that every positive one-relator group which satis¯es the C0 1
6 condition

has a ¯nite index subgroup which splits as a free product of two free groups amalgamating a

¯nitely generated malnormal subgroup As a consequence it is shown that every C0 1
6 positive

one-relator group is residually ¯nite It is shown that positive one-relator groups are generically
C0 1

6 and hence generically residually ¯nite A new method is given for recognizing malnormal
subgroups of free groups This method employs a `small cancellation theory' for maps between
graphs

Mathematics Subject Classi¯cation 2000 20E26 20F06 20E06 20F67

Keywords Residually ¯nite one-relator group malnormal small cancellation theory

1 Introduction

A one-relator presentation ha; : : : j Wni is a positive one-relator presentation
provided that W is a positive word meaning that it is a word in the generators

without any inverses and n ¸ 1 For example badcab is a positive word but
badca¡1b is not We will often use the term one-relator group for a group for
which we have a speci¯c one-relator presentation in mind We now de¯ne the

C0 ® small-cancellation condition for positive one-relator presentations We refer
the reader to [LS77] for a more general discussion of small-cancellation theory A
piece in a positive one-relator presentation ha; : : : j Wni is a nontrivial word P
which appears in two di®erent ways as a subword of the cyclic word W where

W is not a proper power For instance in the presentation ha; b j abaaabbbaaithe pieces are fa; aa; aaa; b; bb; ab; ba; baa; baaa; baaabg In the presentation ha; b j
a3b2a3b2a3b2i the pieces are fa; b; a2

g
A positive one-relator presentation ha; : : : j Wni is said to satisfy the C0 ®

small-cancellation condition provided that for each piece P we have jPj < ®jW
n
j

For example for each m ¸ 0 let us examine the following positive one-relator
group: Gm ha; b j a1b1a2b2 : : : ambmi It is easy to verify that the longest piece

in Gm is am¡1bm¡1 and that consequently Gm satis¯es the C0 2m¡2
m m+1 ¡1
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small-cancellation condition In particular Gm satis¯es the C0 1
6

condition for
m ¸ 10 Finitely presented groups which satisfy the C0 1

6
condition are known to

be word-hyperbolic for instance see Strebel's proof in the appendix to [GdlH90]
Recall that a subgroup M ½ F is malnormal if for each f 2 F ¡ M the

intersection of M and f¡1Mf is trivial The central result of this paper is:
Theorem 1 1 Let G be a positive one-relator group which satis¯es the C0 1

6
condition Then G has a ¯nite index subgroup which splits as a free product of
two free groups amalgamating a ¯nitely generated malnormal subgroup

This splitting is obtained in Section 3 as part of Theorem 3 4 which also
contains a splitting theorem under the weaker C0 1

4
condition

A group G is residually ¯nite if for each nontrivial element g 2 G there is a

¯nite quotient G ¹G such that ¹g is nontrivial Equivalently G is residually
¯nite if and only if the trivial subgroup is the intersection of ¯nite index subgroups

We can now state the primary consequence of Theorem 1 1 which is:

Theorem 1 2 Let G be a positive one-relator group which satis¯es the C0 1
6

small-cancellation condition Then G is residually ¯nite
A result of Baumslag's [Bau71] states that every positive one-relator groups is

residually solvable One might hope that Theorem 1 2 is deducible from Baum-
slag's theorem or at least from its proof However Baumslag described an example
due to Higman of a positive one-relator group which is not residually ¯nite because

it is not Hop¯an This example is reviewed below in Example 5 1

In [Ego81] Egorov proved the residual ¯niteness of positive one-relator groups

where the relator is of the form Wn and n ¸ 2 Since a one-relator presen-
tation ha; : : : j Wni satis¯es C0 1

n Egorov's result follows immediately from
Theorem 1 2 for n ¸ 6 For lower exponents several additional arguments are

required to obtain his result but it essentially follows from the method of this
paper and is completely reproved in Theorem 4 1

In Section 3 we deduce Theorem 1 2 from Theorem 1 1 by applying the fol-
lowing theorem proven in [Wis]:
Theorem 1 3 Let K split as a free product of two free groups amalgamating a

¯nitely generated malnormal subgroup then K is residually ¯nite
In Section 2 we introduce the use of small-cancellation conditions to study

maps Á : A B between graphs We show that if Á : A B satis¯es certain
small-cancellation conditions then Á is ¼1 -injective and Á¤

¼1A is a malnormal
subgroup of ¼1B This is employed in Section 3 to show that the amalgamated
subgroup is malnormal

In Section 4 we apply the method to one-relator groups with torsion
In Section 5 we describe examples which indicate some of the limits for residual

¯niteness of positive one-relator groups and some of the limits of our approach to
this problem

In Section 6 we show that in a suitable sense positive one-relator groups are

generically C0 1
6

and hence generically residually ¯nite
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2 Small-cancellation conditions for graphs

De¯nition 2 1 Graph Terminology A graph is a 1 -dimensional CW-complex
A map between graphs is combinatorial provided that 0 -cells are mapped to 0 -
cells and open 1 -cells are mapped homeomorphically to open 1 -cells In this
paper each map Á : A B between graphs will have the property that after
we possibly subdivide A the map Á is combinatorial A map between graphs

is an immersion if it is locally injective Let B C be a ¯xed map For a map
A B its projection A C is the composition A B C

An interval P is a compact connected real interval [a; b] ½ R with a graph
structure A path P B is a map between graphs where P is an interval The

path is trivial if P consists of a single vertex The linear ordering of the real
line gives every path an orientation and we can therefore consider the initial and
terminal vertices of P to be the least and greatest points in this ordering We will
generally use the terms initial vertex and terminal vertex to refer to the images

of these points in B For a path P B we write P¡1 for the inverse of P
which is the path with the opposite orientation More precisely P¡1 B is the

composition P P B where P P is the involution of P which reverses

the orientation if P is nontrivial If P B and Q B are paths and the

terminal point of P is the same as the initial point of Q then we write PQ for
their concatenation Each edge of a graph can be regarded as a path in an obvious

way By a circle we mean a graph homeomorphic to a topological circle that is
some subdivision of the graph consisting of a single vertex and a single edge We

will often use the term immersed cycle for an immersed circle We will use the

notation jPj for the length of a path P A which is the number m such that
P is the concatenation of m edges of A We will occasionally use the notation

jP Aj or jP Bj for the length when there are several paths with the same

domain and the meaning of jPj is not clear from the context Let X be the

standard 2 -complex of the presentation ha; : : : j Wni A word U in fa§1; : : :g
determines a path in X and conversely combinatorial paths determine words

Similarly cyclic words and hence a relator in the presentation determine closed
paths We will therefore use paths and words interchangeably in this case

De¯nition 2 2 We say that D ½ A 0 is a set of distinguished vertices if each
component of A¡D is homeomorphic to an open interval and each end of this
interval is connected to a vertex in D The connected components of A ¡ D
determine paths P A called arcs of A Observe that each arc embeds in A
with the possible exception that its initial and terminal vertices might be the same

Note that for a graph A the set D A 0 is a distinguished set of vertices for
any subdivision A0 of A Unless otherwise indicated the distinguished vertices

of a graph will be the entire set of vertices and its arcs will be its edges

De¯nition 2 3 Small-cancellation conditions for maps of graphs Two paths

P1 C and P2 C are equivalent if there exists an isomorphism P1 P2
sending the initial point of P1 to the initial point of P2 such the diagram below
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b

a

c

d x y

Figure 1 Consider the map A B of graphs above The large vertices of A labeled by a
b c and d are distinguished The two edges of B are labeled by x and y Consider the
arc in A which join a to c It has two subpaths labeled yyy which form a piece-pair While
there are two paths in A labeled yyyy they do not form a piece pair because one of them
passes through b and is therefore not a subpath of an arc The reader should verify that each
arc in A is the concatenation of 2 pieces and that the c0 4

5 condition is satis¯ed

commutes Otherwise they are inequivalent
P1

# &P2 C

Let A B be a map between graphs Let P1 A and P2 A be subpaths

of arcs of A Then P1 A and P2 A are a piece-pair if they are inequivalent
but their projections P1 B and P2 B are equivalent A path P A is a
piece if it is a member of a piece-pair

We now de¯ne small cancellation conditions for a map A B between graphs

whose restriction to each arc of A is an immersion
We say that A B satis¯es the c n condition provided that no arc E A

is the concatenation of fewer than n pieces

The map A B satis¯es the c0 ® condition provided that for each piece

P A which is a subpath of an arc E A we have jP Bj < ®jE
Bj Observe that if A B satis¯es c0 1

n then A B satis¯es the c n + 1
condition

A cycle of m pieces is a family of pieces Pi A and Qi A where 1 · i ·m such that the following conditions are satis¯ed for 1 · i · m : coe±cients

are taken modulo m :
1 Pi A and Qi A are nontrivial subpaths of the same arc of A
2 Pi A and Qi A have the same terminal point and the concatenation

PiQ¡1
i A is an immersed path

3 Pi+1 A and Qi A form a piece-pair
We say that A B satis¯es the t n condition if there does not exist a cycle
of m pieces for any m with 2 < m < n We refer the reader to Figure 2 for
a depiction of various cycles of pieces The map A5 T5 in Figure 6 satis¯es

t 5 but not t 4 To decide whether A B satis¯es the t n condition it is
obviously su±cient to examine cycles of pieces where all the pieces Pi and Qi
have length equal to one
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aa

b

c
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a d
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d ef
f

bb
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a c

c
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a

b

Figure 2 Depicted above are cycles of 3 4 and 6 pieces

Figure 3 On the left is a map A B between graphs The distinguished vertices of A are

the bold vertices On the right is the cycle graph ¤ of this map The map A B satis¯es

the t 4 condition because there is not immersed cycle in ¤ whose length is 3

An alternate formulation of the t n condition goes as follows: We ¯rst ensure

that A is subdivided so that the map Á : A B is combinatorial We now de¯ne

the cycle graph ¤ of the map Á : A B as follows: For each end f of an edge

of B there is a vertex vf in ¤ For each nondistinguished vertex v of A there

is an edge ev in ¤ If g and h are the ends of edges at v in A then the edge

ev is attached to the vertices Á g and Á h in ¤ We use the notation Á g

to denote the image in B of the end g We refer the reader to Figure 3 for an
example of the cycle graph of a map between graphs The map A B satis¯es

the t n condition if and only if the graph ¤ has no immersed cycles of length m
where 2 < m < n We leave the equivalence of these two de¯nitions of t n to
the reader

Remark 2 4 One natural way to obtain maps between graphs is as follows:
Any basis hb1; : : : ; bri corresponds naturally to a bouquet of circles B which are

directed and labeled by the bi Now any word in b§1
i determines a closed path

in B Accordingly given a set of words fW1; : : : ; Wng in the generators there

is a bouquet A of n circles corresponding to the Wi and a map A B which
sends the i -th loop of A to the closed path corresponding to Wi We say that
fW1; : : : ; Wng satis¯es the c p or t q condition provided that the associated
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map A B satis¯es this condition
The following two examples illustrate how the notion of piece for a map between

graphs di®ers from the notion of piece in a presentation
The set of words faba; abbag determines a map from the bouquet of two circles

to the bouquet of two circles The pieces are fa; b; ab; bag If we use these words to
form the presentation ha; b j aba; babi then the pieces are fa; b; ab; ba; aa; baa; aabg

The set fa10
g consisting of a single word determines a map from the bouquet

of one circle to the one circle The pieces of this map are paths corresponding

to words am where m · 9 In contrast there are no pieces in the presentation

ha j a10i
De¯nition 2 5 Orientation preserving Let A and B be directed graphs The

map A B is orientation preserving if each arc of A is mapped to the concate-
nation of consistently directed edges of B
Lemma 2 6 Positive t 4 Let A and B be directed graphs If A B is
orientation preserving then A B satis¯es the t 4 condition In particular a
set of positive words fWig in the generators fbjg satis¯es the t 4 condition

Proof Since A B is orientation preserving the ends at each nondistinguished
vertex of A map to one incoming end in B and one outgoing end in B Con-
sequently the cycle graph of A B is bipartite Therefore the length of any
immersed cycle in ¤ has even length and we are done

De¯nition 2 7 ¼1 -injective Malnormal Cyclonormal Let Á : A B be a
map of graphs Note that we do not assume that A or B is connected The

map A B is ¼1 -injective if each essential closed path in A is mapped to
an essential closed path in B An immersion Á : A B is malnormal if for
any two distinct 0 -cells a1 and a2 which map to the same 0 -cell b of B
the intersection Á¤

¼1 A; a1 \ Á¤
¼1 A; a2 is trivial in ¼1 B; b Similarly the

immersion Á : A B is cyclonormal if the intersection Á¤
¼1 A; a1 \Á¤

¼1 A; a2

is either the trivial subgroup or a cyclic subgroup of ¼1 B; b Note that in case A
and B are connected this de¯nition agrees with the usual notion of ¼1A mapping

to a malnormal cyclonormal subgroup of ¼1B
We brie°y summarize Stallings' folding algorithm [Sta83] as follows:

Stallings' Folding Algorithm 2 8 The algorithm begins with a combinatorial
map of graphs A B and factors this map as a composition A ¹A B such
that ¹A B is an immersion of graphs and is thus ¼1 -injective and such that
A ¹A is the composition A A1 A2 ¢ ¢ ¢ As ¹A where for 1 · i < s
the map Ai Ai+1 is a folding map The map Ai Ai+1 is a folding map if
it is the obvious quotient obtained by identifying two edges which are incident at
the same vertex of Ai and which map to the same edge of B Note that since

each folding map is ¼1 -surjective the map A ¹A is ¼1 -surjective Finally note

that when A and B are based and connected the map A ¹A is precisely the

lift of A onto its image in B̂
where

B̂ is the covering space corresponding to
the image of ¼1A in ¼1B
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Figure 4 The six distinguished vertices in the circle of the crown above are the large bold
vertices The six segments are the arcs between them Note that one of the tails is trivial

Remark 2 9 If A B is not ¼1 -injective then there is an immersed circle
C A whose projection C B is null-homotopic

If A B and hence ¹A B is not malnormal then there are immersions

of circles C0
1 ¹A and C0

2 ¹A which are inequivalent but whose projections

C0
1 B and C0

2 B are equivalent That is there is no map C0
1 C0

2
such

that the diagram below on the left commutes but there is a map C0
1 C0

2 such
that the diagram on the right commutes

C0
1

# &C0
2 ¹A

C0
1

# &C0
2 B

De¯nition 2 10 crown A crown Q is a compact connected graph such that
Â Q 0 and such that each vertex of Q has valence · 3 The crown contains

a circle S which contains some of the distinguished vertices of Q The remaining
distinguished vertices of Q are the valence 1 vertices For each distinguished
vertex v 2 S the component of Q¡ S¡v containing v is a tail of Q beginning

at v A tail is trivial if it consists entirely of v The arcs of S which join
consecutive distinguished vertices of S are the segments of S Figure 4 contains

an illustration of a crown

The following is a generalization of ideas of Nielsen see [MKS66 Section 3 2]
The proof we present is more complicated than necessary so that it can serve as a
warm-up towards the proof of Theorem 2 14

Theorem 2 11 c 3 ¼1 -injective If A B satis¯es the c 3 condition
then A B is ¼1 -injective

Proof The idea of the proof is to show that for any immersed circle C A when
we apply Stallings' algorithm to its projection C B we obtain an immersed
crown ¹C B The map C ¹C must therefore be ¼1 -injective and so the

composition C ¹C B is ¼1 -injective The result follows by Remark 2 9

Let A B be a map between graphs which satis¯es the c 3 condition Let
X Y and Z be arcs of A with the property that the terminal point of X is the

initial point of Y and the terminal point of Y is the initial point of Z so that
XY Z A is an immersed path The c 3 condition implies that Y UVW
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Figure 5 Illustrated above is C ¹C B

where V is a subpath of Y with jVj ¸ 1 and U is the maximal initial subpath
of Y which forms a piece-pair with an initial subpath of X¡1 and W is the

maximal terminal subpath of Y which forms a piece-pair with a terminal subpath
of Z¡1

Now the map C A be an immersed circle which is the concatenation of arcs

Y1 ¢ ¢ ¢ Yn As explained in the previous paragraph the c 3 condition implies that
when we apply Stallings' folding algorithm to the projection C B the initial
subpath Ui of Yi folds together with the terminal subpath Wi¡1 of Yi¡1 and
the terminal subpaths Wi of Yi folds together with the initial subpath Ui+1 of
Yi+1 But the nontrivial intermediate arc Vi of Yi does not fold with anything

Consequently when Stallings' folding algorithm is applied to C B we

obtain an immersed crown ¹C B The circle C0 of ¹C is the concatenation
of segments V1 ¢ ¢ ¢ Vn and the tails of ¹C correspond to the arcs Wi attached
along the distinguished 0 -cells at the endpoints of these i distinct segments Note
that the endpoint of Vn is attached to the initial point of V1 and we treat the

coe±cients modulo n The composition C ¹C B is illustrated in Figure 5
Finally C ¹C obviously induces a ¼1 -isomorphism and ¹C B is an

immersion and thus ¼1 -injective so C B is a ¼1 -injective and we are done

Example 2 12 [ c 2 { t n 6 ¼1 -injective For each n let Tn denote the

tree formed by wedging together n edges and let An denote the polygon with
n edges As illustrated in Figure 6 there is a surjective map An Tn which
maps each edge of An to the concatenation of two edges of Tn For n ¸ 3 the

map An Tn satis¯es c 2 { t n but obviously fails to be ¼1 -injective

Our interest in the following lemma is a special case which asserts that given
an immersed circle C0 ¹A we can `reverse the folding process' and obtain C0

as the circle of a crown ¹C which is itself obtained by applying Stallings' algorithm
to the projection C ¹A of an immersed circle C A

Lemma 2 13 Let A B satisfy the c 3 condition and let A ¹A B be

the maps provided by Stallings' algorithm Let X 0 ¹A be an immersion then
there is an immersed graph X A such that we have the commutative diagram
below where X 0 embeds as a deformation retract of ¹X Furthermore if X 0 ¹Ais an immersed circle then we can choose X A to be an immersed circle and
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Figure 6 Illustrated above is the map A5 T5

¹X is a crown with circle X 0

X ¹X Ã- X0

# #
A ¹AProof The proof is left to the reader

Theorem 2 14 Small cancellation malnormal Suppose A B satis¯es

c 5 or c 4 { t 4 or c 3 { t 5 Then A B is malnormal
Proof Suppose that ¹A B is not malnormal then by Remark 2 9 there are

immersed circles C0
1 ¹A and C0

2 ¹A which are inequivalent but whose pro-

jections to B are equivalent By Lemma 2 13 for i we have the following com-
mutative diagram:

Ci ¹Ci Ã- C0i
# #
A ¹AThe arguments will depend on two observations Firstly as noted in the proof

of Theorem 2 11 each tail of the crown ¹Ci corresponds to a piece-pair in the

appropriate arcs of Ci Secondly subsegments of the circles in ¹C1 and ¹C2
which correspond to each other under the isomorphism C0

1 C0
2 determine pieces

of the corresponding arcs in C1 and C2 Recall that segments were de¯ned in
De¯nition 2 10 to be the arcs joining consecutive distinguished vertices in the circle
of a crown By a subsegment we mean a subpath of a segment The subsegments

will arise by comparing corresponding circles in a pair of crowns see Figure 7

The c 5 case: Let U be a segment of the crown ¹C1 Observe that the

corresponding path in C0
2 is either the concatenation of successive subsegments

T; V of segments of ¹C2 or it contains an entire segment W of ¹C2 Consequently
we see that either the arc of C1 corresponding to U is the concatenation of at
most 4 pieces or the arc of C2 corresponding to W is the concatenation of at
most 3 pieces In either case the c 5 condition has been violated

The c 4 { t 4 case: First observe that each segment U of ¹C1 has at
least one distinguished point of ¹C2 in its interior For otherwise U would be

a subsegment of some segment of ¹C2 and so the arc of C1 corresponding to U
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Figure 7 The outer crown is ¹C1 and the inner crown is ¹C2 We have drawn them so that the

isomorphism between their circles C0
1 and C0

2 is the radial correspondence All the bold
vertices are distinguished C1 consists of 8 arcs denoted by E1; : : : ; E8 beginning with the
arc whose image contains the bold distinguished vertex and proceeding in counterclockwise
order Similarly we denote the arcs of C2 by F1; : : : ; F5 The isomorphism between C0

1 and
C0

2 shows that E1 is the concatenation of 4 pieces This is because the segment of C0
1

corresponding to E1 is the concatenation of 2 subsegments of C0
2 and the two tails in ¹C1

corresponding to E1 yield nontrivial pieces as well Similarly F5 is the concatenation of
5 pieces because its corresponding segment in ¹C2 is the concatenation of 4 subsegments

three of which are entire segments of C0
1 but only one of its tails is nontrivial The reader

should verify that the correspondence shows that E1; : : : ; E8 are the concatenations of 4 4
2 1 3 3 3 and 3 pieces respectively Similarly F1; : : : ; F5 are the concatenations of 3
4 5 2 and 5 pieces respectively

would be the concatenation of three pieces which contradicts the c 4 hypothesis
The same statement holds with the roles of ¹C1 and ¹C2 reversed

Next observe that it follows from the t 4 condition that if a distinguished
point p of ¹C1 is in the interior of a segment U of ¹C2 then the tail in ¹C1 attached
at p is trivial Again the same statement holds with the roles of ¹C1 and ¹C2

reversed
Combining the previous two observations we see that a segment U of ¹C1 is

the concatenation of two subsegments of ¹C2 If one of these is an entire segment
of ¹C2 then the corresponding arc of C2 would be the concatenation of at most
three pieces which is impossible Consequently U is the concatenation of proper
subsegments of ¹C2 and so the second observation implies that the tails of the arc
of C1 corresponding to U are trivial Therefore this arc is the concatenation of
2 pieces which is a contradiction

The c 3 { t 5 case: Observe that the t 4 condition implies that if a dis-
tinguished point p of ¹C1 lies in the interior of a segment of ¹C2 then the tail
at p is trivial Similarly if corresponding points p1 and p2 of C0

1 and C0
2 are

distinguished then the t 5 condition insures that at most one of these points has

a nontrivial tail The same statement holds with the roles of ¹C1 and ¹C2 reversed
No segment U of ¹C1 contains more than one distinguished point of ¹C2 in its

interior for otherwise U would contain an entire segment V of ¹C2 in its interior
and then since the tails at the endpoints of V must be trivial we see that the

arc of ¹C2 corresponding to V consists of a single piece which violates the c 2
condition

No segment U of ¹C1 contains exactly one distinguished point of ¹C2 in its
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Figure 8 The map A B above satis¯es the c 2 { t 4 condition but it is not malnormal

interior Otherwise either both endpoints of U are contained in the interiors of
segments of ¹C2 and thus have trivial tails and so the arc of C1 corresponding

to U is the concatenation of 2 pieces which violates the c 3 condition Or
some segment V of ¹C2 is contained in U with exactly one of its endpoints

in the interior of U in which case the arc of C1 corresponding to V is the

concatenation of at most 2 pieces which violates the c 3 condition Reversing

the roles of C1 and C2 we see that no segment of ¹C2 can contain a distinguished
point in its interior

The only remaining possibility is that each segment U of ¹C1 corresponds

precisely to a segment V of ¹C2 But as shown above the c 5 condition implies

that the endpoints of these segments contain at most one nontrivial tail in either
¹C1 or ¹C2 but not both Since there are at most 2 tails we see that either the

arc corresponding to U or the arc corresponding to V is the concatenation of at
most 2 pieces This violates the c 3 condition and we are done

Remark 2 15 Most subgroups are malnormal In a 1998 lecture G Baumslag

reported on an interesting discovery made using the Magnus group theory software

When the computer was instructed to select a large random sample of ¯nitely
generated subgroups of a rank 2 free group the computer found that nearly all of
these subgroups were malnormal Perhaps Theorem 2 14 provides a satisfactory
explanation for this phenomenon Indeed it is easy to believe that a typical
¯nite set of words satis¯es the c 5 condition and hence generates a malnormal
subgroup

Example 2 16 ¼1 -injective & c 2 { t n 6 malnormal We now give exam-
ples of maps A B which are ¼1 -injective and satisfy c 2 { t n but are not
malnormal Let P be a 2n -gon and attach an edge e from the ¯rst vertex to
the second vertex of P Call the resulting graph B Let A denote two copies

of P joined together by a single edge corresponding to e There is an obvious

immersion A B which is illustrated in Figure 8 for the case n 4 Now if
we regard each copy of P as an n -gon each of whose sides is an arc of 2 -edges

then A B satis¯es c 2 { t n and is ¼1 -injective but is not malnormal

Example 2 17 c 4
6

malnormal The following set of words satis¯es the
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w xd a

c d

xw bd

cc
yz

x
x

w wba a

a

d

c

c

b d

d

c y

y

z

z

z y

b

Figure 9 The above composition A ¹A B is obtained by applying Stallings' algorithm A
pair of abcd cycles in ¹A carries the Z subgroup in the intersection of conjugates

c 4 condition but does not generate a malnormal subgroup

fwabz; wd¡1c¡1z; xbcy; xa¡1d¡1yg

Indeed the conjugate of the element wabz wd¡1c¡1z ¡1 by wa¡1x¡1 is the

element xbcy xa¡1d¡1y ¡1 See Figure 9 for a depiction of the composition
A ¹A B where B is a bouquet of circles labeled by the 8 generators and
A B is the map of the the bouquet of four paths corresponding to the four
generators

Example 2 18 c 3 - t 4
6

cyclonormal The following set of words satis¯es

the c 3 { t 4 condition but does not generate a cyclonormal subgroup

fxay; xby; xcz; xdz; ras; rbs; rct; rdtg
This is because if we conjugate the subgroup h xay xby ¡1; xcz xdz ¡1i by the

element xr¡1 then we obtain the subgroup h ras rbs ¡1; rct rdt ¡1iProposition 2 19 c 4 cyclonormal If A B satis¯es the c 4 condition
then A B is cyclonormal
Proof Sketch of proof The proof is very similar to the proof of Theorem 2 14

If ¹A B is not cyclonormal then there are immersions D0
1 ¹A and D0

2 ¹Awhich are inequivalent but whose projections D0
1 B and D0

2 B are equiva-
lent Furthermore Di is compact and Â Di ¡1 One then uses Lemma 2 13

to obtain the following diagram

Di ¹Di Ã- D0i
# #
A ¹ANow one uses the correspondence between D0

1 and D0
2 to count pieces and show

that the c 4 conditions is violated The details are left to the reader

Remark 2 20 The results of this section provide an immediate way to glean
algebraic information about the subgroup from geometric small cancellation in-
formation about the map However to put these results in proper perspective it
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is important to note that for ¯nite graphs there is a simple way to determine if
A B is ¼1 -injective malnormal or cyclonormal We simply apply Stallings'
folding algorithm [Sta83] to factor it as A ¹A B

The map A B is ¼1 -injective if and only if A ¹A is ¼1 -injective This
map fails to be ¼1 -injective if and only if at some step in the algorithm the edges

being folded together have exactly the same initial points and the same terminal
points

We then examine the non-diagonal components of the ¯ber product or pullback
of ¹A B with itself The map ¹A B is malnormal if and only if these

components are trees The map ¹A B is cyclonormal if and only if each of these

components has Â ¸ 0

3 Positive and C0 1
6 residually ¯nite

We begin the section with Construction 3 1 which gives a `splitting' of a certain
¯nite cyclic cover of the standard 2 -complex of a positive one-relator group We

then prove some lemmas which use the small cancellation theory developed in
Section 2 to show that the attaching maps in the splitting are ¼1 -injective and
malnormal Finally we prove the residual ¯niteness theorem and several general-
izations The section is concluded by giving examples of one-relator presentations

which satisfy small-cancellation conditions arbitrarily close to those in the hypoth-
esis but whose virtual splittings don't have the malnormality properties that we

use to deduce the residual ¯niteness

Construction 3 1 Let X denote the standard 2 -complex of the one-relator
presentation ha; : : : j Wni where Wn is a positive word W is not a proper
power and n ¸ 1 Let X̂ X denote the ¯nite regular cover corresponding to
the quotient ¼1X ZjWnj induced by the map which sends each generator of
ha; : : : j Wni to the generator 1 of ZjWnj

The boundary of each 2 -cell of X̂ determines a simple path in X̂
1 and we

say that two 2 -cells are equivalent provided that they have the same boundary
Note that there are exactly n 2 -cells in each equivalence class and each class

corresponds to an orbit of a 2 -cell under the action of Zn ½ ZjWnj
on X̂ We

identify all the 2 -cells in each equivalence class and we call the resulting complex
Y Note that ¼1Y ¼1X̂ because Y is isomorphic to the subcomplex of X̂obtained by removing n¡ 1 of the 2 -cells from each equivalence class

The construction now depends upon whether or not jW
n
j is even We ¯rst

consider the simpler case where jW
n
j is even Let p and q be a pair of antipodal

vertices of Y 1 That is q jWnj
2 p where jWnj

2 2 ZjWnj If we cut Y 1 along
p and q then we obtain a pair of graphs which we denote by L and R and
let us assume that the names are chosen so that edges of L are directed from p
towards q and edges of R are directed from q towards p See Figure 10

For each 2 -cell k of Y we choose a simple path ek intersecting @k at fp; qg
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p

q

Figure 10 Illustrated above is the antipodal splitting coming from ha; b j ababbaabi where the

relator has an even length Here p and q are antipodal and E is the union of eight edges

corresponding to the eight 2 -cells in Y On the left is the graph Y 1 [ E On the right are

the maps L Ã E R

We let E denote the graph whose vertices are fp; qg and whose edges are the paths

ek where k is a 2 -cell of Y The reader may ¯nd it helpful to regard E as a
graph in the subdivision of Y which is induced by splitting each 2 -cell k along
an additional edge ek The resulting subdivision of Y can then be split along

the subgraph E
We now consider the case where jW

n
j is odd and suppose that there are

exactly r generators in ha; : : : j Wni or equivalently r edges in its standard
2 -complex X In this case we let p be a vertex in Y 1 and we let q1; : : : ; qr
be points at the centers of the r distinct edges of Y 1 which are antipodal to p
More precisely for each i the point qi lies at the center of an edge in Y 1 whose

initial vertex is jWnj¡1
2 p As in the even case we cut Y 1 along fp; q1; : : : ; qrg

to obtain a pair of graphs which we denote by L and R and we assume that the

names are chosen so that edges of L are directed from p to the qi and edges

of R are directed from the qi to p See Figure 11 Finally it will be convenient
to subdivide each edge of L and R which is not incident with any qi vertex by
adding a single vertex at its center This subdivision will simplify the statement
and proof of Lemma 3 2

As in the even case for each 2 -cell k of Y we choose a simple path ek
intersecting @k at p and at exactly one of the points fq1; : : : ; qrg We let E
denote the graph whose vertices are fp; q1; : : : ; qkg and whose edges are the paths

ek where k is a 2 -cell of Y
We now continue the construction without distinguishing between the even

and odd cases Let L0 and R0 denote the closures of the components of Y ¡ E
containing L and R There are obvious deformation retractions L0 L and
R0 R which are induced by pushing each edge ek of E to the left or right
across the 2 -cell k These induce maps E L and E R which are immersions

on each arc of E Note that the restriction of E L respectively E R to the

arc ek yields a path which is essentially the left right half of the attaching map
of the 2 -cell k Choosing p as the basepoint van Kampen's theorem decomposes
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p p

q
qq q1
12 2

Figure 11 Illustrated above is the antipodal splitting coming from the presentation
ha; b j ababbi whose relator has an odd length Here p is antipodal to q1 and q2 and E is
the union of ¯ve edges corresponding to the ¯ve 2 -cells in Y On the left is the graph
Y 1 [ E On the right are the maps L Ã E R Observe that the edges of L and R have
been subdivided and the new vertices are the small vertices

¼1Y as the following pushout:
¼1E ¼1R

# #
¼1L ¼1Y

3 1

Lemma 3 2 If ha; : : : j Wni satis¯es the C0 ® condition then the maps E L
and E R satisfy the c0 2® condition

Proof We ¯rst consider the case where jW
n
j is even First note that for each arc

ef of E the map ef L is injective and therefore there does not exist a piece-
pair consisting of subpaths of the same arc of E Now suppose that Pf E and
Pg E form a piece-pair and suppose that they are paths in the arcs ef and
eg of E so f and g are distinct 2 -cells of Y It follows that their projections

Pf X 1 and Pg X 1 yield a piece in the presentation ha; : : : j Wnibecause they determine distinct occurrences of a word as a subword of the cyclic
word Wn Indeed the distinctness is guaranteed by our earlier observation that
f and g are inequivalent cells Consequently jPf j < ®jW

n
j 2®jef j where jef j

is the length of the path ef L and we are done The same argument works

for E R
In case jW

n
j is odd a combinatorial path in L projects to a path in the

standard 2 -complex which is the concatenation of half-edges The length of a
path P L is exactly twice the length of its projection P X that is jP
Lj 2jP Xj In particular we note that jef j jW

n
j With this minor change

and the obvious necessary de¯nitional adjustments to allow the consideration of
pieces which are the concatenation of half-edges the same argument shows that
jPf Lj 2jPf X j < 2®jW

n
j 2®jef j and we are done

Lemma 3 3 If ha; : : : j Wni is a positive one-relator group then E L and
E R satisfy the t 4 condition

Proof Since we directed the edges of E so that they originate at p and terminate
at q or qi in the odd case the map E L is orientation preserving Similarly
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if we reverse the direction on edges of E then the map E R is orientation
preserving The result follows from Lemma 2 6

Theorem 3 4 Antipodal splitting If ha; : : : j Wni satis¯es the C0 1
4

condi-
tion then ¼1E injects in ¼1L and ¼1R and we have a splitting of ¼1X̂ as an
amalgamated free product of ¯nitely generated free groups ¼1L ¤¼1E ¼1R

If ha; : : : j Wni satis¯es the C0 1
6

condition then ¼1E is a malnormal sub-
group of ¼1L and ¼1R

Proof By Lemma 3 2 E L and E R satisfy the c0 1
2

condition and thus

satisfy the c 3 condition By Theorem 2 11 the maps ¼1E ¼1R and ¼1E
¼1L in Equation 3 1 are injective and consequently ¼1X̂ is an amalgamated free

product as claimed
By Lemma 3 3 E L and E R satisfy the t 4 condition Now if

ha; : : : j Wni satis¯es C0 1
6 then by Lemma 3 2 E L and E R satisfy

c0 1
3

Consequently they satisfy c 4 { t 4 and so by Theorem 2 14 E L and
E R are malnormal

Example 3 5 The positive one-relator group ha; b j aabbi shows that Theo-
rem 3 4 can fail under the slightest relaxation of the C0 1

4
-hypothesis Indeed

ha; b j aabbi is commensurable with Z £ Z and therefore does not contain a free

group of rank 2 In particular it does not have an index 4 subgroup which splits

over a free group of rank 3 as would be the case if the proof of Theorem 3 4
worked in this case Note that the pieces of ha; b j aabbi are all of length · 1 and
therefore the presentation satis¯es C0 1

4¡² for any ² > 0

Theorem 3 6 Suppose that the positive one-relator group ha; : : : j Wni satis¯es

the C0 1
6

small cancellation condition Then it is residually ¯nite

Proof Let X denote the standard 2 -complex of ha; : : : j Wni and let X̂X be the ¯nite covering space described in Construction 3 1 By Theorem 3 4
¼1X̂

splits as the free product of free groups amalgamating a ¯nitely generated
malnormal subgroup Theorem 1 3 asserts that ¼1X̂ is residually ¯nite Since

¼1X contains the ¯nite index subgroup ¼1X̂ which is residually ¯nite we see

that ¼1X itself must be residually ¯nite

The proof of Theorem 3 6 actually yields the following more general result:
Theorem 3 7 Let ha; : : : j Wn1

1 ; : : : ; Wnk
k i be a ¯nite presentation where the

relators Wnii are positive words of the same length Suppose that the presentation
satis¯es C0 1

6 Then the resulting group is residually ¯nite
The following gives another direction in which to generalize Theorem 3 6 Fur-

thermore the same argument proves a multi-relator version as in Theorem 3 7

Theorem 3 8 Let ha; : : : j Wni be a positive one-relator group Suppose that
for each subword Q of Wn if jQj > 1

2 jW
n
j then Q is not the concatenation of

fewer than 4 pieces of Wn Then the group is residually ¯nite
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We note that the condition in Theorem 3 8 holds if each piece P in Wn satis¯es

jPj · 1
6 jW

n
j

Proof Without loss of generality we may assume that jW
n
j is even To see this

observe that we can form a 2 -complex X 0 by identifying the center of each edge

of X with the 0 -cell of X and ¼1X 0 » ¼1X ¤ F where F is a free group Since

a subgroup of a residually ¯nite group is itself residually ¯nite we see that it is
su±cient to show that ¼1X 0 is residually ¯nite Furthermore X 0 is the standard
2 -complex of a one-relator group ha0; : : : ; W0 n whose relator has even length

The strategy of the proof is the same as for Theorem 3 6 The main di®erence

is that we will apply a variant of Construction 3 1 Let X̂ denote the ZjWnj
cover and let Y ½ X̂ be the subcomplex obtained by removing various 2 -cells
as in Construction 3 1

We form a new 2 -complex Y 0 which is a quotient of Y obtained by identifying

the centers of certain edges Since ¼1Y 0 ¼1Y ¤ F where F is a free group it
will be su±cient to prove that ¼1Y 0 is residually ¯nite Consider the set of
points at centers of edges of Y Let us say that two such points are equivalent
if their corresponding edges have the same initial vertex and hence the same

terminal vertex We then obtain Y 0 from Y by identifying all the points in each
equivalence class We will refer to each such resulting point as an identi¯cation
vertex of Y 0 and we note that Y 0 is a combinatorial 2 -complex once we declare

these identi¯cation vertices to be vertices

Let p and q be antipodal identi¯cation vertices in Y 0 We then obtain graphs

L R and E and maps E L and E R as in Construction 3 1 The proof
will be the same as for Theorem 3 6 once we justify that E L and similarly
E R satis¯es the c 4 condition:

Suppose that E L does not satisfy the c 4 condition Then there is an
arc A of E such that A L is the concatenation P1P2P3 where each Pi is a
piece The fundamental observation is that since P1 starts at the identi¯cation
vertex p there exists an edge e in Y 0 such that the concatenation P0

1 eP1
projects to a presentation-piece Similarly there is an edge f in Y 0 such that
the concatenation P0

3 P3f projects to a presentation-piece Let Q be the

concatenation eAf and observe that jQj jeAf j 1+ jWnj
2 +1 > jWnj

2
Finally

observe that Q is the concatenation P0
1P2P0

3 which is a contradiction

Remark 3 9 The reader can verify that the construction used in the proof of
Theorem 3 8 shows that a positive one-relator group which satis¯es the C0 1

4
condition has a ¯nite index subgroup which splits as a graph of free groups Indeed
this is often true without any small-cancellation condition In particular for the

example ha; b j aabbi of Example 3 5 the construction induces a splitting whose

underlying graph is a circle containing two edges and whose edge and vertex
groups are cyclic

Remark 3 10 Let X be the standard 2 -complex of a positive one-relator group
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ha; : : : j Wni Let X̂ Y E L and E R be as in Construction 3 1
Suppose that E L and E R are ¼1 -injective Because these maps are

not arbitrary maps it is reasonable to ask whether they must be malnormal as

well As illustrated by the examples below it turns out that for each ² > 0 the

C0 1
6¡² condition is insu±cient to provide malnormality
Despite these examples it seems that even among the class of positive one-

relator groups that don't even satisfy C0 1
4 the construction generically produces

maps E L and E R which are ¼1 -injective and malnormal and hence ¼1X
is residually ¯nite

Suppose that the ¯nite presentation ha; : : : j W1; : : : ; Wki satis¯es the C0 1
4

condition and the words Wi are positive and of the same length A simple way to
recognize that the amalgamated subgroup given by Theorem 3 4 is not malnormal
is to ¯nd words A B S T U V such that
1 jAj jBj jSj jTj jU j jVj and
2 jAj + jSj + jU j

1
2 jWij and

3 SAU SBU TAV TBV occur in distinct ways as subwords of the relators

If there are such subwords then after applying Stallings' algorithm to the map
E L we see that ¹E has two distinct cycles of length 2 which both project to
a cycle with label AB¡1 in L A similar argument shows that E R is not
malnormal

I do not know if there is a positive one-relator group whose largest piece is
exactly 1

6 the length of the relator but such that the antipodal splitting of The-
orem 3 6 does not have a malnormal amalgamated subgroup The following is
an example of a positive two-relator group where the splitting does not have a
malnormal amalgamated subgroup I do not know if there is such an example in
the combinatorially more restrictive one-relator case Nevertheless as shown in
the proof of Theorem 3 8 there is a variant of the antipodal splitting with the

necessary properties and so we obtain the desired residual ¯niteness conclusion in
the · 1

6
case

Example 3 11 Consider the following presentation:

P ha; b; x; y; z j axayaz; bxbybzi
Each piece has length at most one sixth the length of a relator The presentation
therefore satis¯es C0 1

6¡² for each ² > 0 Though the proof of Theorem 3 4
provides a splitting the amalgamated subgroup is not even cyclonormal because

its intersection with one of its conjugates contains a free group of rank 2 This is
indicated by the subwords axa; aya; aza and bxb; byb; bzb of the relators

We now give an in¯nite family of one-relator presentations which show that for
each ² > 0 the C0 1

6¡² condition is inadequate to prove that the amalgamated
subgroup in the antipodal splitting is malnormal
Example 3 12 For m ¸ 1 let Pm denote the following presentation:

ha; b; c j ab ma2m+1 ba mb2m+1 ab mc2m¡2i
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Observe that any piece in Pm is a proper subword of a2m+1 b2m+1 c2m¡2

or ab m+1 Therefore since the relator has length 12m we see that Pm satis-
¯es C0 2m+2

12m C0 m+1
6m However Pm satis¯es the condition given above for

failure of malnormality of the amalgamated subgroup in the splitting Indeed the
subwords ALB AMB ULV UMV are indicated below in brackets:

£
ab m

¤£
a2m

¤£
ab m

¤
ab2m+1 ab mc2m¡2

ab ma2m+1b
£

ab m
¤£

b2m
¤£

ab m
¤
c2m¡2

a
£

ba m
¤£

a2m
¤£

ba m
¤

b2m+1 ab mc2m¡2

ab ma2m+1
£

ba m
¤£

b2m
¤£¡ba m

¤
bc2m¡2

While the examples above indicate that an analysis of the C0 1
4

case will
be more complex than the C0 1

6
case I do expect a positive resolution to the

following:

Conjecture 3 13 Let G ha; : : : j Wni be a positive one-relator group If G
satis¯es the C0 1

4
small-cancellation condition then G is residually ¯nite

4 Positive one-relator groups with torsion

In this section we apply the method of Section 3 to the special case of positive

one-relator groups with torsion As mentioned in the introduction these were

shown to be residually ¯nite in [Ego81] We remark that a well-known conjecture

of G Baumslag's asserts that every one-relator group with torsion is residually
¯nite [Bau67]

Theorem 4 1 Let G ha; : : : j Wni where W is a positive word If n ¸ 2

then G is residually ¯nite
Proof The proof is broken into several cases depending upon n

n ¸ 6 : We ¯rst consider the case n ¸ 6 since it follows directly from the

statement of Theorem 3 6 Indeed any piece P in the presentation ha; : : : j Wnihas the property that jPj < jWj and consequently the presentation satis¯es the

C0 1
n condition
n ¸ 4 : We now prove the result for n ¸ 4 by following the proof of Theo-

rem 3 6 but replacing the C0 1
6

condition by a result of Pride's [Pri83] which
states that the one-relator group ha; : : : j Wni satis¯es the C 2n small-cancella-
tion condition It follows that any subword of Wn which is of length ¸ 2jWj
is not the concatenation of fewer than 4 pieces Thus for n ¸ 4 the maps

E L and E R satisfy the c 4 condition Speci¯cally if some arc was the

concatenation of at most three pieces then some cyclic permutation of W2 would
be the concatenation of at most three pieces But this contradicts Pride's result
that ha; : : : j W2i satis¯es C 4 The remainder of the proof for n ¸ 4 is the

same as the proof of Theorem 3 6
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W
W

W

W

W

W

Figure 12 Illustrated above is the disc diagram consisting of a cyclically ordered arrangement
of six 2 -cells around the a base 0 -cell The path around each 2 -cell which starts at the small
bold vertex and travels in the direction of the arrow corresponds to the word W The fact
that no clockwise path around a 2 -cell is inverse to the clockwise path around the next 2 -cell
is indicated by the disagreement between the positions of small bold vertices in consecutive
2 -cells

n 2 : We now prove the theorem in the case n 2 and we assume that
W is not a proper power Let X be the standard 2 -complex of ha; : : : j W2iand let X̂ Y E L and R be as in Construction 3 1 Let Z be the standard
2 -complex of ha; : : : j Wi and let Ẑ

be the cover of Z corresponding to the

obvious ZjWj
cover of Z Observe that there is a natural immersion L Ẑ

and

hence a map E Ẑ
We will show that E L or similarly E R is ¼1 -injective and malnormal

and so ¼1X is residually ¯nite The proof will not employ the small cancellation
criterion Instead we will make fundamental use of the fact that Z and hence

Ẑis diagrammatically reducible which means that any combinatorial map S2
Ẑ

has a cancelable pair of 2 -cells We refer the reader to [BP93] for the basic notions

regarding diagrammatic reducibility
Observe that E L is ¼1 -injective if and only if the projection E

Ẑis ¼1 -injective Suppose that there is an immersed closed path P E whose

projection P
Ẑ is nullhomotopic then there is an immersed circle C E

whose projection C
Ẑ is nullhomotopic and such that jCj · jPj Let us

assume that the length jCj of C is minimal among all such immersed circles

Each arc of E corresponds to a distinct cyclic permutation of the word W and
since C E is an immersion no two consecutive arcs of C project to paths

in Ẑ
which are inverse to each other This sequence of cyclic permutations of W

corresponds to a based disc diagram D in Ẑ
which consists of a cyclically ordered

arrangement of 2 -cells arranged around a base 0 -cell as in Figure 12 such that
the clockwise boundary paths of consecutive 2 -cells beginning at the basepoint
are not inverse to each other Since C

Ẑ is nullhomotopic it is freely equivalent
in Ẑ to the identity and since C is the boundary path of D after successively
folding pairs of edges we obtain a sphere S2 and a map S2 Ẑ

We will now use the diagrammatic reducibility to complete the proof First note

that there does not exist an essential length 2 circle C E whose projection
C

Ẑ is nullhomotopic Indeed in this case the cancelable pair in the resulting
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e
V V V

V V V

U U U

U U U

Figure 13 On the left is a sphere containing two 2 -cells with boundary UeV meeting at the
edge e Note that one of these 2 -cells contains the `back of the sphere' and cannot be fully
seen The middle diagram is obtained by removing the cancelable pair of 2 -cells and the
1 -cell e On the right are the diagrams obtained by cutting along the large base vertex

spherical diagram would show that C E is not an immersion Now we will use

the diagrammatic reducibility to show that if jCj ¸ 4 then there exists a shorter
immersed circle whose projection is nullhomotopic The key point is that any
cancelable pair must occur along an edge which occurs in the exact same position
in the two based 2 -cells For the remainder of the argument we shall suppose

that the cyclic permutation of W is of the form UeV where e is the edge along
which the cancelable pair meets

We refer the reader to Figure 13 for the sequence of diagrams involved in the

argument We ¯rst remove the two open 2 -cells together with the open 1 -cell e
We then obtain a singular disc diagram whose boundary path is UU¡1V¡1V and
such that the original basepoint is at the initial point of both U paths and the

terminal point of both V paths When we cut these two disc diagrams apart
and fold the UU¡1 and V¡1V paths together we obtain a pair of based spherical
diagrams which are obtained by folding together the boundary path of a cyclically
ordered arrangement of 2 -cells around a basepoint

Each of these diagrams corresponds to a proper subpath P0 E of C
E which is essential but whose projection P0 L is nullhomotopic There is
therefore an immersed circle C0 E such that jC0j · jP0j < jCj and such that
the projection C0 E is nullhomotopic This contradicts the minimality of jCj
and we have completed the proof that E L is ¼1 -injective

To see that ¹E L and hence E L is malnormal observe that using

the construction described above for any closed immersed circle C ¹E its

projection C
Ẑ is the boundary path of a disc diagram D consisting of a cyclic

arrangement of 2 -cells If E L is not malnormal then there is a distinct pair of
such immersed circles and we can identify the boundaries of their corresponding
diagrams to obtain a sphere S2 Y with no cancelable pairs

n 3 : For the case n 3 instead of choosing p and q to be antipodal
vertices we choose them so that q jWjp We then choose L R and E in a
manner analogous to the choice in the even case in Construction 3 1 Thus L has

`length' jWj and R has `length' 2jWj The map E R satis¯es c 4 because

it is exactly the same map as in the case n 4 therefore it is ¼1 -injective and
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malnormal The map E L is ¼1 -injective and malnormal because it is exactly
the same map as in the case n 2

Remark 4 2 I do not know whether the amalgamated subgroup in the `antipodal'
splitting is malnormal for the case n 3 However one can show that it is a
genuine splitting by showing that attaching maps satisfy c 3 This follows from
a result of Weinbaum which states that every positive word W can be cyclically
permuted so that it is of the form AB where both A and B have the property
that they appear in a unique way as a subword of the cyclic word W We refer
the reader to [Wei90] and to [DH92] for a generalization to arbitrary words

One might attempt to demonstrate that E L satis¯es c 3 in this case by
showing that the concatenation of three consecutive pieces is shorter than 3

2 jWj
However this approach is doomed because of the example ha; b j ¡ ab na

¢
3

i whose

relator has the following three consecutive pieces: ab n¡1
¢ aba ¢ ab n¡1

5 Positive one-relator groups that are not residually ¯nite

In this section we describe some examples which highlight the limitations of any
general residual ¯niteness results for positive one-relator groups We begin with
an example due to Higman of a positive one-relator group which is not residually
¯nite see [Bau71]

Example 5 1 The group ht; b j btbttbtbtbi is ¯nitely generated but not Hop¯an
It is therefore not residually ¯nite by a result of Mal¶cev see [LS77] Note that this
presentation satis¯es C0 2

5
but does not satisfy C 4 The presentation ha; t j

t¡1a2ta¡3i discovered by Baumslag and Solitar [BS62] yields a group which is not
Hop¯an because the map induced by a

7

a2; t 7 t is surjective but not injective

Now letting b t¡1a we obtain the presentation ha; t; b j t¡1a2ta3; b t¡1aiAnd solving for a tb we obtain the presentation ht; b j btbttbtbtbi as above

More generally one can show that the positive one-relator group ht; b j bt m tb niis not residually ¯nite unless either m 0 m 1 n 0 n 1 or m n
We now describe C0 1

n positive one-relator groups which are not subgroup
separable Recall that a subgroup H ½ G is separable if it is the intersection of
¯nite index subgroups of G Note that G is residually ¯nite if and only if the

trivial subgroup of G is separable The group G is subgroup separable if every
¯nitely generated subgroup H ½ G is separable

A simple criterion for recognizing that a subgroup H ½ G is not separable
is the existence of an element t 2 G such that t¡1Ht is a proper subgroup of
H [BN74] Indeed H is then a proper subgroup of tHt¡1 but because a ¯nite
group cannot be conjugated properly into itself these two subgroups of G have

the same image in any ¯nite quotient
We now provide for each n a C0 1

n positive one-relator group which is not
subgroup separable because it contains a ¯nitely generated subgroup that is con-
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jugated properly into itself
Example 5 2 Let G be the group given by the following presentation which is
easily seen to satisfy the C0 1

n
small cancellation condition:

ha; t j att at 1ta at 2ta at 3ta ¢ ¢ ¢ at n¡1ta at n¡1ai
We will show that the subgroup H hat; tai is conjugated properly into itself
by the element t of G Consider the following two relations

t¡1 at ¡1t at 1ta at 2
¢ ¢ ¢ ta at n t¡1 ta t at

The ¯rst of these relations is readily seen to be equivalent to the relator in the

presentation The second relation is a free equivalence These two relations show
that H is conjugated into itself by t but to complete the proof we must show
that H is conjugated properly into itself By adding the generators x at ¡1

and y ta we obtain the new presentation

ha; t; x; y j t¡1 at ¡1t at 1ta ¢ ¢ ¢ ta at n; x at ¡1; y tai:
Substituting we obtain the presentation

ha; t; x; y j t¡1xt x¡1yx¡2y ¢ ¢ ¢ yx¡n; x at ¡1; y tai:
Now removing the generator a t¡1y we obtain the presentation

ht; t;x; y j t¡1xt x¡1yx¡2yx¡3
¢ ¢ ¢ yx¡n; t¡1yt x¡1i:

Finally note that when n ¸ 3 the subgroup hx; x¡1yx¡2y ¢ ¢ ¢ yx¡ni is a proper
subgroup of hx; yi and the above presentation is a properly ascending HNN
extension In particular H » hx; yi is conjugated properly into itself by t and
is therefore not separable

6 Generically small-cancellation

In this section we show that in a reasonable sense positive one-relator groups

are generically C0 ® for any 0 < ® < 1 In particular they are generically
C0 1

6 We note that ¯nitely presented groups were shown to be generically word-
hyperbolic by Ol'shanski·³ [Ol'92]

Let B r; n be the set of one-relator presentations
ha1; : : : ; ar j Ri where R

is a positive word of length n For simplicity we will identify each such presen-

tation with the cyclic word corresponding to its relator We will not distinguish
between relators which are cyclic permutations of each other but we will dis-
tinguish between relators which di®er by a permutation ¾ of fa1; : : : ; ar g So

ha1; a2 j a2
1
a32i 6» ha1; a2 j a2

2
a31i but ha1; a2 j a2

1
a32i » ha1; a2 j a1a3

2
a1iLet Q r; n ½ B r; n denote the subset consisting of presentations which fail to

satisfy the C0 ® small-cancellation condition Let B r; n denote [n
m 1B r;m

and let Q r; n denote [n
m 1Q r; m And let jB r; n j jQ r; n j jB r; n j and

jQ r;n j denote the number of elements in these sets
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Theorem 6 1 If 0 < i < 1 then jQ r;n j
jB r;n j

0 as n 1
Proof There are exactly rn positive words of length n in the r letters The

cyclic group Zn acts on this set according to ai1ai2 ¢ ¢ ¢ ain 7 ai2 ai3 ¢ ¢ ¢ ainai1
Each orbit under this action has at most n elements Note that a positive word
Wk

2 B r; n has exactly jWj elements in its orbit provided that W is not itself
a proper power It follows that jB r;n j ¸ rn

n
If W 2 Q r; n then there is a piece P which appears as a subword of W in

two di®erent places and such that jPj ¸ ®jWj By possibly cyclically permuting

W we may assume that P is an initial subword of W
In case there is no overlap between the two pieces then W PSPT where

S and T are possibly empty positive words It is clear that for each such
positioning of P there are at most rjPj+jSj+jTj possibilities and since jWj
jSj + jTj + 2jPj we see that there are at most rjWj¡jPj possibilities

In case there is overlap between the two occurrences of P then W ABCD
where AB P BC Observe that ABC is completely determined by A
So there are exactly rjAjrjDj possibilities for each such positioning of P Since

BC P we see that jDj jWj ¡ jAj ¡ jPj and so there are again at most
rjAjrjDj rjWj¡jPj possibilities

Since there are at most n jWj ways of positioning the second occurrence of
P and because there are at most rjWj¡jPj possibilities for each of these positions

we see that there are at most nrjWj¡jPj · nr 1¡® n elements in Q r; n Then

jQ r; n j
jB r; n j

P
n
m 1 jQ r; m j

P
n
m 1 jB r; m j · P

n
m 1 mr 1¡® m

P
n
m 1

rm
m · n2r 1¡® n

rn
n

n3

r®n

Note that the third inequality holds because the numerator increases whereas the

denominator decreases Finally since n3

r®n 1 as n 1 we are done
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