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Structures de contact sur les variétés fibrées en cercles au-
dessus d’une surface

Emmanuel Giroux

Résumé. Soit V une variété fibrée en cercles au-dessus d’une surface S de genre g > 0.
Cet article fournit, pour les structures de contact sur V , les analogues de résultats bien connus

pour les feuilletages dius & J. Milnor, J. Wood, W. Thurston, S. Matsumoto et E. Ghys. Dans
la partie 1, on démontre que V porte une structure de contact transversale aux fibres si et
seulement si le nombre d’Euler de la fibration vaut au plus 2g — 2. Dans la partie 2, on établit
le fait suivant pour toute structure de contact £ sur V : ou bien &£ est isotope & une structure
transversale aux fibres, ou bien il existe, dans un revétement fini de V | une courbe legendrienne
isotope aux fibres le long de laquelle £ définit la méme trivialisation normale que la projection
sur S. Dans la partie 3, on classifie les structures de contact transversales aux fibres & isotopie
et conjugaison preés. Dans la partie 4, on étudie les structures de contact tendues quelconques sur
V ; on montre que les structures virtuellement vrillées forment un nombre fini de classes d’isotopie
tandis que les classes d’isotopie des structures universellement tendues sont en bijection avec les
classes d’isotopie des multi-courbes essentielles sur S.

Mathematics Subject Classification (2000). 57M50, 57R17, 53D35, 53D10.

Mots-clés. Fibration en cercles, nombre d’Euler, structure de contact, tendue, vrillée.

Dans cet article, on essaie d’analyser le comportement global des structures de
contact sur les variétés fibrées en cercles au-dessus d’une surface close. Plusieurs
études antérieures motivent et guident ce travail. Tout d’abord, sur les fibrés
principaux en cercles, les structures de contact invariantes admettent, a isotopie
équivariante pres, une classification remarquable [Lu]. D’autre part, de nom-
breux résultats sur les représentations du groupe fondamental d’une surface dans
PSL2(R) et les homéomorphismes du cercle [EHN, Ghl, Gh2, Ma, Mi, Wo] con-
tribuent & mettre & jour la structure topologique et dynamique des feuilletages de
codimension 1 sur les variétés de dimension 3 fibrées en cercles (voir par exemple
[Le, Thl, Th2]). Or, en dimension 3, les structures de contact sont, avec les fibrés
tangents des feuilletages de codimension 1, les seuls champs de plans localement
homogenes et les développements paralleles des deux théories ont fait apparaitre
de nombreux traits communs.

Soit V une variété connexe et orientée, fibrée en cercles au-dessus d’une sur-
face S close, orientable et de caractéristique d’Euler X (S) négative ou nulle.
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Avant de présenter rapidement les principaux résultats de ce travail, on rappelle
que V, en tant que variété lisse orientée, est identifiée par le nombre d’Euler
X (V,S) de la fibration 7: V — S (cf. section 1.B). On rappelle aussi qu’une
structure de contact (directe) sur V est un champ de plans défini localement
comme le noyau d'une 1-forme « dont le produit extérieur avec da est une
forme volume positive pour 'orientation choisie. Les plus grosses sous-variétés
intégrales d’une structure de contact sont ainsi des courbes et portent le nom de
courbes legendriennes.

Dans la partie 1, on démontre que V admet une « connexion strictement
convexe », c’est-a-dire une structure de contact (directe) transversale aux fibres,
si et seulement si le nombre d’Euler X (V,S) est inférieur ou égal & — X (S)
(théoreme 1.1). Cette inégalité est un reliquat de I'inégalité de Milnor-Wood [Mi,
Wol, laquelle peut en retour étre interprétée comme suit : il existe sur V une
connexion plate — i.e. un feuilletage transversal aux fibres — si et seulement si co-
habitent sur V des structures de contact directes et indirectes transversales aux
fibres.

Dans la partie 2, on donne une caractérisation géométrique des structures de
contact qui sont isotopes a des connexions. Précisément, on prouve que toute
structure de contact orientable & sur V satisfait I'alternative exclusive suivante
(théoreme 2.3) : ou bien ¢ est isotope & une connexion, ou bien il existe, dans
un revétement fini de (V,&), une courbe legendrienne isotope & la fibre et le long
de laquelle & ne tourne pas, i.e. détermine la méme trivialisation normale que
la fibration 7. Ce résultat est la version de contact d’un théoréme démontré par
W. Thurston dans [Th2] (voir aussi [Le]), selon lequel un feuilletage sur V est
isotope a une connexion (plate) si et seulement si la fibre n’est pas isotope & une
courbe tracée sur une feuille.

Dans la partie 3, on classifie les structures de contact transversales aux fibres
a isotopie et conjugaison pres (théoreme 3.1). On montre en particulier que deux
connexions strictement convexes peuvent ne pas étre isotopes. La formule suivante
résume bien la situation : il y a deux sortes de structures de contact transversales
aux fibres, celles qui sont tangentes aux fibres et les autres. Ces dernieres existent
des que X (V,S) < —X(S) et appartiennent & une méme classe d’isotopie. Les
premiéres, en revanche, n’existent que si nX (V,S) = — X (S) pour un certain
entier n > 1 et leur classification se ramene & celle des revétements fibrés a
n feuillets de V au-dessus de la variété S(TS) des droites orientées tangentes
& S ; on montre ainsi que, pour X (S) < 0, elles forment autant de classes de
conjugaison qu’il y a de diviseurs de n.

Dans la partie 4, on tente de classer les structures de contact qui ne sont
pas isotopes a des connexions. Comme le sort des structures de contact vrillées
est scellé par un théoreme de Y. Eliashberg [Ell], on s’intéresse aux structures
de contact tendues. Celles-ci présentent des comportements tres différents selon
qu’elles sont virtuellement vrillées ou universellement tendues (cf. définition 2.1).
Les structures de contact virtuellement vrillées sur V constituent un nombre fini
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de classes d’isotopie (théoreme 4.12) borné par 1+sup{0, — X (S)— X (V,S)—1}.
En revanche, les structures de contact universellement tendues et non isotopes
a des connexions forment une infinité de classes d’isotopie qui sont en bijection
naturelle avec les classes d’isotopie de systémes (non vides) de courbes essentielles
sur S (théoreme 4.4). En fait, ces structures sont toutes isotopes & des structures
de contact invariantes (par une quelconque action libre du cercle qui définit la
fibration) et leur classification & isotopie pres coincide avec la classification des
structures invariantes a isotopie équivariante pres.

En parallele avec ce dernier résultat, on établit une inégalité de Bennequin
semi-locale (proposition 4.10) qui conduit a la classification des structures de con-
tact tendues et R -invariantes sur le produit par R de toute surface F close et
orientable (théoreme 4.5) : les classes d’isotopie de ces structures sont & nouveau
en bijection avec les classes d’isotopie de systémes de courbes essentielles sur F .
L’intérét de ce résultat tient au fait qu'une surface F plongée dans une variété de
contact de dimension 3 possede génériquement un voisinage tubulaire trivialisé
U=~F x R dans lequel la structure de contact est R -invariante [Gil].

Je tiens & remercier ici Etienne Ghys, Jean-Pierre Otal et Bruno Sévennec avec
qui j’ai eu de nombreuses discussions sur certains aspects de ce travail. D’autre
part, Francois Lalonde et Dietmar Salamon m’ont offert 'occasion de présenter
les résultats discutés dans ce texte & Montréal en juin 1995 et & Warwick en
mars 1998; je les en remercie vivement. KEnfin, alors que cet article était déja
soumis, Ko Honda a annoncé des résultats tres voisins.

1. Existence de structures de contact transversales
A. Comment contacter Milnor-Wood

Soit V une variété orientée, fibrée en cercles au-dessus d’une surface close S.
Le théoreme ci-dessous relate ce qui reste de I'inégalité de Milnor-Wood [Mi, Wo]
quand on cherche non pas des feuilletages transversaux aux fibres — connexions
plates — mais des structures de contact (directes) transversales aux fibres — con-
nexions « strictement convexes ».

Théoréme 1.1. Soit V wune variété connexe orientée, fibrée en cercles au-dessus
d’une surface close S. Pour que V porte une structure de contact transversale
auz fibres, il faut et il suffit que le nombre d’Fuler X (V,S) de la fibration V — S
vérifie Uinégalité

X(V,S) <—=X(S) si X(S) <0,

X(V,S) <0 st X(S) > 0.
Remarques.
a) La définition du nombre d’Euler X (V,S), et en particulier de son signe en
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fonction de 'orientation de V , est rappelée dans la section B. Pour une variété V
fibrée en cercles orientés au-dessus d’une surface S orientée, X (V,S) coincide
avec le nombre de Chern du fibré en droites complexes associé et I'orientation de V
choisie est la juxtaposition des orientations de la base et de la fibre. Ainsi, la variété
des droites orientées tangentes & S a pour nombre d’Euler — X (S) lorsqu’elle est
munie de l'orientation induite par sa structure de contact canonique.

b) Le théoreme 1.1 a été indépendamment obtenu (du moins pour une surface S
orientable) par A. Sato et T. Tsuboi [ST]. La preuve qu’on donne ci-apres consiste
simplement & adapter les arguments de J. Wood [Wol. Par ailleurs, vu comme
espace total d’un fibré principal en cercles, V admet des connexions invariantes qui
sont des structures de contact directes si et seulement si X (V,S) est strictement
négatif [Lu].

B. Nombre d’Euler et connexions

On rappelle d’abord ce qu’est le nombre d’Euler X (V,S) de la fibration 7: V —
S. On trace sur S un bouquet K de 2— X (S) cercles ayant pour complémentaire
un disque et on note D (resp. W) le disque polygonal (resp. le tore plein polyédral
orienté) qu’on obtient en découpant S (resp. V) le long de K (resp. = *(K)).
Au-dessus de K, la fibration = admet des sections et chacune d’elles détermine,
sur le bord orienté de W, une courbe C dont la classe d’isotopie est invariable.
De méme, le bord des disques méridiens de W est une courbe B bien définie &
isotopie pres. Le nombre d’Euler X (V,S) est I'intersection homologique B - C
de B et C, ces deux courbes étant orientées de maniere a couper les fibres dans
le méme sens.

Si S est une surface orientée, de genre g, et si V est munie d’une connexion &
(champ de plans transversal aux fibres), le nombre d’Euler X (V,S) s’interpréte
comme suit.

L’holonomie de ¢ associe a chaque cercle orienté K; du bouquet K, 1 <
i < 2g, un difféomorphisme ¢; de la fibre S! = R/Z qui surplombe le sommet
de K : c’est 'application de premier retour qu’on obtient en suivant les courbes
intégrales de & au-dessus de K;. De plus, chaque classe d’homotopie de sections
de 7|k, détermine un relevement $i de ¢; & R : elle trivialise en effet | %,
si bien que le segment de courbe intégrale qui joint 0 € S = R/Z & ¢;(0) se
projette en un chemin sur la fibre S! : on prend alors pour <z~52(0) Iextrémité
dans R du relevé partant de 0.

De méme, I’holonomie de la connexion induite par & sur W, encore notée &,
associe au bord orienté de D un difféomorphisme du cercle qui, & conjugaison
pres, s’écrit comme un mot

¢ = w(¢17¢;17"'7¢297¢;§]1>

dans lequel chaque ¢; , tout comme son inverse, intervient une fois et une seule — le
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découpage de S dédouble chaque cercle orienté K; en deux arétes de 9D ayant
des orientations incompatibles. Les courbes B et C, respectivement fournies par
les sections de 7 au-dessus de D et de K, déterminent alors deux relevements
distincts &D et éK de ¢ & R. Compte tenu de ce qui précede, ceux-ci vérifient
les identités suivantes :

o o = w(&17 qgf17 - 7q~52g,<£§gl) oil les ¢; sont des relevements quelconques

des ¢; ;

o ép(t) —dr(t) = X (V,S) pour tout réel ¢.

C. Inégalités clés

Proposition 1.2. Soit ¢ une connezion sur V et ¢x , ¢p les difféomorphismes
de R définis plus haut.
a) Quelle que soit la connezion &,

—2g < éK(t) —1t <29 pour tout réel t.
b) Si & est une structure de contact directe,

Q;D(t) —1t <0 pour tout réel t.

Démonstration. ~

a) Clest I'inégalité de J. Wood [Wol. Soit H l'espace des homéomorphismes de R
qui commutent avec la translation ¢ — ¢ + 1. L’application h: H — R définie
par

h(1/~)) = sup{zZ(t) —t, te R}
vérifie
h(p1pa) < (1) + h(th) < h(ib1hs) +1 pour tous i, s € H.

On en déduit la majoration
P(k) < 3 (A + h(HTH) < 29
i=1

et on obtient la minoration en observant que

inf{zZ)(t) —t, teR} = —sup{z/Nfl(t) —t, teR}.

b) Tls’agit de feuilleter W = DxS! par des disques méridiens dont le bord orienté
soit partout transversal a £ et pointe du méme c6té que les fibres orientées. Par
approximation, on peut supposer que D est un carré [0,1]>. On choisit une
coordonnée @ sur la fibre orientée en (0,0) et on I’étend & W en la décrétant
constante sur chaque courbe intégrale de £ qui revet soit un segment vertical soit
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la base du carré. Dans les coordonnées (x,y,0) € [0,1]? x S, la connexion ¢ a
pour équation

df —u(z,y,0)dc =0 ol u(x,0,§)=0 pour tout (x,6) e [0,1] x SL.

La condition qui exprime alors que & est une structure de contact directe par
rapport & dxAdyAdf s’écrit dyu < 0. Les niveaux de # sont ainsi des méridiens
dont le bord orienté a la transversalité souhaitée le long du coté y = 1 — car
u(z,1,0) < 0 pour tout (z,0) — et est tangent & & ailleurs. On peut donc les
perturber comme voulu. O

Pour une surface S orientable et une connexion & qui est une structure de
contact directe, la proposition ci-dessus établit I'inégalité

X(V,S) < 29 = 2 — X(8),

qui n’est le résultat désiré que si S est la sphere. Si S est le plan projectif,
le passage au revétement double permet aussi de conclure. Dans les autres cas,
Iinégalité du théoreme 1.1 s’obtient via ’astuce classique suivante. On prend un
revétement a n feuillets de S par une surface connexe orientable S,, et on note
V,, — S,, le rappel du fibré V — S au-dessus de S,,. Les relations

X(Sn) = nX(S), X(Vi,Sn) =nX(V,S) et X(Vn,Sn) < 2—X(Sn)

donnent

X(V,8) < % —X(9).

Comme on peut choisir n arbitrairement grand, on obtient

X(V,S) < =X(S).

Remarque. Si la connexion £ est plate au sens ol elle s’integre en un feuilletage,
le diffeomorphisme ¢p est 'identité et les arguments qui précedent démontrent
linégalité classique de Milnor-Wood, a savoir

|X(V,S)| < sup{0,-x(S)} .

Suite au travail de S. Altschuler [Al], W. Thurston a inventé le terme de feuilletact
(foliatact dans [Th4] muté en confoliation dans [ET]) pour désigner un champ de
plans dont toute équation de Pfaff « est telle que la 3-forme a A da ne change
pas de signe. La preuve de la proposition 1.2-b montre que, si la connexion £ est
un feuilletact direct (A da > 0), le difféomorphisme ¢p vérifie

ép(t) —t <0 pour tout réel ¢,
de sorte que le nombre d’Euler X (V,S) satisfait & I'inégalité

X(V,S) < sup{0,-X(S)}.
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D. Construction de structures transversales

Lemme 1.8. Soit V et V' deux variétés connexes et orientées, fibrées en cercles
au-dessus d’une surface close S. Si X(V',S) < X(V,S) et si V porte une
structure de contact directe et transversale auz fibres, alors V' en admet une
aussi.

Démonstration. On suppose pour simplifier que la surface S et les fibres sont
orientées. La définition du nombre d’Euler donnée dans la section B montre que
V' s’obtient & partir de V par la chirurgie suivante : on retire & V la préimage
W ~ D? x 8! d’un disque de S et on recolle un autre tore plein W’ par un
difféomorphisme OW’ — OW qui respecte les fibres orientées et envoie le bord de
chaque disque méridien de W’ sur une courbe de type (1, X(V,S) - X (VCS))
dans le produit oW = oD? x St .

Si 'V porte une structure de contact & directe et transversale aux fibres, la
proposition 1.2-b montre qu’on peut feuilleter W par des disques méridiens dont le
bord orienté soit transversal a £ et pointe du méme coté que les fibres orientées. Si
X (V',8) < X(V,S), un tel feuilletage par disques méridiens existe aussi sur W’
et il est alors facile de prolonger & W' la structure &|y\w pour obtenir sur V’
une structure de contact directe et transversale aux fibres. O

N

Pour chaque surface S, il reste donc a construire une structure de contact
directe et transversale aux fibres sur la variété orientée V dont le nombre d’Kuler
X (V,S) est le plus grand autorisé par I'inégalité du théoreme 1.1.

Pour la sphere 8?2, la structure de contact usuelle sur S2 est orthogonale
aux cercles de Hopf et fournit 'exemple voulu. Pour toutes les autres surfaces
(y compris P?), la variété V est celle des droites orientées tangentes & S.
Elle porte une structure de contact canonique &s qui induit I'orientation pour
laquelle X (V,S) = — X (S) mais qui est tangente aux fibres et non pas transver-
sale. En effet, si § est une droite orientée tangente & S en un point ¢, le plan
&s(q,9) C T(q,5)V est 'image inverse de ¢ par la projection. En choisissant dans
&s(q,9d), pour tout (q,d), un vecteur non vertical dont la projection sur S donne
Porientation de §, on fabrique sur V un champ de vecteurs legendrien non sin-
gulier et transversal aux fibres. La condition de contact assure que, si on pousse &g
par le flot de ce champ pendant un bref instant, on obtient une structure transver-
sale aux fibres. Cet argument démontre plus généralement le fait suivant :

Proposition 1.4. Soit V wune variélé connexe et orientée, fibrée en cercles au-
dessus d’une surface orientable S . Toule structure de contact tangente aux fibres
et orientable le long des fibres est déformable en une structure de contact transver-
sale auzx fibres par une isotopie arbitrairement petite.
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E. Autre construction par la géométrie hyperbolique

Pour clore cette partie, voici une autre construction adaptée de la théorie des
feuilletages. Soit S une surface close orientable, de genre g > 1, et V une variété
connexe orientée fibrée en cercles au-dessus de S. Si on prend sur S un bouquet
de cercles K = \/f:1 K;, de sommet ¢, et si on se donne k difféomorphismes
¢; de la fibre S' = 771(q), on peut fabriquer prés de 7—!(K) une structure de
contact transversale aux fibres dont I’holonomie au-dessus de chaque cercle Kj;
vaille ¢; . En fait, toute structure de contact transversale aux fibres définie sur un
petit voisinage de 7~ '(¢) admet un tel prolongement. Ainsi, vu la discussion des
sections B et C, construire sur V une structure de contact transversale aux fibres
revient & trouver 2g difféomorphismes ¢; du cercle dont les relevements ¢; & R
vérifient

g
(H[&Qifh &m])(t) —t < —=X(V,S) pour tout réel t.
i=1

L’argument ci-dessous, soufflé par E. Ghys et tout empreint de [Thl] (voir aussi

[EHN]), fournit 2g éléments ¢; de PSLo(R) dont les relevements ¢; vérifient

g

(H[ém&mf;zi])(t) —t < X(S) pour tout réel ¢.

=1

Soit P un polygone convexe & 4g cotés dans le plan hyperbolique H?. On
suppose que les sommets de P, numérotés sq,...,ss, dans le sens des aiguilles
d’une montre, vérifient

dist(s4i_3, 54i_92) = dist(s4i_1, 4
. (s -2) . (543 i) pour 1 <7 < get sgg1 = 51.
dist(s45—2, 54i—1) = dist(s4s, 54i 11

On colle alors isométriquement chaque aréte orientée [ss;_3,s4;—2] (resp.
[s4i—2,54i—1] ) sur 'aréte orientée [s4;, s4;—1] (resp. [ssit1,54:] ). On obtient ainsi
une surface close orientable S de genre g munie d’une métrique hyperbolique
ayant une singularité conique en s, point image des sommets de P. On pose
ensuite R = S\ {s}, on choisit dans R un point de référence r, image d’un
point r, € Int P situé tres pres de s, et on note (R,F) le revétement universel
de (R,r). Ces données déterminent une application développante D: (f{7 7) —
(H?,r,) et une représentation d’holonomie h: m((R) — PSLa(R).

Soit C C S le cercle trigonométrique de centre s passant par r et v € m1(S) sa
classe d’homotopie. Le point D(y-7) = h(vy) (ry) est 'image de r, par la rotation
hyperbolique de centre sy et d’angle la somme des angles intérieurs de P , & savoir
(49 — 2)m — aire(P) d’apres la formule de Gauss-Bonnet. D’autre part, h(y) est
le produit de g commutateurs dans PSLs(R). Pour les identifier, on note que
I'image inverse de C dans P est formée de 4g arcs de cercles qui, en partant
de 7., sont centrés successivement aux points si, sy, s3, s2, s, 58,87, 86, .. . D0it
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alors ¢o;—1 et ¢o;, 1 <4 < g, les éléments de PSLy(R) caractérisés par les
propriétés suivantes :

$2i-1(54i-1) = S4i—2 $2i(54i—2) = S4it1
B2i—1(84i) = S4i-3 #2i(84i-3) = S4i-

Par construction, []7 (@21, $2;] vaut bien k(7). Reste & déterminer le nombre
de translation du produit des commutateurs des relevements d;l . Pour cela, on
regarde le cas limite ol P est un polygone euclidien dans le plan tangent & H?
en un point so. Dans ce cas, les transformations ¢; sont toutes des rotations
de centre sg et commutent donc. Par suite, Hle[gggi,h(;i] =id . II en résulte
que, dans le cas général, le nombre de translation vaut —% aire(P) et prend ainsi
n’importe quelle valeur entre 0 et (1 —2¢). En particulier, pour obtenir une
structure de contact sur le fibré S(TS) des droites orientées tangentes & S , il faut
partir d'un polygone d’aire supérieure & (4g — 4)w , i.e. d’'une métrique ayant un
atome de courbure positive en la singularité conique.

2. Caractérisation des structures de contact transversales
A. Comment contacter Thurston

V désigne toujours une variété connexe orientée, fibrée en cercles au-dessus d’une
surface close S. Dans [Th2], W. Thurston met en évidence l'alternative exclusive
suivante : si & est un feuilletage de codimension 1 orientable sur V, ou bien
& est isotope & un feuilletage transversal aux fibres, ou bien il existe une courbe
simple tracée sur une feuille qui est isotope a la fibre. Dans le second cas, &
possede en fait un ensemble minimal vertical — a isotopie pres — qui, pour peu que
€ soit C? et que S ne soit pas un tore, est nécessairement une feuille torique. Le
résultat qui suit est un analogue de ce théoréme pour les structures de contact.
Son énoncé requiert un peu de terminologie.

Définition 2.1. Soit ¢ une structure de contact sur une variété M de dimen-
sion 3. On dit que & est vrillée s’il existe un disque D plongé dans M qui est
tangent & £ en tous les points de son bord — le disque D est lui-méme appelé
disque vrillé. On dit que £ est tendue si elle n’est pas vrillée.

Une structure vrillée sur M induit une structure encore vrillée sur tout revéte-
ment de M mais une structure tendue peut aussi induire une structure vrillée
sur certains revétements. On dira qu’une structure de contact & sur M est
virtuellement vrillée (resp. uniwversellement tendue) si elle est tendue et si elle
induit une structure vrillée (resp. tendue) sur un revétement fini de M (resp. sur
le revétement universel de M ). Ces deux propriétés s’excluent mutuellement mais
il n’est pas clair qu’elles soient exactement complémentaires I’une de I'autre. C’est
cependant le cas si le groupe fondamental de M est résiduellement fini, donc par
exemple pour V.
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Le long d’une fibre de V, les champs de vecteurs normaux dont la projection
sur S est constante déterminent une classe d’homotopie canonique de sections non
singulieres du fibré normal. De plus, des que V differe de 82 x S!, cette classe
d’homotopie est invariante par tout difféomorphisme de V isotope a l'identité
qui préserve la fibre considérée. Du coup, le fibré normal de toute courbe fermée
simple isotope & la fibre possede aussi une classe d’homotopie canonique de sections
partout non nulles. Par abus de langage, lorsque V ~ 8% x S | une courbe isotope
a la fibre désigne dans la suite une courbe munie d’une isotopie qui I’amene sur
une fibre.

Définition 2.2. Soit £ une structure de contact sur V. Pour toute courbe leg-
endrienne L isotope a la fibre, on appelle enroulement de & autour de L. —ou en-
roulement de 1. —le nombre e(L) de tours que & fait le long de L par rapport au
champ normal canonique. On appelle enroulement de £ et on note e(§) le supre-
mum des enroulements e(L.) pour toutes les courbes legendriennes L isotopes
aux fibres. Ce nombre est un entier si et seulement si la structure de contact &
est orientable le long des fibres.

Remarque. Des lors que V n’est ni un espace lenticulaire ni un tore, un théoréeme
de F. Waldhausen [Wa] assure que tous les difféomorphismes de V respectent la
fibration 7#: V. — S, & isotopie prés. L’enroulement des structures de contact
sur V est alors invariant par conjugaison.

Enfin, I'énoncé ci-dessous tient tacitement compte du fait que tout revétement
fini de V fibre naturellement en cercles au-dessus d’un revétement fini de S.

Théoréme 2.3. Soit V une variété connexe et orientée, fibrée en cercles au-
dessus d’une surface close et orientable S. Toute structure de contact € sur V
qui est orientable le long des fibres vérifie Ualternative exclusive suivante:

o ou bien £ est isotope a une structure de contact transversale auzx fibres ;

o ou bien il existe, dans un revétement fini (V,€) de (V,€), une courbe
legendrienne isotope a la fibre de V et d’enroulement nul. Mieuz, le passage a
un revétement fini n’est nécessaire que lorsque & est virtuellement vrillée.

Ce théoreme est une conséquence des deux propositions ci-dessous dont la

démonstration occupe la suite de la partie 2.

Proposition 2.4. Soit £ une structure de contact sur V orientable le long des
fibres.

a) L’enroulement e(§) appartient ¢ Z U {+oo}. FEn oulre, pour tout entier
n < e(§), il existe dans V une courbe legendrienne L. isotope a la fibre et
d’enroulement e(L) égal a n .

b) Si £ est vrillée, son enroulement e(§) est infini.

c) Si & est transversale auz fibres, £ est universellement tendue et son enroule-
ment e(€) est strictement négatif.
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Proposition 2.5. Soit & une structure de contact sur V orientable le long des
fibres. Si & est universellement tendue et si son enroulement e(§) est strictement
négatif, & est isotope a une structure de contact transversale auz fibres.

Démonstration du théoréeme 2.3. Soit € une structure de contact sur V orientable
le long des fibres. La proposition 2.4 montre tout d’abord que l’alternative en-
visagée pour £ est exclusive. Elle assure aussi que, si € est vrillée (resp. virtuelle-
ment vrillée), il existe dans V (resp. dans un revétement fini de V) une courbe
legendrienne isotope a la fibre et d’enroulement nul. Si £ est au contraire uni-
versellement tendue, de deux choses I'une : ou bien son enroulement e(§) est
strictement négatif et £ est isotope & une structure transversale aux fibres (propo-
sition 2.5), ou bien e(&) est positif ou nul et il existe dans V une courbe legen-
drienne isotope & la fibre et d’enroulement nul (proposition 2.4). O

B. Estimations d’enroulement

On démontre ici la proposition 2.4. Pour cela, on rappelle que 'invariant de
Thurston-Bennequin tb(Ll) d'une courbe legendrienne L homologiquement nulle
dans (V,¢) est I’enlacement de L avec L+ v, ol v est un champ de vecteurs
normal & & le long de L. L’enroulement est un cousin de cet invariant; en
particulier, si X (V,S) = £1, toute courbe legendrienne L isotope & la fibre est
homologiquement nulle et e(L) = tb(L)+ 1.

a) Comme ¢ est orientable le long des fibres, elle effectue un nombre entier de
tours autour de chaque courbe legendrienne isotope & la fibre.! Par suite, e(¢) €
Z U {+o0}. Soit maintenant Ly une courbe legendrienne isotope a la fibre et
d’enroulement e(Lg) > n, n € Z. Soit d’autre part L; un nceud legendrien
topologiquement trivial contenu dans une boule disjointe de Ly et dont I'invariant
de Thurston-Bennequin vaut tb(L1) =n — e(Lg) — 1 < —1. La somme connexe
de Lo et L; est une courbe legendrienne isotope a la fibre et d’enroulement = .

b) Soit B C V une boule contenant un disque vrillé de & et soit Lo une courbe
legendrienne isotope a la fibre et disjointe de B. Pour tout n > 0, il existe
dans B un nceud legendrien topologiquement trivial dont I'invariant de Thurston-
Bennequin vaut n. La somme connexe de Lo avec ce nceud fournit une courbe
legendrienne isotope a la fibre dont 'enroulement vaut e(Lg) +n + 1. Par suite,
e(§) = +oo.

¢) Soit é la structure induite par £ sur le revétement universel Vde V.Si$s
n’est pas une sphere, V est difféomorphe & R?. Ainsi, & conjugaison prés, é est
une structure de contact sur R? x R transversale aux droites {+} x R et invari-
ante par les translations verticales entieres. Comme pour la proposition 1.2-b, on

L On observe au passage qu'une structure de contact transversale aux fibres est
automatiquement (co) orientable le long des fibres.
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construit sur tout domaine [—a —1,a+1]> x R, a > 0, des coordonnées (z,y,t)
dans lesquelles la fibration est la projection (z,y,t) — (z,y) et & a pour équation
dt —u(z,y,t)de =0, ol u(z,—a,t) =0 et u(z,y,t+1) = u(z,y,t) quels que
solent (z,y,t).

Pour tout entier n > 0, Pimmersion ¢,: [—a,a]> x R — R3, définie — en
coordonnées cylindriques au but — par

n

27t 2
(2,9,8) — (r =ule,y,)2, 0= =2, 5= 22,

plonge [—a,a]’> x R/nZ dans R® privé de axe des z et envoie ¢ sur la struc-
ture d’équation dz = r2df. Par suite, £ est tendue en vertu du théoréme de
Bennequin.

Soit maintenant L une courbe legendrienne isotope a la fibre et L une préimage
de L dans R? x R/Z. Etant donné a > 0 assez grand pour que |[—a,a]? x R/Z
contienne L, le plongement induit par ¢, sur [—a,al? x R/Z envoie les fibres
{x} x R/Z sur des courbes deux & deux non enlacées mais qui enlacent une fois
laxe des z. La courbe legendrienne ¢(L) est alors non nouée et son invariant

de Thurston-Bennequin n’est autre que e(L). Il résulte donc de I'inégalité de
Bennequin [Be] que e(L) = e(L) < —1.

Si S est une sphere, V est difféomorphe & la sphere 82 car 82 x 8! ne
porte aucune structure de contact transversale aux fibres (théoréme 1.1). Ainsi, &
conjugaison pres, é est une structure de contact sur S® transversale & la fibration
de Hopf. Sionregarde 82 comme le bord de la boule unité dans C? — les cercles de
Hopf étant les traces des droites complexes passant par 0 —, la forme symplectique
usuelle de C? est positive sur 5: , ce qui entraine que é est tendue [E13].

Soit enfin I une courbe legendrienne isotope a la fibre et L une préimage de L

dans V =~ S3. La courbe L est non nouée et, comme ¢ est tendue, 'inégalité

de Bennequin assure que tb(L) < —1, donc que e(L) = tb(L) -1 < —2. Or
e(L) =X (V,S)|e(L), donc e(L) est strictement négatif. O

C. Le cas des fibrés sur la sphere

On démontre ici la proposition 2.5 lorsque S est une sphere. L’ingrédient clé est
la classification des structures de contact tendues sur les espaces lenticulaires [Gi4,
théoreme 1.1]. Le point qui intervient ici est le suivant : tout espace lenticulaire
porte une seule structure de contact universellement tendue, & isotopie prés?

Si X (V,S) =0, la variété V est difféomorphe & S? x 8'. Or, d’aprés [E12],
S? x S! porte une unique structure de contact tendue qu’on peut voir par exemple
comme le champ &q des droites complexes tangentes au bord de X, , ot X, C C?
est le tube de rayon £ < 1 autour du cercle unité S x {0} . On observe alors que
le tore T = 8! x 8! est contenu dans 9X, et que & est parallele 3 C x {0}

2 11 g’agit ici de structures de contact orientables mais pas orientées.
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le long de T. Par suite, chaque cercle S' x {w}, w € £S', est legendrien
et d’enroulement nul. Aucune structure de contact tendue sur V n’a donc un
enroulement strictement négatif.

Si X(V,S) # 0, le revétement universel de V est difféomorphe & S* et on
peut voir V comme suit. On regarde S* comme le bord orienté de la boule unité
dans C? et, pour tout t € R/Z , on note ¢,t+ et ¢, les transformations de Hopf

définies par
{ ¢zr(z7w) _ (€2mtz7e+217rtw>7

) . z,w) € $3.
¢;(z7w) — (6227rtz7672m'tw)7 ( )

La fibration 8% — 82 associée au flot ¢j (resp. ¢, ) a pour nombre d’Euler
—1 (resp. +1). Pour tout entier n > 0, le quotient de S® par qf)f/n (resp.

qbl_/n) a donc pour nombre d’Euler —n (resp. n). En outre, ce quotient n’est

autre que l'espace lenticulaire L, ; (resp. Ly ,—1) et est difféomorphe & V si
X(V,S)=—n (resp. si X(V,S)=n).

Soit maintenant & la structure de contact usuelle sur 82, i.e. le champ des
droites complexes tangentes & S%. Comme chaque transformation (;Szt est la re-
striction d’une application linéaire de C? | elle préserve & . Ainsi, & induit sur
chacun des espaces L, 1 et Ly, 1 unestructure de contact £ qui est universelle-
ment tendue (car & est tendue d’apres le théoreme de Bennequin). D’autre part,
les orbites du flot ¢; sont transversales & & de sorte que ¢ est transversale aux
fibres sur Ly, 1 . En revanche, sur le tore invariant

{(zw) € 8% | |2] = fwl},

N

les orbites du flot ¢, sont tangentes & & et d’enroulement nul. Par suite,
¢ n’a pas un enroulement strictement négatif. Ces observations terminent la
démonstration puisque L, ; et L, ,_; portent chacun une unique structure de
contact universellement tendue, & isotopie pres [Gid, théoreme 1.1 et lemme 4.1].

O

D. Surfaces convexes

On introduit ici quelques notions et résultats techniques qui seront utiles dans les
démonstrations a venir.

Définition 2.6. Soit F une surface, orientable et compacte, plongée dans une
variété de contact (M,&) de dimension 3. On dit que F est conveze si elle
admet un voisinage tubulaire trivialisé U ~ F x R dans lequel les translations
verticales préservent . Un tel voisinage U sera dit homogéne.

La convexité de F ne dépend que du germe de £ le long de F, donc du
feuilletage caractéristique &F de F formé des courbes intégrales du champ de
droites ENTF . Si F est close, elle se traduit explicitement comme suit. On dit
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qu’une multi-courbe I' C F —union finie de courbes fermées, simples et disjointes —
scinde EF si, sur la surface compacte a bord Fr obtenue en découpant F le long
de I', le feuilletage induit par &F est porté par un champ de vecteurs qui sort
sur OFp et qui dilate Paire (i.e. une certaine forme d’aire sur Fr ). Lorsqu’une

telle multi-courbe existe, elle est unique a isotopie pres parmi les multi-courbes
qui scindent.

Les résultats de [Gil] montrent qu’une surface close F C (M, &) est convexe si
et seulement si son feuilletage F est scindé. En particulier, si U est un voisinage
tubulaire et homogene d'une surface convexe F, I’ensemble noté Iy des points
de F ou & est tangente aux fibres de U est une multi-courbe qui scinde ¢F .

Cette caractérisation permet de montrer que les surfaces closes convexes sont

génériques. En outre, elles sont trés maniables et certaines ont un réel intérét
géométrique :
Ezemple. Suivant une suggestion de V. I. Arnold, on appellera surface clairaldi-
enne toute surface compacte convexe F C (M, ) qui est munie d’une fibration en
cercles legendriens, au-dessus de 'intervalle ou du cercle. Topologiquement, une
telle surface est donc un anneau, un tore ou une bouteille de Klein.

Si m: Vo — So est une fibration legendrienne, I'image inverse 7—1(C) de toute
courbe simple C C Sy (fermée ou non) est une surface clairaldienne. En effet,
tout flot local transversal & C dans Sg se releve naturellement dans Vg en un flot
de contact transversal & 7~!(C). Inversement, toute surface clairaldienne F C
(M, €) est localement de ce type 7 '(C), ol Vo est un voisinage homogene
quelconque de F et Sp un fibré en intervalles au-dessus de C. Ainsi, toute
surface clairaldienne orientable — difféomorphe & S' x C ot C est l'intervalle ou
le cercle — possede un voisinage tubulaire homogene U ~ S! x C x R dans lequel
F=S!xCx {0} et & a une équation de la forme

cos(nmz) dy — sin(nra) dt =0, (z,y,t) € S x C x R,

oll n est un entier strictement positif, pair des que £ est orientable. Le nombre
—n/2 n’est autre que ’enroulement de la structure autour des cercles legendriens
qui fibrent F.

Le lemme qui suit est une version relative d'un résultat établi dans [Gil].

Lemme 2.7. Soit F C (M,§) une surface convere, U un woisinage tubulaire
de F homogene, P un compact de M dont Uintersection avec F est saturée par
EF et o un feuilletage de F scindé par Iy et égal a EF prés de PNF . Il existe
alors une isotopie de plongements ¢,: F — U, t € [0,1], ayant les propriétés
suivantes:

1) ¢o est Uinclusion ;

2) pour tout t € [0,1], la surface ¢(F) est transversale auz fibres de U ;

3) le feuilletage caractéristique & d1(F) n'est autre que (P1)s0 ;

4) lVintersection ¢(F) NP coincide avec F NP pour tout t € [0,1].
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Démonstration. La proposition 11.3.6 de [Gil] donne une isotopie ¢; qui satisfait
aux conditions 1-3) et laisse fixe un voisinage de F N P. Pour obtenir 4), on
remarque qu’on garde 1-3) si on compose &; au but par une isotopie de contact
partant de 'identité et préservant la structure fibrée du tube U . On note alors
0s: U=FxR—U, s€]0,1], 'homothétie de rapport s dans les fibres et on ob-
serve que, pour so assez petit, toutes les surfaces d,,04:(F), ¢ € [0,1], coupent P
exactement suivant FNP . D’autre part, comme £ est R-invariante dans U , elle
y admet une équation de Pfaff du type S+udt =0, ou ¢t décrit R et 3, u sont
respectivement une 1-forme et une fonction sur F. Chaque structure & = (d5).¢
a ainsi pour équation [ + (u/s)dt = 0 et est donc encore R -invariante. La
méthode du chemin fournit alors une isotopie ¢, de U, s &€ [sg,1], qui est
R -équivariante, envoie & sur & = & et déplace les points horizontalement en
respectant tous les feuilletages & (F x {x}) = {(F x {x}). En particulier, comme
Iintersection F NP est saturée par EF , elle est préservée par l'isotopie ;. On
prend alors une fonction lisse s: [0,1] —]0, 1] qui vaut 1 en 0 mais devient vite
tres petite. L’isotopie

bt = Yst) 005y 0 b1 F — U

vérifie toutes les propriétés voulues. O

E. Redressement des tores

Un ingrédient clé dans la these de W. Thurston [Th2] est le résultat suivant, di
indépendamment & R. Roussarie [Ro] : dans une variété de dimension 3 munie
d’un feuilletage de codimension 1 sans composantes de Reeb, tout tore incom-
pressible plongé est isotope a une feuille ou a un tore transversal au feuilletage.
Dans les variétés de contact, les techniques de [Gil] permettent d’établir un fait
analogue tres utile pour démontrer le théoreme 2.3 :

Lemme 2.8. Soit & wune structure de contact sur V et R CS wune sous-surface
compacte, connexe et 4 bord non vide. Si Uenroulement e(§) de & est strictement
négatif, £ estisotope d une structure de contact &' pour laquelle, au-dessus de R,
toutes les fibres sont legendriennes et ont un enroulement égal a e(§) .

Démonstration. On re%arde la surface R comme un voisinage régulier d’un bou-
quet de cercles K=/, K; dans S et on note ¢ le sommet de K. Quitte a faire
une premiere isotopie, on suppose que la fibre L au-dessus de ¢ est legendrienne
et que son enroulement vaut e(¢). Pour tout entier n > 0, on peut trouver,
sur un voisinage tubulaire W de L, des coordonnées (z,y,t) € D? x S' dans
lesquelles L = {0} x S' et & a pour équation

cos(2nmt) dz — sin(2nmt) dy = 0.

La projection mw: W — D?, (z,y,t) — (x,y), est alors une fibration legen-
drienne et l'enroulement de & autour des fibres de mw vaut —n. Ainsi, pour
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n = —e(€) (qui est un entier strictement positif), mw induit la méme trivial-
isation normale de L que la fibration 7w: V — S. 1l existe donc une isotopie
¢ V=V, tel0,1], quia les propriétés suivantes :

L] (bo =id 3

e ¢(L) =1L pour tout ¢ €[0,1] ;

e ¢ envoie chaque fibre de 7w sur une fibre de = .
Quitte & remplacer ¢ par (¢1).&, on suppose désormais que & est tangente aux
fibres de V au-dessus d’un voisinage compact @ de ¢. On réduit ) au besoin
pour que @ NK soit connexe. Une version relative facile des résultats de [Gil]
permet alors de déformer & par une C™ -petite isotopie relative & M = 7~ 1(Q)
pour que chaque anneau 7~ '(K;\ @), 1 <i <k, soit convexe. On lisse ensuite
chaque K, dans @ en une courbe KJ. Les tores F; = W*I(Kg) sont alors

convexes. On en prend des voisinages homogenes respectifs U; et on pose I = Iy,
(cf. définition 2.6).

Assertion. L’intersection géométriqgue Card(LL.NI;) de L avee T; est égale au
module |[L]-[I3]| de leur intersection algébrique — toutes les composantes connexes
de T; étant orientées dans le méme sens.

Preuve. L’enroulement e(L) selitsur F; comme —(1/2) Card(LNI;) . Sil’assertion
est fausse, F; porte une courbe fermée simple C isotope & L qui intersecte [

moins que L (géométriquement). On peut alors construire sans peine sur F;

un feuilletage singulier ¢ qui est scindé par I; et pour lequel la courbe C est

saturée (voir [Gil, exemple 11.3.7]). Le lemme 11.3.6 de [Gil] (version absolue du

lemme 2.7) fournit alors un plongement ¢ de F; dans U; — isotope & I'inclusion —

dont I'image a pour feuilletage caractéristique ¢,o . L’enroulement de & autour

de la courbe legendrienne L' = ¢(C) vaut alors

e(l') = =3 Card(CNT;) > —3 Card(LNT;) = e(L),
ce qui contredit le fait que e(L) est égal & e(&). O

L’assertion ci-dessus permet de déformer &, par une isotopie relative a M
laissant les tores F; invariants, de telle sorte que chaque fibre de 7| g, ait, avec T,
une intersection géométrique égale au module de son intersection algébrique. Cette
condition étant remplie, il existe sur F; un feuilletage singulier o; ayant les
propriétés suivantes :

e 0; estscindé par [ ;

e o; coincide avec &F; dans F; N M ;

e chaque fibre de 7|p, est saturée par o; .

Le lemme 2.7 donne alors, pour 1 < ¢ < k, un plongement ¢; de F; dans U,
— isotope & 'inclusion — dont 'image a pour feuilletage caractéristique (¢;).o; et
a méme intersection que F; avec le compact

Pi=Mu¢g(F)u--- U 1(F; 1)UF; 1 U---UFy.
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Il existe donc un difféomorphisme ¢ de V, isotope a l'identité, qui « prolonge »
simultanément tous les plongements ¢;. Par construction, la structure de con-
tact ¢*¢ imprime le feuilletage o; sur chaque tore F; et est ainsi tangente aux
fibres de 7 au-dessus de QUK. Comme tous les tores F; sont convexes (voire
clairaldiens), il est facile de rendre la fibration 7 legendrienne au-dessus de R
par une ultime isotopie relative & 7~ 1(Q UK). O

F. Structures de contact sur le tore plein

La démonstration de la proposition 2.5 passe par une analyse des structures de
contact tendues sur le tore plein W = D?xS! . Cette analyse est menée dans [Gi4]
et on en présente ici quelques conclusions utiles. Pour cela, on rappelle qu'un
feuilletage du tore T? est une suspension s’il est non singulier et si toutes ses
feuilles coupent une méme courbe transversale fermée, simple et connexe. D’autre
part, on observe qu’une structure de contact sur D? x S! est orientable si et
seulement si elle Pest le long des fibres de la projection D? x 8! — D2 .

Lemme 2.9. Soit & une structure de contact orientable et tendue sur W = D? x
St. On suppose que le feuilletage caractéristique € OW est scindé par une multi-
courbe ayant 2n composantes connexes et que ses éventuelles singularités forment
des cercles lisses. Il existe alors n anneauz disjoints A; plongés dans W et ayant
les propriétés suivantes:

e chaque composante de OA; est une courbe de singularités ou une feuille

fermée de £OW ;

e chaque feuilletage £A; est constitué de cercles paralléles au bord.

Démonstration. Si le feuilletage £ OW est une suspension, les anneaux A; sont
directement fournis par la proposition 3.15 de [Gi4] : dans la terminologie de cet
article, ce sont les anneaux du feuillage d’une structure de contact élémentaire
isotope & ¢ relativement au bord. On va maintenant adapter ’argument au cas
oll £OW est un feuilletage scindé dont les singularités forment des cercles. Dans
ce cas, I’étude des surfaces convexes (voir les sections 2.B et 2.C de [Gi4]) montre
que ¢ est isotope, relativement au bord, & une structure de contact & ayant les
propriétés suivantes :

e chaque tore T, =aS' x 8!, 1/2<a <1, est convexe dans (W,¢') ;

e le feuilletage T;/2 est une suspension;

e les singularités éventuelles de chaque feuilletage ¢'T,, 1/2 < a < 1, for-

ment des cercles.
Dans W' = (1/2)D? x S!, la proposition 3.15 de [Gi4] donne, comme avant,
des anneaux A} qui conviennent pour la restriction de & . D’autre part, dans
W\ Int W, l'union des feuilles fermées et des singularités de tous les feuilletages
&'Ty, 1/2 < a <1, forme 2n anneaux disjoints qui complétent les Al en les
anneaux A; cherchés. O
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Proposition 2.10. Soit £ une structure de contact orientable et universellement
tendue sur W = D? x S'. On suppose que le feuilletage caractéristique & OW
est scindé par deur courbes et que ses singularités forment deux cercles lisses. La
structure € est alors isotope, relativement au bord, a une structure de contact qui
est transversale o {0} x S' et imprime une suspension sur chaque tore aS* x St
0<ax<l.

Démonstration. Soit ¢ un feuilletage de W scindé par deux courbes et dont les
singularités forment deux cercles lisses. D’apres le théoreme 1.6 de [Gi4], complété
par le lemme 3.13, les structures de contact universellement tendues sur W qui
impriment o sur OW forment au plus deux classes d’isotopie relative au bord.
Chaque classe est caractérisée par la classe d’isotopie de 'anneau que fournit le
lemme 2.9. Autrement dit, il y a deux classes (resp. une) s’il y a dans W , & isotopie
relative au bord pres, deux anneaux (resp. un seul) qui s’appuient sur les cercles
singuliers de ¢ . On exhibe ci-dessous des structures de contact universellement
tendues explicites dans chaque classe et on constate qu’elles satisfont les propriétés
requises.

Sur R?xS! muni de coordonnées cylindriques (r,8,z), z € R/27Z , ’équation
de Pfaff (1 —7*)dz+r?df = 0 définit une structure de contact ¢ universellement
tendue (I’équation de ¢ définit sur R? la structure de contact ordinaire). De
plus, pour tout r > 0, le feuilletage caractéristique du tore de rayon r autour de
{0} x S! est le feuilletage linéaire de pente dz/df = r?/(r* —1). Etant donné des
entiers p et ¢ premiers entre eux, ¢ > 0, il existe donc un unique réel r = r(p, q)
tel que les caractéristiques du tore 8(rD?) x S' aient pour classe d’homologie
(p,q) . On considere alors les plongements 1/125q: W' = (1/2)D? x 8! — R? x §!
donnés par

¢§q(a€is7t) = (2&7”(]97 q)(l + %cos(qs —pt))7 s+ % sin(2(qs —pt)), t) .

Les structures de contact induites, {4+ = (zﬁiq)*g , sont universellement tendues,
transversales & {0} x S! et impriment une suspension sur chaque tore T, =
aS!' x 8!, 0 < a < 1/2. En outre, les feuilletages o+ = (1 W' sont tous deux
scindés par deux courbes et ont deux cercles de singularités qui sont communs et
qu’on note Cp, Cq1. On observe d’autre part que I'image inverse du tore de rayon
r(p,q) par 1/1;(1 est un anneau Ay qui a les propriétés décrites au lemme 2.9. De
plus, A_ n’est isotope & Ay relativement & son bord que si g =1.

On suppose maintenant que (p,q) est la classe des cercles singuliers de o et
on choisit dans W\ Int W' deux anneaux By, B; quisont transversaux aux tores
T, =aS'x 8!, 1/2< a <1, et qui s’appuient d'un c6té sur les cercles singuliers
de o, de I'autre sur Cq et Cy. Il existe alors sur W\ Int W deux structures de
contact 7 et n, satisfaisant aux conditions suivantes (voir [Gi4, lemme 2.3]) :

e N OW =0, et n W =0;

e chaque fenilletage 7T, , 1/2 < a < 1, est scindé et a deux cercles de

singularités, a savoir les cercles B, NT,, 1 =0,1.
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Figure 1. Pour ¢ =5, les images respectives par 1/’;L,q et ¢, , des cercles de rayons 1/6, 1/3
et 1/2 dans D? x {0} .

Les structures de contact £+ = {1 Ugy» n+ sont universellement tendues et ne
sont isotopes, relativement au bord, que si les anneaux A UByUB; le sont (i.e.
si ¢ = 1). En outre, elles sont transversales & {0} x S!, impriment o sur le
bord OW et une suspension sur T, pour tout a € |0,1/2[. Sans détruire ces
propriétés, une C°° -petite isotopie convenable — & support dans un voisinage de
(Bo UB1) NInt W — permet de perturber £. en une structure de contact qui
imprime une suspension sur tous les tores T,, 0 <a < 1. O

G. Mise en position transversale

On démontre ici la proposition 2.5 lorsque S n’est pas une sphere. Dans un premier
temps, & désigne juste une structure de contact d’enroulement strictement négatif
sur V. On note g > 1 le genre de S et K un bouquet de 2g cercles sur S ayant
pour complémentaire un disque. Compte tenu du lemme 2.8, on suppose que, au-
dessus d’un voisinage compact régulier R de K, les fibres de 7 sont legendriennes
et ont pour enroulement e(¢). On note D le disque fermé S\ IntR et W le
tore plein 7~ 1(D) qu’on paramétre par D? x S! de telle sorte que la fibration
7 |w soit la projection sur le premier facteur. Par construction, W est un tore
clairaldien.

Lemme 2.11. La multi-courbe T' qui scinde le feuilletage £ OW a deur com-
posantes connezes.

Démonstration. Soit 2n le nombre (pair) de composantes connexes de I'. D’apres
le lemme 2.9, les 2n courbes de singularités de £ W bordent n anneaux A; dis-
joints et plongés dans W dont les feuilletages caractéristiques £A; sont formés
de cercles paralleles au bord. On indexe les A; de telle sorte que A; soit
extérieurissime, c’est-a-dire découpe W en deux tores pleins dont I'un, noté Wy ,
se rétracte par déformation sur A; et ne contient aucun A;, ¢ > 1. On prend
ensuite un voisinage collier Ny 22 Ay x[0,1] de A; = A; x {0} dans Adh(W\ W)
dont le bord latéral dA; x[0,1] est inclus dans OW . Pour tout s £ 0 assez petit,
les caractéristiques de 'anneau A; x {s} vont d’un bord & I’autre. On désigne
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alors par W’ un tore plein obtenu en arrondissant les angles de
W\ (W1 U (A; x [0, s[)>7 s > 0 petit.

Ainsi construit, W’ est un tore plein isotope &4 W et on note ¢: OW — V un
plongement isotope & I'inclusion et dont I'image est le tore W’ .

Si n > 1, le feuilletage £ OW’ a 2n—2 courbes de singularités et aucune feuille
réguliere fermée. Par suite, W’ est convexe et la multi-courbe I qui scinde
£OW’' compte 2n —2 composantes connexes, toutes isotopes aux composantes de
¥(I'). En notant L une fibre de m dans oW , il existe sur W’ une courbe L’
isotope & (L) et vérifiant

Card(L' NT") < 2]e(¢)| = Card(L.NT).

Or le lemme 2.7 fournit une isotopie de plongements ¢s: OW — V, s € [0,1],
ayant les propriétés suivantes :

o chaque feuilletage & ¢;(OW'), s € [0,1], est scindé par ¢s(IV) ;

e la courbe ¢1(L’) est legendrienne.
Comme dans la preuve du lemme 2.8, Uenroulement de & autour de ¢(L/) vaut
alors

e(¢1(L)) = —2 Card(L' NT) > e(¢),
ce qui contredit la définition de e(&). O

Le second ingrédient dans la preuve de la proposition 2.5 est le lemme suivant :

Lemme 2.12. Sila structure de contact £ est universellement tendue, sa restric-
tion au tore plein W = 7—1(D) lest aussi.

Démonstration. Soit n > 1 un entier quelconque. Comme la surface S n’est pas
une sphere, elle possede un revétement connexe & n feuillets S,, . Le rappel V,, —
S, du fibré V — S au-dessus de S,, a alors pour nombre d’Euler X (V,,,S,,) =
n X (V,S). Par suite, il existe un revétement fibré & n feuillets Vo — Vi, qui, au-
dessus de chaque fibre de la projection V,, — S,, , induit un revétement cyclique
non trivial du cercle. L’image inverse de W dans V,, est la réunion disjointe de
n tores pleins et chacun d’eux se projette sur W par un revétement de degré n .
Comme £ se releve sur V, en une structure de contact tendue, sa restriction a
W induit une structure de contact tendue sur tout revétement fini de W, donc
aussi sur le revétement universel. O

On termine maintenant la démonstration de la proposition 2.5. On note donc &
une structure de contact sur V qui est orientable le long des fibres, universellement
tendue et d’enroulement strictement négatif. En outre, compte tenu des lemmes
2.8, 2.11, 2.12 et de la proposition 2.10, on suppose que & satisfait les propriétés
suivantes :

e toutes les fibres au-dessus du voisinage R de K sont legendriennes;
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e dans W=r7"1D) = D? x S', la structure de contact £ est transversale &
{0} x 8! et imprime une suspension sur chaque tore T, = aS'xS!, 0 <a < 1.

Comme l'enroulement e(€) est strictement négatif, les feuilletages (T, 0 < a <
1, n’ont aucune feuille fermée isotope a la fibre et sont par suite tous isotopes a
des feuilletages transversaux aux fibres. Quitte a déformer £ par une isotopie a
support dans W , on peut donc supposer que toutes les fibres, au-dessus de Int D,
sont transversales & £. On oriente alors & sur un voisinage de W pour que les
dites fibres {x} x S' C Int W soient des transversales positives. On se donne par
ailleurs un champ de vecteurs legendrien 7 sur V qui est nul sur W et transversal
aux fibres sur V\ W . Si on pousse ¢ par le flot de 7 pendant un bref instant, on
obtient une structure de contact & qui est partout transversale aux fibres sauf le
long de AW o elle reste tangente aux fibres. De plus, si on pousse dans la bonne
direction, les fibres de part et d’autre de W sont transversales dans le méme
sens. Une isotopie C™ -petite permet alors de rendre &' transversale & toutes les
fibres. O

H. Un exemple

Pour clore cette partie, on montre que 'alternative offerte par le théoreme 2.3
est optimale au sens ol lorsque & n’est pas isotope a une structure transversale
aux fibres, il est parfois indispensable de passer a un revétement fini de V pour
trouver une courbe legendrienne isotope a la fibre et d’enroulement nul.

Proposition 2.13. Si S est un tore et si X(V,S) est un nombre négatif as-
sez grand, V porte une structure de contact virtuellement vrillée d’enroulement
strictement négatif.

Démonstration. Soit ¢ la structure de contact d’équation dz —ydx =0 sur R>.
On se donne un nceud K transversal a ¢ et un voisinage tubulaire W de K dans
lequel ¢ apour équation dt+72df =0, ol ¢ parametre K et (r, 0), r<e,sont
des coordonnées polaires normales. On note 1(K) 1’auto-enlacement de K dans
(R?,(), enlacement de K avec K+¢3, , et K’ une stabilisation de K dans W,
c’est-a-dire un nceud topologiquement isotope & K dans W, transversal a { et
d’auto-enlacement 1(K’) = 1(K)—2 (voir [Be]). Le théoréme de Darboux assure
alors qu’il existe un isomorphisme ¢ de (W,¢) sur un voisinage tubulaire (W', ()
de K’ qu’on peut prendre aussi petit qu’on veut. Comme ¢ envoie les méridiens
de W sur des méridiens de W', la variété V obtenue a partir de W\ Int W en
identifiant par ¢ les deux composantes du bord est fibrée en cercles au-dessus du
tore. On note & la structure de contact induite par ¢ sur V et on observe que
les propriétés suivantes sont satisfaites :

e le nombre d’Euler de V est négatif, d’autant plus grand que W’ est plus
petit ;
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e au signe pres, la classe d’Euler de £ est en dualité de Poincaré avec la fibre

de V.
Cette seconde propriété montre immédiatement que & n’est pas isotope & une
structure transversale aux fibres. Par ailleurs, si (V,£) contenait une courbe
legendrienne isotope a la fibre et d’enroulement nul, celle-ci se releverait — peut-
étre pas dans W\ W’ mais dans W\ ¢"(W’) pour n assez grand — en une courbe
legendrienne de (W,() bordant un disque méridien vrillé. Or la structure { est
tendue d’apres le théoreme de Bennequin. O

Au prix de quelques efforts supplémentaires, I’exemple ci-dessus révele aussi
qu’on ne peut pas se contenter de considérer des revétements finis du type V = p*V
oll p est un revétement fini de S : il faut en général déplier les fibres.

3. Dénombrement des structures de contact transversales
A. Comment contacter Matsumoto-Ghys

V désigne toujours une variété connexe orientée fibrée en cercles au-dessus d’une
surface close S. On classifie ici les structures de contact directes et transversales
aux fibres sur V. Pour ce qui est des feuilletages, aucune classification topologique
générale n’est connue ni méme attendue (voir [Ghl]). Toutefois, lorsque X (V,S)
vaut £ X (S), les travaux de S. Matsumoto et E. Ghys montrent que les feuilletages
C? transversaux aux fibres sur V sont tous topologiquement conjugués [Ma] et
forment, a conjugaison différentiable pres, une variété homéomorphe a ’espace
de Teichmiiller de S [Gh2]|. Pour les structures de contact, le théoréme qui suit
donne, sans autre restriction sur X (V,S) que l'inégalité du théoreme 1.1, une
classification complete. On rappelle que, d’apres les propositions 2.4 et 2.5, une
structure de contact sur V est isotope & une structure transversale aux fibres si et
seulement si elle est universellement tendue et d’enroulement strictement négatif
entier.

Théoreme 3.1. Soit V wune wvariété connexe et orientée, fibrée en cercles au-
dessus d’une surface close et orientable S. On suppose que X (S) < 0 et que
X(V,S) < —X(S).
a) Il existe sur V des structures de contact transversales auz fibres et d’enroule-
ment —n si et seulement si n=1 ou si nX(V,S)=—X(S) et n>0.
b) Si X(V,S) £ —X(S), les structures de contact universellement tendues et
d’enroulement —1 sur V forment une seule classe d’isotopie.
c) Si nX(V,S) = —=X(S), n > 0, les structures de contact universellement
tendues et d’enroulement —mn forment un nombre fini de classes de conjugaison
égal au nombre de diviseurs de n. De plus, chaque classe de conjugaison contient
une infinité de classes d’isotopie.

Avant de démontrer ce théoreme dans les sections C—F, on observe que la par-
tie ¢) présente peu d’intérét lorsque X (S) = 0. En effet, comme n X (V,S) =



240 E. Giroux CMH

—X(S), la variété V est un tore et ’enroulement n’est pas invariant par conju-
gaison. Dans ce cas, le bon invariant de conjugaison est la torsion [Gi4]. D’autre
part, le cas laissé de coté par le théoreme est en fait beaucoup plus simple :

Proposition 3.2. Soit V une variété connexe et orientée, fibrée en cercles au-
dessus d’une sphére S. On suppose que X (V,S) < 0. A isotopie pres, il y
a sur V une seule structure de contact directe et transversale auz fibres. Son
enroulement vaut —2 si V~S% et —1 sinon.

Démonstration. Ce résultat est inclus dans le théoreme 1.1 de [Gi4] qui classifie
les structures de contact tendues sur les espaces lenticulaires. Comme il n’en
constitue qu’'une toute petite partie, on indique brievement sa preuve. Soit &
et &1 deux structures de contact sur V qui sont directes et transversales aux
fibres. Quitte a déformer 'une d’elles par une isotopie qui la laisse transversale
aux fibres, on peut supposer que & et &; coincident au-dessus de la réunion
disjointe @ de deux petits disques dans S. On paramétre alors V \ 7~ 1(Q)
par T? x [0,1] de telle sorte que 7 soit la projection T? x [0,1] — 8! x [0,1],
(z,y,t) — (y,t). Chaque structure & imprime ainsi sur chaque tore T2 x {t}
un feuilletage caractéristique dont toutes les feuilles coupent transversalement les
fibres de 7. Dans la terminologie de [Gi4], & et & sont des structures rotatives
sur T?x[0,1] qui coincident prés du bord et ont la méme amplitude (non nulle). Le
théoreme 3.3 de [Gi4] montre qu’elles sont alors isotopes relativement au bord. O

B. Fibrations legendriennes et revétements fibrés

On étudie ici les structures de contact sur V qui sont tangentes aux fibres, i.e.
pour lesquelles la projection 7: V — S est une fibration legendrienne. Comme
la proposition 1.4 le laisse entrevoir, ces structures jouent un role important dans
I'étude des structures de contact transversales aux fibres. On note cependant
qu’une structure de contact tangente aux fibres n’est pas nécessairement orientable
le long des fibres. L’exemple type est la structure de contact canonique &g sur le
fibré P(TS) des droites non orientées tangentes a S .

Proposition 3.3. Soit V wune variété connexe et orientée, fibrée en cercles au-
dessus d’une surface quelconque S. L’application qui, d tout revétement fibré
p: V. — P(TS), associe la structure de contact & = p*Es est une bijection de
Uespace des revétements fibrés et orientés V — P(TS) dans lespace des structures
de contact tangentes aux fibres sur V. En outre, Uenroulement de p*&s autour
des fibres vaut —d/2 ou d est le degré du revétement p .

Démonstration. Si p: V — P(TS) est un revétement fibré orienté, la structure de
contact & = p*&s est tangente aux fibres de V (et directe). En outre, comme
lenroulement de & autour des fibres vaut —1/2, celui de ¢ vaut —d/2 ou d
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est le degré de p. D’autre part, tout champ de plans ¢ tangent aux fibres de V
définit une application fibrée V — P(TS) : I'image d’un point p est simplement
la projection sur S du plan £(p). Cette application est un revétement (orienté) si
et seulement si le champ £ est une structure de contact (directe) et cette structure
est, par construction, le rappel de &g . O

Corollaire 3.4. Soit V wune variété connexe et orientée fibrée en cercles au-
dessus d’une surface close S. Pour que V porte une structure de contact tan-
gente auz fibres (et directe), il faut et il suffit qu’il existe un entier d > 0 tel que
dX(V,S)=-2X(S).

Démonstration. Le nombre d’Euler du fibré P(TS) — S, pour l'orientation induite
par la structure de contact &, est —2X(S). Ainsi, la relation dX (V,S) =
—2X (8S) traduit simplement 'existence d’un revétement fibré et orienté de V sur
P(TS) & d feuillets. |

Remarque. Lorsque la surface S est close, ’existence sur V d’un simple champ
de plans tangent aux fibres exige en fait déja que le rapport —2X(S)/ X (V,S)
soit un entier, éventuellement négatif ou nul. En effet, ce champ de plans définit
une application fibrée V — P(TS) dont la restriction & chaque fibre est de degré
constant d. D’autre part, un feuilletage tangent aux fibres ne peut étre que
I'image inverse d’un feuilletage de S et n’existe donc que si X (S) =0.

Corollaire 3.5. Soit V une wvariété connexe et orientée, fibrée en cercles au-
dessus d’une surface compacte S ayant un bord connezre non vide. On note Scv
limage d’une section, L. C OV wune fibre et on oriente dS et L de telle sorte que
leur intersection soit positive sur OV .

Pour toute structure de contact € tangente aux fibres de V , la multi-courbe
des singularités de £ IV a pour classe d’homologie

+2(e(€) [S] + X(S) [L]) € H1(8V;Z),

du moins si toutes ses composantes sont orientées dans le méme sens.

Démonstration. Si V. = P(TS) et si £ est la structure de contact canonique,
la courbe des singularités de &9V n’est autre que le relevement legendrien de
0S dans V. Comme e(§) = —1/2, la formule dit simplement que, par rapport
a n’importe quel champ de droites défini sur S, la tangente au bord 0S fait

—2X (S) tours sur la fibre? Le cas général s’obtient en passant & un revétement
fibré de degré —2e(¢). O

Pour terminer cette section, on vérifie que ’enroulement d’une structure de
contact tangente aux fibres est bien ce qu’on attend :

3 Pour trouver le bon signe, noter que Porientation de contact sur P(TS) en un point (g,9),
6 C T4S, n’est pas la juxtaposition d’une orientation de T;S et de l'orientation induite sur la
droite P(T4S) , mais Pinverse.
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Lemme 3.6. Soit V wune variété connexe et orientée, fibrée en cercles au-dessus
dune surface quelconque S, et soit €& une structure de contact tangente auz fibres.
L’enroulement de £ est égal a son enroulement autour des fibres.
Démonstration. Quitte & se placer au-dessus du revétement universel de S, on
suppose que S est un plan ou une sphere. Si S ~ 82 | il suffit de traiter le cas ol
V =~ 82 . Dans ce cas, 'enroulement de ¢ autour des fibres est égal & —2. Par
ailleurs, comme on I’a noté au début de la section 2.B, ’enroulement de & autour
de toute courbe legendrienne L isotope & la fibre dans S — donc non nouée — vaut
tb(L) — 1. L’identité voulue résulte donc de I'inégalité de Bennequin tb(L) < —1.
Si S~ R?, il existe un difffomorphisme V — R? x 8! qui conjugue la fibra-
tion 7 & la projection sur R? et envoie ¢ sur la structure de contact d’équation

cos(nf) dz — sin(nf) dy =0, (z,y,0) € R?* x S,

oll n est Uenroulement de ¢ autour des fibres. Dans R® muni de sa structure de
contact ordinaire, on considere alors une courbe legendrienne non nouée L dont
Iinvariant de Thurston-Bennequin vaut —1. Un avatar du théoreme de Darboux
donne un plongement de (V,¢) dans R® qui envoie sur L une fibre de 7. Toute
courbe legendrienne dans (V,§) isotope a la fibre et d’enroulement —m > —n a
alors pour image une courbe legendrienne non nouée dont 'invariant de Thurston-
Bennequin vaut n—m—1. L’inégalité de Bennequin permet & nouveau de conclure.

O

C. Mise en position tangentielle

On démontre ici la partie a) du théoreme 3.1. On observe d’abord que la structure
de contact canonique sur la variété S(TS) des droites orientées tangentes & S
a pour enroulement —1 (lemme 3.6). Par suite, comme X (V,S) < —X(S) =
X (S(TS),S), la chirurgie décrite dans le lemme 1.3 permet de produire sur V
une structure de contact transversale aux fibres et d’enroulement —1. D’autre
part, lorsque n X (V,S) = — X (S) pour un certain entier n, la variété V admet un
revétement fibré & n feuillets au-dessus de S(TS). Ainsi, V porte une structure
de contact tangente aux fibres, d’enroulement —n en vertu du lemme 3.6, que la
proposition 1.4 permet de rendre transversale aux fibres. Il reste donc a démontrer
la proposition suivante :

Proposition 3.7. Soit V une variélé connexe et orientée, fibrée en cercles au-
dessus d’une surface close orientable S, et soit & une structure de contact transver-
sale auz fibres et d’enroulement e(§) = —n, n € N. Si nX(V,S) = —=X(9),
alors & estisotope a une structure de contact tangente auz fibres. Sinon, n vaut 1.

Démonstration. On note D C S un disque fermé, R la surface S\ IntD et W le
tore plein 7~1(D). On parametre W par D? x S! de telle sorte que la fibration
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7 |w soit la projection sur D?. En vertu de la proposition 2.4 et du lemme 2.8,
¢ est isotope & une structure de contact & ayant les propriétés suivantes :

e au-dessus de R, les fibres sont tangentes & & et ont pour enroulement

(&) =e(§) ;

e au-dessus de Int D, les fibres sont transversales & ¢’ .
D’apres le lemme 2.11, les singularités du feuilletage ¢’ OW forment deux cercles.
De plus, vu la définition du nombre d’Euler X (V,S), le corollaire 3.5 montre que
la pente de ces cercles sur OW = 9D? x 8! — ou de leurs classes d’homologie dans
Hi(OW;R) = R? — vaut

1
= E(nX(\ﬂS) +X(S)—1).
Assertion. Si n> 1, alors nX (V,S)=—-X(9S).

Preuve. Soit Ty, 0 < a <1, le tore aS' x 8' ¢ W = D? x S'. Le feuilletage
caractéristique €'T, de chaque tore T, est transversal aux fibres et est donc décrit
par I'application ¢, de premier retour sur une fibre. Quand a variede 0 a 1, le
nombre de translation p, de ¢, décroit continiiment de 0 & g (proposition 1.2)
et n’est nul que pour a = 0. En particulier, p est strictement négatif. Par suite,
comme n = —e(§) > 0 (proposition 2.4), entier nX (V,S) + X (S) est négatif
ou nul.

Sin>1 et nX(V,S)+ X(S) < 0, la pente p est strictement majorée
par —1/(n —1). D’autre part, une petite perturbation de ¢ dans W permet
d’imposer a la famille ¢, n’importe quelle propriété générique. On peut ainsi
supposer que, pour une valeur a, le difféomorphisme itéré ¢?~! a pour nombre
de translation (n — 1)u, = —1 et ne posseéde que deux points fixes, lesquels sont
hyperboliques. Le tore T, correspondant est alors convexe dans (V,¢') et on
note I' C T, une bi-courbe transversale aux fibres qui scinde le feuilletage ¢'T, .
On choisit ensuite sur T, un feuilletage singulier ¢ scindé par I' et pour lequel
chaque fibre L de m|p, est saturée (voir la démonstration du lemme 2.8). Le
lemme 2.7 fournit un plongement ¢: T, — W isotope a I'inclusion et dont I'image
T = ¢(T,) a pour feuilletage caractéristique &'T = ¢,o . Ainsi, chaque courbe
(L) est isotope a la fibre et legendrienne. De plus, comme I' a deux composantes,
I'enroulement de ¢(L) vaut 1 —n > —n = e(§), ce qui est absurde. O

On suppose désormais que n X (V,S) = — X (S) de sorte que p = —1/n. Pour
finir la démonstration de la proposition 3.7, il reste & montrer que £ —ou & —est
isotope a une structure de contact partout tangente aux fibres. Pour cela, on note
d’abord que, d’apres le lemme 2.12, la restriction de & & W est universellement
tendue. Deés lors, le théoreme 1.6 de [Gid] assure que toute structure de contact
universellement tendue sur W qui imprime le méme feuilletage que &' sur OW
est isotope & ¢’ relativement au bord. En effet, la condition p = —1/n garantit
qu’il existe dans W, & isotopie relative au bord pres, un seul anneau s’appuyant
sur les cercles de singularités de & OW (voir le début de la démonstration de la
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proposition 2.10). Or la structure d’équation
cos(nf) dz — sin(nf) dy = 0, (z,y,0) € D? x S,

définit sur W = D?x 8! une structure de contact universellement tendue, tangente
& toutes les fibres et d’enroulement —n autour de chacune. O

D. Structures d’enroulement lache

On démontre ici la partie b) du théoréme 3.1. On suppose donc que X (V,S) #
— X (8S) et on considéresur V deux structures de contact £ et £; universellement
tendues et d’enroulement —1. On note D un disque fermé dans S et on regarde
la surface R = S\ IntD comme le voisinage régulier d’un bouquet de cercles
K = \/?il K; ou g est le genre de S. On parametre en outre le tore plein
W = 771(D) par D? x 8' de telle sorte que la fibration 7 |w soit la projection
sur D?.

Compte tenu des lemmes 2.8, 2.12 et de la proposition 2.10, on suppose que
chaque structure de contact &;, i € {0,1}, satisfait aux conditions suivantes :

e au-dessus de R, les fibres sont tangentes a &; et d’enroulement —1 ;

e au-dessus de Int D, les fibres sont transversales a ¢; .
Les singularités du feuilletage & 0W forment alors deux cercles dont la classe
d’homologie vaut (1, X (V,S)+ X (S) —1), 0ol X(V,S)+ X(S)—1<-2.

Soit @ C R un voisinage compact du sommet de K dont I'intersection avec le
bouquet K est connexe. On lisse chaque lacet K; dans @ en une courbe K/ et
on parametre chaque tore F; = 7~ 1(K%) par T? de telle sorte que les fibres soient
les cercles {*} x S' et que les (deux) courbes de singularités du feuilletage &oF;
alent pour classe d’homologie £(1,0). Les courbes de singularités du feuilletage
&1F; ont alors une classe du type +(1,n;), n; € Z, et, quitte & composer le
paramétrage de F; par la transformation (z1,22) € T? — (—=z1,22), on prend

Lemme 3.8. [l existe une structure de contact isotope o &1 qui coincide avec &y
au-dessus de R..

Démonstration. Si les entiers n; sont tous nuls, une isotopie fibrée amene &
a coincider avec & au-dessus de R. On suppose ci-dessous n; # 0 et on
déforme &;, par une isotopie relative a \/#i F;, en une structure de contact
& dans laquelle F; est convexe et possede un feuilletage caractéristique &3F;
scindé par deux courbes, de classe +(1,n; —1). Comme dans la démonstration
du lemme 2.8, les lemmes sur les surfaces convexes permettent ensuite de mod-
ifier & , par une isotopie toujours relative a \/#i F; au cours de laquelle F;
reste convexe, en une structure de contact &3 tangente aux fibres de 7 sur un
voisinage de F;. En renouvelant 'opération, on annule au fur et & mesure les
coefficients n; .
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Soit Js, s €[0,1], une famille lisse d’arcs plongés dans S\ (Int Q U \/#i Kj;)
et ayant les propriétés suivantes :

e Jo=K;\IntQ et Js, pour tout s € [0,1], a un contact d’ordre infini

avec Jo en ses extrémités;

e les arcs J;, s € [0,1], sont d’intérieurs disjoints, leur union couvre un

voisinage de D et la trace de chacun d’eux sur IntD est connexe;

e les anneaux By = 7 1(J,), pour s > 0, sont du c6té positif de F; — la

coorientation provient du paramétrage T? — F; .
Pour tout s € [0,1], on pose F;, = (F; \ Bo) UB;. Le tore F;; est contenu
dans 7 1(R) et les cercles de singularités du feuilletage & F;; ont pour classe
+(1,n; + X(V,S) + X(S)). En fait, chaque feuilletage &F; ; est tangent aux
fibres au-dessus de J; \ D (avec deux singularités par fibre) et transversal aux
fibres au-dessus de J, N IntD. Les singularités de & F;, forment donc deux
courbes CF qui sont fermées si J, évite Int D (par exemple pour s proche de 0
et 1) mais sont des arcs sinon. Sauf pour un nombre fini de valeurs de s (instants
de bifurcation), le tore F; , est convexe et les extrémités de l'arc CT sont reliées
par une feuille réguliere. La courbe fermée CJ | union de cette feuille et de CJ |
est parallele aux courbes qui scindent &;F; s ; sa classe d’homologie, lorsque s
varie de 0 & 1, prend successivement les valeurs £(1,n;), +(1,n; —1),...,
+(1,n; + X (V,S)+ X(S)) (la condition de contact impose la décroissance de la
pente, comme dans la proposition 1.2).

On choisit désormais pour s un instant ol la classe de C¥ vaut £(1,n; —1).
Le feuilletage &F; s est clairement scindé par le bord d’un voisinage annulaire
de Cf donc F; s est convexe. Soit ¢, t € [0, s], une isotopie de V qui prolonge
I'isotopie F;, sans bouger les points de 7 1(Q) U \/#i F;. Les structures de
contact ¢f&; donnent la déformation voulue entre & et & = ¢3¢ . O

Fort du lemme 3.8, on suppose dorénavant que &; coincide avec & au-dessus
de R et on pose 0 = & OW . On note que, d’aprés le lemme 2.12, les restrictions de
& et & & W sont universellement tendues. Or, d’apres le théoreme 1.6 de [Gi4],
les structures de contact universellement tendues sur W qui impriment o sur W
forment deux classes d’isotopie relative au bord. Mieux, & |w et & |w sont dans
la méme classe si et seulement si les anneaux respectifs Ag et A; que leur attribue
le lemme 2.9 — anneaux qui s’appuient sur les cercles de singularités de ¢ — sont
isotopes relativement & leur bord (cf. démonstration de la proposition 2.10). Si
A1 n’est pas isotope & Ay relativement & son bord, on améne A; sur Ag par une
isotopie fibrée de W qui permute les cercles de singularités de o . On prolonge
ci-dessous cette isotopie en une isotopie fibrée ¢; de V dont le stade final ¢,
préserve & | -1(r). Du coup, & est isotope & (41)«{1 relativement & 7 1(R),
donc & et & sont isotopes.

Comme R est orientable, un avatar de la proposition 3.3 donne un difféomor-
phisme fibré de 7—*(R) sur S(TR) qui envoie & sur la structure de contact
canonique &r. Moyennant le choix d’une structure conforme sur R, on note
¢ D'isotopie fibrée de S(TR) qui tourne les droites d'un angle =t, t € [0,1].
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Le difféomorphisme 1 préserve &r et permute les courbes de singularités du
feuilletage ¢&r OS(TR) . Par suite, lisotopie 4); , transportée sur 7 '(R), fournit
le prolongement voulu. O

E. Structures d’enroulement serré

On démontre ici la partie ¢) du théoreme 3.1, au calcul prés du nombre exact
des classes de conjugaison qu’on effectue dans la proposition 3.10. On suppose
donc que nX(V,S) = —X(S), ol n > 0 est entier, et on s’intéresse sur V
aux structures de contact universellement tendues et d’enroulement —n . Toute
structure de ce type est orientable le long des fibres (car n est entier) et est
isotope, d’apres la proposition 3.7, a une structure de contact tangente aux fibres.
D’autre part, I’avatar orienté de la proposition 3.3 assure que toute structure de
contact £ tangente aux fibres et orientable le long des fibres sécrit p*&s, ou p
est un revétement fibré V — S(TS) et & la structure de contact canonique sur
S(TS) .

On dira que deux revétements fibrés pg, p1: V — S(TS) sont isomorphes au-
dessus de S s'il existe des difféomorphismes ¢ de V et ¢ de S(TS), fibrés
au-dessus d’'un difféomorphisme de S, qui rendent commutatif le diagramme

v 2 v
po | Lo

—

S(TS) ¢ S(TS).

Comme dans la section D, on prend sur S un bouquet de cercles K = \/fﬁl K;
ayant pour complémentaire un disque et on lisse les lacets K; en des courbes K/ .
On parametre de nouveau chaque tore F; = 7~ *(K!) par T? de telle sorte que les
fibres soient les cercles {*} x S'. Pour toute structure de contact £ sur V tan-
gente aux fibres et d’enroulement —n , la courbe des singularités du feuilletage &F;
— toutes composantes orientées dans le méme sens — a alors une classe d’homologie
qui s’écrit

+2(n,m;(¢)) € Hi(Fi;Z) = Z7 .

En outre, étant donné des entiers myq,...,may, € Z, on construit sans peine une
structure de contact £ tangente aux fibres et d’enroulement —n pour laquelle
m; = m(§), 1 < i < 2g. Lorsque X(S) < 0, la partie ¢) du théoreme 3.1
découle donc du lemme suivant et de la proposition 3.10 :

Lemme 3.9. Soit & et & deux structures de contact tangentes aux fibres et
d’enroulement —n .

a) Les structures & et & sont isotopes si et seulement si les entiers m;(&y) et
m;(&1) sont égaux pour 1 <i<2g.
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b) Lorsque X (S) < 0, les structures & et & sont conjuguées si et seulement
si les revétements fibrés associés, de V sur S(TS), sont isomorphes au-dessus
de S.

Démonstration.

a) Si m;(&) = my(&1) pour 1 <4 < 2g, une isotopie fibrée permet clairement
d’amener & sur & . Par ailleurs, si on note ¢ le sommet du bouquet K, chaque
lacet K; engendre dans 7(S,q) un groupe cyclique infini. Il lui est ainsi associé
un revétement p;: éi — S et on parametre éi par R x S! de telle sorte que
p({0} x S1) soit la courbe K/ . Les relévements respectifs & et & de & et &
sur V = p*V sont des structures de contact tangentes aux fibres de la fibration
V = S. De plus, on peut paramétrer A par R x T? de telle sorte que les
conditions suivantes soient remplies :

e le plongement composé T? = {0} x T? — V — V a pour image F,; et
coincide avec le paramétrage donné de F; ;

e la fibration V— S est la projection sur R x St .

Du coup, tous les tores T, = {a} x T?, a € R, sont convexes et la courbe
qui scinde leur feuilletage &T, (resp. €T, ) a pour classe %(1,m;(&o)) (resp.
+(1,m;(&1)) ). Si my(&o) est différent de m;(&1), le lemme 4.7 de [Gi4] (qui est
un cas particulier de l'inégalité de Bennequin semi-locale, cf. proposition 4.10)

montre que & n’est pas isotope a & . Par suite, & et &; ne sont pas isotopes.

b) Soit po et p; les revétements fibrés V — S(TS) associés respectivement &
& et & . Si po et p1 sont isomorphes au-dessus de S, tout difféomorphisme
fibré de V qui les conjugue envoie en méme temps & sur & . On suppose
donc maintenant que & et & sont conjuguées par un difféomorphisme ¢y de
V. D’apres [Wa], ¢o est isotope & un difféfomorphisme fibré ¢. La structure
de contact ¢*&; est alors tangente aux fibres et isotope a &;. Or il ressort
immédiatement du a) que, si deux structures de contact tangentes aux fibres et de
méme enroulement sont isotopes, elles le sont par une isotopie fibrée. A Dinstant
final, cette isotopie conjugue pg a ¢*p1,donc py et p; sont isomorphes au-dessus
de S. O

[l reste aregarder le cas (peu intéressant) on X (S) = 0. Larelation n X (V,S) =
—X (S) force alors V & étre un tore. D’apres [Gi4] (voir aussi [Kal), toute struc-
ture de contact (universellement) tendue sur T? est conjuguée & une structure de
contact (,, d’équation

cos(m@) dx1 — sin(m@) dzs = 0, m >0, (x1,29,0) € T,

Pour la projection (x1,z9,0) — (z1,22), la structure (,, est tangente aux fibres
et d’enroulement —m . Malis, pour chaque entier d > 0, on peut aussi trouver
une fibration T? — T2 pour laquelle ¢, est d’enroulement —dm . O
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F. Dénombrement des revétements fibrés
On classifie ici les revétements fibrés de S(TS) & isomorphisme prés au-dessus
de S, ce qui complete la démonstration du théoreme 3.1-c.

Proposition 3.10. Soit S wune surface close orientable, de caractéristique d’Euler
négative ou nulle et soit n un entier positif.

a) A isomorphisme prés au-dessus de S, les revétements fibrés de S(TS) a
n feuillets sont classés par le quotient H'(S;Z/nZ) | Autmi(S).

b) A composition prés par les automorphismes de 1 (S) , les morphismes de 7 (S)
dans Z/nZ sont classés par leur image. Le quotient H(S;Z/nZ)/ Autm(S)
a donc un cardinal égal au nombre de diviseurs de n .

Démonstration.
a) On pose Vg = S(TS) et on choisit dans Vg un point de référence. Comme
X (S) €0, le groupe fondamental m1(Vy) est une extension centrale de 71(S) par
=~ 71(S1). La suite exacte courte d’homotopie Z — m1(Vo) — m((S) induit
ainsi une suite exacte courte d’homologie Z/ X (S)Z — H1(Vo;Z) — H4(S).
D’autre part, la bijection entre les (classes d’équivalence de) revétements de Vy
et les (classes de conjugaison de) sous-groupes de m1(Vy) associe aux revétements
fibrés de degré n les sous-groupes d’indice n dont la trace sur le sous-groupe
central Z est nZ. Ces sous-groupes sont normaux et sont donc les noyaux des
morphismes 71 (Vo) — Z/nZ dont la restriction & Z est la projection canonique.
Comme de tels morphismes transitent par Hi(Vo;Z) , ils existent des que n divise
X (S) et forment alors un espace principal homogene du groupe H'(S;Z/nZ) .
En outre, I'action des difféomorphismes fibrés de V se réduit sur H'(S;Z/nZ)
a laction des difféomorphismes de S, i.e. des automorphismes (extérieurs) de

Wl(S) ¥

b) Soit fo et fi des morphismes de 71(S) dans Z/nZ. Comme 7(S) est sans
torsion, fo et fi; se relevent en des morphismes fo et fl de m1(S) dans Z.
Ceux-ci sont en dualité de Poincaré avec des éléments moug et miuy de Hy(S;Z),
oll mp, my sont des entiers et wug, uwy des classes primitives. On se donne alors
des courbes fermées simples Ay et A; dont les classes d’homologie respectives sont
uo et uy . Comme il existe un difféomorphisme ¢ de S quienvoie Ay sur Ay, on
peut supposer, quitte & composer fi; par ¢, que Ag = A; = A. Le morphisme
fi associe alors & la classe de chaque courbe C le nombre m;[A] - [C] (mod n) .
Par suite, fo et fi ont méme image dans Z/nZ si et seulement si moZ +nZ =
myZ+nZ , c’est-d-dire si et seulement si pged(mo,n) = pged(my,n). On suppose
que c’est le cas, on note d ce plus grand commun diviseur et on pose m; = dm, ,
n = dn’. On choisit dans S une sous-surface compacte R contenant A et
difféomorphe & un tore troué. On note B C R une courbe fermée simple qui, avec
A | forme une base de H{(R;Z). Modulo n, I'intersection de m;[A] avec la classe
d’une courbe quelconque C de S est égale a celle de m;[A] + n[B] avec [C]. Or



Vol. 76 (2001) Structures de contact sur les fibrés en cercles 249

m;[A] + n[B] = d(m}[A] + n/[B]) et, comme pged(mf,n’) = pged(my,n’) =1, 1l
existe un difféomorphisme ¢ de S, & support dans R, qui envoie m{[A] + »/[B|
sur mi[A] + »/[B]. Ainsi, fo= f10v.. O

4. BEtude des structures de contact non transversales
A. Structures invariantes

On considere ici une variété V close, connexe et orientée, munie d’une action
libre du cercle S! et ainsi fibrée au-dessus de la surface quotient S = V/S!. On
s'intéresse sur V aux structures de contact invariantes par I'action. Pour une
telle structure ¢, on note I'(€) I’ensemble des orbites ¢ € S qui sont tangentes
a & (i.e. legendriennes). Il est facile de voir que I'(§) est une multi-courbe lisse
sur S et R. Lutz montre dans [Lu] que deux structures invariantes &, et & sont
conjuguées par un difféomorphisme équivariant de V si et seulement s’il existe un
difféomorphisme de S qui envoie I'(&) sur I'(§1). Avant d’expliquer comment
affranchir ces résultats des conditions d’invariance et d’équivariance, on établit
une caractérisation des structures invariantes (universellement) tendues.

Proposition 4.1. Soit & une structure de contact orientable et invariante sur V .
a) Si & est tendue et si une composante connexe de S\ I'(§) est un disque, T'(§)
est connexe et X (V,S) vérifie l'inégalité

X(V,8) >0 si S+#8?%
X(V,8) >0 si S=8°.

b) Pour que & soit universellement tendue, il faut et il suffit que l'une des condi-
tions suivantes soit remplie:

o S £8? et aucune composante conneze de S\ T(€) n'est un disque ;
e S~82, x(V,8)<0 et I'(€) estvide;
o S~8%2, x(V,S)>0 et I'(€) est connexe mais pas vide.

Démonstration.
a) Soit D une composante de S\ I'(§) qui est un disque et E la composante
voisine. Si I'(§) n’est pas connexe, la surface compacte R = Adh(D UE) differe
de S et la fibration 7: V — S admet une section R au-dessus de R ayant, pour
un choix convenable d’orientations, les propriétés suivantes :

1) la courbe Qf{ est positivement transversale a £ ;

2) la surface R a un seul point de contact négatif avec ¢ — situé dans D — et

ce point est une singularité d’indice 1 du feuilletage £ﬁ.
Or I'inégalité de Bennequin [El2] interdit 'existence d’une telle surface R si & est
tendue.

On établit maintenant I'inégalité sur le nombre d’Euler. Si X (V,S) < 0 et si
Q C S\ D est un disque assez petit, la fibration = admet sur R =S\ Int Q) une
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section R ayant elle aussi, pour un choix convenable d’orientations, les propriétés
1) et 2) ci-dessus qui sont illusoires si ¢ est tendue. Enfin, si X (V,S) =0 et si
S # 82, le lemme 2.6 de [Gi2] (qui sert & établir I'inégalité de Bennequin relative
aux surfaces closes) montre encore que £ est vrillée.

b) Pour voir que I'une des conditions énumérées est remplie quand ¢ est uni-
versellement tendue, il suffit d’appliquer a) et d’observer que, si S % S? et si
une composante connexe de S\ I'(§) est un disque, I'image inverse de I'(§) par
n’importe quel revétement non trivial p: S — 'S est non connexe. Or cette multi-
courbe n’est autre que F(é) ol € désigne le rappel de ¢ sur V = p*V . Ainsi, ¢
est vrillée et £ l'est virtuellement.

On explique maintenant pourquoi £ est universellement tendue lorsque I'(§)
satisfait 'une des conditions requises.

Si S = 8?, la classification de Lutz montre que le revétement universel (\7,5 )
de (V,&) est fait comme suit, & un isomorphisme pres :

o si X(V,8) =0, alors V=82xR = R3\ {0} et £ est la structure

usuelle, d’équation dz + zdy —y dz =0, qui est invariante par ’action du flot

(z,y,2) — (elz,ely,e?2) ;

e si X(V,S) = F1, alors V = S? est la sphere unité de C? et & est

la structure usuelle, d’équation Im(zdz + wdw) = 0, qui est invariante par

Iaction du flot (z,w) — (€92, e*w) .
Dans tous ces cas, le théoreme de Bennequin assure que 5 est tendue.

Si S # 82, le revétement universel de S est R? et il suffit de voir que la

structure ¢ induite par ¢ sur V = R? x S! est tendue. Comme toutes les
composantes de T'(¢) sont essentielles sur S (i.e. non contractiles), celles de I'(€)
sont des droites proprement plongées dans R?. On remplit R? avec une suite
exhaustive de disques fermés D, dont les bords sont transversaux & I'(€). On
va montrer que ¢ est tendue en plongeant chaque domaine (D, x 8175) dans
(S? x S!,1) ol 7 est une structure de contact invariante ayant une courbe I'(n)
connexe.

On se donne des équations invariantes de 5 et n qu’on écrit respectivement
B+udt =0 et A +ovdt=0,0l t €S etol B, u (resp. A, v) sont une
1-forme et une fonction sur R2? (resp. sur S2). Les ensembles T'(¢) et I'(y)
ont donc pour équations respectives v = 0 et v = 0. On choisit, pour tout
n > 0, un plongement ¢,: D, — S2 qui envoie I'() N D, sur I'(n) N ¢, (Dy)
en respectant les coorientations induites par u et v. Il existe ainsi une fonction
by Dy — ]0,00] telle que vo ¢, = h,u et on pose 3, = h,3. Le lemme 4.2
ci-dessous garantit alors que la forme (4, )3, se prolonge & S? en une forme X,
vérifiant 'inégalité v dA,+A, Adv > 0, laquelle assure que I’équation A\, +vdt =0
définit une structure de contact 7, invariante sur 82 x 8. Or, par construction,

én x id: (Dy, x S1,€) — (82 x S, 7,)

est un plongement de contact et, comme I'(n,) = {v = 0} = I'(), la struc-
ture 7, est isotope & 7. Par conséquent, la structure & est tendue et &£ I'est
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universellement. O

Lemme 4.2. Soit S wune surface compacte orientée, R wune sous-surface com-
pacte et v: S — R une fonction qui admet 0 pour valeur réguliére, de méme que
v|as et v|ar . St v s’annule dans chaque composante de S\ R, toute 1-forme
A sur R qui satisfait o Uinégalité

vdA\+ANdv >0 *

se prolonge & S en une 1-forme vérifiant partout l'inégalité (4.2).

Démonstration. En un point de I' = {v = 0}, I'inégalité (4.2) dit simplement que
A est transversale a dv. On prolonge donc sans peine A a un voisinage U de I'.
D’autre part, en tout point de S\ T,

vd\ + AAdv=0? d(\/v).

On observe alors que, par hypothese, chaque composante D de S\ (RUI") contient
au moins un arc J de I' dans sa frontiere. Par suite, I'intégrale de A/v sur le
bord de D est infinie. Quitte a diminuer le voisinage U , on peut donc prolonger
A/v & D enune 1-forme dont la différentielle extérieure soit partout positive. O

B. Comment revisiter Lutz

On donne ici une description de toutes les structures de contact universellement
tendues sur une variété fibrée en cercles au-dessus d’une surface.

Définition 4.3. Soit V une variété orientée fibrée en cercles au-dessus d’une
surface compacte S. Une multi-courbe sur S est ici une union disjointe d’un
nombre fini de courbes fermées simples et d’arcs proprement plongés dans S. Par
ailleurs, une multi-courbe est essentielle si aucune de ses composantes n’est nulle
en homotopie — relative au bord s’il s’agit d’un arc.

On dira qu'une structure de contact £ sur V est cloisonnée par une multi-
courbe I' C S si les conditions suivantes sont remplies:

e sur V\7 (T, lastructure & est transversale aux fibres;
o lasurface 7 1(I') est transversale & ¢ et ses caractéristiques sont des fibres.

Ezemple. Toute variété orientée V fibrée en cercles au-dessus d'une surface S
(orientable) peut étre munie d’une action libre du cercle qui définit la fibration.
Quand S est compacte, R. Lutz construit dans [Lu], pour toute multi-courbe non
vide T' dans S, une structure de contact invariante £ sur V telle que I'(§) soit
égal & I'. Cette structure est alors cloisonnée par I'. En outre, elle est orientable
si et seulement si la classe de I' dans H(S;Z/2Z) est nulle.
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Un théoreme de recollement di & V. Colin [Co|] assure que toute structure
de contact cloisonnée par une multi-courbe essentielle est universellement tendue.?
Réciproquement :

Théoréeme 4.4. Soit V wune variété connexe et orientée, fibrée en cercles au-
dessus d’une surface close S de caractéristique d’Fuler négative ou nulle.

a) Toute structure de contact orientable et universellement tendue est isotope &
une structure cloisonnée par une multi-courbe essentielle.

b) Soit & et & des structures de contact cloisonnées par des multi-courbes es-
sentielles non vides, respectivement notés 1y et 1Yy . Les structures & et & sont
isotopes si et seulement si les multi-courbes Ty et T le sont.

Avec les théorémes 3.1 et 2.3 — ce dernier montrant en particulier qu’une struc-
ture transversale aux fibres ne peut étre isotope a une structure cloisonnée par
une multi-courbe non vide —, le théoreme ci-dessus établit une classification des
structures de contact universellement tendues sur V lorsque la caractéristique
d’Euler de S est négative ou nulle. Pour les variétés fibrées en cercles au-dessus
de la sphere, qui sont des espaces lenticulaires, le théoreme 1.1 de [Gi4] donne une
classification de toutes les structures de contact tendues.

D’autre part, la partie a) du théoréme 4.4 prouve que toute structure de contact
universellement tendue et d’enroulement positif ou nul est isotope & une struc-
ture invariante (par une quelconque action libre du cercle qui définit la fibra-
tion). La partie b) classifie donc en fait les structures de contact S!-invariantes.
Sa démonstration s’adapte alors, sans surprise, aux structures de contact R -
invariantes sur le produit d’une surface par R. On obtient ainsi, compte tenu de
Iabondance des surfaces convexes (cf. section 2.D), une classification « générique »
des structures de contact tendues au voisinage des surfaces :

Théoréme 4.5. Soit (M,&) une variété de contact de dimension 3, F C (M,¢)
une surface convere close, U = F x R un voisinage homogene de F et T la
maulti-courbe qui scinde EF .
a) La restriction de £ a U est tendue si et seulement si l'une des conditions
sutvantes est remplie:

o F #£8?% et aucune composante de F\ T n’est un disque;

o F~8? et est conneze mais pas vide.
b) On suppose que & est tendue. Une surface convere F' C (M,£) posséde un
voisinage homogeéne isomorphe a (U,&) si et seulement s’il existe un difféomor-
phisme de F dans F' qui envoie I’ sur une multi-courbe qui scinde le feuilletage
caractéristique EF’ .

La partie a) de ce théoréme est un corollaire immédiat de la proposition 4.1.
En effet, la restrictionde £ & U = F xR est tendue si et seulement si la structure
de contact € induite par £ sur F x R/nZ est tendue pour tout entier n > 0.

4 Une autre démonstration de ce fait s’ensuit de la proposition 4.1 et de la partie b) du
théoreme 4.4.
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En outre, la multi-courbe Iy (cf. définition 2.6) qui scinde le feuilletage F n’est

autre que I'(¢) . La partie b) sera démontrée dans la section D.

C. Existence d’un cloisonnement

On démontre ici la partie a) du théoreme 4.4. La surface S est donc de car-
actéristique d’Euler négative ou nulle et les structures de contact qu’on considere
sont orientables.

Lemme 4.6. Soit & une structure de contact tendue sur V et R CS une surface
compacte, connexe et & bord non vide. Si Uenroulement e(§) de & est positif ou
nul, & est isotope a une structure qui, au-dessus de R, est cloisonnée par un
systéme d’arcs.

Démonstration. On adapte la démonstration du lemme 2.8. Puisque I'enroulement
e(€) est positif ou nul, il existe dans V une courbe legendrienne isotope & la fibre
et d’enroulement nul (proposition 2.4). On regarde alors R comme un voisinage
régulier d’un bouquet de cercles K de sommet ¢. Quitte & faire une premiere
isotopie, on peut trouver des coordonnées (x,y,t) € D? x S, au-dessus d’un
voisinage compact () de g, dans lesquelles 7 est la projection sur le disque, & a
pour équation dy +zdt =0 et ¢ = (0,0). Sur N =7 1(Q), la structure ¢ est
cloisonnée par I'arc J = {z =0} .

On modifie maintenant K, par des mouvements de Whitehead & support
dans @, en un graphe K’ constitué de cercles lisses K/, 1 < ¢ < k, et d’un
arbre K inclus dans @. On met en outre tous les sommets de K’ sur I'arc

Figure 2. Modification dans @ du bouquet K en un graphe K’ constitué de cercles lisses et
d’un petit arbre.

J C Q et onrend les arétes transversales d'une part & J, d’autre part au vecteur
Jy en tout point d’intersection avec J. On déforme ensuite &, par une petite
isotopie relative & N, pour rendre convexe la surface 7~ (K'\ Int Q) , qui est une
union d’anneaux. Chaque tore F; = 77 1(K}), 1 <4 < k, est ainsi convexe et la
multi-courbe qui scinde son feuilletage caractéristique &F; est verticale. Elle ne
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peut en effet intersecter les fibres au-dessus de K/ NJ qui sont des feuilles fermées
de &F; . On considere alors sur F; un feuilletage singulier o; ayant les propriétés
suivantes :

e 0, est scindé par la méme multi-courbe que &F; ;

e 0o, coincide avec ¢F; dans F;Nna—1(Q) ;

e o, est non singulier et est transversal aux fibres en dehors de ses feuilles

fermées, lesquelles sont des fibres.
Le lemme 2.7 fournit, pour 1 <7 < k, un plongement ¢; de F; dans V —isotope
a l'inclusion — dont I'image a pour feuilletage caractéristique (¢;)«0; et a méme
intersection que F; avec le compact

Pi=nY(JUK"YU@F)U---Ud;_1(F;_1)UF; U UFy.

N

Si ¢ est un difféfomorphisme de V isotope a l'identité qui prolonge les divers
plongements ¢; , la structure de contact & = ¢*¢ trace sur chaque tore F; le
feuilletage o; .

Pour compléter la preuve, on parameétre un voisinage tubulaire de K. par
K/ x[-1,1],0u K} = K/ x {0} . Les tores F; ; = n (K] x {s}) ont, pour s petit,
un feuilletage ¢'F; s conjugué & ¢'F; car ce feuilletage est topologiquement stable.
On peut donc redresser ¢’ , par une petite isotopie stationnaire sur |JF,Ur"1(Q),
en une structure £’ pour laquelle £”F; ; est transversal aux fibres en dehors de ses
feuilles fermées, lesquelles sont des fibres. Les projections sur S des feuilles fermées
de tous les feuilletages ¢’F; 5 , avec s petit, forment alors un systéme d’arcs qui,
avec J , cloisonne &’ sur un voisinage de K’. Comme R se rétracte par isotopie
sur un voisinage arbitrairement petit de K’ le lemme est démontré. O

Désormais, £ désigne une structure de contact universellement tendue sur V.
On note A un anneau non séparant dans S et on pose R = S\ Int A. Compte
tenu du lemme ci-dessus, on suppose que £ est cloisonnée, au-dessus de R, par
un systéme d’arcs Tg € R. On paramatre A par S' x [0,1] et W = 7 1(A)
par T? x [0,1] de telle sorte que la fibration 7 |w soit la projection. Pour tout
a € [0,1], on pose encore T, = T? x {a}. L’argument utilisé au lemme 2.12
montre ici que la restriction de & a W est universellement tendue. D’apres
les propositions 3.15, 3.22 et 3.29 de [Gi4], la structure £|w est alors isotope,
relativement au bord de W, & une structure de contact n pour laquelle il existe
dans A ~ S' x [0,1] une multi-courbe Ty ayant les propriétés suivantes :

e si T, N W’I(FA) #+ &, cette intersection est I'union des feuilles fermées et

des singularités de 7T, (ces singularités formant donc des courbes);

o si T,N7 1 Ty) = @, le feuilletage nT, est une suspension dont aucune

feuille fermée n’est isotope & la fibre.

A partir de 13, on déforme facilement 7, par une isotopie relative & dWuUr—1(I4) ,
en une structure de contact 7’ cloisonnée par I's . En recollant 7’ avec la re-
striction de ¢ & 7~ !(R), on obtient une structure de contact &’ cloisonnée par
I'=TgrUT4 . Il reste & montrer que les courbes de I' sont toutes essentielles, fait
qui résulte de la proposition 4.1 et du lemme suivant :
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Lemme 4.7. Deux structures de contact cloisonnées par une méme multi-courbe
non vide sont isotopes.

Démonstration. Soit & et & les structures de contact, I' la multi-courbe qui les
cloisonne et u: S — R une fonction dont le niveau {u = 0} est régulier et égal
a I'. D’apres [Lu] (voir aussi [Gil]), il existe sur S une 1-forme § pour laquelle
la 2-forme udB+ B A du est une forme d’aire sur S.

On munit maintenant V d’une action libre du cercle définissant la fibration et
d’une forme de connexion 7. Comme chacune des structures &, 7 € {0,1}, est
cloisonnée par I', elle admet une équation du type G; +7n*u7m =0 ou [3; est une
1-forme sur V nulle sur les vecteurs tangents aux fibres. Un calcul direct montre
alors que, si s est un réel positif pris assez grand, les équations de Pfaff

(1—-8)B; +tsm*B+7"uT =0, 1€ {0,1},

définissent des structures de contact pour tout ¢ € [0,1]. Le théoréme de Gray
assure des lors que & et & sont isotopes. O

D. Inégalité de Bennequin semi-locale

On démontre ici la partie b) du théoreme 4.5. S’il existe un difféomorphisme de
F dans F’ envoyant I' sur une multi-courbe qui scinde £F’, les résultats de [Lu]
assurent que tout voisinage homogene de F/ est isomorphe & (U, £). Pour établir
la réciproque, on utilise la notion d’intersection géométrique.

Définition 4.8. Sur une surface close, on considére une courbe fermée simple C
et une multi-courbe I'. L’intersection géométrique i(I',C) est le nombre minimal
de points d’intersection entre I' et une courbe quelconque isotope a C.

Un des intéréts de cette notion réside dans la proposition suivante, qui est a la
base des travaux de W. Thurston sur les surfaces [Th3] (voir aussi [FLP, exposé 4

p. 59]) :

Proposition 4.9. Soit Ty et Iy deur multi-courbes essentielles sur une surface
close. Si i(Iy,C) = i(I',C) pour toute courbe fermée simple C, alors Ty et T
sont isotopes.

D’apres un théoreme de J. Stallings, tout difftfomorphisme de F x R dans
F’ x R est isotope & un difféfomorphisme produit. La partie b) du théoréme 4.5
découle alors directement de la proposition ci-dessus et de I'inégalité de Bennequin
semi-locale que voici :

Proposition 4.10. Soit & une structure de contact R -invariante et tendue sur
le produit U =F xR, ou F est une surface close orientée de genre non nul. Soit
C une courbe fermée simple sur F = Fx {0} et I' une multi-courbe qui scinde EF .
Pour toute isotopie ¢, de U qui améne C sur une courbe legendrienne ¢1(C),
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le nombre de tours que fait & par rapport au plan tangent a ¢1(F) le long de
$1(C) wvérifie linégalité

deg(¢, ¢1(F); 1(C)) < —3i(T,C).

De plus, il existe une isotopie ¢: qui réalise 'égalité.

Démonstration. Quitte a déplacer C sur F par une isotopie, on suppose que
C rencontre I' en i(I',C) points et transversalement. On prend en outre &
orientable — ce qui revient a passer éventuellement a un revétement double — et,
comme la classe de T' dans H;(F;Z/2Z) est alors nulle, on pose 2n = i(I',C).
On observe tout d’abord que I’égalité est atteinte. En effet, on construit facile-
ment un feuilletage o de F scindé par I' et dans lequel C est une union de
singularités et de feuilles. De plus, le lemme 2.7 fournit une isotopie ¢; de plonge-
ments de F dans U qui ameéne F sur une surface ¢1(F) ayant pour feuilletage
caractéristique (¢1)«0 . Lacourbe ¢1(C) est alors une courbe legendrienne le long
de laquelle 5 fait —2 5 Card(I'N C) tours par rapport au plan tangent & ¢4 (F).
Soit p: F—Fle revetement associé & C et C un relevement compact de C
dans F. On note £ lerappelde &€ sur U =F xR et ¢, t € [0,1], le relevement
de lisotopie ¢; & U . Le nombre de tours que fait & par rapport & ¢1(F) le long
de ¢1(C) est clairement égal au nombre de tours que fait € par rapport A (;1()
le long de ¢1(C). En outre, les courbes ¢;(C) restent dans un compact de U .
On parametre alors F par 81 xR de telle sorte que C soit la courbe S' x {0} et
on se donne un réel a > 0 assez grand pour que toutes les courbes ¢t( ) soient
contenues dans le domaine U, = F, x R, oit F, = 8! x [—a,a]. On établit ci-
dessous I'inégalité voulue en plusieurs etapes. On plonge d’abord (Ua,f) dans un
modele abstrait, puis on réalise ce modele dans la sphere S% munie de sa structure
de contact ordinaire et on conclut a I'aide de I'inégalité de Bennequin classique.

Assertion. Aucune courbe de T = p’l(F) ne coupe C en plus d’un point.

Preuve. On suppose qu’une courbe de r coupe C en deux points et on note J un
arc de cette courbe joignant deux points d’intersection consécutifs. La composante
connexe bornée de F\ (CUJ) est un disque D et D\ p1(C) a au moins
une composante connexe Dg dont le bord est 'union de deux arcs, I'un contenu
dans J et Pautre dans p~!(C). Larestriction de p & Dg est alors injective et, en
déplacant C par isotopie le long de p(Dy), on élimine deux points d’intersection
avec I'. Ceci est absurde puisque Card(I'nC)=i(I",C). O

L’assertion ci-dessus assure que les composantes de r qui vont d’un bout a
lautre de F sont exactement celles qui rencontrent C et leur nombre est donc
égal & 2n = i(I',C). Selon que n est nul ou non, il existe alors un plongement

incompressible v, , de F, dans T? ou dans S! x R tel que

Yan(TNF) = thon(Fa) NTa,
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oll

To = {(,y) e R?/Z* |y = £1/4} et
{(xay)ER/ZXRth:O}, pour n > 0.

Par suite, si » = 0 (resp. si n > 0), le lemme 4.2 permet, comme dans la
démonstration de la proposition 4.1, de plonger incompressiblement (Ua, é) dans
(T? x R, &) (resp. dans (S' x R?,&,)) olt &, est n’importe quelle structure
de contact R-invariante qui imprime sur T? x {0} (resp. sur S' x R x {0} ) un
feuilletage caractéristique scindé par I, .

Soit maintenant ¢ la structure de contact ordinaire sur la sphere 82 c C?
et soit Lg la courbe legendrienne (non nouée) S* NR? — dont l'invariant de
Thurston-Bennequin tb(Lg) vaut —1.

Le théoreme de Darboux permet de paramétrer un voisinage W de Ly par
S! x R? de telle sorte que Lo soit la courbe S! x {0} et que ¢ ait pour équation
dz+pdf =0, (8,p,2) € S' x R?. Le tore

T={(0,p,2) € S' xR? | p| + |2 = 1}

est convexe car son feuilletage caractéristique (T est scindé par les deux cercles
{p = %1} . Parsuite, T possede un voisinage homogene isomorphe & (T? x R, &) .

Si i(I',C) = 0, on peut donc plonger ((7(“5) dans (8%,¢) en envoyant ¢(C)
sur une courbe legendrienne non nouée L dont I'invariant de Thurston-Bennequin
vaut

tb(L) = deg(€, ¢1(F); ¢1(C)) — 1.

L’inégalité de Bennequin assure alors que le degré est négatif ou nul.
Pour finir, on considére sur S! x R? la structure de contact &, d’équation

cos(2nmz) dy — sin(2nrx) dt = 0.
Un calcul direct montre que le plongement de 8! x R? dans S? donné par

# = 2mx,
(z,y,t) — ¢ 2 = cos(2nmz) y — sin(2nwx) €,
p/n = sin(2nmz)y + cos(2nmzx)t
envoie &, sur ¢. Si i(I,C) = 2n > 0, on peut donc plonger, par composition,

(Uy,€) dans (8%,¢) en envoyant ¢;(C) sur une courbe legendrienne non nouée L
dont I'invariant de Thurston-Bennequin vaut

tb(L) = deg (€, 1(F); ¢1(C)) + n—1.

L’inégalité de Bennequin assure alors que le degré vaut au plus —n. O
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E. Unicité du cloisonnement

On démontre ici la partie b) du théoréme 4.4. Compte tenu du lemme 4.7, il suffit
de prouver que, si les structures de contact & et &; sont isotopes, les multi-
courbes qui les cloisonnent le sont aussi. L’argument est une variante de celui qui
conduit a l'inégalité de Bennequin semi-locale. Il repose sur une interprétation
appropriée de l'intersection géométrique. Par commodité, on appelle dans la suite
indice d'un tore convexe dans une variété de contact tendue le nombre de com-
posantes connexes de toute multi-courbe qui scinde son feuilletage caractéristique.

Lemme 4.11. Soit £ une structure de contact sur V cloisonnée par une multi-
courbe essentielle T' et soit C une courbe fermée simple de S dont lintersection
géométrique avec I' nest pas nulle. L’indice minimal des tores converes isotopes
a Q) est égal o i(I,C) et leur feuilletage caractéristique est scindé par des
courbes isotopes auz fibres.

Démonstration. On suppose que C intersecte I' en i(I',C) points et on note
Fo le tore 77 1(C). Au-dessus de C\T (resp. de ' C), le feuilletage &Fg
est transversal (resp. tangent) aux fibres. En particulier, chaque fibre 7—1(q),
q € 'NC, est une feuille fermée ou une courbe de singularités de Fy. Comme
i(I',C) £ 0, le tore Fy est convexe et son indice est égal & i(I",C) .

Dans la su1te on désigne par p: S — S le revétement associé A la courbe C
par 7: V= PV — S la fibration induite et par 5 le rappel de & sur V. On
pose I'=p (I et Fg =7 1(C) olt C est un relevement compact de C dans
S. En outre, on parametre S par R x 8! de telle sorte que C soit {0} x St et
A% par R x T2 de telle sorte que 7 soit la projection.

Soit maintenant F un tore convexe isotope & 7 1(C) et F le relevement
compact de F dans V obtenu en relevant depuis Fo une isotopie entre Fg et F .
Soit encore a et £ des réels positifs satisfaisant aux conditions suivantes :

e les cercles {s} x S!, s & [—¢,¢], sont tous transversaux & I' — et coupent

donc I' en i(I',C) points;

e les cercles {£a}xS' sont transversauxa I' et le domaine [—a,a]xT? C V

contient F .

Comme dans la démonstration de la proposition 4.10, les courbes de r _qui vont
d’un bord & I'autre de I’anneau [—a,a] x 8! sont celles qui intersectent C et sont
en nombre i(I",C). Par suite, il existe un plongement

¢: [—a,a] x 81 — [—¢,¢] x 8!

qui est I'identité sur {0} x S et vérifie

1/}<f N ([~a,a] x Sl)) — fﬁw([—ma] x 8.

Le lemme 4.2 fournit alors, comme dans la proposition 4.1, un plongement de
contact

¢: ([—a,a] x T2, €) — ([—¢,¢] x T%,€)
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qui induit I'identité sur Fo= {0} x T?. En outre, I'inégalité de Bennequin semi-
locale (proposition 4.10) montre que le feuilletage caractéristique d’un tore convexe
isotope & {0} x T2 dans ([—&,2] x T2,€) est scindé par au moins i(I',C) courbes
qui sont toutes isotopes aux fibres. En particulier, I'indice de F' — qui est égal a

celui de F donc & celui de ¢(F) — vaut au moins i(I',C). O

On complete a présent la démonstration du théoreme 4.4-b. Soit C une courbe
fermée simple sur S. Compte tenu de la proposition 4.9 et du lemme 4.11, il
suffit de montrer que, si i(Ip, C) est nul, i(I',C) Dest aussi. On suppose done
que i(I,C) vaut 0 et on considere un tore Fo = 7 1(Co) o Co est une
courbe isotope a C et disjointe de Iy. Par construction, le feuilletage &yFq
est transversal aux fibres. Tout tore convexe F qui s’obtient par une déformation
assez petite de Fy a donc un feuilletage caractéristique &oF scindé par des courbes
non isotopes aux fibres. Il résulte alors du lemme 4.11 que, si i(I'},C) n’est pas
nul, les structures de contact & et £ ne sont pas isotopes. O

F. Structures virtuellement vrillées

On termine cet exposé par un résultat de finitude pour les structures de contact
virtuellement vrillées.

Théoréme 4.12. Soit V wune variété connere et orientée, fibrée en cercles au-
dessus d’une surface close S. Les structures de contact orientables et virtuellement
vrillées sur V. forment un nombre fini de classes d’isotopie borné par

sup{0,—X(S) = X(V,S) — 1} si X(V,S) <0,
1 +sup{0, —Xx(S) = x(V,S) — 1} si x(V,S) > 0.

En fait, avec les formes normales dégagées dans [Gi4], on obtient une description
précise de tous les exemples potentiels de (classes d’isotopie de) structures de con-
tact virtuellement vrillées sur V. Il est par ailleurs probable que toutes les struc-
tures de contact ainsi décrites sont effectivement tendues — méme holomorphique-
ment remplissables — et que les techniques de chirurgie développées par R. Gompf
dans [Go] permettraient de le prouver. Du reste, la proposition 2.13 montre,
par des astuces de revétements, ’existence de structures de contact virtuellement
vrillées sur les variétés fibrées en cercles au-dessus du tore et dont le nombre d’Euler
est inférieur ou égal a —2.

Lemme 4.13. Si V porte une structure de contact virtuellement vrillée et d’enrou-
lement positif ou nul, celle-ci est isotope a une structure cloisonnée par une courbe
conneze contractile et X (V,S) est strictement positif.

Démonstration. Soit A C S un anneau incompressible, R la surface S\ Int A et

W le tore épais 7~ 1(A). D’aprés le lemme 4.6, toute structure de contact tendue
d’enroulement positif ou nul est isotope a une structure & qui, au-dessus de R,
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est cloisonnée par un systéme d’arcs Tk . La restriction de &€ & W ~ T? x [0,1]
est ainsi une structure de contact tendue qui trace sur chaque composante de OW
un feuilletage ayant des feuilles fermées ou des cercles de singularités paralleles
aux fibres. Vu ce comportement au bord, le théoreme 1.5 de [Gid] assure que & |w
est universellement tendue et est isotope, relativement & OW , & une structure
de contact 7 cloisonnée par un systeme d’arcs I'a . Ainsi £ est isotope & une
structure de contact cloisonnée par la multi-courbe I' = Tg U T}, .

Pour conclure, on se donne sur V une action libre du cercle dont les orbites
sont les fibres de 7. D’apres le lemme 4.7, £ est isotope a < la » structure invari-
ante cloisonnée par I'. Comme £ est tendue mais pas universellement, la proposi-
tion 4.1 montre que I' est une courbe connexe contractile et que X (V,S)>0. O

Démonstration du théoréme 4.12. D’apres les lemmes 4.13, 4.7 et la proposition 4.1,
les structures de contact virtuellement vrillées et d’enroulement positif ou nul
forment au plus une classe d’isotopie, et aucune si X (V,S) < 0. On étudie
donc désormais les structures de contact virtuellement vrillées et d’enroulement
strictement négatif.

Soit D C S un disque, R la surface S\ IntD et W le tore plein 7 1(D).

Comme d’habitude, on paramétre W par D? x S! de telle sorte que 7 |w soit la
projection sur D? . D’aprés le lemme 2.8, toute structure de contact d’enroulement
—n, n > 0, est isotope & une structure & pour laquelle les fibres au-dessus
de R sont legendriennes et d’enroulement —n. Dans ces conditions, OW est
un tore convexe d’indice 2 (lemme 2.11) et les singularités de son feuilletage
caractéristique £ OW forment des courbes de classe (n,nX (V,S) + X (S) — 1)
dans H;(0W;Z) =2 Z? (corollaire 3.5).
Assertion. Ou bien nX (V,S) = —X(S), ou bien n=1 et X(V,S) < —X(S).
Preuve. Pour tout a € |0,1], on note T, le tore aS' x S'. D’apres la propo-
sition 3.22 de [Gi4], la restriction de & & W est isotope, relativement au bord,
& une structure de contact 7 transversale & {0} x S!' et dont les feuilletages
caractéristiques 1T, ont les propriétés suivantes :

e 7T, est une suspension sauf pour un nombre fini de valeurs ay,...,a; €
10, 1] ;

e 1T, , 1<4i<k,n’aaucune orbite fermée et ses singularités forment deux
cercles.

Chaque feuilletage 7T, détermine alors une droite 6, dans R? = H(T,,R)
qui, pour a ¢ {a;}, porte les cycles asymptotiques et, pour a € {a;}, contient
la classe des cercles de singularités. Cette droite varie continliment avec a et
converge vers 6o = R X {0} quand a tend vers 0. Les droites 4,, a € [0,1],
décrivent donc un connexe A de P'(R), connexe qui ne contient pas la droite
{0} x R car I’enroulement de 7 est strictement négatif. Ainsi, A est I'intervalle
[61,00] pour l'orientation naturelle de P*(R) et nX (V,S)+ X (S) < 0 puisque
01 est dirigée par (n,nX(V,S) + X (S) —1). D’autre part, pour toute droite
rationnelle d € [d1,dp[, on peut trouver un a € ]0,1] tel que J, soit égale & o et
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que T, soit un tore convexe d’indice 2. En fait, pour cela, il faut éventuellement
perturber 7 par une petite isotopie qui ne détruit pas les propriétés utiles.

A partir de ces observations, la preuve est identique & celle de assertion simi-
laire dans la démonstration de la proposition 3.7. O

Pour terminer la démonstration, on utilise la classification des structures de
contact sur le tore plein établie dans [Gid]. Si nX (V,S) = —X(S), la droite
01 est dirigée par le vecteur (n,—1). Avec cette condition au bord, le théoréme
1.6 de [Gi4] affirme que la restriction de £ & W est universellement tendue.
On se trouve du coup dans la situation de la section 3.C : £ est isotope & une
structure de contact tangente aux fibres et n’est pas virtuellement vrillée. Si
n=1etsi X(V,S) < —=X(S), la droite &; est dirigée par le vecteur (1,—m),
ou m=1-— X(V,S)— X(S) > 1. Le théoreme 1.6 de [Gi4] dit alors qu’il y a
sur W, a isotopie relative au bord pres, m — 1 structures de contact tendues
qui coincident avec ¢ sur OW , dont une (seule) est universellement tendue. En
outre, l'existence sur V d’une structure de contact universellement tendue et
d’enroulement —1 assure que, si € |w est universellement tendue, ¢ Dest aussi.
On obtient ainsi les bornes annoncées. O

Remarque. La démonstration ci-dessus fait apparaitre que —1 est la seule valeur
strictement négative possible pour I’enroulement d’une structure de contact virtu-
ellement vrillée.

Par ailleurs, les résultats de cette partie permettent de compléter quelque peu
I’énoncé du théoreme 2.3 : si une structure de contact £ sur V est d’enroulement
positif ou nul, il existe non seulement une courbe legendrienne isotope & la fibre et
d’enroulement nul mais tout un tore transversal a £ et dont les caractéristiques
sont isotopes aux fibres. Ce tore est la version de contact de la feuille compacte
trouvée par W. Thurston [Th2|. Lorsque £ est tendue, son existence résulte soit
du théoreme 4.4, soit du lemme 4.13. Lorsque & est vrillée, un théoréeme de
Y. Eliashberg [El1] assure qu’une modification de Lutz le long d’une fibre produit
une structure de contact isotope a £. Or une telle modification fait clairement
apparaitre le tore cherché (voir par exemple [Gi2]).
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