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2001 Birkhäuser Verlag, Basel

Commentarii Mathematici Helvetici

Structures de contact sur les varietes brees en cercles au-dessus

d'une surface

Emmanuel Giroux

Resume. Soit V une variete bree en cercles au-dessus d'une surface S de genre g > 0
Cet article fournit, pour les structures de contact sur V les analogues de resultats bien connus
pour les feuilletages dûs a J. Milnor, J. Wood, W. Thurston, S. Matsumoto et E. Ghys. Dans
la partie 1, on demontre que V porte une structure de contact transversale aux bres si et
seulement si le nombre d'Euler de la bration vaut au plus 2g - 2 Dans la partie 2, on etablit
le fait suivant pour toute structure de contact sur V : ou bien est isotope a une structure
transversale aux bres, ou bien il existe, dans un revêtement ni de V une courbe legendrienne
isotope aux bres le long de laquelle de nit la même trivialisation normale que la projection
sur S Dans la partie 3, on classi e les structures de contact transversales aux bres a isotopie
et conjugaison pres. Dans la partie 4, on etudie les structures de contact tendues quelconques sur
V ; on montre que les structures virtuellement vrillees forment un nombre ni de classes d'isotopie
tandis que les classes d'isotopie des structures universellement tendues sont en bijection avec les
classes d'isotopie des multi-courbes essentielles sur S

Mathematics Subject Classi cation 2000). 57M50, 57R17, 53D35, 53D10.

Mots-cles. Fibration en cercles, nombre d'Euler, structure de contact, tendue, vrillee.

Dans cet article, on essaie d'analyser le comportement global des structures de
contact sur les varietes brees en cercles au-dessus d'une surface close. Plusieurs
etudes anterieures motivent et guident ce travail. Tout d'abord, sur les bres

principaux en cercles, les structures de contact invariantes admettent, a isotopie
equivariante pres, une classi cation remarquable [Lu]. D'autre part, de nom-breux

resultats sur les representations du groupe fondamental d'une surface dans
PSL2(R) et les homeomorphismes du cercle [EHN, Gh1, Gh2, Ma, Mi, Wo] con-tribuent

a mettre a jour la structure topologique et dynamique des feuilletages de
codimension 1 sur les varietes de dimension 3 brees en cercles voir par exemple
[Le, Th1, Th2]). Or, en dimension 3 les structures de contact sont, avec les bres

tangents des feuilletages de codimension 1 les seuls champs de plans localement
homogenes et les developpements paralleles des deux theories ont fait appara t̂re
de nombreux traits communs.

Soit V une variete connexe et orientee, bree en cercles au-dessus d'une sur-face

S close, orientable et de caracteristique d'Euler S) negative ou nulle.
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Avant de presenter rapidement les principaux resultats de ce travail, on rappelle
que V en tant que variete lisse orientee, est identi ee par le nombre d'Euler

V; S) de la bration : V S cf. section 1.B). On rappelle aussi qu'une
structure de contact directe) sur V est un champ de plans de ni localement
comme le noyau d'une 1 -forme dont le produit exterieur avec d est une
forme volume positive pour l'orientation choisie. Les plus grosses sous-varietes

integrales d'une structure de contact sont ainsi des courbes et portent le nom de
courbes legendriennes.

Dans la partie 1, on demontre que V admet une connexion strictement
convexe c'est-a-dire une structure de contact directe) transversale aux bres,
si et seulement si le nombre d'Euler V; S) est inferieur ou egal a - S)
theoreme 1.1). Cette inegalite est un reliquat de l'inegalite de Milnor-Wood [Mi,

Wo], laquelle peut en retour être interpretee comme suit : il existe sur V une
connexion plate { i.e. un feuilletage transversal aux bres { si et seulement si co-habitent

sur V des structures de contact directes et indirectes transversales aux
bres.

Dans la partie 2, on donne une caracterisation geometrique des structures de
contact qui sont isotopes a des connexions. Precisement, on prouve que toute
structure de contact orientable sur V satisfait l'alternative exclusive suivante
theoreme 2.3) : ou bien est isotope a une connexion, ou bien il existe, dans

un revêtement ni de V; une courbe legendrienne isotope a la bre et le long
de laquelle ne tourne pas, i.e. determine la même trivialisation normale que
la bration Ce resultat est la version de contact d'un theoreme demontre par
W. Thurston dans [Th2] voir aussi [Le]), selon lequel un feuilletage sur V est
isotope a une connexion plate) si et seulement si la bre n'est pas isotope a une
courbe tracee sur une feuille.

Dans la partie 3, on classi e les structures de contact transversales aux bres
a isotopie et conjugaison pres theoreme 3.1). On montre en particulier que deux
connexions strictement convexes peuvent ne pas être isotopes. La formule suivante
resume bien la situation : il y a deux sortes de structures de contact transversales
aux bres, celles qui sont tangentes aux bres et les autres. Ces dernieres existent
des que V; S) < - S) et appartiennent a une même classe d'isotopie. Les
premieres, en revanche, n'existent que si n V; S) - S) pour un certain
entier n 1 et leur classi cation se ramene a celle des revêtements bres a

n feuillets de V au-dessus de la variete S(TS) des droites orientees tangentes
a S ; on montre ainsi que, pour S) < 0 elles forment autant de classes de
conjugaison qu'il y a de diviseurs de n

Dans la partie 4, on tente de classer les structures de contact qui ne sont
pas isotopes a des connexions. Comme le sort des structures de contact vrillees

est scelle par un theoreme de Y. Eliashberg [El1], on s'interesse aux structures
de contact tendues. Celles-ci presentent des comportements tres di erents selon
qu'elles sont virtuellement vrillees ou universellement tendues cf. de nition 2.1).
Les structures de contact virtuellement vrillees sur V constituent un nombre ni
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de classes d'isotopie theoreme 4.12) borne par 1+supf0;- S)- V;S)-1g
En revanche, les structures de contact universellement tendues et non isotopes
a des connexions forment une in nite de classes d'isotopie qui sont en bijection
naturelle avec les classes d'isotopie de systemes non vides) de courbes essentielles
sur S theoreme 4.4). En fait, ces structures sont toutes isotopes a des structures
de contact invariantes par une quelconque action libre du cercle qui de nit la
bration) et leur classi cation a isotopie pres cö ncide avec la classi cation des

structures invariantes a isotopie equivariante pres.

En parallele avec ce dernier resultat, on etablit une inegalite de Bennequin
semi-locale proposition 4.10) qui conduit a la classi cation des structures de con-tact

tendues et R-invariantes sur le produit par R de toute surface F close et
orientable theoreme 4.5) : les classes d'isotopie de ces structures sont a nouveau
en bijection avec les classes d'isotopie de systemes de courbes essentielles sur F
L'interêt de ce resultat tient au fait qu'une surface F plongee dans une variete de
contact de dimension 3 possede generiquement un voisinage tubulaire trivialise

U F R dans lequel la structure de contact est R-invariante [Gi1].

Je tiens a remercier ici Etienne Ghys, Jean-Pierre Otal et Bruno Sevennec avec
qui j'ai eu de nombreuses discussions sur certains aspects de ce travail. D'autre
part, Francois Lalonde et Dietmar Salamon m'ont o ert l'occasion de presenter
les resultats discutes dans ce texte a Montreal en juin 1995 et a Warwick en
mars 1998 ; je les en remercie vivement. En n, alors que cet article etait deja
soumis, Ko Honda a annonce des resultats tres voisins.

1. Existence de structures de contact transversales

A. Comment contacter Milnor-Wood

Soit V une variete orientee, bree en cercles au-dessus d'une surface close S

Le theoreme ci-dessous relate ce qui reste de l'inegalite de Milnor-Wood [Mi, Wo]
quand on cherche non pas des feuilletages transversaux aux bres { connexions
plates { mais des structures de contact directes) transversales aux bres { con-nexions

strictement convexes

Theoreme 1.1. Soit V une variete connexe orientee, bree en cercles au-dessus

d'une surface close S. Pour que V porte une structure de contact transversale
aux bres, il faut et il su t que le nombre d'Euler V; S) de la bration V S

veri e l'inegalite

V;S) - S) si S) 0,

V;S) < 0 si S) > 0.

Remarques.
a) La de nition du nombre d'Euler V; S) et en particulier de son signe en
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fonction de l'orientation de V est rappelee dans la section B. Pour une variete V
bree en cercles orientes au-dessus d'une surface S orientee, V;S) cö ncide

avec le nombre de Chern du bre en droites complexes associe et l'orientation de V
choisie est la juxtaposition des orientations de la base et de la bre. Ainsi, la variete
des droites orientees tangentes a S a pour nombre d'Euler - S) lorsqu'elle est
munie de l'orientation induite par sa structure de contact canonique.
b) Le theoreme 1.1 a ete independamment obtenu du moins pour une surface S

orientable) par A. Sato et T. Tsuboi [ST]. La preuve qu'on donne ci-apres consiste
simplement a adapter les arguments de J. Wood [Wo]. Par ailleurs, vu comme
espace total d'un bre principal en cercles, V admet des connexions invariantes qui
sont des structures de contact directes si et seulement si V; S) est strictement
negatif [Lu].

B. Nombre d'Euler et connexions

On rappelle d'abord ce qu'est le nombre d'Euler V; S) de la bration : V!S On trace sur S un bouquet K de 2- S) cercles ayant pour complementaire
un disque et on note D resp. W) le disque polygonal resp. le tore plein polyedral
oriente) qu'on obtient en decoupant S resp. V le long de K resp. -1(K)
Au-dessus de K, la bration admet des sections et chacune d'elles determine,
sur le bord oriente de W, une courbe C dont la classe d'isotopie est invariable.
De même, le bord des disques meridiens de W est une courbe B bien de nie a
isotopie pres. Le nombre d'Euler V; S) est l'intersection homologique B C
de B et C ces deux courbes etant orientees de maniere a couper les bres dans
le même sens.

Si S est une surface orientee, de genre g et si V est munie d'une connexion
champ de plans transversal aux bres), le nombre d'Euler V; S) s'interprete

comme suit.
L'holonomie de associe a chaque cercle oriente Ki du bouquet K 1

i 2g un di eomorphisme i de la bre S1 R=Z qui surplombe le sommet
de K : c'est l'application de premier retour qu'on obtient en suivant les courbes
integrales de au-dessus de Ki De plus, chaque classe d'homotopie de sections
de j Ki determine un relevement ~i de i a R : elle trivialise en e et j Ki
si bien que le segment de courbe integrale qui joint 0 2 S1 R=Z a i(0) se

projette en un chemin sur la bre S1 ; on prend alors pour ~i(0) l'extremite
dans R du releve partant de 0

De même, l'holonomie de la connexion induite par sur W, encore notee

associe au bord oriente de D un di eomorphisme du cercle qui, a conjugaison
pres, s'ecrit comme un mot

w 1; -1
1 ; : : : ; 2g; -1

2g

dans lequel chaque i tout comme son inverse, intervient une fois et une seule { le
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decoupage de S dedouble chaque cercle oriente Ki en deux arêtes de @D ayant
des orientations incompatibles. Les courbes B et C respectivement fournies par
les sections de au-dessus de D et de K, determinent alors deux relevements
distincts ~

D et ~
K de a R. Compte tenu de ce qui precede, ceux-ci veri ent

les identites suivantes :
~
K w ~1; ~-1

1 ; : : : ; ~2g; ~-1
2g ou les ~

i sont des relevements quelconques
des i ;

~D(t)- ~K(t) V; S) pour tout reel t

C. Inegalites cles

Proposition 1.2. Soit une connexion sur V et ~K ~
D les di eomorphismes

de R de nis plus haut.
a) Quelle que soit la connexion

-2g ~K(t)- t 2g pour tout reel t.

b) Si est une structure de contact directe,

~D(t)- t < 0 pour tout reel t.

Demonstration.
a) C'est l'inegalite de J. Wood [Wo]. Soit ~

H
l'espace des homeomorphismes de R

qui commutent avec la translation t 7! t + 1 L'application h: ~
H R de nie

par
h( ~ sup ~ t)- t; t 2 R

veri e

h( ~
1

~2) h( ~1) + h( ~2) h( ~
1

~2) + 1 pour tous ~1; ~
2 2 ~

H
:

On en deduit la majoration

h( ~K) 2gXi=

1

h(~
i + h(~-1

i 2g

et on obtient la minoration en observant que

inf ~ t)- t; t 2 R - sup ~-1(t)- t; t 2 R :

b) Il s'agit de feuilleter W D S1 par des disques meridiens dont le bord oriente
soit partout transversal a et pointe du même côte que les bres orientees. Par
approximation, on peut supposer que D est un carre [0; 1]2 On choisit une
coordonnee sur la bre orientee en 0; 0) et on l'etend a W en la decretant
constante sur chaque courbe integrale de qui revêt soit un segment vertical soit
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la base du carre. Dans les coordonnees x; y; 2 [0; 1]2 S1 la connexion a
pour equation

d - u(x; y; dx 0 ou u(x; 0; 0 pour tout x; 2 [0; 1] S1.

La condition qui exprime alors que est une structure de contact directe par
rapport a dx^dy^d s'ecrit @yu < 0 Les niveaux de sont ainsi des meridiens
dont le bord oriente a la transversalite souhaitee le long du côte y 1 { car
u(x;1; < 0 pour tout x; { et est tangent a ailleurs. On peut donc les
perturber comme voulu.

Pour une surface S orientable et une connexion qui est une structure de
contact directe, la proposition ci-dessus etablit l'inegalite

V; S) < 2g 2- S);

qui n'est le resultat desire que si S est la sphere. Si S est le plan projectif,
le passage au revêtement double permet aussi de conclure. Dans les autres cas,

l'inegalite du theoreme 1.1 s'obtient via l'astuce classique suivante. On prend un
revêtement a n feuillets de S par une surface connexe orientable Sn et on note
Vn Sn le rappel du bre V! S au-dessus de Sn Les relations

Sn) n S); Vn; Sn) n V; S) et Vn; Sn) < 2 - Sn)

donnent

V; S) <
2

n - S) :

Comme on peut choisir n arbitrairement grand, on obtient

V; S) - S) :

Remarque. Si la connexion est plate au sens ou elle s'integre en un feuilletage,
le di eomorphisme ~

D est l'identite et les arguments qui precedent demontrent
l'inegalite classique de Milnor-Wood, a savoir

V; S) sup 0;- S) :

Suite au travail de S. Altschuler [Al], W. Thurston a invente le terme de feuilletact
foliatact dans [Th4] mute en confoliation dans [ET]) pour designer un champ de

plans dont toute equation de Pfa est telle que la 3 -forme ^ d ne change
pas de signe. La preuve de la proposition 1.2-b montre que, si la connexion est
un feuilletact direct ^ d 0 le di eomorphisme ~

D veri e

~D(t)- t 0 pour tout reel t,

de sorte que le nombre d'Euler V; S) satisfait a l'inegalite

V; S) sup 0;- S) :
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D. Construction de structures transversales

Lemme 1.3. Soit V et V0 deux varietes connexes et orientees, brees en cercles
au-dessus d'une surface close S. Si V0; S) V; S) et si V porte une
structure de contact directe et transversale aux bres, alors V0 en admet une
aussi.

Demonstration. On suppose pour simpli er que la surface S et les bres sont
orientees. La de nition du nombre d'Euler donnee dans la section B montre que
V0 s'obtient a partir de V par la chirurgie suivante : on retire a V la preimage
W ' D2 S1 d'un disque de S et on recolle un autre tore plein W0 par un
di eomorphisme @W0 @W qui respecte les bres orientees et envoie le bord de
chaque disque meridien de W0 sur une courbe de type 1; V; S) - V0; S)
dans le produit @W=@D2 S1

Si V porte une structure de contact directe et transversale aux bres, la
proposition 1.2-b montre qu'on peut feuilleter W par des disques meridiens dont le
bord oriente soit transversal a et pointe du même côte que les bres orientees. Si

V0; S) V; S) un tel feuilletage par disques meridiens existe aussi sur W0

et il est alors facile de prolonger a W0 la structure j VnW pour obtenir sur V0

une structure de contact directe et transversale aux bres.

Pour chaque surface S il reste donc a construire une structure de contact
directe et transversale aux bres sur la variete orientee V dont le nombre d'Euler

V; S) est le plus grand autorise par l'inegalite du theoreme 1.1.
Pour la sphere S2 la structure de contact usuelle sur S3 est orthogonale

aux cercles de Hopf et fournit l'exemple voulu. Pour toutes les autres surfaces
y compris P2 la variete V est celle des droites orientees tangentes a S.

Elle porte une structure de contact canonique S qui induit l'orientation pour
laquelle V; S) - S) mais qui est tangente aux bres et non pas transver-sale.

En e et, si est une droite orientee tangente a S en un point q le plan
S(q; T(q; V est l'image inverse de par la projection. En choisissant dans
S(q; pour tout q; un vecteur non vertical dont la projection sur S donne

l'orientation de on fabrique sur V un champ de vecteurs legendrien non sin-gulier

et transversal aux bres. La condition de contact assure que, si on pousse S

par le flot de ce champ pendant un bref instant, on obtient une structure transver-sale

aux bres. Cet argument demontre plus generalement le fait suivant :

Proposition 1.4. Soit V une variete connexe et orientee, bree en cercles au-dessus

d'une surface orientable S Toute structure de contact tangente aux bres
et orientable le long des bres est deformable en une structure de contact transver-sale

aux bres par une isotopie arbitrairement petite.
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E. Autre construction par la geometrie hyperbolique

Pour clore cette partie, voici une autre construction adaptee de la theorie des
feuilletages. Soit S une surface close orientable, de genre g 1 et V une variete
connexe orientee bree en cercles au-dessus de S Si on prend sur S un bouquet
de cercles K

W
k
i=1 Ki de sommet q et si on se donne k di eomorphismes

i de la bre S1 -1(q) on peut fabriquer pres de -1(K) une structure de
contact transversale aux bres dont l'holonomie au-dessus de chaque cercle Ki
vaille i En fait, toute structure de contact transversale aux bres de nie sur un
petit voisinage de -1(q) admet un tel prolongement. Ainsi, vu la discussion des
sections B et C, construire sur V une structure de contact transversale aux bres
revient a trouver 2g di eomorphismes i du cercle dont les relevements ~

i a R
veri ent

g

i=1

[ ~
2i-1; ~2i] t)- t < - V; S) pour tout reel t.

L'argument ci-dessous, sou e par E. Ghys et tout empreint de [Th1] voir aussi
[EHN]), fournit 2g elements i de PSL2(R) dont les relevements ~i veri ent

g

i=1

[ ~
2i-1; ~2i] t)- t < S) pour tout reel t.

Soit P un polygone convexe a 4g côtes dans le plan hyperbolique H2. On
suppose que les sommets de P numerotes s1; : : : ; s4g dans le sens des aiguilles
d'une montre, veri ent

dist(s4i-3; s4i-2) dist(s4i-1; s4i)

dist(s4i-2; s4i-1) dist(s4i; s4i+1)
pour 1 i g et s4g+1 s1.

On colle alors isometriquement chaque arête orientee [s4i-3; s4i-2] resp.
[s4i-2; s4i-1] sur l'arête orientee [s4i; s4i-1] resp. [s4i+1; s4i] On obtient ainsi
une surface close orientable S de genre g munie d'une metrique hyperbolique
ayant une singularite conique en s, point image des sommets de P On pose
ensuite R S n fsg, on choisit dans R un point de reference r image d'un
point r 2 IntP situe tres pres de s1 et on note (~R;~r) le revêtement universel
de R; r) Ces donnees determinent une application developpante D: (~R; ~r)
H2; r et une representation d'holonomie h: 1(R) PSL2(R)

Soit C S le cercle trigonometrique de centre s passant par r et 2 1(S) sa

classe d'homotopie. Le point D( ~r) h( r est l'image de r par la rotation
hyperbolique de centre s1 et d'angle la somme des angles interieurs de P a savoir
4g - 2) - aire(P) d'apres la formule de Gauss-Bonnet. D'autre part, h( est

le produit de g commutateurs dans PSL2(R) Pour les identi er, on note que
l'image inverse de C dans P est formee de 4g arcs de cercles qui, en partant
de r sont centres successivement aux points s1; s4; s3; s2; s5; s8; s7; s6; : : : Soit
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alors 2i-1 et 2i, 1 i g, les elements de PSL2(R) caracterises par les
proprietes suivantes :

2i-1(s4i-1) s4i-2 2i(s4i-2) s4i+1

2i-1(s4i) s4i-3 2i(s4i-3) s4i:

Par construction,
Q

g
i=1[ 2i-1; 2i] vaut bien h( Reste a determiner le nombre

de translation du produit des commutateurs des relevements ~
i Pour cela, on

regarde le cas limite ou P est un polygone euclidien dans le plan tangent a H2
en un point s0 Dans ce cas, les transformations i sont toutes des rotations
de centre s0 et commutent donc. Par suite,

Q
g
i=1[~2i-1; ~i] id. Il en resulte

que, dans le cas general, le nombre de translation vaut - 1
2 aire(P) et prend ainsi

n'importe quelle valeur entre 0 et 1 - 2g) En particulier, pour obtenir une
structure de contact sur le bre S(TS) des droites orientees tangentes a S, il faut
partir d'un polygone d'aire superieure a 4g- 4) i.e. d'une metrique ayant un
atome de courbure positive en la singularite conique.

2. Caracterisation des structures de contact transversales

A. Comment contacter Thurston

V designe toujours une variete connexe orientee, bree en cercles au-dessus d'une
surface close S Dans [Th2], W. Thurston met en evidence l'alternative exclusive
suivante : si est un feuilletage de codimension 1 orientable sur V ou bien

est isotope a un feuilletage transversal aux bres, ou bien il existe une courbe
simple tracee sur une feuille qui est isotope a la bre. Dans le second cas,
possede en fait un ensemble minimal vertical { a isotopie pres { qui, pour peu que

soit C
2 et que S ne soit pas un tore, est necessairement une feuille torique. Le

resultat qui suit est un analogue de ce theoreme pour les structures de contact.
Son enonce requiert un peu de terminologie.

De nition 2.1. Soit une structure de contact sur une variete M de dimen-sion

3 On dit que est vrillee s'il existe un disque D plonge dans M qui est
tangent a en tous les points de son bord { le disque D est lui-même appele
disque vrille. On dit que est tendue si elle n'est pas vrillee.

Une structure vrillee sur M induit une structure encore vrillee sur tout revête-ment

de M mais une structure tendue peut aussi induire une structure vrillee

sur certains revêtements. On dira qu'une structure de contact sur M est
virtuellement vrillee resp. universellement tendue) si elle est tendue et si elle
induit une structure vrillee resp. tendue) sur un revêtement ni de M resp. sur
le revêtement universel de M). Ces deux proprietes s'excluent mutuellement mais
il n'est pas clair qu'elles soient exactement complementaires l'une de l'autre. C'est
cependant le cas si le groupe fondamental de M est residuellement ni, donc par
exemple pour V
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Le long d'une bre de V les champs de vecteurs normaux dont la projection
sur S est constante determinent une classe d'homotopie canonique de sections non
singulieres du bre normal. De plus, des que V di ere de S2 S1 cette classe

d'homotopie est invariante par tout di eomorphisme de V isotope a l'identite
qui preserve la bre consideree. Du coup, le bre normal de toute courbe fermee

simple isotope a la bre possede aussi une classe d'homotopie canonique de sections
partout non nulles. Par abus de langage, lorsque V ' S2 S1 une courbe isotope
a la bre designe dans la suite une courbe munie d'une isotopie qui l'amene sur
une bre.

De nition 2.2. Soit une structure de contact sur V Pour toute courbe leg-endrienne

L isotope a la bre, on appelle enroulement de autour de L { ou en-roulement

de L { le nombre e(L) de tours que fait le long de L par rapport au
champ normal canonique. On appelle enroulement de et on note e( le supre-mum

des enroulements e(L) pour toutes les courbes legendriennes L isotopes
aux bres. Ce nombre est un entier si et seulement si la structure de contact
est orientable le long des bres.

Remarque. Des lors que V n'est ni un espace lenticulaire ni un tore, un theoreme
de F. Waldhausen [Wa] assure que tous les di eomorphismes de V respectent la
bration : V S a isotopie pres. L'enroulement des structures de contact

sur V est alors invariant par conjugaison.

En n, l'enonce ci-dessous tient tacitement compte du fait que tout revêtement
ni de V bre naturellement en cercles au-dessus d'un revêtement ni de S

Theoreme 2.3. Soit V une variete connexe et orientee, bree en cercles au-dessus

d'une surface close et orientable S Toute structure de contact sur V
qui est orientable le long des bres veri e l'alternative exclusive suivante:

ou bien est isotope a une structure de contact transversale aux bres ;
ou bien il existe, dans un revêtement ni ~V; ~ de V; une courbe

legendrienne isotope a la bre de ~V et d'enroulement nul. Mieux, le passage a
un revêtement ni n'est necessaire que lorsque est virtuellement vrillee.

Ce theoreme est une consequence des deux propositions ci-dessous dont la
demonstration occupe la suite de la partie 2.

Proposition 2.4. Soit une structure de contact sur V orientable le long des

bres.
a) L'enroulement e( appartient a Z [ f+1g. En outre, pour tout entier
n e( il existe dans V une courbe legendrienne L isotope a la bre et
d'enroulement e(L) egal a n
b) Si est vrillee, son enroulement e( est in ni.
c) Si est transversale aux bres, est universellement tendue et son enroule-ment

e( est strictement negatif.
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Proposition 2.5. Soit une structure de contact sur V orientable le long des
bres. Si est universellement tendue et si son enroulement e( est strictement

negatif, est isotope a une structure de contact transversale aux bres.

Demonstration du theoreme 2.3. Soit une structure de contact sur V orientable
le long des bres. La proposition 2.4 montre tout d'abord que l'alternative en-visag

ee pour est exclusive. Elle assure aussi que, si est vrillee resp. virtuelle-ment

vrillee), il existe dans V resp. dans un revêtement ni de V une courbe
legendrienne isotope a la bre et d'enroulement nul. Si est au contraire uni-versellement

tendue, de deux choses l'une : ou bien son enroulement e( est
strictement negatif et est isotope a une structure transversale aux bres propo-sition

2.5), ou bien e( est positif ou nul et il existe dans V une courbe legen-drienne

isotope a la bre et d'enroulement nul proposition 2.4).

B. Estimations d'enroulement

On demontre ici la proposition 2.4. Pour cela, on rappelle que l'invariant de
Thurston-Bennequin tb(L) d'une courbe legendrienne L homologiquement nulle
dans V; est l'enlacement de L avec L + ou est un champ de vecteurs
normal a le long de L L'enroulement est un cousin de cet invariant ; en
particulier, si V; S) 1 toute courbe legendrienne L isotope a la bre est
homologiquement nulle et e(L) tb(L) 1

a) Comme est orientable le long des bres, elle e ectue un nombre entier de
tours autour de chaque courbe legendrienne isotope a la bre1. Par suite, e( 2
Z[ f+1g Soit maintenant L0 une courbe legendrienne isotope a la bre et
d'enroulement e(L0) n n 2 Z Soit d'autre part L1 un n ud legendrien
topologiquement trivial contenu dans une boule disjointe de L0 et dont l'invariant
de Thurston-Bennequin vaut tb(L1) n- e(L0)- 1 -1 La somme connexe
de L0 et L1 est une courbe legendrienne isotope a la bre et d'enroulement n

b) Soit B V une boule contenant un disque vrille de et soit L0 une courbe
legendrienne isotope a la bre et disjointe de B Pour tout n 0 il existe
dans B un n ud legendrien topologiquement trivial dont l'invariant de Thurston-
Bennequin vaut n La somme connexe de L0 avec ce n ud fournit une courbe
legendrienne isotope a la bre dont l'enroulement vaut e(L0) + n + 1. Par suite,
e( +1.
c) Soit ~ la structure induite par sur le revêtement universel ~V de V. Si S

n'est pas une sphere, ~V est di eomorphe a R3 Ainsi, a conjugaison pres, ~ est
une structure de contact sur R2 R transversale aux droites f g R et invari-ante

par les translations verticales entieres. Comme pour la proposition 1.2-b, on

1 On observe au passage qu'une structure de contact transversale aux bres est
automatiquement co) orientable le long des bres.
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construit sur tout domaine [-a- 1;a+ 1]2 R, a > 0 des coordonnees x; y; t)
dans lesquelles la bration est la projection x; y; t) 7! x; y) et ~ a pour equation
dt - u(x; y; t)dx 0, ou u(x;-a; t) 0 et u(x; y; t + 1) u(x;y; t) quels que
soient x; y; t)

Pour tout entier n > 0 l'immersion n: [-a; a]2 R R3 de nie { en
coordonnees cylindriques au but { par

x; y; t) 7-! r u(x; y; t)-1=2;
2 t
n

; z
2 x
n

;

plonge [-a; a]2 R=nZ dans R3 prive de l'axe des z et envoie ~ sur la struc-ture

d'equation dz r2 d Par suite, ~ est tendue en vertu du theoreme de
Bennequin.

Soit maintenant L une courbe legendrienne isotope a la bre et ~L une preimage
de L dans R2 R=Z Etant donne a > 0 assez grand pour que [-a; a]2 R=Z
contienne ~L

le plongement induit par 1 sur [-a; a]2 R=Z envoie les bres

f g R=Z sur des courbes deux a deux non enlacees mais qui enlacent une fois
l'axe des z La courbe legendrienne 1(~L) est alors non nouee et son invariant
de Thurston-Bennequin n'est autre que e(~L) Il resulte donc de l'inegalite de
Bennequin [Be] que e(~L) e(L) -1

Si S est une sphere, ~V est di eomorphe a la sphere S3 car S2 S1 ne
porte aucune structure de contact transversale aux bres theoreme 1.1). Ainsi, a
conjugaison pres, ~ est une structure de contact sur S3 transversale a la bration
de Hopf. Si on regarde S3 comme le bord de la boule unite dans C2 { les cercles de
Hopf etant les traces des droites complexes passant par 0 {, la forme symplectique
usuelle de C2 est positive sur ~ ce qui entra n̂e que ~ est tendue [El3].

Soit en n L une courbe legendrienne isotope a la bre et ~L
une preimage de L

dans ~V ' S3 La courbe ~L est non nouee et, comme ~ est tendue, l'inegalite
de Bennequin assure que tb(~L) -1 donc que e(~L) tb(L) - 1 -2 Or
e(~L) j V; S)je(L) donc e(L) est strictement negatif.

C. Le cas des bres sur la sphere

On demontre ici la proposition 2.5 lorsque S est une sphere. L'ingredient cle est
la classi cation des structures de contact tendues sur les espaces lenticulaires [Gi4,
theoreme 1.1]. Le point qui intervient ici est le suivant : tout espace lenticulaire
porte une seule structure de contact universellement tendue, a isotopie pres 2

Si V;S) 0 la variete V est di eomorphe a S2 S1 Or, d'apres [El2],
S2 S1 porte une unique structure de contact tendue qu'on peut voir par exemple
comme le champ 0 des droites complexes tangentes au bord de X" ou X" C2
est le tube de rayon " < 1 autour du cercle unite S1 f0g On observe alors que
le tore T S1 "S1 est contenu dans @X" et que 0 est parallele a C f0g
2 Il s'agit ici de structures de contact orientables mais pas orientees.
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le long de T Par suite, chaque cercle S1 fwg, w 2 "S1 est legendrien
et d'enroulement nul. Aucune structure de contact tendue sur V n'a donc un
enroulement strictement negatif.

Si V; S) 6= 0 le revêtement universel de V est di eomorphe a S3 et on
peut voir V comme suit. On regarde S3 comme le bord oriente de la boule unite
dans C2 et, pour tout t 2 R=Z on note +t et -t les transformations de Hopf
de nies par

+
t

z;w) e2i tz; e+2i tw ;

-t z;w) e2i tz; e-2i tw ;
z;w) 2 S3 :

La bration S3 S2 associee au flot +
t

resp. -t a pour nombre d'Euler

-1 resp. +1 Pour tout entier n > 0 le quotient de S3 par +
1 n resp.

-1=n
a donc pour nombre d'Euler -n resp. n En outre, ce quotient n'est

autre que l'espace lenticulaire Ln;1 resp. Ln;n-1 et est di eomorphe a V si
V; S) -n resp. si V; S) n
Soit maintenant 0 la structure de contact usuelle sur S3 i.e. le champ des

droites complexes tangentes a S3 Comme chaque transformation
t

est la re-striction

d'une application lineaire de C2 elle preserve 0 Ainsi, 0 induit sur
chacun des espaces Ln;1 et Ln;n-1 une structure de contact qui est universelle-ment

tendue car 0 est tendue d'apres le theoreme de Bennequin). D'autre part,
les orbites du flot +

t
sont transversales a 0 de sorte que est transversale aux

bres sur Ln;1 En revanche, sur le tore invariant

z; w) 2 S3 j jzj= jwj ;

les orbites du flot -t sont tangentes a 0 et d'enroulement nul. Par suite,
n'a pas un enroulement strictement negatif. Ces observations terminent la

demonstration puisque Ln;1 et Ln;n-1 portent chacun une unique structure de
contact universellement tendue, a isotopie pres [Gi4, theoreme 1.1 et lemme 4.1].

D. Surfaces convexes

On introduit ici quelques notions et resultats techniques qui seront utiles dans les

demonstrations a venir.

De nition 2.6. Soit F une surface, orientable et compacte, plongee dans une
variete de contact M; de dimension 3 On dit que F est convexe si elle
admet un voisinage tubulaire trivialise U ' F R dans lequel les translations
verticales preservent Un tel voisinage U sera dit homogene.

La convexite de F ne depend que du germe de le long de F donc du
feuilletage caracteristique F de F forme des courbes integrales du champ de
droites \ TF Si F est close, elle se traduit explicitement comme suit. On dit
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qu'une multi-courbe F { union nie de courbes fermees, simples et disjointes {
scinde F si, sur la surface compacte a bord F obtenue en decoupant F le long
de le feuilletage induit par F est porte par un champ de vecteurs qui sort
sur @F et qui dilate l'aire i.e. une certaine forme d'aire sur F Lorsqu'une
telle multi-courbe existe, elle est unique a isotopie pres parmi les multi-courbes
qui scindent.

Les resultats de [Gi1] montrent qu'une surface close F M; est convexe si
et seulement si son feuilletage F est scinde. En particulier, si U est un voisinage
tubulaire et homogene d'une surface convexe F l'ensemble note U des points
de F ou est tangente aux bres de U est une multi-courbe qui scinde F

Cette caracterisation permet de montrer que les surfaces closes convexes sont
generiques. En outre, elles sont tres maniables et certaines ont un reel interêt
geometrique :
Exemple. Suivant une suggestion de V. I. Arnold, on appellera surface clairaldi-enne

toute surface compacte convexe F M; qui est munie d'une bration en
cercles legendriens, au-dessus de l'intervalle ou du cercle. Topologiquement, une
telle surface est donc un anneau, un tore ou une bouteille de Klein.

Si : V0 S0 est une bration legendrienne, l'image inverse -1(C) de toute
courbe simple C S0 fermee ou non) est une surface clairaldienne. En e et,
tout flot local transversal a C dans S0 se releve naturellement dans V0 en un flot
de contact transversal a -1(C) Inversement, toute surface clairaldienne F
M; est localement de ce type -1(C) ou V0 est un voisinage homogene

quelconque de F et S0 un bre en intervalles au-dessus de C Ainsi, toute
surface clairaldienne orientable { di eomorphe a S1 C ou C est l'intervalle ou
le cercle { possede un voisinage tubulaire homogene U ' S1 C R dans lequel
F S1 C f0g et a une equation de la forme

cos(n x) dy - sin(n x)dt 0; x; y; t) 2 S1 C R;

ou n est un entier strictement positif, pair des que est orientable. Le nombre

-n=2 n'est autre que l'enroulement de la structure autour des cercles legendriens
qui brent F

Le lemme qui suit est une version relative d'un resultat etabli dans [Gi1].

Lemme 2.7. Soit F M; une surface convexe, U un voisinage tubulaire
de F homogene, P un compact de M dont l'intersection avec F est saturee par
F et un feuilletage de F scinde par U et egal a F pres de P\F. Il existe

alors une isotopie de plongements t: F U t 2 [0; 1] ayant les proprietes

suivantes:

1) 0 est l'inclusion ;
2) pour tout t 2 [0; 1] la surface t(F) est transversale aux bres de U ;

3) le feuilletage caracteristique 1(F) n'est autre que 1) ;
4) l'intersection t(F) \ P cö ncide avec F \P pour tout t 2 [0; 1]
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Demonstration. La proposition II.3.6 de [Gi1] donne une isotopie t qui satisfait
aux conditions 1{3) et laisse xe un voisinage de F \ P Pour obtenir 4), on
remarque qu'on garde 1{3) si on compose t au but par une isotopie de contact
partant de l'identite et preservant la structure bree du tube U On note alors

s : U ' F R U s 2]0; 1] l'homothetie de rapport s dans les bres et on ob-serve

que, pour s0 assez petit, toutes les surfaces s0 t(F) t 2 [0; 1] coupent P
exactement suivant F\P D'autre part, comme est R-invariante dans U elle
y admet une equation de Pfa du type +udt 0, ou t decrit R et u sont
respectivement une 1 -forme et une fonction sur F Chaque structure s s)
a ainsi pour equation + u=s) dt 0 et est donc encore R-invariante. La
methode du chemin fournit alors une isotopie s de U s 2 [s0; 1] qui est

R-equivariante, envoie s sur 1 et deplace les points horizontalement en
respectant tous les feuilletages s(F f g) F f g) En particulier, comme
l'intersection F \ P est saturee par F elle est preservee par l'isotopie s. On
prend alors une fonction lisse s: [0; 1] !]0; 1] qui vaut 1 en 0 mais devient vite
tres petite. L'isotopie

t s(t) s(t) t: F -! U

veri e toutes les proprietes voulues.

E. Redressement des tores

Un ingredient cle dans la these de W. Thurston [Th2] est le resultat suivant, dû
independamment a R. Roussarie [Ro] : dans une variete de dimension 3 munie
d'un feuilletage de codimension 1 sans composantes de Reeb, tout tore incom-pressible

plonge est isotope a une feuille ou a un tore transversal au feuilletage.
Dans les varietes de contact, les techniques de [Gi1] permettent d'etablir un fait
analogue tres utile pour demontrer le theoreme 2.3 :

Lemme 2.8. Soit une structure de contact sur V et R S une sous-surface
compacte, connexe et a bord non vide. Si l'enroulement e( de est strictement
negatif, est isotope a une structure de contact 0 pour laquelle, au-dessus de R
toutes les bres sont legendriennes et ont un enroulement egal a e(

Demonstration. On regarde la surface R comme un voisinage regulier d'un bou-quet

de cercles K
W

k
i=1 Ki dans S et on note q le sommet de K Quitte a faire

une premiere isotopie, on suppose que la bre L au-dessus de q est legendrienne
et que son enroulement vaut e( Pour tout entier n > 0 on peut trouver,
sur un voisinage tubulaire W de L des coordonnees x; y; t) 2 D2 S1 dans
lesquelles L f0g S1 et a pour equation

cos(2n t) dx- sin(2n t) dy 0:
La projection W: W D2, x; y; t) 7! x; y) est alors une bration legen-drienne

et l'enroulement de autour des bres de W vaut -n. Ainsi, pour
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n -e( qui est un entier strictement positif), W induit la même trivial-isation

normale de L que la bration : V S Il existe donc une isotopie
t: V! V t 2 [0; 1] qui a les proprietes suivantes :

0 id ;
t(L) L pour tout t 2 [0; 1] ;
1 envoie chaque bre de W sur une bre de

Quitte a remplacer par 1) on suppose desormais que est tangente aux
bres de V au-dessus d'un voisinage compact Q de q. On reduit Q au besoin

pour que Q \ K soit connexe. Une version relative facile des resultats de [Gi1]
permet alors de deformer par une C1 -petite isotopie relative a M= -1(Q)
pour que chaque anneau -1(Ki n Q) 1 i k soit convexe. On lisse ensuite
chaque Ki dans Q en une courbe K0i Les tores Fi -1(K0i sont alors
convexes. On en prend des voisinages homogenes respectifs Ui et on pose i Ui
cf. de nition 2.6).

Assertion. L'intersection geometrique Card(L \ i) de L avec i est egale au
module j[L] [ i]j de leur intersection algebrique { toutes les composantes connexes
de i etant orientees dans le même sens.

Preuve. L'enroulement e(L) se lit sur Fi comme -(1=2) Card(L\ i) Si l'assertion
est fausse, Fi porte une courbe fermee simple C isotope a L qui intersecte i
moins que L geometriquement). On peut alors construire sans peine sur Fi
un feuilletage singulier qui est scinde par i et pour lequel la courbe C est
saturee voir [Gi1, exemple II.3.7]). Le lemme II.3.6 de [Gi1] version absolue du
lemme 2.7) fournit alors un plongement de Fi dans Ui { isotope a l'inclusion {
dont l'image a pour feuilletage caracteristique L'enroulement de autour
de la courbe legendrienne L0 C) vaut alors

e(L0) - 1 Card(C \ i) > - 1 Card(L \ i) e(L);

ce qui contredit le fait que e(L) est egal a e(

L'assertion ci-dessus permet de deformer par une isotopie relative a M
laissant les tores Fi invariants, de telle sorte que chaque bre de jFi ait, avec i
une intersection geometrique egale au module de son intersection algebrique. Cette
condition etant remplie, il existe sur Fi un feuilletage singulier i ayant les
proprietes suivantes :

i est scinde par i ;

i cö ncide avec Fi dans Fi \M ;
chaque bre de j Fi est saturee par i

Le lemme 2.7 donne alors, pour 1 i k un plongement i de Fi dans Ui
{ isotope a l'inclusion { dont l'image a pour feuilletage caracteristique i) i et
a même intersection que Fi avec le compact

Pi M[ 1(F1) [ [ i-1(Fi-1) [ Fi+1 [ [ Fk :
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Il existe donc un di eomorphisme de V isotope a l'identite, qui prolonge
simultanement tous les plongements i Par construction, la structure de con-tact

imprime le feuilletage i sur chaque tore Fi et est ainsi tangente aux
bres de au-dessus de Q [ K Comme tous les tores Fi sont convexes voire

clairaldiens), il est facile de rendre la bration legendrienne au-dessus de R
par une ultime isotopie relative a -1(Q [K)

F. Structures de contact sur le tore plein

La demonstration de la proposition 2.5 passe par une analyse des structures de
contact tendues sur le tore plein W D2 S1 Cette analyse est menee dans [Gi4]
et on en presente ici quelques conclusions utiles. Pour cela, on rappelle qu'un
feuilletage du tore T2 est une suspension s'il est non singulier et si toutes ses

feuilles coupent une même courbe transversale fermee, simple et connexe. D'autre
part, on observe qu'une structure de contact sur D2 S1 est orientable si et
seulement si elle l'est le long des bres de la projection D2 S1 D2

Lemme 2.9. Soit une structure de contact orientable et tendue sur W= D2
S1 On suppose que le feuilletage caracteristique @W est scinde par une multi-courbe

ayant 2n composantes connexes et que ses eventuelles singularites forment
des cercles lisses. Il existe alors n anneaux disjoints Ai plonges dans W et ayant
les proprietes suivantes:

chaque composante de @Ai est une courbe de singularites ou une feuille
fermee de @W ;

chaque feuilletage Ai est constitue de cercles paralleles au bord.

Demonstration. Si le feuilletage @W est une suspension, les anneaux Ai sont
directement fournis par la proposition 3.15 de [Gi4] : dans la terminologie de cet
article, ce sont les anneaux du feuillage d'une structure de contact elementaire
isotope a relativement au bord. On va maintenant adapter l'argument au cas

ou @W est un feuilletage scinde dont les singularites forment des cercles. Dans
ce cas, l'etude des surfaces convexes voir les sections 2.B et 2.C de [Gi4]) montre
que est isotope, relativement au bord, a une structure de contact 0 ayant les
proprietes suivantes :

chaque tore Ta aS1 S1 1=2 a 1 est convexe dans W; 0) ;
le feuilletage T1=2 est une suspension ;
les singularites eventuelles de chaque feuilletage 0Ta 1=2 < a 1 for-ment

des cercles.
Dans W0 1=2)D2 S1 la proposition 3.15 de [Gi4] donne, comme avant,
des anneaux A0i qui conviennent pour la restriction de 0 D'autre part, dans

Wn IntW0 l'union des feuilles fermees et des singularites de tous les feuilletages
0Ta, 1=2 a 1 forme 2n anneaux disjoints qui completent les A0i en les

anneaux Ai cherches.
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Proposition 2.10. Soit une structure de contact orientable et universellement
tendue sur W D2 S1 On suppose que le feuilletage caracteristique @W
est scinde par deux courbes et que ses singularites forment deux cercles lisses. La
structure est alors isotope, relativement au bord, a une structure de contact qui
est transversale a f0g S1 et imprime une suspension sur chaque tore aS1 S1

0 < a < 1

Demonstration. Soit un feuilletage de @W scinde par deux courbes et dont les
singularites forment deux cercles lisses. D'apres le theoreme 1.6 de [Gi4], complete
par le lemme 3.13, les structures de contact universellement tendues sur W qui
impriment sur @W forment au plus deux classes d'isotopie relative au bord.
Chaque classe est caracterisee par la classe d'isotopie de l'anneau que fournit le
lemme 2.9. Autrement dit, il y a deux classes resp. une) s'il y a dans W, a isotopie
relative au bord pres, deux anneaux resp. un seul) qui s'appuient sur les cercles
singuliers de On exhibe ci-dessous des structures de contact universellement
tendues explicites dans chaque classe et on constate qu'elles satisfont les proprietes

requises.
Sur R2 S1 muni de coordonnees cylindriques r; ; z) z 2 R=2 Z, l'equation

de Pfa 1- r4) dz+ r2 d 0 de nit une structure de contact universellement
tendue l'equation de de nit sur R3 la structure de contact ordinaire). De
plus, pour tout r > 0 le feuilletage caracteristique du tore de rayon r autour de

f0g S1 est le feuilletage lineaire de pente dz=d r2=(r4- 1) Etant donne des
entiers p et q premiers entre eux, q > 0 il existe donc un unique reel r r(p; q)
tel que les caracteristiques du tore @(rD2) S1 aient pour classe d'homologie
p; q) On considere alors les plongements p;q : W0 1=2)D2 S1 R2 S1

donnes par

p;q aeis; t) 2ar(p; q) 1 a
q

cos(qs - pt) ; s+ a
q

sin 2(qs- pt) ; t :

Les structures de contact induites, p;q sont universellement tendues,
transversales a f0g S1 et impriment une suspension sur chaque tore Ta
aS1 S1, 0 < a < 1=2 En outre, les feuilletages @W0 sont tous deux
scindes par deux courbes et ont deux cercles de singularites qui sont communs et
qu'on note C0 C1 On observe d'autre part que l'image inverse du tore de rayon
r(p; q) par p;q est un anneau A qui a les proprietes decrites au lemme 2.9. De
plus, A- n'est isotope a A+ relativement a son bord que si q 1.

On suppose maintenant que p; q) est la classe des cercles singuliers de et
on choisit dans WnIntW0 deux anneaux B0 B1 qui sont transversaux aux tores
Ta aS1 S1 1=2 a 1 et qui s'appuient d'un côte sur les cercles singuliers
de de l'autre sur C0 et C1 Il existe alors sur Wn IntW0 deux structures de
contact - et + satisfaisant aux conditions suivantes voir [Gi4, lemme 2.3]) :

@W0 et @W= ;
chaque feuilletage Ta, 1=2 a 1 est scinde et a deux cercles de

singularites, a savoir les cercles Bi \ Ta i 0; 1
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Figure 1. Pour q 5 les images respectives par +
p;q et -p;q des cercles de rayons 1=6 1=3

et 1=2 dans D2 f0g

Les structures de contact [@W0 sont universellement tendues et ne
sont isotopes, relativement au bord, que si les anneaux A [B0 [B1 le sont i.e.
si q 1 En outre, elles sont transversales a f0g S1 impriment sur le
bord @W et une suspension sur Ta pour tout a 2 ]0; 1=2[ Sans detruire ces

proprietes, une C1 -petite isotopie convenable { a support dans un voisinage de
B0 [ B1) \ IntW { permet de perturber en une structure de contact qui

imprime une suspension sur tous les tores Ta 0 < a < 1

G. Mise en position transversale

On demontre ici la proposition 2.5 lorsque S n'est pas une sphere. Dans un premier
temps, designe juste une structure de contact d'enroulement strictement negatif
sur V On note g 1 le genre de S et K un bouquet de 2g cercles sur S ayant
pour complementaire un disque. Compte tenu du lemme 2.8, on suppose que, au-dessus

d'un voisinage compact regulier R de K les bres de sont legendriennes
et ont pour enroulement e( On note D le disque ferme Sn IntR et W le
tore plein -1(D) qu'on parametre par D2 S1 de telle sorte que la bration

jW soit la projection sur le premier facteur. Par construction, @W est un tore
clairaldien.

Lemme 2.11. La multi-courbe qui scinde le feuilletage @W a deux com-posantes

connexes.

Demonstration. Soit 2n le nombre pair) de composantes connexes de D'apres

le lemme 2.9, les 2n courbes de singularites de @W bordent n anneaux Ai dis-joints

et plonges dans W dont les feuilletages caracteristiques Ai sont formes

de cercles paralleles au bord. On indexe les Ai de telle sorte que A1 soit
exterieurissime, c'est-a-dire decoupe W en deux tores pleins dont l'un, note W1
se retracte par deformation sur A1 et ne contient aucun Ai i > 1 On prend
ensuite un voisinage collier N1 A1 [0; 1] de A1 A1 f0g dans Adh(WnW1)
dont le bord lateral @A1 [0; 1] est inclus dans @W. Pour tout s 6= 0 assez petit,
les caracteristiques de l'anneau A1 fsg vont d'un bord a l'autre. On designe
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alors par W0 un tore plein obtenu en arrondissant les angles de

Wn W1 [ A1 [0; s[ ; s> 0 petit.

Ainsi construit, W0 est un tore plein isotope a W et on note : @W! V un
plongement isotope a l'inclusion et dont l'image est le tore @W0

Si n > 1 le feuilletage @W0 a 2n-2 courbes de singularites et aucune feuille
reguliere fermee. Par suite, @W0 est convexe et la multi-courbe 0 qui scinde

@W0 compte 2n-2 composantes connexes, toutes isotopes aux composantes de
En notant L une bre de dans @W, il existe sur @W0 une courbe L0

isotope a L) et veri ant

Card(L0 \ 0) < 2je( j Card(L \ :

Or le lemme 2.7 fournit une isotopie de plongements s : @W0 V s 2 [0; 1]
ayant les proprietes suivantes :

chaque feuilletage s(@W0) s 2 [0; 1] est scinde par s( 0) ;
la courbe 1(L0) est legendrienne.

Comme dans la preuve du lemme 2.8, l'enroulement de autour de 1(L0) vaut
alors

e 1(L0) -1
2 Card(L0 \ 0) > e( ;

ce qui contredit la de nition de e(

Le second ingredient dans la preuve de la proposition 2.5 est le lemme suivant :

Lemme 2.12. Si la structure de contact est universellement tendue, sa restric-tion

au tore plein W= -1(D) l'est aussi.

Demonstration. Soit n 1 un entier quelconque. Comme la surface S n'est pas
une sphere, elle possede un revêtement connexe a n feuillets Sn Le rappel Vn
Sn du bre V! S au-dessus de Sn a alors pour nombre d'Euler Vn; Sn)
n V; S) Par suite, il existe un revêtement bre a n feuillets ~Vn Vn qui, au-dessus

de chaque bre de la projection Vn Sn induit un revêtement cyclique
non trivial du cercle. L'image inverse de W dans ~Vn est la reunion disjointe de

n tores pleins et chacun d'eux se projette sur W par un revêtement de degre n
Comme se releve sur ~Vn en une structure de contact tendue, sa restriction a
W induit une structure de contact tendue sur tout revêtement ni de W, donc
aussi sur le revêtement universel.

On termine maintenant la demonstration de la proposition 2.5. On note donc
une structure de contact sur V qui est orientable le long des bres, universellement
tendue et d'enroulement strictement negatif. En outre, compte tenu des lemmes
2.8, 2.11, 2.12 et de la proposition 2.10, on suppose que satisfait les proprietes

suivantes :

toutes les bres au-dessus du voisinage R de K sont legendriennes ;
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dans W -1(D) D2 S1 la structure de contact est transversale a

f0g S1 et imprime une suspension sur chaque tore Ta aS1 S1 0 < a < 1

Comme l'enroulement e( est strictement negatif, les feuilletages Ta 0 < a <
1 n'ont aucune feuille fermee isotope a la bre et sont par suite tous isotopes a
des feuilletages transversaux aux bres. Quitte a deformer par une isotopie a
support dans W, on peut donc supposer que toutes les bres, au-dessus de IntD
sont transversales a On oriente alors sur un voisinage de W pour que les
dites bres f g S1 IntW soient des transversales positives. On se donne par
ailleurs un champ de vecteurs legendrien sur V qui est nul sur W et transversal
aux bres sur VnW. Si on pousse par le flot de pendant un bref instant, on
obtient une structure de contact 0 qui est partout transversale aux bres sauf le
long de @W ou elle reste tangente aux bres. De plus, si on pousse dans la bonne
direction, les bres de part et d'autre de @W sont transversales dans le même
sens. Une isotopie C1 -petite permet alors de rendre 0 transversale a toutes les

bres.

H. Un exemple

Pour clore cette partie, on montre que l'alternative o erte par le theoreme 2.3
est optimale au sens ou, lorsque n'est pas isotope a une structure transversale
aux bres, il est parfois indispensable de passer a un revêtement ni de V pour
trouver une courbe legendrienne isotope a la bre et d'enroulement nul.

Proposition 2.13. Si S est un tore et si V; S) est un nombre negatif as-sez

grand, V porte une structure de contact virtuellement vrillee d'enroulement
strictement negatif.

Demonstration. Soit la structure de contact d'equation dz- y dx 0 sur R3
On se donne un n ud K transversal a et un voisinage tubulaire W de K dans
lequel a pour equation dt+ r2 d 0, ou t parametre K et r; r " sont
des coordonnees polaires normales. On note l(K) l'auto-enlacement de K dans
R3; enlacement de K avec K+"@y et K0 une stabilisation de K dans W,

c'est-a-dire un n ud topologiquement isotope a K dans W, transversal a et
d'auto-enlacement l(K0) l(K)-2 voir [Be]). Le theoreme de Darboux assure
alors qu'il existe un isomorphisme de W; sur un voisinage tubulaire W0;
de K0 qu'on peut prendre aussi petit qu'on veut. Comme envoie les meridiens
de W sur des meridiens de W0 la variete V obtenue a partir de Wn IntW0 en
identi ant par les deux composantes du bord est bree en cercles au-dessus du
tore. On note la structure de contact induite par sur V et on observe que
les proprietes suivantes sont satisfaites :

le nombre d'Euler de V est negatif, d'autant plus grand que W0 est plus
petit ;
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au signe pres, la classe d'Euler de est en dualite de Poincare avec la bre
de V

Cette seconde propriete montre immediatement que n'est pas isotope a une
structure transversale aux bres. Par ailleurs, si V; contenait une courbe
legendrienne isotope a la bre et d'enroulement nul, celle-ci se releverait { peut-
être pas dans WnW0 mais dans Wn n(W0) pour n assez grand { en une courbe
legendrienne de W; bordant un disque meridien vrille. Or la structure est
tendue d'apres le theoreme de Bennequin.

Au prix de quelques e orts supplementaires, l'exemple ci-dessus revele aussi
qu'on ne peut pas se contenter de considerer des revêtements nis du type ~V V
ou est un revêtement ni de S : il faut en general deplier les bres.

3. Denombrement des structures de contact transversales

A. Comment contacter Matsumoto-Ghys

V designe toujours une variete connexe orientee bree en cercles au-dessus d'une
surface close S On classi e ici les structures de contact directes et transversales
aux bres sur V Pour ce qui est des feuilletages, aucune classi cation topologique
generale n'est connue ni même attendue voir [Gh1]). Toutefois, lorsque V; S)
vaut S) les travaux de S. Matsumoto et E. Ghys montrent que les feuilletages

C
2 transversaux aux bres sur V sont tous topologiquement conjugues [Ma] et

forment, a conjugaison di erentiable pres, une variete homeomorphe a l'espace
de Teichmüller de S [Gh2]. Pour les structures de contact, le theoreme qui suit
donne, sans autre restriction sur V; S) que l'inegalite du theoreme 1.1, une
classi cation complete. On rappelle que, d'apres les propositions 2.4 et 2.5, une
structure de contact sur V est isotope a une structure transversale aux bres si et
seulement si elle est universellement tendue et d'enroulement strictement negatif
entier.

Theoreme 3.1. Soit V une variete connexe et orientee, bree en cercles au-dessus

d'une surface close et orientable S. On suppose que S) 0 et que

V; S) - S)
a) Il existe sur V des structures de contact transversales aux bres et d'enroule-ment

-n si et seulement si n 1 ou si n V; S) - S) et n > 0

b) Si V; S) 6= - S) les structures de contact universellement tendues et
d'enroulement -1 sur V forment une seule classe d'isotopie.
c) Si n V; S) - S) n > 0, les structures de contact universellement
tendues et d'enroulement -n forment un nombre ni de classes de conjugaison
egal au nombre de diviseurs de n De plus, chaque classe de conjugaison contient
une in nite de classes d'isotopie.

Avant de demontrer ce theoreme dans les sections C{F, on observe que la par-tie

c) presente peu d'interêt lorsque S) 0 En e et, comme n V; S)
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- S) la variete V est un tore et l'enroulement n'est pas invariant par conju-gaison.

Dans ce cas, le bon invariant de conjugaison est la torsion [Gi4]. D'autre
part, le cas laisse de côte par le theoreme est en fait beaucoup plus simple :

Proposition 3.2. Soit V une variete connexe et orientee, bree en cercles au-dessus

d'une sphere S. On suppose que V; S) < 0
A

isotopie pres, il y
a sur V une seule structure de contact directe et transversale aux bres. Son
enroulement vaut -2 si V ' S3 et -1 sinon.

Demonstration. Ce resultat est inclus dans le theoreme 1.1 de [Gi4] qui classi e

les structures de contact tendues sur les espaces lenticulaires. Comme il n'en
constitue qu'une toute petite partie, on indique brievement sa preuve. Soit 0
et 1 deux structures de contact sur V qui sont directes et transversales aux

bres. Quitte a deformer l'une d'elles par une isotopie qui la laisse transversale
aux bres, on peut supposer que 0 et 1 cö ncident au-dessus de la reunion
disjointe Q de deux petits disques dans S On parametre alors V n -1(Q)
par T2 [0; 1] de telle sorte que soit la projection T2 [0; 1] S1 [0; 1]
x; y; t) 7! y; t) Chaque structure i imprime ainsi sur chaque tore T2 ftg

un feuilletage caracteristique dont toutes les feuilles coupent transversalement les
bres de Dans la terminologie de [Gi4], 0 et 1 sont des structures rotatives

sur T2 [0; 1] qui cö ncident pres du bord et ont la même amplitude non nulle). Le
theoreme 3.3 de [Gi4] montre qu'elles sont alors isotopes relativement au bord.

B. Fibrations legendriennes et revêtements bres

On etudie ici les structures de contact sur V qui sont tangentes aux bres, i.e.
pour lesquelles la projection : V S est une bration legendrienne. Comme
la proposition 1.4 le laisse entrevoir, ces structures jouent un r ôle important dans
l'etude des structures de contact transversales aux bres. On note cependant
qu'une structure de contact tangente aux bres n'est pas necessairement orientable
le long des bres. L'exemple type est la structure de contact canonique S sur le
bre P(TS) des droites non orientees tangentes a S.

Proposition 3.3. Soit V une variete connexe et orientee, bree en cercles au-dessus

d'une surface quelconque S L'application qui, a tout revêtement bre
: V P(TS) associe la structure de contact S est une bijection de

l'espace des revêtements bres et orientes V P(TS) dans l'espace des structures
de contact tangentes aux bres sur V En outre, l'enroulement de S autour
des bres vaut -d=2 ou d est le degre du revêtement

Demonstration. Si : V! P(TS) est un revêtement bre oriente, la structure de
contact S est tangente aux bres de V et directe). En outre, comme
l'enroulement de S autour des bres vaut -1=2 celui de vaut -d=2 ou d
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est le degre de D'autre part, tout champ de plans tangent aux bres de V
de nit une application bree V P(TS) : l'image d'un point p est simplement
la projection sur S du plan p) Cette application est un revêtement oriente) si
et seulement si le champ est une structure de contact directe) et cette structure
est, par construction, le rappel de S

Corollaire 3.4. Soit V une variete connexe et orientee bree en cercles au-dessus

d'une surface close S. Pour que V porte une structure de contact tan-gente

aux bres et directe), il faut et il su t qu'il existe un entier d > 0 tel que

d V; S) -2 S)

Demonstration. Le nombre d'Euler du bre P(TS) S pour l'orientation induite
par la structure de contact S est -2 S) Ainsi, la relation d V; S)

-2 S) traduit simplement l'existence d'un revêtement bre et oriente de V sur
P(TS) a d feuillets.

Remarque. Lorsque la surface S est close, l'existence sur V d'un simple champ
de plans tangent aux bres exige en fait deja que le rapport -2 S)= V; S)
soit un entier, eventuellement negatif ou nul. En e et, ce champ de plans de nit
une application bree V P(TS) dont la restriction a chaque bre est de degre
constant d D'autre part, un feuilletage tangent aux bres ne peut être que
l'image inverse d'un feuilletage de S et n'existe donc que si S) 0

Corollaire 3.5. Soit V une variete connexe et orientee, bree en cercles au-dessus

d'une surface compacte S ayant un bord connexe non vide. On note
Ŝ

V
l'image d'une section, L @V une bre et on oriente @^S et L de telle sorte que
leur intersection soit positive sur @V

Pour toute structure de contact tangente aux bres de V la multi-courbe
des singularites de @V a pour classe d'homologie

2 e( [@Ŝ] + S) [L] 2 H1(@V; Z);

du moins si toutes ses composantes sont orientees dans le même sens.

Demonstration. Si V P(TS) et si est la structure de contact canonique,
la courbe des singularites de @V n'est autre que le relevement legendrien de
@S dans V Comme e( -1=2 la formule dit simplement que, par rapport
a n'importe quel champ de droites de ni sur S la tangente au bord @S fait

-2 S) tours sur la bre 3. Le cas general s'obtient en passant a un revêtement
bre de degre -2e(

Pour terminer cette section, on veri e que l'enroulement d'une structure de
contact tangente aux bres est bien ce qu'on attend :

3 Pour trouver le bon signe, noter que l'orientation de contact sur P(TS) en un point q;
TqS n'est pas la juxtaposition d'une orientation de TqS et de l'orientation induite sur la

droite P(TqS) mais l'inverse.
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Lemme 3.6. Soit V une variete connexe et orientee, bree en cercles au-dessus
d'une surface quelconque S, et soit une structure de contact tangente aux bres.
L'enroulement de est egal a son enroulement autour des bres.

Demonstration. Quitte a se placer au-dessus du revêtement universel de S on
suppose que S est un plan ou une sphere. Si S ' S2 il su t de traiter le cas ou
V ' S3 Dans ce cas, l'enroulement de autour des bres est egal a -2 Par
ailleurs, comme on l'a note au debut de la section 2.B, l'enroulement de autour
de toute courbe legendrienne L isotope a la bre dans S3 { donc non nouee { vaut
tb(L)-1 L'identite voulue resulte donc de l'inegalite de Bennequin tb(L) -1

Si S ' R2 il existe un di eomorphisme V R2 S1 qui conjugue la bra-tion

a la projection sur R2 et envoie sur la structure de contact d'equation

cos(n dx- sin(n dy 0; x; y; 2 R2 S1;

ou n est l'enroulement de autour des bres. Dans R3 muni de sa structure de
contact ordinaire, on considere alors une courbe legendrienne non nouee L dont
l'invariant de Thurston-Bennequin vaut -1 Un avatar du theoreme de Darboux
donne un plongement de V; dans R3 qui envoie sur L une bre de Toute
courbe legendrienne dans V; isotope a la bre et d'enroulement -m> -n a
alors pour image une courbe legendrienne non nouee dont l'invariant de Thurston-
Bennequin vaut n-m-1 L'inegalite de Bennequin permet a nouveau de conclure.

C. Mise en position tangentielle

On demontre ici la partie a) du theoreme 3.1. On observe d'abord que la structure
de contact canonique sur la variete S(TS) des droites orientees tangentes a S
a pour enroulement -1 lemme 3.6). Par suite, comme V; S) - S)

S(TS); S) la chirurgie decrite dans le lemme 1.3 permet de produire sur V
une structure de contact transversale aux bres et d'enroulement -1 D'autre
part, lorsque n V; S) - S) pour un certain entier n la variete V admetun
revêtement bre a n feuillets au-dessus de S(TS) Ainsi, V porte une structure
de contact tangente aux bres, d'enroulement -n en vertu du lemme 3.6, que la
proposition 1.4 permet de rendre transversale aux bres. Il reste donc a demontrer
la proposition suivante :

Proposition 3.7. Soit V une variete connexe et orientee, bree en cercles au-dessus

d'une surface close orientable S, et soit une structure de contact transver-sale

aux bres et d'enroulement e( -n, n 2 N. Si n V;S) - S)
alors est isotope a une structure de contact tangente aux bres. Sinon, n vaut 1.

Demonstration. On note D S un disque ferme, R la surface S n IntD et W le
tore plein -1(D) On parametre W par D2 S1 de telle sorte que la bration
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jW soit la projection sur D2 En vertu de la proposition 2.4 et du lemme 2.8,
est isotope a une structure de contact 0 ayant les proprietes suivantes :

au-dessus de R les bres sont tangentes a 0 et ont pour enroulement
e( 0) e( ;

au-dessus de IntD les bres sont transversales a 0

D'apres le lemme 2.11, les singularites du feuilletage 0 @W forment deux cercles.
De plus, vu la de nition du nombre d'Euler V; S) le corollaire 3.5 montre que
la pente de ces cercles sur @W=@D2 S1 { ou de leurs classes d'homologie dans
H1(@W; R) R2 { vaut

1

n
n V;S) + S) - 1 :

Assertion. Si n > 1 alors n V; S) - S)

Preuve. Soit Ta, 0 < a < 1 le tore aS1 S1 W D2 S1 Le feuilletage
caracteristique 0Ta de chaque tore Ta est transversal aux bres et est donc decrit
par l'application a de premier retour sur une bre. Quand a varie de 0 a 1, le
nombre de translation a de a decro t̂ continûment de 0 a proposition 1.2)
et n'est nul que pour a 0 En particulier, est strictement negatif. Par suite,
comme n -e( > 0 proposition 2.4), l'entier n V; S) + S) est negatif
ou nul.

Si n > 1 et n V; S) + S) < 0 la pente est strictement majoree

par -1=(n - 1) D'autre part, une petite perturbation de 0 dans W permet
d'imposer a la famille a n'importe quelle propriete generique. On peut ainsi
supposer que, pour une valeur a le di eomorphisme itere n-1

a a pour nombre
de translation n - 1) a -1 et ne possede que deux points xes, lesquels sont
hyperboliques. Le tore Ta correspondant est alors convexe dans V; 0) et on
note Ta une bi-courbe transversale aux bres qui scinde le feuilletage 0Ta

On choisit ensuite sur Ta un feuilletage singulier scinde par et pour lequel
chaque bre L de j Ta est saturee voir la demonstration du lemme 2.8). Le
lemme 2.7 fournit un plongement : Ta W isotope a l'inclusion et dont l'image
T Ta) a pour feuilletage caracteristique 0T Ainsi, chaque courbe

L) est isotope a la bre et legendrienne. De plus, comme a deux composantes,
l'enroulement de L) vaut 1 - n > -n e( ce qui est absurde.

On suppose desormais que n V; S) - S) de sorte que -1=n. Pour
nir la demonstration de la proposition 3.7, il reste a montrer que { ou 0 { est

isotope a une structure de contact partout tangente aux bres. Pour cela, on note
d'abord que, d'apres le lemme 2.12, la restriction de 0 a W est universellement
tendue. Des lors, le theoreme 1.6 de [Gi4] assure que toute structure de contact
universellement tendue sur W qui imprime le même feuilletage que 0 sur @W
est isotope a 0 relativement au bord. En e et, la condition -1=n garantit
qu'il existe dans W, a isotopie relative au bord pres, un seul anneau s'appuyant
sur les cercles de singularites de 0 @W voir le debut de la demonstration de la
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proposition 2.10). Or la structure d'equation

cos(n dx- sin(n dy 0; x; y; 2 D2 S1;

de nit sur W D2 S1 une structure de contact universellement tendue, tangente
a toutes les bres et d'enroulement -n autour de chacune.

D. Structures d'enroulement lâche

On demontre ici la partie b) du theoreme 3.1. On suppose donc que V; S) 6=

- S) et on considere sur V deux structures de contact 0 et 1 universellement
tendues et d'enroulement -1 On note D un disque ferme dans S et on regarde
la surface R S n IntD comme le voisinage regulier d'un bouquet de cercles

K
W

2g
i=1 Ki ou g est le genre de S On parametre en outre le tore plein

W= -1(D) par D2 S1 de telle sorte que la bration jW soit la projection
sur D2

Compte tenu des lemmes 2.8, 2.12 et de la proposition 2.10, on suppose que
chaque structure de contact i i 2 f0; 1g, satisfait aux conditions suivantes :

au-dessus de R les bres sont tangentes a i et d'enroulement -1 ;
au-dessus de IntD les bres sont transversales a i

Les singularites du feuilletage i @W forment alors deux cercles dont la classe
d'homologie vaut 1; V;S) + S) - 1) ou V; S) + S)- 1 -2

Soit Q R un voisinage compact du sommet de K dont l'intersection avec le
bouquet K est connexe. On lisse chaque lacet Ki dans Q en une courbe K0i et
on parametre chaque tore Fi -1(K0i par T2 de telle sorte que les bres soient
les cercles f g S1 et que les deux) courbes de singularites du feuilletage 0Fi
aient pour classe d'homologie 1; 0) Les courbes de singularites du feuilletage
1Fi ont alors une classe du type 1;ni) ni 2 Z, et, quitte a composer le

parametrage de Fi par la transformation x1; x2) 2 T2 7! (-x1; x2) on prend
ni 0

Lemme 3.8. Il existe une structure de contact isotope a 1 qui cö ncide avec 0

au-dessus de R

Demonstration. Si les entiers ni sont tous nuls, une isotopie bree amene 1
a cö ncider avec 0 au-dessus de R On suppose ci-dessous ni 6=0 et on
deforme 1 par une isotopie relative a

Wj6=i Fj en une structure de contact
2 dans laquelle Fi est convexe et possede un feuilletage caracteristique 2Fi

scinde par deux courbes, de classe 1; ni - 1) Comme dans la demonstration
du lemme 2.8, les lemmes sur les surfaces convexes permettent ensuite de mod-i

er 2 par une isotopie toujours relative a
Wj6=i Fj au cours de laquelle Fi

reste convexe, en une structure de contact 3 tangente aux bres de sur un
voisinage de Fi En renouvelant l'operation, on annule au fur et a mesure les
coe cients ni
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Soit Js s 2 [0; 1] une famille lisse d'arcs plonges dans S n IntQ[ Wj6= i Kj)
et ayant les proprietes suivantes :

J0 Ki n IntQ et Js pour tout s 2 [0; 1] a un contact d'ordre in ni
avec J0 en ses extremites ;

les arcs Js s 2 [0; 1] sont d'interieurs disjoints, leur union couvre un
voisinage de D et la trace de chacun d'eux sur IntD est connexe ;

les anneaux Bs -1(Js) pour s > 0 sont du côte positif de Fi { la
coorientation provient du parametrage T2 Fi

Pour tout s 2 [0; 1] on pose Fi;s Fi n B0) [ Bs Le tore Fi;1 est contenu
dans -1(R) et les cercles de singularites du feuilletage 1Fi;1 ont pour classe

1;ni + V; S) + S)) En fait, chaque feuilletage 1Fi;s est tangent aux
bres au-dessus de Js n D avec deux singularites par bre) et transversal aux
bres au-dessus de Js \ IntD Les singularites de 1Fi;s forment donc deux

courbes C
s

qui sont fermees si Js evite IntD par exemple pour s proche de 0
et 1 mais sont des arcs sinon. Sauf pour un nombre ni de valeurs de s instants
de bifurcation), le tore Fi;s est convexe et les extremites de l'arc C+

s
sont reliees

par une feuille reguliere. La courbe fermee
C+

s
union de cette feuille et de C+

sest parallele aux courbes qui scindent 1Fi;s ; sa classe d'homologie, lorsque s
varie de 0 a 1 prend successivement les valeurs 1; ni) 1;ni - 1); : : :

1;ni + V; S) + S)) la condition de contact impose la decroissance de la
pente, comme dans la proposition 1.2).

On choisit desormais pour s un instant ou la classe de
C+

s
vaut 1;ni- 1)

Le feuilletage 1Fi;s est clairement scinde par le bord d'un voisinage annulaire
de

C+
s

donc Fi;s est convexe. Soit t t 2 [0; s] une isotopie de V qui prolonge
l'isotopie Fi;t sans bouger les points de -1(Q) [ Wj6= i Fj Les structures de
contact

t
1 donnent la deformation voulue entre 1 et 2

s
1

Fort du lemme 3.8, on suppose dorenavant que 1 cö ncide avec 0 au-dessus
de R et on pose i @W. On note que, d'apres le lemme 2.12, les restrictions de

0 et 1 a W sont universellement tendues. Or, d'apres le theoreme 1.6 de [Gi4],
les structures de contact universellement tendues sur W qui impriment sur @W
forment deux classes d'isotopie relative au bord. Mieux, 0 jW et 1 jW sont dans
la même classe si et seulement si les anneaux respectifs A0 et A1 que leur attribue
le lemme 2.9 { anneaux qui s'appuient sur les cercles de singularites de { sont
isotopes relativement a leur bord cf. demonstration de la proposition 2.10). Si
A1 n'est pas isotope a A0 relativement a son bord, on amene A1 sur A0 par une
isotopie bree de W qui permute les cercles de singularites de On prolonge
ci-dessous cette isotopie en une isotopie bree t de V dont le stade nal 1

preserve 1 j -1(R) Du coup, 0 est isotope a 1) 1 relativement a -1(R)
donc 0 et 1 sont isotopes.

Comme R est orientable, un avatar de la proposition 3.3 donne un di eomor-phisme

bre de -1(R) sur S(TR) qui envoie 1 sur la structure de contact
canonique R Moyennant le choix d'une structure conforme sur R on note

t l'isotopie bree de S(TR) qui tourne les droites d'un angle t t 2 [0; 1]
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Le di eomorphisme 1 preserve R et permute les courbes de singularites du
feuilletage R @S(TR) Par suite, l'isotopie t transportee sur -1(R) fournit
le prolongement voulu.

E. Structures d'enroulement serre

On demontre ici la partie c) du theoreme 3.1, au calcul pres du nombre exact
des classes de conjugaison qu'on e ectue dans la proposition 3.10. On suppose
donc que n V; S) - S) ou n > 0 est entier, et on s'interesse sur V
aux structures de contact universellement tendues et d'enroulement -n. Toute
structure de ce type est orientable le long des bres car n est entier) et est
isotope, d'apres la proposition 3.7, a une structure de contact tangente aux bres.
D'autre part, l'avatar oriente de la proposition 3.3 assure que toute structure de
contact tangente aux bres et orientable le long des bres s'ecrit S ou
est un revêtement bre V! S(TS) et S la structure de contact canonique sur
S(TS)

On dira que deux revêtements bres 0; 1: V! S(TS) sont isomorphes au-dessus

de S s'il existe des di eomorphismes de V et de S(TS) bres

au-dessus d'un di eomorphisme de S qui rendent commutatif le diagramme

V - V

0# # 1

S(TS) -! S(TS)

Comme dans la section D, on prend sur S un bouquet de cercles K
W

2g
i=1 Ki

ayant pour complementaire un disque et on lisse les lacets Ki en des courbes K0i
On parametre de nouveau chaque tore Fi -1(K0i par T2 de telle sorte que les

bres soient les cercles f g S1 Pour toute structure de contact sur V tan-gente

aux bres et d'enroulement -n la courbe des singularites du feuilletage Fi
{ toutes composantes orientees dans le même sens { a alors une classe d'homologie
qui s'ecrit

2 n; mi( 2 H1(Fi; Z) Z2 :

En outre, etant donne des entiers m1; : : :;m2g 2 Z, on construit sans peine une
structure de contact tangente aux bres et d'enroulement -n pour laquelle

mi mi( 1 i 2g Lorsque S) < 0 la partie c) du theoreme 3.1
decoule donc du lemme suivant et de la proposition 3.10 :

Lemme 3.9. Soit 0 et 1 deux structures de contact tangentes aux bres et
d'enroulement -n
a) Les structures 0 et 1 sont isotopes si et seulement si les entiers mi( 0) et
mi( 1) sont egaux pour 1 i 2g
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b) Lorsque S) < 0 les structures 0 et 1 sont conjuguees si et seulement
si les revêtements bres associes, de V sur S(TS) sont isomorphes au-dessus
de S

Demonstration.
a) Si mi( 0) mi( 1) pour 1 i 2g, une isotopie bree permet clairement
d'amener 0 sur 1 Par ailleurs, si on note q le sommet du bouquet K, chaque
lacet Ki engendre dans 1(S; q) un groupe cyclique in ni. Il lui est ainsi associe
un revêtement i : ~Si S et on parametre ~Si par R S1 de telle sorte que

f0g S1) soit la courbe K0i Les relevements respectifs ~
0 et ~

1 de 0 et 1
sur ~V V sont des structures de contact tangentes aux bres de la bration
~V ~S

De plus, on peut parametrer ~V par R T2 de telle sorte que les
conditions suivantes soient remplies :

le plongement compose T2 f0g T2 ~V V a pour image Fi et
cö ncide avec le parametrage donne de Fi ;

la bration ~V ~S
est la projection sur R S1

Du coup, tous les tores Ta fag T2 a 2 R, sont convexes et la courbe
qui scinde leur feuilletage ~0Ta resp. ~1Ta a pour classe 1; mi( 0)) resp.

1;mi( 1)) Si mi( 0) est di erent de mi( 1) le lemme 4.7 de [Gi4] qui est
un cas particulier de l'inegalite de Bennequin semi-locale, cf. proposition 4.10)
montre que ~

0 n'est pas isotope a ~
1 Par suite, 0 et 1 ne sont pas isotopes.

b) Soit 0 et 1 les revêtements bres V S(TS) associes respectivement a

0 et 1. Si 0 et 1 sont isomorphes au-dessus de S tout di eomorphisme
bre de V qui les conjugue envoie en même temps 0 sur 1 On suppose

donc maintenant que 0 et 1 sont conjuguees par un di eomorphisme 0 de
V D'apres [Wa], 0 est isotope a un di eomorphisme bre La structure
de contact 1 est alors tangente aux bres et isotope a 0 Or il ressort
immediatement du a) que, si deux structures de contact tangentes aux bres et de
même enroulement sont isotopes, elles le sont par une isotopie bree.

A l'instant
nal, cette isotopie conjugue 0 a 1 donc 0 et 1 sont isomorphes au-dessus

de S

Il reste a regarder le cas peu interessant) ou S) 0 La relation n V; S)

- S) force alors V a être un tore. D'apres [Gi4] voir aussi [Ka]), toute struc-ture

de contact universellement) tendue sur T3 est conjuguee a une structure de
contact m d'equation

cos(m dx1 - sin(m dx2 0; m> 0;
x

; x2; 2 T3 :

Pour la projection x1; x2; 7! x1; x2) la structure m est tangente aux bres
et d'enroulement -m. Mais, pour chaque entier d > 0 on peut aussi trouver
une bration T3 T2 pour laquelle m est d'enroulement -dm
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F. Denombrement des revêtements bres

On classi e ici les revêtements bres de S(TS) a isomorphisme pres au-dessus
de S ce qui complete la demonstration du theoreme 3.1-c.

Proposition 3.10. Soit S une surface close orientable, de caracteristique d'Euler
negative ou nulle et soit n un entier positif.
a) A

isomorphisme pres au-dessus de S les revêtements bres de S(TS) a

n feuillets sont classes par le quotient H1(S; Z=nZ) Aut 1(S)

b) A
composition pres par les automorphismes de 1(S) les morphismes de 1(S)

dans Z=nZ sont classes par leur image. Le quotient H1(S; Z=nZ) Aut 1(S)
a donc un cardinal egal au nombre de diviseurs de n

Demonstration.
a) On pose V0 S(TS) et on choisit dans V0 un point de reference. Comme

S) 0 le groupe fondamental 1(V0) est une extension centrale de 1(S) par
Z 1(S1) La suite exacte courte d'homotopie Z 1(V0) 1(S) induit
ainsi une suite exacte courte d'homologie Z= S)Z H1(V0; Z) H1(S)

D'autre part, la bijection entre les classes d'equivalence de) revêtements de V0
et les classes de conjugaison de) sous-groupes de 1(V0) associe aux revêtements
bres de degre n les sous-groupes d'indice n dont la trace sur le sous-groupe

central Z est nZ Ces sous-groupes sont normaux et sont donc les noyaux des
morphismes 1(V0) Z=nZ dont la restriction a Z est la projection canonique.
Comme de tels morphismes transitent par H1(V0; Z) ils existent des que n divise

S) et forment alors un espace principal homogene du groupe H1(S; Z=nZ)
En outre, l'action des di eomorphismes bres de V0 se reduit sur H1(S; Z=nZ)
a l'action des di eomorphismes de S i.e. des automorphismes exterieurs) de

1(S)

b) Soit f0 et f1 des morphismes de 1(S) dans Z=nZ Comme 1(S) est sans
torsion, f0 et f1 se relevent en des morphismes ~f0 et ~f1 de 1(S) dans Z
Ceux-ci sont en dualite de Poincare avec des elements m0u0 et m1u1 de H1(S; Z)
ou m0 m1 sont des entiers et u0 u1 des classes primitives. On se donne alors
des courbes fermees simples A0 et A1 dont les classes d'homologie respectives sont
u0 et u1 Comme il existe un di eomorphisme de S qui envoie A0 sur A1 on
peut supposer, quitte a composer f1 par que A0 A1 A Le morphisme

fi associe alors a la classe de chaque courbe C le nombre mi[A] [C] mod n)
Par suite, f0 et f1 ont même image dans Z=nZ si et seulement si m0Z+ nZ
m1Z+nZ c'est-a-dire si et seulement si pgcd(m0; n) pgcd(m1; n) On suppose
que c'est le cas, on note d ce plus grand commun diviseur et on pose mi dm0i
n dn0 On choisit dans S une sous-surface compacte R contenant A et
di eomorphe a un tore troue. On note B R une courbe fermee simple qui, avec
A forme une base de H1(R; Z) Modulo n l'intersection de mi[A] avec la classe
d'une courbe quelconque C de S est egale a celle de mi[A] + n[B] avec [C] Or



Vol. 76 2001) Structures de contact sur les bres en cercles 249

mi[A] + n[B] d(m0i[A] + n0[B]) et, comme pgcd(m00; n0) pgcd(m01; n0) 1, il
existe un di eomorphisme de S a support dans R qui envoie m00[A] + n0[B]
sur m01[A] + n0[B] Ainsi, f0 f1

4. Etude des structures de contact non transversales

A. Structures invariantes

On considere ici une variete V close, connexe et orientee, munie d'une action
libre du cercle S1 et ainsi bree au-dessus de la surface quotient S V=S1 On
s'interesse sur V aux structures de contact invariantes par l'action. Pour une
telle structure on note l'ensemble des orbites q 2 S qui sont tangentes
a i.e. legendriennes). Il est facile de voir que est une multi-courbe lisse
sur S et R. Lutz montre dans [Lu] que deux structures invariantes 0 et 1 sont
conjuguees par un di eomorphisme equivariant de V si et seulement s'il existe un
di eomorphisme de S qui envoie 0) sur 1) Avant d'expliquer comment
a ranchir ces resultats des conditions d'invariance et d'equivariance, on etablit
une caracterisation des structures invariantes universellement) tendues.

Proposition 4.1. Soit une structure de contact orientable et invariante sur V
a) Si est tendue et si une composante connexe de S n est un disque,
est connexe et V; S) veri e l'inegalite

V; S) > 0 si S 6= S2,

V; S) 0 si S S2.

b) Pour que soit universellement tendue, il faut et il su t que l'une des condi-tions

suivantes soit remplie:
S 6' S2 et aucune composante connexe de S n n'est un disque ;
S ' S2 V;S) < 0 et est vide ;
S ' S2 V;S) 0 et est connexe mais pas vide.

Demonstration.
a) Soit D une composante de S n qui est un disque et E la composante
voisine. Si n'est pas connexe, la surface compacte R Adh(D [ E) di ere
de S et la bration : V! S admet une section

R̂
au-dessus de R ayant, pour

un choix convenable d'orientations, les proprietes suivantes :
1) la courbe @

R̂
est positivement transversale a ;

2) la surface
R̂

a un seul point de contact negatif avec { situe dans D { et
ce point est une singularite d'indice 1 du feuilletage R̂

Or l'inegalite de Bennequin [El2] interdit l'existence d'une telle surface R̂ si est
tendue.

On etablit maintenant l'inegalite sur le nombre d'Euler. Si V; S) < 0 et si
Q SnD est un disque assez petit, la bration admet sur R S n IntQ une
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section
R̂

ayant elle aussi, pour un choix convenable d'orientations, les proprietes

1) et 2) ci-dessus qui sont illusoires si est tendue. En n, si V; S) 0 et si
S 6= S2 le lemme 2.6 de [Gi2] qui sert a etablir l'inegalite de Bennequin relative
aux surfaces closes) montre encore que est vrillee.

b) Pour voir que l'une des conditions enumerees est remplie quand est uni-versellement

tendue, il su t d'appliquer a) et d'observer que, si S 6' S2 et si
une composante connexe de S n est un disque, l'image inverse de par
n'importe quel revêtement non trivial : ~S

S est non connexe. Or cette multi-courbe

n'est autre que ~ ou ~ designe le rappel de sur ~V V Ainsi, ~

est vrillee et l'est virtuellement.
On explique maintenant pourquoi est universellement tendue lorsque

satisfait l'une des conditions requises.
Si S S2 la classi cation de Lutz montre que le revêtement universel ~V; ~

de V; est fait comme suit, a un isomorphisme pres :
si V; S) 0 alors ~V S2 R R3 n f0g et ~ est la structure

usuelle, d'equation dz +xdy- y dx 0 qui est invariante par l'action du flot
x; y; z) 7! etx; ety; e2tz) ;

si V; S) 1 alors ~V S3 est la sphere unite de C2 et ~ est
la structure usuelle, d'equation Im(z dz + wdw) 0 qui est invariante par
l'action du flot z; w) 7! ei z; e i w)

Dans tous ces cas, le theoreme de Bennequin assure que ~ est tendue.
Si S 6= S2 le revêtement universel de S est R2 et il su t de voir que la

structure ~ induite par sur ~V R2 S1 est tendue. Comme toutes les
composantes de sont essentielles sur S i.e. non contractiles), celles de ~

sont des droites proprement plongees dans R2 On remplit R2 avec une suite
exhaustive de disques fermes Dn dont les bords sont transversaux a ~ On
va montrer que ~ est tendue en plongeant chaque domaine Dn S1; ~ dans
S2 S1; ou est une structure de contact invariante ayant une courbe

connexe.
On se donne des equations invariantes de ~ et qu'on ecrit respectivement

+ udt 0 et + v dt 0, ou t 2 S1 et ou u resp. v sont une
1 -forme et une fonction sur R2 resp. sur S2 Les ensembles ~ et
ont donc pour equations respectives u 0 et v 0 On choisit, pour tout
n 0 un plongement n: Dn S2 qui envoie ~ \ Dn sur \ n(Dn)
en respectant les coorientations induites par u et v Il existe ainsi une fonction
hn: Dn ]0;1[ telle que v n hnu et on pose n hn Le lemme 4.2
ci-dessous garantit alors que la forme n) n se prolonge a S2 en une forme n
veri ant l'inegalite v d n+ n^dv > 0 laquelle assure que l'equation n+v dt 0
de nit une structure de contact n invariante sur S2 S1 Or, par construction,

n id : Dn S1; ~ - S2 S1; n

est un plongement de contact et, comme n) fv 0g la struc-ture

n est isotope a Par consequent, la structure ~ est tendue et l'est
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universellement.

Lemme 4.2. Soit S une surface compacte orientee, R une sous-surface com-pacte

et v: S! R une fonction qui admet 0 pour valeur reguliere, de même que

v j @S et v j @R Si v s'annule dans chaque composante de S n R toute 1-forme
sur R qui satisfait a l'inegalite

v d + ^ dv > 0

se prolonge a S en une 1 -forme veri ant partout l'inegalite 4.2).

Demonstration. En un point de fv 0g, l'inegalite 4.2) dit simplement que
est transversale a dv On prolonge donc sans peine a un voisinage U de

D'autre part, en tout point de S n

v d + ^ dv v2 d( v) :

On observe alors que, par hypothese, chaque composante D de Sn(R[ contient
au moins un arc J de dans sa frontiere. Par suite, l'integrale de v sur le
bord de D est in nie. Quitte a diminuer le voisinage U on peut donc prolonger

v a D en une 1 -forme dont la di erentielle exterieure soit partout positive.

B. Comment revisiter Lutz

On donne ici une description de toutes les structures de contact universellement
tendues sur une variete bree en cercles au-dessus d'une surface.

De nition 4.3. Soit V une variete orientee bree en cercles au-dessus d'une
surface compacte S Une multi-courbe sur S est ici une union disjointe d'un
nombre ni de courbes fermees simples et d'arcs proprement plonges dans S Par
ailleurs, une multi-courbe est essentielle si aucune de ses composantes n'est nulle
en homotopie { relative au bord s'il s'agit d'un arc.

On dira qu'une structure de contact sur V est cloisonnee par une multi-courbe

S si les conditions suivantes sont remplies:

sur V n -1( la structure est transversale aux bres ;

la surface -1( est transversale a et ses caracteristiques sont des bres.

Exemple. Toute variete orientee V bree en cercles au-dessus d'une surface S

orientable) peut être munie d'une action libre du cercle qui de nit la bration.
Quand S est compacte, R. Lutz construit dans [Lu], pour toute multi-courbe non
vide dans S une structure de contact invariante sur V telle que soit
egal a Cette structure est alors cloisonnee par En outre, elle est orientable
si et seulement si la classe de dans H1(S; Z=2Z) est nulle.
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Un theoreme de recollement dû a V. Colin [Co] assure que toute structure
de contact cloisonnee par une multi-courbe essentielle est universellement tendue 4

Reciproquement :

Theoreme 4.4. Soit V une variete connexe et orientee, bree en cercles au-dessus

d'une surface close S de caracteristique d'Euler negative ou nulle.
a) Toute structure de contact orientable et universellement tendue est isotope a
une structure cloisonnee par une multi-courbe essentielle.
b) Soit 0 et 1 des structures de contact cloisonnees par des multi-courbes es-sentielles

non vides, respectivement notes 0 et 1 Les structures 0 et 1 sont
isotopes si et seulement si les multi-courbes 0 et 1 le sont.

Avec les theoremes 3.1 et 2.3 { ce dernier montrant en particulier qu'une struc-ture

transversale aux bres ne peut être isotope a une structure cloisonnee par
une multi-courbe non vide {, le theoreme ci-dessus etablit une classi cation des

structures de contact universellement tendues sur V lorsque la caracteristique
d'Euler de S est negative ou nulle. Pour les varietes brees en cercles au-dessus
de la sphere, qui sont des espaces lenticulaires, le theoreme 1.1 de [Gi4] donne une
classi cation de toutes les structures de contact tendues.

D'autre part, la partie a) du theoreme 4.4 prouve que toute structure de contact
universellement tendue et d'enroulement positif ou nul est isotope a une struc-ture

invariante par une quelconque action libre du cercle qui de nit la bra-tion).

La partie b) classi e donc en fait les structures de contact S1 -invariantes.
Sa demonstration s'adapte alors, sans surprise, aux structures de contact R-invariantes

sur le produit d'une surface par R. On obtient ainsi, compte tenu de
l'abondance des surfaces convexes cf. section 2.D), une classi cation generique
des structures de contact tendues au voisinage des surfaces :

Theoreme 4.5. Soit M; une variete de contact de dimension 3 F M;
une surface convexe close, U F R un voisinage homogene de F et la
multi-courbe qui scinde F
a) La restriction de a U est tendue si et seulement si l'une des conditions
suivantes est remplie:

F 6' S2 et aucune composante de F n n'est un disque ;
F ' S2 et est connexe mais pas vide.

b) On suppose que est tendue. Une surface convexe F0 M; possede un
voisinage homogene isomorphe a U; si et seulement s'il existe un di eomor-phisme

de F dans F0 qui envoie sur une multi-courbe qui scinde le feuilletage
caracteristique F0

La partie a) de ce theoreme est un corollaire immediat de la proposition 4.1.
En e et, la restriction de a U F R est tendue si et seulement si la structure
de contact induite par sur F R=nZ est tendue pour tout entier n > 0

4 Une autre demonstration de ce fait s'ensuit de la proposition 4.1 et de la partie b) du
theoreme 4.4.
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En outre, la multi-courbe U cf. de nition 2.6) qui scinde le feuilletage F n'est
autre que La partie b) sera demontree dans la section D.

C. Existence d'un cloisonnement

On demontre ici la partie a) du theoreme 4.4. La surface S est donc de car-act

eristique d'Euler negative ou nulle et les structures de contact qu'on considere
sont orientables.

Lemme 4.6. Soit une structure de contact tendue sur V et R S une surface
compacte, connexe et a bord non vide. Si l'enroulement e( de est positif ou
nul, est isotope a une structure qui, au-dessus de R est cloisonnee par un
systeme d'arcs.

Demonstration. On adapte la demonstration du lemme 2.8. Puisque l'enroulement
e( est positif ou nul, il existe dans V une courbe legendrienne isotope a la bre
et d'enroulement nul proposition 2.4). On regarde alors R comme un voisinage
regulier d'un bouquet de cercles K de sommet q Quitte a faire une premiere
isotopie, on peut trouver des coordonnees x; y; t) 2 D2 S1 au-dessus d'un
voisinage compact Q de q dans lesquelles est la projection sur le disque, a
pour equation dy + xdt 0 et q 0; 0) Sur N -1(Q) la structure est
cloisonnee par l'arc J fx 0g

On modi e maintenant K par des mouvements de Whitehead a support
dans Q, en un graphe K0 constitue de cercles lisses K0i 1 i k, et d'un
arbre K00 inclus dans Q. On met en outre tous les sommets de K0 sur l'arc

Figure 2. Modi cation dans Q du bouquet K en un graphe K0 constitue de cercles lisses et
d'un petit arbre.

J Q et on rend les arêtes transversales d'une part a J d'autre part au vecteur
@y en tout point d'intersection avec J On deforme ensuite par une petite
isotopie relative a N pour rendre convexe la surface -1(K0 n IntQ) qui est une
union d'anneaux. Chaque tore Fi -1(K0i 1 i k est ainsi convexe et la
multi-courbe qui scinde son feuilletage caracteristique Fi est verticale. Elle ne
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peut en e et intersecter les bres au-dessus de K0i \J qui sont des feuilles fermees

de Fi On considere alors sur Fi un feuilletage singulier i ayant les proprietes

suivantes :

i est scinde par la même multi-courbe que Fi ;

i cö ncide avec Fi dans Fi \ -1(Q) ;

i est non singulier et est transversal aux bres en dehors de ses feuilles
fermees, lesquelles sont des bres.

Le lemme 2.7 fournit, pour 1 i k un plongement i de Fi dans V { isotope
a l'inclusion { dont l'image a pour feuilletage caracteristique i) i et a même
intersection que Fi avec le compact

Pi -1(J[ K00) [ 1(F1)[ [ i-1(Fi-1) [ Fi+1 [ [ Fk :

Si est un di eomorphisme de V isotope a l'identite qui prolonge les divers
plongements i la structure de contact 0 trace sur chaque tore Fi le
feuilletage i

Pour completer la preuve, on parametre un voisinage tubulaire de K0i par
K0i [-1; 1] ou K0i K0i f0g Les tores Fi;s -1(K0i fsg) ont, pour s petit,
un feuilletage 0Fi;s conjugue a 0Fi car ce feuilletage est topologiquement stable.
On peut donc redresser 0 par une petite isotopie stationnaire sur

SFi[ -1(Q)
en une structure 00 pour laquelle 00Fi;s est transversal aux bres en dehors de ses

feuilles fermees, lesquelles sont des bres. Les projections sur S des feuilles fermees

de tous les feuilletages 00Fi;s avec s petit, forment alors un systeme d'arcs qui,
avec J cloisonne 00 sur un voisinage de K0 Comme R se retracte par isotopie
sur un voisinage arbitrairement petit de K0 le lemme est demontre.

Desormais, designe une structure de contact universellement tendue sur V
On note A un anneau non separant dans S et on pose R S n IntA Compte
tenu du lemme ci-dessus, on suppose que est cloisonnee, au-dessus de R par
un systeme d'arcs R R On parametre A par S1 [0; 1] et W -1(A)
par T2 [0; 1] de telle sorte que la bration jW soit la projection. Pour tout
a 2 [0; 1] on pose encore Ta T2 fag L'argument utilise au lemme 2.12
montre ici que la restriction de a W est universellement tendue. D'apres

les propositions 3.15, 3.22 et 3.29 de [Gi4], la structure jW est alors isotope,
relativement au bord de W, a une structure de contact pour laquelle il existe
dans A ' S1 [0; 1] une multi-courbe A ayant les proprietes suivantes :

si Ta \ -1( A) 6= cette intersection est l'union des feuilles fermees et
des singularites de Ta ces singularites formant donc des courbes) ;

si Ta \ -1( A) le feuilletage Ta est une suspension dont aucune
feuille fermee n'est isotope a la bre.

A partir de la, on deforme facilement par une isotopie relative a @W[ -1( A)
en une structure de contact 0 cloisonnee par A En recollant 0 avec la re-striction

de a -1(R) on obtient une structure de contact 0 cloisonnee par

R[ A Il reste a montrer que les courbes de sont toutes essentielles, fait
qui resulte de la proposition 4.1 et du lemme suivant :
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Lemme 4.7. Deux structures de contact cloisonnees par une même multi-courbe
non vide sont isotopes.

Demonstration. Soit 0 et 1 les structures de contact, la multi-courbe qui les
cloisonne et u: S! R une fonction dont le niveau fu 0g est regulier et egal
a D'apres [Lu] voir aussi [Gi1]), il existe sur S une 1 -forme pour laquelle
la 2 -forme ud + ^ du est une forme d'aire sur S

On munit maintenant V d'une action libre du cercle de nissant la bration et
d'une forme de connexion Comme chacune des structures i i 2 f0;1g, est
cloisonnee par elle admet une equation du type i + u 0 ou i est une
1 -forme sur V nulle sur les vecteurs tangents aux bres. Un calcul direct montre
alors que, si s est un reel positif pris assez grand, les equations de Pfa

1- t) i + ts + u 0; i2 f0; 1g;

de nissent des structures de contact pour tout t 2 [0; 1] Le theoreme de Gray
assure des lors que 0 et 1 sont isotopes.

D. Inegalite de Bennequin semi-locale

On demontre ici la partie b) du theoreme 4.5. S'il existe un di eomorphisme de
F dans F0 envoyant sur une multi-courbe qui scinde F0 les resultats de [Lu]
assurent que tout voisinage homogene de F0 est isomorphe a U; Pour etablir
la reciproque, on utilise la notion d'intersection geometrique.

De nition 4.8. Sur une surface close, on considere une courbe fermee simple C
et une multi-courbe L'intersection geometrique i( ; C) est le nombre minimal
de points d'intersection entre et une courbe quelconque isotope a C.

Un des interêts de cette notion reside dans la proposition suivante, qui est a la
base des travaux de W. Thurston sur les surfaces [Th3] voir aussi [FLP, expose 4
p. 59]) :

Proposition 4.9. Soit 0 et 1 deux multi-courbes essentielles sur une surface
close. Si i( 0; C) i( 1; C) pour toute courbe fermee simple C, alors 0 et 1
sont isotopes.

D'apres un theoreme de J. Stallings, tout di eomorphisme de F R dans
F0 R est isotope a un di eomorphisme produit. La partie b) du theoreme 4.5
decoule alors directement de la proposition ci-dessus et de l'inegalite de Bennequin
semi-locale que voici :

Proposition 4.10. Soit une structure de contact R-invariante et tendue sur
le produit U F R, ou F est une surface close orientee de genre non nul. Soit
C une courbe fermee simple sur F F f0g et une multi-courbe qui scinde F
Pour toute isotopie t de U qui amene C sur une courbe legendrienne 1(C)
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le nombre de tours que fait par rapport au plan tangent a 1(F) le long de

1(C) veri e l'inegalite

deg ; 1(F); 1(C) - 1i( ; C) :

De plus, il existe une isotopie t qui realise l'egalite.

Demonstration. Quitte a deplacer C sur F par une isotopie, on suppose que
C rencontre en i( ; C) points et transversalement. On prend en outre
orientable { ce qui revient a passer eventuellement a un revêtement double { et,
comme la classe de dans H1(F; Z=2Z) est alors nulle, on pose 2n i( ;C)

On observe tout d'abord que l'egalite est atteinte. En e et, on construit facile-ment

un feuilletage de F scinde par et dans lequel C est une union de
singularites et de feuilles. De plus, le lemme 2.7 fournit une isotopie t de plonge-ments

de F dans U qui amene F sur une surface 1(F) ayant pour feuilletage
caracteristique 1) La courbe 1(C) est alors une courbe legendrienne le long
de laquelle fait -1

2 Card( \C) tours par rapport au plan tangent a 1(F)
Soit : ~F F le revêtement associe a C et ~C un relevement compact de C

dans ~F On note ~ le rappel de sur ~U ~F R et ~
t t 2 [0; 1] le relevement

de l'isotopie t a ~U
Le nombre de tours que fait par rapport a 1(F) le long

de 1(C) est clairement egal au nombre de tours que fait ~ par rapport a ~1(~F)
le long de ~1(~C) En outre, les courbes ~t(~C) restent dans un compact de ~U
On parametre alors ~F par S1 R de telle sorte que ~C

soit la courbe S1 f0g et
on se donne un reel a > 0 assez grand pour que toutes les courbes ~t(~C) soient
contenues dans le domaine ~Ua ~Fa R, ou ~Fa S1 [-a; a] On etablit ci-dessous

l'inegalite voulue en plusieurs etapes. On plonge d'abord ~Ua; ~ dans un
modele abstrait, puis on realise ce modele dans la sphere S3 munie de sa structure
de contact ordinaire et on conclut a l'aide de l'inegalite de Bennequin classique.

Assertion. Aucune courbe de ~ -1( ne coupe ~C
en plus d'un point.

Preuve. On suppose qu'une courbe de ~ coupe ~C en deux points et on note J un
arc de cette courbe joignant deux points d'intersection consecutifs. La composante
connexe bornee de ~F n (~

C [ J) est un disque D et D n -1(C) a au moins
une composante connexe D0 dont le bord est l'union de deux arcs, l'un contenu
dans J et l'autre dans -1(C) La restriction de a D0 est alors injective et, en
deplacant C par isotopie le long de D0) on elimine deux points d'intersection
avec Ceci est absurde puisque Card( \ C) i( ;C)

L'assertion ci-dessus assure que les composantes de ~ qui vont d'un bout a
l'autre de ~F

sont exactement celles qui rencontrent ~C
et leur nombre est donc

egal a 2n= i( ; C) Selon que n est nul ou non, il existe alors un plongement
incompressible a;n de ~Fa dans T2 ou dans S1 R tel que

a;n ~ \ ~Fa a;n ~Fa \ n;
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ou

0 x; y) 2 R2=Z2 j y 1=4 et

n x; y) 2 R=Z R j nx 0 ; pour n > 0.

Par suite, si n 0 resp. si n > 0 le lemme 4.2 permet, comme dans la
demonstration de la proposition 4.1, de plonger incompressiblement ~Ua; ~ dans
T2 R; 0) resp. dans S1 R2; n) ou n est n'importe quelle structure

de contact R-invariante qui imprime sur T2 f0g resp. sur S1 R f0g) un
feuilletage caracteristique scinde par n

Soit maintenant la structure de contact ordinaire sur la sphere S3 C2
et soit L0 la courbe legendrienne non nouee) S3 \ R2 { dont l'invariant de
Thurston-Bennequin tb(L0) vaut -1

Le theoreme de Darboux permet de parametrer un voisinage W de L0 par
S1 R2 de telle sorte que L0 soit la courbe S1 f0g et que ait pour equation
dz + pd 0, ; p; z) 2 S1 R2 Le tore

T ; p; z) 2 S1 R2 j jpj
2 + jzj

2 1

est convexe car son feuilletage caracteristique T est scinde par les deux cercles

fp 1g Par suite, T possede un voisinage homogene isomorphe a T2 R; 0)
Si i( ; C) 0 on peut donc plonger ~Ua; ~ dans S3; en envoyant ~1(~C)
sur une courbe legendrienne non nouee L dont l'invariant de Thurston-Bennequin
vaut

tb(L) deg ~; 1(~F); ~1(~C) - 1 :

L'inegalite de Bennequin assure alors que le degre est negatif ou nul.
Pour nir, on considere sur S1 R2 la structure de contact n d'equation

cos(2n x) dy - sin(2n x)dt 0:

Un calcul direct montre que le plongement de S1 R2 dans S3 donne par

x; y; t) 7-!
8><>:

2 x;
z cos(2n x) y - sin(2n x) t;
p=n sin(2n x)y + cos(2n x) t

envoie n sur Si i( ; C) 2n > 0 on peut donc plonger, par composition,

~Ua; ~ dans S3; en envoyant ~1(~C) sur une courbe legendrienne non nouee L
dont l'invariant de Thurston-Bennequin vaut

tb(L) deg ~; ~1(~F); ~1(~C) + n- 1 :

L'inegalite de Bennequin assure alors que le degre vaut au plus -n.
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E. Unicite du cloisonnement

On demontre ici la partie b) du theoreme 4.4. Compte tenu du lemme 4.7, il su t
de prouver que, si les structures de contact 0 et 1 sont isotopes, les multi-courbes

qui les cloisonnent le sont aussi. L'argument est une variante de celui qui
conduit a l'inegalite de Bennequin semi-locale. Il repose sur une interpretation
appropriee de l'intersection geometrique. Par commodite, on appelle dans la suite
indice d'un tore convexe dans une variete de contact tendue le nombre de com-posantes

connexes de toute multi-courbe qui scinde son feuilletage caracteristique.

Lemme 4.11. Soit une structure de contact sur V cloisonnee par une multi-courbe

essentielle et soit C une courbe fermee simple de S dont l'intersection
geometrique avec n'est pas nulle. L'indice minimal des tores convexes isotopes
a -1(C) est egal a i( ; C) et leur feuilletage caracteristique est scinde par des
courbes isotopes aux bres.

Demonstration. On suppose que C intersecte en i( ; C) points et on note
F0 le tore -1(C) Au-dessus de C n resp. de \ C le feuilletage F0
est transversal resp. tangent) aux bres. En particulier, chaque bre -1(q)
q 2 \ C est une feuille fermee ou une courbe de singularites de F0 Comme

i( ; C) 6= 0 le tore F0 est convexe et son indice est egal a i( ; C)
Dans la suite, on designe par : ~S

S le revêtement associe a la courbe C,
par ~ : ~V V ~S la bration induite et par ~ le rappel de sur ~V On
pose ~ -1( et ~F0 ~-1(~C) ou ~C est un relevement compact de C dans

~S
En outre, on parametre ~S par R S1 de telle sorte que ~C soit f0g S1 et

~V par R T2 de telle sorte que ~ soit la projection.
Soit maintenant F un tore convexe isotope a -1(C) et ~F

le relevement
compact de F dans ~V

obtenu en relevant depuis ~F0 une isotopie entre F0 et F
Soit encore a et " des reels positifs satisfaisant aux conditions suivantes :

les cercles fsg S1 s 2 [-"; "] sont tous transversaux a ~ { et coupent
donc ~ en i( ; C) points ;

les cercles f ag S1 sont transversaux a ~ et le domaine [-a; a] T2 ~Vcontient ~F
Comme dans la demonstration de la proposition 4.10, les courbes de ~ qui vont
d'un bord a l'autre de l'anneau [-a; a] S1 sont celles qui intersectent ~C et sont
en nombre i( ; C) Par suite, il existe un plongement

: [-a; a] S1 -! [-"; "] S1

qui est l'identite sur f0g S1 et veri e

~ \ [-a; a] S1 ~ \ [-a; a] S1 :

Le lemme 4.2 fournit alors, comme dans la proposition 4.1, un plongement de
contact

: [-a; a] T2; ~ - [-"; "] T2; ~
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qui induit l'identite sur ~F0 f0g T2 En outre, l'inegalite de Bennequin semi-locale

proposition 4.10) montre que le feuilletage caracteristique d'un tore convexe
isotope a f0g T2 dans ([-"; "] T2; ~ est scinde par au moins i( ; C) courbes
qui sont toutes isotopes aux bres. En particulier, l'indice de F { qui est egal a
celui de ~F donc a celui de ~F) { vaut au moins i( ; C)

On complete a present la demonstration du theoreme 4.4-b. Soit C une courbe
fermee simple sur S Compte tenu de la proposition 4.9 et du lemme 4.11, il
su t de montrer que, si i( 0; C) est nul, i( 1; C) l'est aussi. On suppose donc
que i( 0; C) vaut 0 et on considere un tore F0 -1(C0) ou C0 est une
courbe isotope a C et disjointe de 0 Par construction, le feuilletage 0F0
est transversal aux bres. Tout tore convexe F qui s'obtient par une deformation
assez petite de F0 a donc un feuilletage caracteristique 0F scinde par des courbes
non isotopes aux bres. Il resulte alors du lemme 4.11 que, si i( 1; C) n'est pas
nul, les structures de contact 0 et 1 ne sont pas isotopes.

F. Structures virtuellement vrillees

On termine cet expose par un resultat de nitude pour les structures de contact
virtuellement vrillees.

Theoreme 4.12. Soit V une variete connexe et orientee, bree en cercles au-dessus

d'une surface close S Les structures de contact orientables et virtuellement
vrillees sur V forment un nombre ni de classes d'isotopie borne par

sup 0;- S) - V; S)- 1 si V; S) 0,

1 + sup 0;- S) - V; S)- 1 si V; S) > 0.

En fait, avec les formes normales degagees dans [Gi4], on obtient une description
precise de tous les exemples potentiels de classes d'isotopie de) structures de con-tact

virtuellement vrillees sur V Il est par ailleurs probable que toutes les struc-tures

de contact ainsi decrites sont e ectivement tendues { même holomorphique-ment

remplissables { et que les techniques de chirurgie developpees par R. Gompf
dans [Go] permettraient de le prouver. Du reste, la proposition 2.13 montre,
par des astuces de revêtements, l'existence de structures de contact virtuellement
vrillees sur les varietes brees en cercles au-dessus du tore et dont le nombre d'Euler
est inferieur ou egal a -2

Lemme 4.13. Si V porte une structure de contact virtuellement vrillee et d'enrou-lement

positif ou nul, celle-ci est isotope a une structure cloisonnee par une courbe
connexe contractile et V; S) est strictement positif.
Demonstration. Soit A S un anneau incompressible, R la surface S n IntA et
W le tore epais -1(A) D'apres le lemme 4.6, toute structure de contact tendue
d'enroulement positif ou nul est isotope a une structure qui, au-dessus de R
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est cloisonnee par un systeme d'arcs R La restriction de a W'T2 [0; 1]
est ainsi une structure de contact tendue qui trace sur chaque composante de @W
un feuilletage ayant des feuilles fermees ou des cercles de singularites paralleles

aux bres. Vu ce comportement au bord, le theoreme 1.5 de [Gi4] assure que jW
est universellement tendue et est isotope, relativement a @W, a une structure
de contact cloisonnee par un systeme d'arcs A. Ainsi est isotope a une
structure de contact cloisonnee par la multi-courbe R [ A

Pour conclure, on se donne sur V une action libre du cercle dont les orbites
sont les bres de D'apres le lemme 4.7, est isotope a la structure invari-ante

cloisonnee par Comme est tendue mais pas universellement, la proposi-tion

4.1 montre que est une courbe connexe contractile et que V; S) > 0

Demonstration du theoreme 4.12. D'apres les lemmes 4.13, 4.7 et la proposition 4.1,
les structures de contact virtuellement vrillees et d'enroulement positif ou nul
forment au plus une classe d'isotopie, et aucune si V; S) 0 On etudie
donc desormais les structures de contact virtuellement vrillees et d'enroulement
strictement negatif.

Soit D S un disque, R la surface S n IntD et W le tore plein -1(D)
Comme d'habitude, on parametre W par D2 S1 de telle sorte que jW soit la
projection sur D2 D'apres le lemme 2.8, toute structure de contact d'enroulement

-n n > 0 est isotope a une structure pour laquelle les bres au-dessus
de R sont legendriennes et d'enroulement -n Dans ces conditions, @W est
un tore convexe d'indice 2 lemme 2.11) et les singularites de son feuilletage
caracteristique @W forment des courbes de classe n; n V;S) + S) - 1)
dans H1(@W; Z) Z2 corollaire 3.5).

Assertion. Ou bien n V; S) - S) ou bien n 1 et V; S) < - S)

Preuve. Pour tout a 2 ]0; 1] on note Ta le tore aS1 S1. D'apres la propo-sition

3.22 de [Gi4], la restriction de a W est isotope, relativement au bord,
a une structure de contact transversale a f0g S1 et dont les feuilletages
caracteristiques Ta ont les proprietes suivantes :

Ta est une suspension sauf pour un nombre ni de valeurs a1; : : : ; ak 2
]0; 1] ;

Tai 1 i k, n'a aucune orbite fermee et ses singularites forment deux
cercles.

Chaque feuilletage Ta determine alors une droite a dans R2 H1(Ta; R)
qui, pour a 2 faig, porte les cycles asymptotiques et, pour a 2 faig, contient
la classe des cercles de singularites. Cette droite varie continûment avec a et
converge vers 0 R f0g quand a tend vers 0 Les droites a a 2 [0; 1]
decrivent donc un connexe de P1(R) connexe qui ne contient pas la droite

f0g R car l'enroulement de est strictement negatif. Ainsi, est l'intervalle
[ 1; 0] pour l'orientation naturelle de P1(R) et n V; S) + S) 0 puisque

1 est dirigee par n; n V; S) + S) - 1) D'autre part, pour toute droite
rationnelle 2 [ 1; 0[ on peut trouver un a 2 ]0; 1] tel que a soit egale a et
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que Ta soit un tore convexe d'indice 2 En fait, pour cela, il faut eventuellement
perturber par une petite isotopie qui ne detruit pas les proprietes utiles.

A partir de ces observations, la preuve est identique a celle de l'assertion simi-laire

dans la demonstration de la proposition 3.7.

Pour terminer la demonstration, on utilise la classi cation des structures de
contact sur le tore plein etablie dans [Gi4]. Si n V; S) - S) la droite

1 est dirigee par le vecteur n;-1) Avec cette condition au bord, le theoreme
1.6 de [Gi4] a rme que la restriction de a W est universellement tendue.
On se trouve du coup dans la situation de la section 3.C : est isotope a une
structure de contact tangente aux bres et n'est pas virtuellement vrillee. Si

n 1 et si V; S) < - S) la droite 1 est dirigee par le vecteur 1;-m)
ou m 1- V; S) - S) > 1 Le theoreme 1.6 de [Gi4] dit alors qu'il y a
sur W, a isotopie relative au bord pres, m - 1 structures de contact tendues
qui cö ncident avec sur @W, dont une seule) est universellement tendue. En
outre, l'existence sur V d'une structure de contact universellement tendue et
d'enroulement -1 assure que, si jW est universellement tendue, l'est aussi.
On obtient ainsi les bornes annoncees.

Remarque. La demonstration ci-dessus fait appara t̂re que -1 est la seule valeur
strictement negative possible pour l'enroulement d'une structure de contact virtu-ellement

vrillee.

Par ailleurs, les resultats de cette partie permettent de completer quelque peu

l'enonce du theoreme 2.3 : si une structure de contact sur V est d'enroulement
positif ou nul, il existe non seulement une courbe legendrienne isotope a la bre et
d'enroulement nul mais tout un tore transversal a et dont les caracteristiques
sont isotopes aux bres. Ce tore est la version de contact de la feuille compacte
trouvee par W. Thurston [Th2]. Lorsque est tendue, son existence resulte soit
du theoreme 4.4, soit du lemme 4.13. Lorsque est vrillee, un theoreme de
Y. Eliashberg [El1] assure qu'une modi cation de Lutz le long d'une bre produit
une structure de contact isotope a Or une telle modi cation fait clairement
appara t̂re le tore cherche voir par exemple [Gi2]).
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