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Un théoréme de rigidité non-métrique pour les variétés lo-
calement symétriques hermitiennes

Bruno Klingler

Abstract. Let X be an irreducible Hermitian symmetric space of non-compact type of di-
mension greater than 1 and G be the group of biholomorphisms of X ;let M =T\ X bea
quotient of X by a torsion-free discrete subgroup I' of G such that M is of finite volume in the
canonical metric. Then, due to the G -equivariant Borel embedding of X into its compact dual
X , the locally symmetric structure of M can be considered as a special kind ofa ( G¢, X¢ ) -
structure on M , a maximal atlas of X, -valued charts with locally constant transition maps in
the complexified group G¢ . By Mostow’s rigidity theorem the locally symmetric structure of
M is unique. We prove that the ( G, X, ) -structure of M is the unique one compatible with
its complex structure. In the rank one case this result is due to Mok and Yeung.

Mathematics Subject Classification (2000). 53C35, 32M 15, 22E40.
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1. Introduction

Dans ce travail, on démontre un théoréeme de rigidité non-métrique pour les quo-
tients lisses de volume fini d’espaces symétriques hermitiens irréductibles de type
non-compact en dimension complexe n > 2.

Soit X = G/K un espace symétrique hermitien irréductible de type non-
compact, ol G désigne un groupe de Lie réel simple connexe et K un sous-groupe
compact maximal de G . Soit M =T\ X un quotient lisse de volume fini de X ,
ol I' désigne un réseau sans torsion de G. Il est bien connu que si X est de
dimension n > 2, la variété M posséde de nombreuses propriétés de rigidité liées a
sa structure métrique. Dans la classe des variétés localement symétriques d’abord :
le théoreme de rigidité de Mostow [16] (pour le cas M compact, généralisé par
Prasad et Margulis dans le cas de volume fini), affirme que M s’uniformise de fagon
unique comme quotient de X . Dans la classe des variétés kahlériennes ensuite :
dans [21], Siu montre que si M est compacte toute variété kahlérienne compacte
qui lui est homotope lui est biholomorphe (ou conjuguée-biholomorphe). Enfin
en rang > 2, Mok montre dans [13] que toute métrique hermitienne a courbure
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semi-négative au sens de Griffiths sur M est un multiple constant de la métrique
canonique de M .

Dans ce papier, on considere la structure localement symétrique hermitienne de
M comme un cas particulier de structure localement homogeéne (non riemannienne)
plus générale. Notons X, = G¢ /Q_ le dual compact de X, ot G¢ désigne le
groupe de Lie complexifié de G et ¢)_ un sous-groupe parabolique maximal de
Ge admettant le groupe K¢ complexifié de K comme sous-groupe de Levi. On
appelle (G¢, X, )-structure sur une variété N la donnée d’un atlas maximal de
cartes pour N a valeur dans X, , a changements de cartes localement constants
dans le groupe Gge . L’étude de telles structures a été initiée dans [17] et [10].
D’apres le théoreme de plongement de Borel, ’espace X se réalise comme G-
orbite ouverte dans X, . Ainsi, la structure localement symétrique hermitienne de
M =T\ X est un cas particulier de (G¢, X, )-structure sur M.

Exemples :

1. Structures projectives complexes sur les variétés hyperboliques compleres.

Soit X = H{ = SU(n,1)/S(U(n) x U(1)) l'espace hyperbolique complexe de
dimension n et G = SU(n,1) son groupe d’isométries holomorphes. Le groupe
Ge  s’identifie au groupe spécial affine SL(n + 1, C), l'espace X, a l’espace
projectif P ™ C et le plongement de Borel est donné par la réalisation usuelle de
I’espace hyperbolique complexe

g={z=1lz0: ;2] €P"C/ |20/* + -+ |zaaf’ < |2l’} -
Une (Ge, X.)-structure est une structure projective complexe, c’est-a-dire la
donnée d’un atlas de cartes & valeur dans P " C , & changement de cartes locale-
ment constants dans SL(n + 1, C). En dimension n = 1, I’étude des structures

projectives sur la surface de Riemann M = I'\ HL de genre g > 2 est un probléme
classique [8].

2. Structures conformes complezes.
Si G =SO0p(n,2) et X désigne I'espace symétrique hermitien SOq(n, 2)/(SO(n)x
SO(2)), le groupe G¢ s’identifie au groupe SO(n + 2, C) et I'espace X, ala
quadrique complexe de dimension n

n+1

X, ={z2=z20;- ;2041) € P"TIC/ Zz? =0} .

i=0
Une (Gg, X, )-structure sur une variété N est la méme chose qu'une structure
conforme holomorphe sur N .

Dans [15, Theorem 2.1], Mok et Yeung démontrent le :

Théoréme 1.1. [Mok-Yeung] Soit M = I'\ HE un quotient hyperbolique
compleze de dimension n > 2, de volume fini. Alors M n’admet pas d’autre struc-
ture projective complexe compatible avec sa structure holomorphe que sa structure
canonique.
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Dans ce travail, nous généralisons le résultat de Mok et Yeung au rang supérieur
et simplifions la preuve de leur résultat au passage.

Théoréme 1.2. Soit M =T\ X un quotient lisse de volume fini d’un espace
symétrique hermitien irréductible de type non-compact X = G/K, de dimension
complere n > 2. Alors M n’admet pas d’autre (Ge, X, ) -structure compatible
avee sa structure holomorphe que sa ( Ge, X, ) -structure naturelle.

Remarque. L’hypotheése consistant a travailler a structure holomorphe fixée
est doublement raisonnable. D’une part la structure complexe de M est connue
étre localement rigide ([3], [1]). D’autre part cette hypothése couvre tous les cas
connus : lexistence sur M d'une structure complexe différant de sa structure
naturelle ou de sa conjuguée est une question ouverte.

Le plan de ce papier est le suivant.

Apreés un rappel de notations (section 2), la courte section 3 montre que la

(Gg, X, )-structure naturelle d’un quotient M =T"\ X de volume fini est locale-
ment rigide, indépendamment de la structure holomorphe de M . Le théoreme 1.2
et cette remarque soutiennent la conjecture selon laquelle le quotient M admet
une unique (Gg, X, )-structure, indépendamment de sa structure complexe. Les
sections 4 et 5 sont dévolues a la preuve du théoreme 1.2.

A la section 4, on rappelle que le modele X, porte une Q_ -structure d’ordre 2
et une K¢ -structure d’ordre 1 naturelles (c.f. [17]). On caractérise alors les
transformations locales de X, provenant de Gg¢ en termes de jets : ce sont
simplement les transformations préservant la ¢)_ -structure d’ordre 2 de X,
(resp. la K¢ -structure d’ordre 1 deés que X est de de rang > 1). On en
déduit (proposition 4.8) que I'espace T(g. x,)(IN) des (Gc, X, )-structures sur
une variété complexe N , compatibles avec sa structure holomorphe, s’injecte dans
I'espace des @) _ -structures d’ordre 2 sur N, c’est-a-dire dans 'espace des sec-
tions holomorphes du fibré Fo(N)/Q_, ot Fy(N) désigne le fibré des 2-jets de
N . Enrang 1,lefibré Fo(N)/Q_ est vectoriel et s’identifie au fibré w, Hom(L, S)
construit par Mok et Yeung [15, prop.2.1]. Si X est de rang > 2, on montre que
'espace T(q. x,)(N) s’injecte en fait dans I'espace des K¢ -structures d’ordre 1
sur N, c’est-d-dire dans Pespace des sections holomorphes du fibré F{(N)/ K¢
(ou Fy(N) désigne le fibré des reperes principaux holomorphes de N ).

A la section 5, on montre 'unicité de la section holomorphe du fibré F{(M)/ K¢
(resp. du fibré Fo(M)/Q_) quand M est de rang supérieur ou égal & deux
(respectivement de rang 1). L’idée consiste & utiliser un résultat d’annulation
pour les fibrés vectoriels automorphes sur M. Une difficulté notable apparait
en rang > 2 : le fibré F{(M)/ K n’est pas vectoriel, contrairement au fibré
F2(M)/Q_ en rang 1. En utilisant la structure automorphe de F{(M)/ K¢ , on
arrive toutefois a le réaliser comme sous-fibré holomorphe d™un fibré vectoriel sur
M dont on controéle encore les sections.
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2. Notations

Pour tous ces rappels sur les espaces symétriques hermitiens, on pourra consulter
[23].

Les plongements de Borel et Harish-Chandra.

Notons g (resp. € ) l’algebre de Lie du groupe G (resp. K)et g =t @ p la
décomposition de Cartan associée. Soit ge (resp. ¥ ) l'algébre de Lie g ®p C
(resp. £ ®r C ) du groupe complexifié G¢ (resp. K¢ ), on a la décomposition
gc = tc @ pe induite de la décomposition de Cartan de g . Le K¢ -module
pc se décompose en somme directe pc = p, @ p_ de deux Kc -modules
irréductibles, sous-algebres abéliennes de ge . Notons Py (resp. P_, resp. Q4
resp. Q_) le sous-groupe du groupe G¢ d’algebre de Lie p . (resp. p _,
resp. gy = tc @ py ,resp. q— = € ® p_ ). Le groupe Q_ est un produit
semi-direct @Q_ = K¢ P_. Le produit P, x Q_ est un ouvert de G contenant
G et l'intersection GNQ_ est égale & K. L’espace symétrique hermitien de type
non-compact X = G/K se plonge ainsi dans son dual compact X, = G¢ /G-
(plongement de Borel) et la structure complexe de X est induite par celle de
X, . L’espace p, (resp. p ) s’identifie a I’espace tangent holomorphe (resp.
antiholomorphe) de X au point eK. Si exp : gc — Gg¢ désigne 'application
exponentielle, on notera E : p , — X, l'application qui & = € p, associe le
point expz.(eQ—) de X, . C’est un biholomorphisme de p , sur un ouvert de
X, d’apres le théoreme de plongement de Harish-Chandra.

Racines compactes et non compactes.

Soit H C K un sous-groupe de Cartan de G, d’algebre de Lie l , d’algebre de
Lie complexifiée he = h @r C . Soit A = A(ge, hc ) le systeme de racines de
la paire (gc, he ), on a alors la décomposition radicielle

dc = bC 2 @ 9o
aEA
oul'onnote g, ={Y ege / VX € b, [X,Y]=a(X)Y} . Chaque
espace radiciel g, est un C -espace vectoriel de dimension 1, contenu soit dans
fc soit dans pc . Dans le premier cas la racine o est dite compacte, dans le
deuxieme cas non-compacte. On notera Ay (resp. Ap ) le sous-ensemble des
racines compactes (resp. non-compactes), I’ensemble des racines A est la réunion
disjointe de Ay et Ay . On peut alors choisir un systéme positif de racines
AT C A compatible avec la structure holomorphe de X , c’est-a-dire tel que si
ATJ (resp. A; ) désigne lintersection Ap NAT (resp. Ay NAT ) onal’égalité :

by = @gﬂ:a'

acAl

p

On notera < .,. > le produit scalaire sur h¢* induit par la forme de Killing de g¢.
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(Gc, X.)-structures.

Rappelons une définition équivalente de la notion de ( G¢, X, ) -structure (cf. [5]).

Définition 2.1. Soit M une variété lisse de revétement universel M , de groupe
Jondamental T'. Une (Gc, X, ) -structure sur M est la donnée d’un difféomor-

phisme local T -équivariant D: M — X, , c’est-a-dire qu’il existe un morphisme
de groupe h:1I'— Gg¢ tel que :

Vyel, Doy=h(y)oD .

Liapplication D est appelée développante, le morphisme h morphisme d’holonomie.

Si M désigne une variété complexe, une ( Ge, X, )-structure sur M définie par
une application développante D est compatible avec la structure complexe de M
si et seulement si D est une application holomorphe.

3. Rigidité locale

Dans cette section on montre un résultat de rigidité locale indépendant de la
structure holomorphe de M. Notons D(M) l’ensemble des développantes (non
nécessairement holomorphes) de ( G¢, X, )-structures sur M muni de la topolo-
gie de la convergence uniforme sur tout compact, et Diff°(M) la composante
connexe du groupe des difféomorphismes de M commutant & I'. Le groupe pro-
duit Ge x Dif fO(M) agit naturellement sur I’espace D(M), le premier facteur
agissant par composition a gauche sur les développantes, le deuxieme facteur par
composition a droite.

Définition 3.1. Une (G, X, ) -structure de développante D : M — X, est
dite localement rigide si lorbite de D sous laction du groupe Ge x Dif fo(M)
est ouverte dans Uespace D(M) .

Proposition 3.2. Soit M =T\ X wun quotient lisse de volume fini de X , de
dimension compleze n > 2. Alors la (Gg, X, ) -structure naturelle de M est
localement rigide.

Prewve. Notons Do : X — X, la (Gg¢, X.)-structure naturelle de M, d’holono-

mie ho: T < G C G¢ , ou ¢ désigne l'injection canonique du réseau I' dans le
groupe G. D’apres un théoreme de déformation de Thurston ([5]), 'application
Ge -équivariante

hol : D(M)/Diff(M)— Hom(T', G¢)

qui a une développante associe son morphisme d’holonomie est un homéomorphisme
local (le terme de gauche est muni de la topologie quotient, le terme de droite de
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la topologie compacte ouverte). La rigidité locale de Dy dans D(M) équivaut
donc 4 la rigidité locale du morphisme hy dans Hom(T', G¢ ) pour l'action par
conjugaison au but du groupe G¢ .

D’aprés un théoreme de Weil [19, th. 6.7], I'annulation de la cohomologie H(T", g¢)
implique la rigidité locale du morphisme hy dans Hom(I', G¢ ), ol ge est un
I'-module sous l'action Adg. o h, et Adgy. dénote la représentation adjointe du
groupe G¢ . Remarquons que le T'-module g¢ s’identifie au I'-module g ®pr C ,
ol g est un I'-module sous Adyoi. Donc

H'(T,gc) = H'(T,g) ®r C=0

d’apres le théoreme de rigidité de Weil [19, th.7.63]. D’ou le résultat.

4. Un critere de rigidité globale
4.1. Fibrés de jets

Dans cette section nous rappelons des résultats sur les fibrés de jets ([9]). Soit M
une variété complexe de dimension n et z un point de M. Etant donnés deux
germes de biholomorphismes f et g de ( C™,0) dans (M,z), on dira que f
et g ont méme k-jet s’ils ont mémes dérivées partielles en zéro jusqu’a 'ordre
k inclus. La classe d’équivalence de f ainsi définie est notée jif et est appelée
k-repere en z. On notera Fi(M), la réunion des k-reperes en z et Fp(M)
Punion disjointe IepmFr (M), . L’ensemble Fj(M) est naturellement muni d’une
structure de variété complexe induite de celle de C™ et M.

Notons Gg( C™) l'ensemble Fi( C™)g, il est naturellement muni d'une struc-
ture de groupe de Lie complexe : si jif et jrpg sont deux k-reperesde Gp( C™),
on définit le produit jif . jrg = jr(fog). Le groupe Gi( C™) agit holomor-
phiquement & droite sur Fy(M) selon: V jif € (M), Virg € Gx( C"), 4irf.
irg = Jr(f o g). La projection naturelle de Fp(M) dans M qui au k-repere
Jjuf associe f(0) fait alors de Fi(M) un Gg( C™)-fibré principal holomorphe
de base M. Etant donné une application holomorphe f : M — N on notera
Juy : Fr(M) — Fr(N) le morphisme de fibré induit défini par :

Viuf € Fr(M), fuy(ixg)) =ir(fog) .

Pour k=1, le groupe G1( C™) s’identifie au groupe GL( C™) et F1(M) est le
GL(n, C) -fibré principal des reperes holomorphes de M. Pour k= 2, le groupe
Go( €C™) s'identifie au produit semi-direct Gi( C™ ) x (S?( C™" )*® C").

Suivant [9], on définit une 1-forme canonique A sur F;(M) & valeur dans C"
par :

VX e TF (M), p, AMX) = (df)yoy-(dm)s - X

-1
f(O)'(
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ou 7 : Fi(M)— M désigne la projection canonique. De méme on définit une
1-forme canonique @ sur Fo(M) & valeur dans T.F{( C™)~gl( C" ) C"

VX € TFo(M)j, 5, 0(X) = (df1)},-(dp)sns-X

ou p:Fy(M) — F{(M) désigne la projection canonique.

4.2. Structures d’ordre 1 et 2 sur X, [17]

Rappelons la

Définition 4.1. Soit H un sous-groupe de Gg( C" ). On appelle H -structure
d’ordre k sur une variété complexe M de dimension n la donnée d’un H -fibré
principal sous-fibré du Gp( C™ ) -fibré principal Fr(M) .

L’espace homogeéne X, = Gg¢ /Q_ est alors muni naturellement d’'une K¢ -
structure F d’ordre 1 et d’'une @ _ -structure d’ordre 2. D’une part, on réalise
K¢ comme sous-groupe de Gq(py ) en associant & I’élément g de K¢ 1’élément
ji(E~logoE) = Ad 9 p, de Gi(py), ol Ad désigne la représentation adjointe
de Gg¢ . Lapplication Ge¢ — F1( X, ) qui & 'élément g associe le repere 71(go
E) identifie alors le K¢ -fibré principal Ge¢ /P_ & un sous-fibré du fibré Fq( X, ).
D’autre part, Ochiai [17, lemma 9.1] montre le :

Lemme 4.2. [Ochiai] Lapplication Ge — Fao( X.) qui a g associe ja(goE)
et le morphisme de groupe Q_ — Ga(p, ) qui a g associe jo(E~'ogoR) sont
ingectifs.

On réalise ainsi G¢ comme @ _ -structure d’ordre 2 sur X, et le diagramme
suivant est commutatif :

Ge — FZ(XC)

4 L
Ge/P- — Fi(X.)

Remarque. Dans le cas o X, est l’espace projectif P" C | le fibré G¢ /P_

— X, (resp. le fibré Ge¢ — X, ) s’identifie au fibré des reperes Fi( X, )
(resp. au fibré des 2-reperes projectifs sur X, ).

4.3. Caractérisation locale des éléments de G¢

Dans cette section, on caractérise les transformations locales de X, provenant
de GC
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Proposition 4.3. Soit X, un espace symétrique hermitien compact irréductible
de dimension n > 2. Soient U et V deur ouverts de X, et ¢ : U —V un
biholomorphisme. Il existe un élément g de Ge tel que ¢ = gy si el seulement
si le biholomorphisme ¢o @ Fo( Xo )y — Fa( Xe )y préserve la Q- -structure
Ge dordre 2 sur X, .

Proposition 4.4. Sous les hypothéses de la proposition 4.3 et Uhypothése supplé-
mentaire que X, n’est pas l'espace projectif P ™ C | il existe un élément g
de Gg tel que ¢ = gy si et seulement si le biholomorphisme ¢1 @ F1( X. )y
— Fi(Xe)v préserve la K -structure Ge /P d’ordre 1 sur X, .

Remarque. Ces propositions ne sont pas valables pour X, = P e le
fait qu'une transformation locale de P 1 C soit projective se caractérise par une
équation différentielle d’ordre 3 (annulation de la dérivée schwartzienne) et non
d’ordre 2.

Notons A( G¢,V) 'espace des formes différentielles sur G¢ & valeur dans un
espace vectoriel V. Soit w € A Ge,gc) la forme de Maurer-Cartan de Ge
si Lg désigne la translation a gauche par g sur Gg , la 1-forme w est définie

par: VX € Ty(Ge), w(X)=dLg )X .

Lemme 4.5. Sous les hypothéses de la proposition 4.3, Uapplication ¢o préserve
la forme de Maurer-Cartan.

Preuve. Notons U (resp. \7) la restriction du @ -fibré Gg au dessus de
U (resp. V). Soit « la forme de AY(U, G¢) tel que $3(wy) = wg +a, on
veut montrer que « est nulle. Notons © = dw + 1[w,w] la forme de A?( Gc , gc)
courbure de w, par définition Q = 0. Décomposons w (resp. ) en somme
directe wp Dwp, Dwp, (resp. Qp_ @ Qp. ©Q Py ) relqtivement a la
décomposition triangulaire ge = p— @ tc ® py . On vérifie facilement que la
forme wp, Gwyp, de AY(Gc, tc @ p; ) s'identifie & la restriction & G de la
forme canonique ¢ de A'(Fo( X, ),gl(ps )@ py ). En particulier par fonctorialité
¢’2‘(wgc Gwp, ) = (WEC ®wp, ) et donc la forme o = ¢(wp ) —wyp_
appartient & A(U, p_ ). La nullité de ¢%(Q te ) implique alors ’égalité :

V(X,Y) € (TO)?, [wp, (X),a(Y)]+ [a(X),wp, (V)] =0 . 1)
On en déduit d’abord :
VgelU,Vze P, Vyetcdp, [z,00(dlgy)]=0 .

Comme le crochet [, |: py x p- — fc est non-dégénéré, la 1-forme o est
nulle sur la distribution de plans de T U translatés a gauche de £c @ p_ . Pour

g dans U , notons alors ay : py — p_ D'application linéaire cy) o dLgp, .
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D’apres équation (1), 'application «, vérifie I'équation :
Va,y€py, [ay)]+ lelz),y] =0

c’est-a-dire que «ay est un 1-cocycle pour la cohomologie de Spencer H Yy,
adgclp, , p— ), ol ladécomposition gc = p— @ tc @ py induit une décomposition
naturelle de la cohomologie HY(p, , adgle,) en somme directe
Hq( P+ ad9c|P+7 p- ) @ Hq( P+ 7ad9c|b+7 tc ) @ H’q( b+ 7ad9¢:|b+7 P+ ) (Cf [12]7
[17]). D’apres un théoréme de Borel [1] (cf. aussi [11]), cette cohomologie est nulle.
Donc «ay est un cobord, donc nulle. Finalement o =0 et ¢§(w) = w.

La proposition 4.3 est alors une conséquence immeédiate du lemme suivant di a
Ochiai [17, lemma 11.10 p.188], dont nous donnons une démonstration simple par
souci de complétude :

Lemme 4.6. [Ochiai] Si Uapplication ¢ préserve la forme de Maurer-Cartan
w, alors il existe un élément g de Ge lel que ¢ =gy .

Preuve. Quitte & composer ¢ a droite et a gauche par des éléments de G ,
on peut supposer que U et V sont des voisinages du point eQ_ de X., que
¢ fixe e@Q_ et que ¢ fixe l'identité de Gg . On veut en déduire que ¢ est
lidentité. Notons U(p, ) (resp. V(p,)) l'ouvert de p, image réciproque de
U (resp V) par ’application E, on peut supposer que E : U(py ) — U (resp.
E : V(py)—V) est un biholomorphisme. Soit alors ¢ : U(psy ) — V(py)
I'unique biholomorphisme tel que le diagramme

P

Ulpy) — (b+)
LE LE (2)
v %

commute. Remarquons que ¢(0) = 0. Comme 'application ¢ est un biholo-
morphisme de U dans V et que 'application

P+><KC><P, — GC

teyyyz) —  2yz

est un biholomorphisme de P, x K¢ x P_ sur un ouvert de G¢ (théoreme de
Harish-Chandra, [23]), il existe des applications holomorphes ¢ : U(p; ) — &¢
et 7:U(ps)— p— s’annulant en zéro telles que :

VyeU(py), ¢a(e¥)=efWebWem)

Comme ¢y préserve la forme de Maurer-Cartan, ¢o préserve la distribution
Ker(wp_ @ wy - ). Cette distribution est intégrable de feuille P en l'identité
de Gg . En particulier ¢, envoie P, dans P, ,donc ¢y =7 =0 et

VyeUl(py), dale¥)=e?W) . (3)
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Calculons ¢, & partir de 'expression de ¢ donnée par (2) et réécrivons I’équation
(3). Comme la sous-algebre p est abélienne il vient :

VyeU, ja(z— Elply+2)) = ja(e— Blply) +2)) .

On en déduit : Vy e U, Dzap(y) = 0. L’application ¢ est donc affine, puis
linéaire car ¢(0) = 0. Ecrivons que ¢, préserve w p, ,onen déduit que ¢ est
I'identité. D’ou le résultat.

Preuve de la proposition 4.4 :

D’aprés la proposition 4.3, il suffit de montrer que ¢s : Fao( X¢ )y — Fa( X¢ v
préserve la @) _ -structure G¢ . Quitte & composer ¢ & droite et a gauche par
des éléments de Gg , on peut supposer que U et V sont des voisinages du point
e@_ de X, ,que ¢ fixe eQ_ et que ¢ fixe le point eP_ dela K¢ -structure
Ge /Q— sur X, . Comme Papplication

P+ X KC xP_. — GC
(z,y,2) — zyz

est un biholomorphisme de P, x K¢ X P_ sur un ouvert de Gg¢ , on peut définir
une section holomorphe 7 du fibré G¢ — G¢ /P_ sur un voisinage de eP_
contenant U et V par azy P_ — zxy.

Lemme 4.7. ¢(i*(wp, Gwe.)) =" (wp, Swe.)

Preuve. Remarquons que i*wyp + s'identifie & la restriction & Gg /P_ de la

forme canonique X de AM(F{(X,), p; ) définie & la section 4.1. Par fonctorialité,
$i(i*wp, ) = i*wp, . Soit alors § la forme de AYU /P_, ) définie par
qb’{(i*w{,c) = i'wp. + 4 . Comme sur Gc on a Pégalité Qp, = dwp, +

%([UJEC7&JP+]+[&JP+,&JEC 1), il vient

B, ) =, + (18, up, ]+ [wp, )
Mais p,. =0 d’on ’égalité :
VXY e T(U/P), [BX),wp, (V)] + [i*wp, (X),5(Y)] = 0 (4)
On en déduit d’abord que
VgP_eU/P_ Vazep,, Vyecte, [z,B,p y(dmoLg)ey] =0

ou 7 désigne la projection Gg — G¢ /P_. Mais la représentation ad : £
— gl(p, ) est fidele, donc la 1-forme £ est nulle sur la distribution de plans de
T(U /P_) translatée & gauche de €c . Pour tout point gP_ de U /P_  notons
Bgp_ : py — tc Dapplication Bp_yod(moLg)ey, p, - D’apres Péquation (4),
I’application Bgp_ vérifie I’équation

Va,y€py, [Bop (@)l + [z, Bgp_(y)] =0
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c’est-a-dire que Byp_ définit un cocycle pour la cohomologie de Spencer H Ypy,
adgelp,, tc). Comme X, # P"C | cette cohomologie est nulle d’apres [1],
[11]. Done Bgp_ est un cobord, donc nul. Finalement 3=0.

O

Considérons alors le diagramme

Fo Xy 22 Fao(Xo)v
ww T Tiv
o/p. 2 VP

On définit une section sy : \~//P, — Fo( X )v par sy = ¢a0iy o qﬁfl . Soit
6 la 1-forme canonique sur Fo(M) définie & la section 4.1. Comme ¢3%(0) = 0
par fonctorialité et que la restriction de ¢ & G s'identifie & wyp L Gwg. ,on
déduit du lemme précédent 1’égalité :
i, o .
svl = o1 (if(wp, Dwp.)) = iv(wp, ®wp.) =iyl

Au vu de la définition de @, ’égalité si,60 = 3,0 implique P'égalité sy = iy .
Le diagramme précédent est donc commutatif et ¢o(iy (U /P_)) = iv(V /P_)).

Par extension de groupe structural de K¢ & Q_, ¢2(U ) = V | ce qui acheve
la preuve de la proposition 4.4.

4.4. Critere de rigidité globale
On déduit des propositions 4.3 et 4.4 la

Proposition 4.8. Soit X, un espace symétrique hermitien compact irréductible
de dimension n > 2. Soit M une variété complere de dimension n. L’espace
de module Tge,x (M) des (Gc, Xc)-structures sur M compatibles avec sa
structure holomorphe s’injecte dans l'espace des sections holomorphes du fibré
Fo(M)/Q_ de fibre la variété affine Go(py )/Q_ . Side plus X, # P"C ,
Vespace Tiae x.,)(M) s’injecte dans Uespace des sections holomorphes du fibré
F1(M)/ K¢ de fibre la K¢ -variété affine GL(p+ )/ Ke .

Prewve. Soit D : M — X, la développante holomorphe d’une (Ge, Xo)-
structure compatible sur M, d’holonomie h : 1M — G . Comme D est un
biholomorphisme local, le pull-back D*(Fo( X)) (resp. D*(Fi( X.)) s’identifie

a Fo(M) (resp. & Fi(M)) et le diagramme commutatif

D* (Gc) C FQ(M) —_— Ge C Fy (Xc)

| |
D*(Ge/P_) CFi(M) — G¢/P_ C Fi(X.)

d I

& D

M — X,
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est naturellement ;M -équivariant.

On obtient ainsi une fleche Ty, x (M) — H°(M,F2(M)/Q_) qui a la déve-
loppante D associe la section holomorphe s5 de Fo(M)/Q_ définie par la Q_ -
structure d’ordre 2 (M) \ D*(Gg ) sur M. Cette fleche est injective : si D
et D’ sont deux développantes telles que les sections sb et szD/ coincident, pour

tout ouvert U de M sur lequel les restrictions Dy et D‘/U sont injectives la

transformation locale DfU o D‘*U1 de X, préserve alors la @Q_ -structure G¢
d’ordre 2 sur X, . D’apres la proposition 4.3, il existe alors un élément g de
Ge  tel que D‘/U = go Dy, clest-a-dire que les développantes D et D’ sont

équivalentes.

De méme on obtient une fleche 7, x, (M) — H(M,F1(M)/Kc ) qui & la déve-
loppante D associe la section holomorphe sP de Fi(M)/ K¢ définie par la fc -
structure d’ordre 1 71(M)\ D*( G¢ /P_) sur M. Quand X, # P"C | cette
fleche est injective comme précédemment d’apres la proposition 4.4.

Le théoréeme 1.2 est alors une conséquence des

Proposition 4.9. Soit M =T\ X wun quotient lisse de volume fini d’un espace
symétrique hermitien irréductible de type non-compact X = G/K, de dimension
complere n > 2. Alors le fibré (non-vectoriel) holomorphe F1(M)/ K¢ admet
une unique section holomorphe.

Proposition 4.10. Soit M =T\ H} un quotient lisse de volume fini de l’espace
hyperbolique complexe HE de dimension complexe n > 2. Alors le fibré holo-
morphe Fo(M)/Q_ admet une unique section holomorphe.

5. Preuve des proposition 4.9 et 4.10
5.1. Fibrés automorphes

Commencons par des rappels sur les fibrés automorphes. Etant donnée une Q_ -
variété 7, on note Iz x_ le fibré holomorphe Gg -équivariant Ge¢ xg_ Z de
fibre Z de base X, et Fyz x le fibré holomorphe G -équivariant restriction de
Fz x. alouvert X de X,. Si M =T\ X est un quotient compact lisse de X , on
note Fyz le fibré holomorphe T'\ Fy x de fibre Z sur M. Sil'action de Q_ sur
7 est induite d’une action de K¢ étendue trivialement sur le radical unipotent
P_ de @Q_, le fibré Fy s’identifie topologiquement au fibré (I'\ G) xx Z. On
pose alors la

Définition 5.1. Soit 7 une K¢ -variété et M =T\ X wun quotient compact de
X, on appelle fibré automorphe de base M associé a 7 le fibré holomorphe Fz .
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Exemples :

Le fibré tangent holomorphe TM (resp. cotangent holomorphe T*M ) de M =
'\ X s’identifie au fibré vectoriel automorphe F, (resp. F,_, ou I'on identifie
p— audual p* de p. par la forme de Killing de G¢ ). Le fibré des reperes
F1(M) s’identifie au fibré automorphe Fgry. ), le fibré F1(M)/Kc au fibré au-
tomorphe Farp, )/, - Par contre le fibré Fo(M), qui s’identifie au fibré Fa,p, ),
n’est pas automorphe : 'action de P_ sur Go(py) par multiplication & gauche
n’est pas triviale.

5.2. Un résultat d’annulation pour les fibrés vectoriels automorphes

La stratégie pour démontrer la proposition 4.9 consiste a réaliser le fibré automor-
phe F1(M)/Ke = Farp, )/, comme sous-fibré d'un fibré vectoriel automorphe
Fpy dont on controéle les sections holomorphes.

Commencons par donner un critere d’annulation pour un fibré vectoriel auto-
morphe associé & une représentation irréductible de K¢ . Avec les notations de
2.2, soit A un poids entier dominant de K¢ relativement a A*E et soit F(A)
le K¢ -module de plus haut poids associé. Si o € A et A € he*, on note
Ao =2<ANa>/<aa>. Soit # 'unique racine maximale non-compacte de
AT (c’est-a-dire le plus haut poids de p , relativement & A? ). Remarquons que
la condition Ag < 0 équivaut facilement a la positivité stricte au sens de Griffiths
de Fp(y) . On a alors le résultat di & Mok [14, p.211] :

Théoréme 5.2. [Mok] Si g >0 alors H(M,Fp(y)) =0, sauf si A=0 (i.e.
F()\) est le fibré trivial et H°(M,Oy) = C ).

Ce théoreme de Mok est un corollaire de son théoreme de rigidité pour les métriques
a courbure semi-négative sur M [13]. Nous en donnons ici une démonstration
simple dans le cas ou I' est cocompact, comme cas particulier d’un résultat plus
précis de théorie des représentations.

Preuve dans le cas I cocompact :

Notons N(A) le gc-module N(A\) = Ulge) ®u(q,) F(A) , ot Ulge) (resp.
U(gy)) désigne l'algebre enveloppante de g (resp. de g4 ). Le gc-module
N(A) est un module de plus haut poids et admet un unique quotient irréductible,
noté L(A) ([7]). Rappelons que le gc-module L(A) est dit unitarisable s'il est
équivalent au ge -module des vecteurs €¢ -finis d’une représentation unitaire de

G.

Proposition 5.3. Sile g -module 1.(\) nest pas unitarisable, alors

HO(M7FF(,\)) =0.
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Preuve. L’espace des sections lisses de Fp(y) s’identifie évidemment aux €c -
invariants (C>*(T'\ G) ® F(\)) e o I'action de bc sur C>®(I'\ G) est induite
par la multiplication & droite de K sur G et I’action sur F(\) est donnée par la
structure de K¢ -module de F(A) . L'espace des sections holomorphes de Fpy)
s’identifie alors aux ¢_ -invariants (C*°(I'\ G) ® F(\))%- , ou I’action de q_ sur
C®(I'\ G) est induite par la multiplication & droite de G sur G et action de
p_ sur F(X) est triviale ([12], [20]). C’est-a-dire :

H°(M, Fre)) = Homg_(F(A)*,C*(I\G))

ou F(A)* désigne le gc-module dual de F(A). Comme le réseau I' de G est
cocompact, la représentation unitaire L?(I'\ G) de G se décompose en somme
hilbertienne dénombrable de représentations irréductibles unitaires de multiplicités

finies :
L2(I\G) = EB Mg (T
nc@
ot G désigne le dual unitaire de G et my(I') la multiplicité de = dans L2(I'\ G).
D’apres un théoreme de Matsushima et Murakami ([12]) on a alors :
H°(M,Fpeny) = Y ma(T) . Homgq_(F(N)*, 7) .
WEG

D’apres le théoreme de réciprocité de Frobenius :
Homg_(F(N)*, 7) = Homg.(U(gc) ®uq_) F(A)*, 7).

Soit alors ¢ une involution de g¢ valant —1 sur fhe et envoyant g, sur g_,
(une telle involution, dite de Chevalley, existe d’apreés [2, prop.5, p.103]). En
particulier l'involution o préserve €c et échange p, et p_ . Pour tout gc-
module (resp. fc -module) V, notons °V le gc-module (resp. &c -module)
obtenu en tordant Paction de gc (resp. fc ) par o. Si V est un gc-module
unitarisable, alors 7V D'est aussi. Si V désigne un £ -module, on a 1’égalité

7(Ulge) ®ug_y V) = Ulge) ®uqyy 7V -
Comme le €c -module 7(F(A)*) est équivalent & F()), on a en particulier I’équiva-
lence de g¢-modules

7(U(ge) ®uy) F(A)) = N(A)
Finalement,
H(M,Frpn) = Ypee ma(I) . Homg (" (Ulge) ®u(q_) F(A)*), )
= Z‘neé mﬂ(r)'Homgc( ( )7 )
= Yorce Mon(D) . Homg (N(N), ) .

Dire que le gc-module L(A) n’est pas unitarisable, c’est dire que pour tout =«
dans G, Homg (N(X), 7)) =0. Dol le résultat.
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Le théoreme 5.2 dans le cas cocompact est alors un corollaire de la classification
par Enright, Howe et Wallach [4] des modules de plus haut poids unitarisables
pour les paires hermitiennes. On déduit des lemmes 7.4, 84, 94, 104, 11.4.
124 et 13.4 de [4] quesi Ag > 0 alors le G-module L(\) n’est pas unitarisable,
saufsi A=0.

Etant donné maintenant un K¢ -module N de dimension finie, non-nécessaire-
ment irréductible, la mise en oeuvre du résultat précédent nécessite de connaitre
la décomposition en modules irréductibles de N . Lorsqu’on cherche a plonger la
K¢ -variété affine GL(py )/ K¢ de fagon K¢ -équivariante dans un K¢ -module
N , il semble difficile en général de déterminer cette décomposition. Ainsi, dans le
cas o G = SU(p,q), espace p s’identifie naturellement au produit tensoriel
CP® C1?, le groupe K¢ au produit S(GL(C?) x GL(C?)) des matrices de
GL(CP)x GL(C1Y) de déterminant 1 ; le quotient GL(C?® C?)/S(GL(CP?) x
GL(C %)) se réalise naturellement dans A°S%(CP® C9), ot i désigne un entier
convenable. Sauf pour des cas simples, je ne sais pas décomposer ce module en
S(GL( C?) x GL(C 7)) -modules irréductibles.

Définissons alors une classe de K¢ -modules pour lesquels nous obtenons un
théoreme simple d’annulation. Soit V un K¢ -module de dimension finie, le
centre Z(Kg) =~ C* de K¢ agit réductivement sur V. Un poids de cette ac-
tion sera dit positif s’il a méme signe que le poids de Z( K¢ ) sur p. . On pose
alors la

Définition 5.4. Soit V un K¢ -module de dimension finie. L’action de 7( K¢ )
sur V est dite positive si tous ses poids sont positifs ou nuls.

Remarque:

Une action triviale de Z(K¢) sur un K¢ -module V' de dimension finie est
positive. D’autre part I'action de Z( K¢ ) sur V est positive si et seulement si
elle ’est pour chacune des K¢ -composantes irréductibles de V.

On obtient alors le

Théoreme 5.5. Soit V un K¢ -module de dimension finie tel que le centre
Z(Kc) de K¢ agit positivement sur V et VR =0. Alors H'(M,Fy) =0.

Prewve. On peut supposer V irréductible de la forme F(\). D’apres la proposi-
tion 5.2, il suffit de montrer que Ag est strictement positif. Soit hi I'hyperplan
vectoriel de B * engendré par Ap. Soit ¢ 1'élément de he* défini par <
C,h >=0 et (3=1. Le poids A de K¢ s’écrit de facon unique sous la forme
A= pu+yl, o p € hi désigne un plus haut poids de la partie semi-simple
[Ke, Ke] de K¢ relativement & Ag et y désigne un nombre réel (poids relatif
du centre Z( K¢ ) >~ C* sur F(X)). On a alors 'égalité Az = ug+y . Dire que le
centre Z( K¢ ) agit positivement sur F(X), c’est dire que y > 0. D’autre part on
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vérifie aisément que S est strictement dominant pour A; . Comme p est A? -
dominant, on en déduit 'inégalité pg > 0 avec égalité si et seulement si = 0.
Finalement Ag > 0, avec égalité si et seulement si F(A) est la représentation
triviale. Comme VE¢ = 0, on en déduit que Ap > 0 et donc L(A) n’est pas
unitarisable.

5.3. Preuve de la proposition 4.9

Lemme 5.6. Soit L. wun groupe algébrique complexe linéaire réductif connexe
et (p, W) wn L -module rationnel irréductible de dimension finie. Il existe un
GL(W) -module N de dimension finie et un point f de N tels que :

1. La GL(W) -orbite de f dans N s’identifie a l’espace homogéne GL(W)/p(L).
2. Le centre Z(L) de L agit trivialement sur N .

Preuve. Comme le groupe L est réductif, I'image p(L) est un sous-groupe réductif
de GL(W) et le quotient GL(W)/p(L.) est une GL(W)-variété affine. D’aprés un
théoréme classique de Chevalley [18, th.1.5], il existe un GL(W)-module rationnel
N de dimension finie et un point f de N tel que la GL(W)-orbite de f dans
N g'identifie & ’espace homogene GL(W)/p(L). Comme W est L -irréductible,
Iimage p(Z(L)) est contenue dans le centre de GL(W). En particulier I'action
de Z(L) sur Porbite GL(W).f ~ GL(W)/p(L) est triviale. Quitte & remplacer
N par le sous-espace vectoriel de N engendré par GL(W).f, laction de Z(L)
sur N est triviale.

Preuve de la proposition 4.9 :

Notons Z la GL(yp , )-variété GL(p . )/ Kc , le fibré automorphe F{(M)/ K¢ =
F7 admet une section holomorphe canonique induite par I’application constante
de G dans 7 de valeur e K¢ . Soit N et f comme dans le lemme précédent
appliqué & L = K¢ et W= p . . La réalisation de Z comme sous-variété de N
induit la réalisation du fibré automorphe Fz comme sous-fibré du fibré vectoriel
automorphe Fpy . Notons V un K¢ -module supplémentaire du K¢ -module
des invariants N¥¢ dans N (un tel module existe puisque K¢ est réductif).
La décomposition N = N¥¢ @ V induit la décomposition de fibrés holomorphes
Fy = Fyxe @ Fy . Dune part H°(M,Fy) = 0 d’apres le théoreme 5.5. D’autre
part, le fibré F . s’identifie holomorphiquement au fibré trivial sur M de fibre
N¥e | ses section holomorphes sont induites par les applications constantes de G
& valeur dans N¥c . Soit alors s une section holomorphe de Fy , elle est done
induite par une application constante de G & valeur dans N¥¢NZ. Mais le point
eKg est le seul point fixe de Z = H/ K¢ sous K¢ , la section s est donc la
section canonique de Fy .
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5.4. Preuve de la proposition 4.10

Nous redémontrons ici le résultat de Mok-Yeung. Notons X = Hg , n > 2.
Rappelons que le groupe Go(p ) s’identifie au produit semi-direct GL(py ) x
(S?p* ® ps ). Considérons S%p* ® p; comme sous-GL(p, )-module de p* ®
Endyp. , et notons (Szpi® p+ )o lintersection de 32p1® py avec pi®Endop,
ou Endyp, désigne le GL(ps+ )-module des endomorphismes de p. de trace
nulle. On a alors la décomposition en K¢ -modules irréductibles : SZp’jr ®py =
(Szpj ® py )Jo®p* . En particulier le radical unipotent P_ agit trivialement sur
la Q_ -variété Go(py)/Q—, qui s'identifie alors au K¢ -module (S%p* @ pi)o.
Un équivalent de la proposition 4.8 est alors la

Proposition 5.7. Soit M une (PGL(n+ 1, C), P"C ) -variété compacte.
Liespace 7—(PGL(n+17C)7PnC)(M) des structures projectives compleres sur M com-
patibles avec sa structure holomorphe s’injecte dans Uespace des sections holomor-

phes H°(M, (S?’T*M ® TM)p) .

Remarque. Le fibré (S?T*M ® TM)y n’est autre que le fibré 7, Hom(L,S) de
Mok et Yeung [15, prop.2.1].

Pour conclure la preuve de la proposition 4.10, nous appliquons le théoreme 5.2.
Choisissons comme sous-algebre de Cartan fhe de ge =~ sli(n + 1, C) la sous-
algebre des matrices diagonales de sl(n+1, C), notons oy, 1 <4 < n, la forme

linéaire définie sur he par ay;(z1, -+ ,Zny1) = T — 2441 et choisissons
At = {Bij=oit o+t 1<i<j<n}
Af = {Biy, 1<i<j<n}

On vérifie immédiatement que le €c -module irréductible (Szpi ® p4)o a pour
plus haut poids —a,, + @, 1 + -+ + a relativement a A; . Ainsi, pour n > 2
ona < Ao, >=0pour 2<i<n—2, < Aoy >1, < A\ap_1 >=2 et
< Aoy >=-=3. Pour n=2,0ona < Ao >=3 et <\ ay >= —3. Comme
B = ai+ ...+ ay, on a finalement Ag = 0 : le fibré Fy = Fpy n'a que la
section constante nulle comme section holomorphe.
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