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Un th¶eorµeme de rigidit¶e non-m¶etrique pour les vari¶et¶es lo-
calement sym¶etriques hermitiennes

Bruno Klingler

Abstract Let X be an irreducible Hermitian symmetric space of non-compact type of di-
mension greater than 1 and G be the group of biholomorphisms of X ; let M ¡ n X be a
quotient of X by a torsion-free discrete subgroup ¡ of G such that M is of ¯nite volume in the
canonical metric Then due to the G -equivariant Borel embedding of X into its compact dual
Xc the locally symmetric structure of M can be considered as a special kind of a GC ; Xc -

structure on M a maximal atlas of Xc -valued charts with locally constant transition maps in
the complexi¯ed group GC By Mostow's rigidity theorem the locally symmetric structure of
M is unique We prove that the GC ; Xc -structure of M is the unique one compatible with
its complex structure In the rank one case this result is due to Mok and Yeung

Mathematics Subject Classi¯cation 2000 53C35 32M15 22E40

Keywords Locally symmetric spaces rigidity projective structures uniformization

1 Introduction

Dans ce travail on d¶emontre un th¶eorµeme de rigidit¶e non-m¶etrique pour les quo-

tients lisses de volume ¯ni d'espaces sym¶etriques hermitiens irr¶eductibles de type

non-compact en dimension complexe n ¸ 2
Soit X G K un espace sym¶etrique hermitien irr¶eductible de type non-

compact oµu G d¶esigne un groupe de Lie r¶eel simple connexe et K un sous-groupe

compact maximal de G Soit M ¡ n X un quotient lisse de volume ¯ni de X
oµu ¡ d¶esigne un r¶eseau sans torsion de G Il est bien connu que si X est de

dimension n ¸ 2 la vari¶et¶e M possµede de nombreuses propri¶et¶es de rigidit¶e li¶ees µa
sa structure m¶etrique Dans la classe des vari¶et¶es localement sym¶etriques d'abord :
le th¶eorµeme de rigidit¶e de Mostow [16] pour le cas M compact g¶en¶eralis¶e par
Prasad et Margulis dans le cas de volume ¯ni a±rme que M s'uniformise de fa»con
unique comme quotient de X Dans la classe des vari¶et¶es kÄahl¶eriennes ensuite :
dans [21] Siu montre que si M est compacte toute vari¶et¶e kÄahl¶erienne compacte
qui lui est homotope lui est biholomorphe ou conjugu¶ee-biholomorphe En¯n
en rang ¸ 2 Mok montre dans [13] que toute m¶etrique hermitienne µa courbure
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semi-n¶egative au sens de Gri±ths sur M est un multiple constant de la m¶etrique

canonique de M
Dans ce papier on considµere la structure localement sym¶etrique hermitienne de

M comme un cas particulier de structure localement homogµene non riemannienne

plus g¶en¶erale Notons Xc GC Q¡ le dual compact de X oµu GC d¶esigne le
groupe de Lie complexi¯¶e de G et Q¡ un sous-groupe parabolique maximal de

GC admettant le groupe KC complexi¯¶e de K comme sous-groupe de Levi On
appelle GC ; Xc -structure sur une vari¶et¶e N la donn¶ee d'un atlas maximal de

cartes pour N µa valeur dans Xc µa changements de cartes localement constants

dans le groupe GC L'¶etude de telles structures a ¶et¶e initi¶ee dans [17] et [10]
D'aprµes le th¶eorµeme de plongement de Borel l'espace X se r¶ealise comme G -
orbite ouverte dans Xc Ainsi la structure localement sym¶etrique hermitienne de

M ¡ n X est un cas particulier de GC ; Xc -structure sur M

Exemples :
1 Structures projectives complexes sur les vari¶et¶es hyperboliques complexes

Soit X Hn
C

SU n; 1 S U n £ U 1 l'espace hyperbolique complexe de

dimension n et G SU n; 1 son groupe d'isom¶etries holomorphes Le groupe

GC s'identi¯e au groupe sp¶ecial a±ne SL n + 1; C l'espace Xc µa l'espace

projectif P n C et le plongement de Borel est donn¶e par la r¶ealisation usuelle de

l'espace hyperbolique complexe

Hn
C fz [z0;

¢ ¢ ¢ ; zn] 2 PnC jz0j
2 + ¢ ¢ ¢ + jzn¡1j

2 < jznj
2
g :

Une GC ; Xc -structure est une structure projective complexe c'est-µa-dire la
donn¶ee d'un atlas de cartes µa valeur dans P n C µa changement de cartes locale-
ment constants dans SL n + 1; C En dimension n 1 l'¶etude des structures

projectives sur la surface de Riemann M ¡ n H1
C

de genre g ¸ 2 est un problµeme

classique [8]

2 Structures conformes complexes

Si G SO0 n; 2 et X d¶esigne l'espace sym¶etrique hermitien SO0 n; 2 SO n £
SO 2 le groupe GC s'identi¯e au groupe SO n + 2; C et l'espace Xc µa la
quadrique complexe de dimension n

Xc fz [z0; ¢ ¢ ¢
; zn+1] 2 Pn+1C

n+1

Xi 0

z2
i 0g :

Une GC ; Xc -structure sur une vari¶et¶e N est la même chose qu'une structure

conforme holomorphe sur N

Dans [15 Theorem 2 1] Mok et Yeung d¶emontrent le :

Th¶eorµeme 1 1 [Mok-Yeung] Soit M ¡ n Hn
C

un quotient hyperbolique

complexe de dimension n ¸ 2 de volume ¯ni Alors M n'admet pas d'autre struc-
ture projective complexe compatible avec sa structure holomorphe que sa structure
canonique
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Dans ce travail nous g¶en¶eralisons le r¶esultat de Mok et Yeung au rang sup¶erieur
et simpli¯ons la preuve de leur r¶esultat au passage

Th¶eorµeme 1 2 Soit M ¡ n X un quotient lisse de volume ¯ni d'un espace

sym¶etrique hermitien irr¶eductible de type non-compact X G K de dimension
complexe n ¸ 2 Alors M n'admet pas d'autre GC ; Xc -structure compatible
avec sa structure holomorphe que sa GC ; Xc -structure naturelle

Remarque L'hypothµese consistant µa travailler µa structure holomorphe ¯x¶ee

est doublement raisonnable D'une part la structure complexe de M est connue

être localement rigide [3] [1] D'autre part cette hypothµese couvre tous les cas

connus : l'existence sur M d'une structure complexe di®¶erant de sa structure

naturelle ou de sa conjugu¶ee est une question ouverte
Le plan de ce papier est le suivant
Aprµes un rappel de notations section 2 la courte section 3 montre que la

GC ; Xc -structure naturelle d'un quotient M ¡ n X de volume ¯ni est locale-
ment rigide ind¶ependamment de la structure holomorphe de M Le th¶eorµeme 1 2
et cette remarque soutiennent la conjecture selon laquelle le quotient M admet
une unique GC ; Xc -structure ind¶ependamment de sa structure complexe Les

sections 4 et 5 sont d¶evolues µa la preuve du th¶eorµeme 1 2

A la section 4 on rappelle que le modµele Xc porte une Q¡ -structure d'ordre 2
et une KC -structure d'ordre 1 naturelles c f [17] On caract¶erise alors les

transformations locales de Xc provenant de GC en termes de jets : ce sont
simplement les transformations pr¶eservant la Q¡ -structure d'ordre 2 de Xc

resp la KC -structure d'ordre 1 dµes que X est de de rang > 1 On en
d¶eduit proposition 4 8 que l'espace T GC;Xc N des GC ; Xc -structures sur
une vari¶et¶e complexe N compatibles avec sa structure holomorphe s'injecte dans

l'espace des Q¡ -structures d'ordre 2 sur N c'est-µa-dire dans l'espace des sec-
tions holomorphes du ¯br¶e F2 N Q¡ oµu F2 N d¶esigne le ¯br¶e des 2 -jets de

N En rang 1 le ¯br¶e F2 N Q¡ est vectoriel et s'identi¯e au ¯br¶e ¼
¤Hom L; S

construit par Mok et Yeung [15 prop 2 1] Si X est de rang ¸ 2 on montre que

l'espace T GC;Xc N s'injecte en fait dans l'espace des KC -structures d'ordre 1
sur N c'est-µa-dire dans l'espace des sections holomorphes du ¯br¶e F1 N KC
oµu F1 N d¶esigne le ¯br¶e des repµeres principaux holomorphes de N

A la section 5 on montre l'unicit¶e de la section holomorphe du ¯br¶e F1 M KC
resp du ¯br¶e F2 M Q¡ quand M est de rang sup¶erieur ou ¶egal µa deux
respectivement de rang 1 L'id¶ee consiste µa utiliser un r¶esultat d'annulation

pour les ¯br¶es vectoriels automorphes sur M Une di±cult¶e notable apparâ³t
en rang ¸ 2 : le ¯br¶e F1 M KC n'est pas vectoriel contrairement au ¯br¶e
F2 M Q¡ en rang 1 En utilisant la structure automorphe de F1 M KC on
arrive toutefois µa le r¶ealiser comme sous-¯br¶e holomorphe d'un ¯br¶e vectoriel sur
M dont on contrôle encore les sections
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2 Notations

Pour tous ces rappels sur les espaces sym¶etriques hermitiens on pourra consulter
[23]

Les plongements de Borel et Harish-Chandra

Notons g resp k l'algµebre de Lie du groupe G resp K et g k © p la
d¶ecomposition de Cartan associ¶ee Soit gC resp kC l'algµebre de Lie g ­R C
resp k ­R C du groupe complexi¯¶e GC resp KC on a la d¶ecomposition

gC kC © pC induite de la d¶ecomposition de Cartan de g Le KC -module
pC se d¶ecompose en somme directe pC p + © p ¡ de deux KC -modules

irr¶eductibles sous-algµebres ab¶eliennes de gC Notons P+ resp P¡ resp Q+
resp Q¡ le sous-groupe du groupe GC d'algµebre de Lie p + resp p ¡resp q+ kC © p+ resp q¡ kC © p¡ Le groupe Q¡ est un produit
semi-direct Q¡ KC P¡ Le produit P+£Q¡ est un ouvert de GC contenant
G et l'intersection G\Q¡ est ¶egale µa K L'espace sym¶etrique hermitien de type

non-compact X G K se plonge ainsi dans son dual compact Xc GC Q¡plongement de Borel et la structure complexe de X est induite par celle de

Xc L'espace p + resp p ¡ s'identi¯e µa l'espace tangent holomorphe resp
antiholomorphe de X au point eK Si exp : gC ¡ GC d¶esigne l'application
exponentielle on notera E : p +¡ Xc l'application qui µa x 2 p + associe le
point exp x: eQ¡ de Xc C'est un biholomorphisme de p + sur un ouvert de

Xc d'aprµes le th¶eorµeme de plongement de Harish-Chandra

Racines compactes et non compactes

Soit H ½ K un sous-groupe de Cartan de G d'algµebre de Lie h d'algµebre de

Lie complexi¯¶ee hC h ­R C Soit ¢ ¢ gC; hC le systµeme de racines de

la paire gC; hC on a alors la d¶ecomposition radicielle

gC hC © M
®2¢

g®

oµu l'on note g ® fY 2 gC 8X 2 hC ; [X; Y ] ® X :Y g : Chaque
espace radiciel g ® est un C -espace vectoriel de dimension 1 contenu soit dans

kC soit dans pC Dans le premier cas la racine ® est dite compacte dans le
deuxiµeme cas non-compacte On notera ¢ k resp ¢ p le sous-ensemble des

racines compactes resp non-compactes l'ensemble des racines ¢ est la r¶eunion
disjointe de ¢ k

et ¢ p On peut alors choisir un systµeme positif de racines

¢+
½ ¢ compatible avec la structure holomorphe de X c'est-µa-dire tel que si

¢+
p resp ¢+

k
d¶esigne l'intersection ¢ p \¢+ resp ¢ k \¢+ on a l'¶egalit¶e :

p§ M
®2¢+

p

g§® :

On notera < :; : > le produit scalaire sur hC¤ induit par la forme de Killing de gC
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GC ; Xc -structures

Rappelons une d¶e¯nition ¶equivalente de la notion de GC ; Xc -structure cf [5]

D¶e¯nition 2 1 Soit M une vari¶et¶e lisse de revêtement universel ~M
de groupe

fondamental ¡ Une GC ; Xc -structure sur M est la donn¶ee d'un di®¶eomor-
phisme local ¡ -¶equivariant D : ~M ¡ Xc c'est-µa-dire qu'il existe un morphisme

de groupe h : ¡¡ GC tel que :

8 ° 2 ¡; D ± ° h ° ± D :

L'application D est appel¶ee d¶eveloppante le morphisme h morphisme d'holonomie

Si M d¶esigne une vari¶et¶e complexe une GC ; Xc -structure sur M d¶e¯nie par
une application d¶eveloppante D est compatible avec la structure complexe de M
si et seulement si D est une application holomorphe

3 Rigidit¶e locale

Dans cette section on montre un r¶esultat de rigidit¶e locale ind¶ependant de la
structure holomorphe de M Notons D M l'ensemble des d¶eveloppantes non
n¶ecessairement holomorphes de GC ; Xc -structures sur M muni de la topolo-
gie de la convergence uniforme sur tout compact et Diff0 M la composante
connexe du groupe des di®¶eomorphismes de ~M

commutant µa ¡ Le groupe pro-
duit GC £ Diff0 M agit naturellement sur l'espace D M le premier facteur
agissant par composition µa gauche sur les d¶eveloppantes le deuxiµeme facteur par
composition µa droite

D¶e¯nition 3 1 Une GC ; Xc -structure de d¶eveloppante D : ~M¡ Xc est
dite localement rigide si l'orbite de D sous l'action du groupe GC £ Diff0 M
est ouverte dans l'espace D M

Proposition 3 2 Soit M ¡ n X un quotient lisse de volume ¯ni de X de

dimension complexe n ¸ 2 Alors la GC ; Xc -structure naturelle de M est
localement rigide

Preuve Notons D0 : X Xc la GC ; Xc -structure naturelle de M d'holono-

mie h0 : ¡ i G ½ GC oµu i d¶esigne l'injection canonique du r¶eseau ¡ dans le
groupe G D'aprµes un th¶eorµeme de d¶eformation de Thurston [5] l'application
GC -¶equivariante

hol : D M Diff0 M ¡ Hom ¡; GC

qui µa une d¶eveloppante associe son morphisme d'holonomie est un hom¶eomorphisme

local le terme de gauche est muni de la topologie quotient le terme de droite de
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la topologie compacte ouverte La rigidit¶e locale de D0 dans D M ¶equivaut
donc µa la rigidit¶e locale du morphisme h0 dans Hom ¡; GC pour l'action par
conjugaison au but du groupe GC
D'aprµes un th¶eorµeme de Weil [19 th 6 7] l'annulation de la cohomologie H1 ¡; gC

implique la rigidit¶e locale du morphisme h0 dans Hom ¡; GC oµu gC est un
¡ -module sous l'action AdgC ± ho et AdgC

d¶enote la repr¶esentation adjointe du
groupe GC Remarquons que le ¡ -module gC s'identi¯e au ¡ -module g­R C
oµu g est un ¡ -module sous Adg ± i Donc

H1 ¡; gC H1 ¡; g ­R C 0

d'aprµes le th¶eorµeme de rigidit¶e de Weil [19 th 7 63] D'oµu le r¶esultat

4 Un critµere de rigidit¶e globale

4 1 Fibr¶es de jets

Dans cette section nous rappelons des r¶esultats sur les ¯br¶es de jets [9] Soit M
une vari¶et¶e complexe de dimension n et z un point de M Etant donn¶es deux
germes de biholomorphismes f et g de C n ; 0 dans M; z on dira que f
et g ont même k -jet s'ils ont mêmes d¶eriv¶ees partielles en z¶ero jusqu'µa l'ordre

k inclus La classe d'¶equivalence de f ainsi d¶e¯nie est not¶ee jkf et est appel¶ee

k -repµere en z On notera Fk M z la r¶eunion des k -repµeres en z et Fk M
l'union disjointe qz2MFk M z L'ensemble Fk M est naturellement muni d'une

structure de vari¶et¶e complexe induite de celle de C n et M

Notons Gk C n l'ensemble Fk C n
0 il est naturellement muni d'une struc-

ture de groupe de Lie complexe : si jkf et jkg sont deux k -repµeres de Gk C n

on d¶e¯nit le produit jkf : jkg jk f ± g Le groupe Gk C n agit holomor-
phiquement µa droite sur Fk M selon : 8 jkf 2 Fk M 8 jkg 2 Gk C n jkf
jkg jk f ± g La projection naturelle de Fk M dans M qui au k -repµere

jkf associe f 0 fait alors de Fk M un Gk C n -¯br¶e principal holomorphe

de base M Etant donn¶e une application holomorphe f : M¡ N on notera

f k : Fk M ¡ Fk N le morphisme de ¯br¶e induit d¶e¯ni par :

8 jkf 2 Fk M ; f k jkg jk f ± g :

Pour k 1 le groupe G1 C n s'identi¯e au groupe GL C n et F1 M est le
GL n; C -¯br¶e principal des repµeres holomorphes de M Pour k 2 le groupe

G2 C n s'identi¯e au produit semi-direct G1 C n n S2 C n ¤ ­ C n

Suivant [9] on d¶e¯nit une 1 -forme canonique ¸ sur F1 M µa valeur dans C n

par :

8 X 2 TF1 M j1f ; ¸ X df ¡1
f 0 : d¼ j1f :X
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oµu ¼ : F1 M ¡ M d¶esigne la projection canonique De même on d¶e¯nit une

1 -forme canonique µ sur F2 M µa valeur dans TeF1 C n ' gl C n
© C n :

8 X 2 TF2 M j2f ; µ X df1 ¡1
j1f : dp j2f :X

oµu p : F2 M ¡ F1 M d¶esigne la projection canonique

4 2 Structures d'ordre 1 et 2 sur Xc [17]

Rappelons la

D¶e¯nition 4 1 Soit H un sous-groupe de Gk C n On appelle H -structure
d'ordre k sur une vari¶et¶e complexe M de dimension n la donn¶ee d'un H -¯br¶e
principal sous-¯br¶e du Gk C n -¯br¶e principal Fk M

L'espace homogµene Xc GC Q¡ est alors muni naturellement d'une KC -
structure F d'ordre 1 et d'une Q¡ -structure d'ordre 2 D'une part on r¶ealise

KC comme sous-groupe de G1 p+ en associant µa l'¶el¶ement g de KC l'¶el¶ement
j1 E¡1

± g ± E Ad gj p+ de G1 p+ oµu Ad d¶esigne la repr¶esentation adjointe

de GC L'application GC ¡ F1 Xc qui µa l'¶el¶ement g associe le repµere j1 g±
E identi¯e alors le KC -¯br¶e principal GC P¡ µa un sous-¯br¶e du ¯br¶e F1 Xc
D'autre part Ochiai [17 lemma 9 1] montre le :

Lemme 4 2 [Ochiai] L'application GC ¡ F2 Xc qui µa g associe j2 g ± E
et le morphisme de groupe Q¡ ¡ G2 p+ qui µa g associe j2 E¡1

± g ± E sont
injectifs

On r¶ealise ainsi GC comme Q¡ -structure d'ordre 2 sur Xc et le diagramme

suivant est commutatif :

GC F2 Xc

# #
GC P¡ F1 Xc

Remarque Dans le cas oµu Xc est l'espace projectif P n C le ¯br¶e GC P¡¡ Xc resp le ¯br¶e GC ¡ Xc s'identi¯e au ¯br¶e des repµeres F1 Xc
resp au ¯br¶e des 2 -repµeres projectifs sur Xc

4 3 Caract¶erisation locale des ¶el¶ements de GC

Dans cette section on caract¶erise les transformations locales de Xc provenant
de GC :



Vol 76 2001 Un th¶eorµeme de rigidit¶e non-m¶etrique 207

Proposition 4 3 Soit Xc un espace sym¶etrique hermitien compact irr¶eductible
de dimension n ¸ 2 Soient U et V deux ouverts de Xc et Á : U ¡ V un
biholomorphisme Il existe un ¶el¶ement g de GC tel que Á gjU

si et seulement
si le biholomorphisme Á2 : F2 Xc jU ¡ F2 Xc jV

pr¶eserve la Q¡ -structure
GC d'ordre 2 sur Xc

Proposition 4 4 Sous les hypothµeses de la proposition 4 3 et l'hypothµese suppl¶e-
mentaire que Xc n'est pas l'espace projectif P n C il existe un ¶el¶ement g
de GC tel que Á gjU

si et seulement si le biholomorphisme Á1 : F1 Xc jU

¡ F1 Xc jV
pr¶eserve la KC -structure GC P¡ d'ordre 1 sur Xc

Remarque Ces propositions ne sont pas valables pour Xc P 1 C : le
fait qu'une transformation locale de P 1 C soit projective se caract¶erise par une

¶equation di®¶erentielle d'ordre 3 annulation de la d¶eriv¶ee schwartzienne et non
d'ordre 2

Notons A: GC ; V l'espace des formes di®¶erentielles sur GC µa valeur dans un
espace vectoriel V Soit 2 A1 GC ; gC la forme de Maurer-Cartan de GC :
si Lg d¶esigne la translation µa gauche par g sur GC la 1 -forme est d¶e¯nie
par : 8 X 2 Tg GC ; X d Lg¡1 :X :

Lemme 4 5 Sous les hypothµeses de la proposition 4 3 l'application Á2 pr¶eserve

la forme de Maurer-Cartan

Preuve Notons ~U resp ~V la restriction du Q¡ -¯br¶e GC au dessus de

U resp V Soit ® la forme de A1 ~U ; GC tel que Á
¤2 j~V j~U

+ ® on
veut montrer que ® est nulle Notons ­ d + 1

2
[ ; ] la forme de A2 GC ; gC

courbure de par d¶e¯nition ­ 0 D¶ecomposons resp ­ en somme

directe p¡ © kC © p+ resp ­ p¡ © ­ kC © ­ p+ relativement µa la
d¶ecomposition triangulaire gC p¡ © kC © p+ On v¶eri¯e facilement que la
forme kC © p+ de A1 GC ; kC © p+ s'identi¯e µa la restriction µa GC de la
forme canonique µ de A1 F2 Xc ; gl p+ © p+ En particulier par fonctorialit¶e
Á

¤2 kC © p+ kC © p+ et donc la forme ® Á
¤2

p¡ ¡ p¡appartient µa A1 ~U ; p¡ La nullit¶e de Á¤2­ kC
implique alors l'¶egalit¶e :

8 X; Y 2 T ~U
2; [ p+ X ; ® Y ] + [® X ; p+ Y ] 0 : 1

On en d¶eduit d'abord :

8 g 2
~U; 8 x 2 p+; 8 y 2 kC © p¡; [x; ® g dLg:y ] 0 :

Comme le crochet [ ; ] : p+ £ p¡ ¡ kC est non-d¶eg¶en¶er¶e la 1 -forme ® est
nulle sur la distribution de plans de T ~U translat¶es µa gauche de kC © p¡ Pour
g dans ~U

notons alors ®g : p+ ¡ p¡ l'application lin¶eaire ® g ± dLgj p+
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D'aprµes l'¶equation 1 l'application ®g v¶eri¯e l'¶equation :

8 x; y 2 p+; [x; ® y ] + [® x ; y] 0

c'est-µa-dire que ®g est un 1 -cocycle pour la cohomologie de Spencer H1 p+ ;
adgC j p+ ; p¡ oµu la d¶ecomposition gC p¡ © kC © p+ induit une d¶ecomposition
naturelle de la cohomologie Hq p+ adgC jp+ en somme directe
Hq p+ ; adgC jp+ ; p¡ © Hq p+ ; adgC jp+ ; kC © Hq p+ ; adgC jp+ ; p+ cf [12]
[17] D'aprµes un th¶eorµeme de Borel [1] cf aussi [11] cette cohomologie est nulle
Donc ®g est un cobord donc nulle Finalement ® 0 et Á¤2

La proposition 4 3 est alors une cons¶equence imm¶ediate du lemme suivant dû µa
Ochiai [17 lemma 11 10 p 188] dont nous donnons une d¶emonstration simple par
sou»ci de compl¶etude :

Lemme 4 6 [Ochiai] Si l'application Á2 pr¶eserve la forme de Maurer-Cartan
alors il existe un ¶el¶ement g de GC tel que Á gjU

Preuve Quitte µa composer Á µa droite et µa gauche par des ¶el¶ements de GC
on peut supposer que U et V sont des voisinages du point eQ¡ de Xc que

Á ¯xe eQ¡ et que Á2 ¯xe l'identit¶e de GC On veut en d¶eduire que Á est
l'identit¶e Notons U p+ resp V p+ l'ouvert de p+ image r¶eciproque de

U resp V par l'application E on peut supposer que E : U p+ ¡ U resp
E : V p+ ¡ V est un biholomorphisme Soit alors ' : U p+ ¡ V p+
l'unique biholomorphisme tel que le diagramme

U p+ '¡ V p+
# E # E

U
Á

¡ V
2

commute Remarquons que ' 0 0 Comme l'application Á2 est un biholo-
morphisme de ~U

dans ~V
et que l'application

P+ £ KC £ P¡ ¡ GC

x; y; z
7¡ xyz

est un biholomorphisme de P+ £ KC £ P¡ sur un ouvert de GC th¶eorµeme de

Harish-Chandra [23] il existe des applications holomorphes Ã : U p+ ¡ kC
et ¿ : U p+ ¡ p¡ s'annulant en z¶ero telles que :

8 y 2 U p+ ; Á2 ey e' y eÃ y e¿ y :

Comme Á2 pr¶eserve la forme de Maurer-Cartan Á2 pr¶eserve la distribution
Ker p¡ © kC

Cette distribution est int¶egrable de feuille P+ en l'identit¶e
de GC En particulier Á2 envoie P+ dans P+ donc Ã ¿ 0 et

8 y 2 U p+ ; Á2 ey e' y : 3
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Calculons Á2 µa partir de l'expression de Á donn¶ee par 2 et r¶e¶ecrivons l'¶equation
3 Comme la sous-algµebre p+ est ab¶elienne il vient :

8 y 2
~U ; j2 x 7 E ' y + x j2 x 7 E ' y + x :

On en d¶eduit : 8 y 2
~U ; D2' y 0 L'application ' est donc a±ne puis

lin¶eaire car ' 0 0 Ecrivons que Á2 pr¶eserve p+ on en d¶eduit que ' est
l'identit¶e D'oµu le r¶esultat

Preuve de la proposition 4 4 :
D'aprµes la proposition 4 3 il su±t de montrer que Á2 : F2 Xc jU ¡ F2 Xc jV
pr¶eserve la Q¡ -structure GC Quitte µa composer Á µa droite et µa gauche par
des ¶el¶ements de GC on peut supposer que U et V sont des voisinages du point
eQ¡ de Xc que Á ¯xe eQ¡ et que Á1 ¯xe le point eP¡ de la KC -structure

GC Q¡ sur Xc Comme l'application

P+ £ KC £ P¡ ¡ GC

x; y; z
7¡ xyz

est un biholomorphisme de P+ £ KC £P¡ sur un ouvert de GC on peut d¶e¯nir
une section holomorphe i du ¯br¶e GC ¡ GC P¡ sur un voisinage de eP¡contenant U et V par xy:P¡ 7¡ xy

Lemme 4 7 Á
¤1 i¤ p+ © kC i¤ p+ © kC

Preuve Remarquons que i¤ p+ s'identi¯e µa la restriction µa GC P¡ de la
forme canonique ¸ de A1 F1 Xc ; p+ d¶e¯nie µa la section 4 1 Par fonctorialit¶e
Á

¤1 i¤ p+ i¤ p+ Soit alors ¯ la forme de A1 ~U P¡; kC d¶e¯nie par
Á

¤1 i¤ kC i¤ kC
+ ¯ : Comme sur GC on a l'¶egalit¶e ­ p+ d p+ +

1
2 [ kC

; p+ ] + [ p+ ; kC
] il vient

Á
¤1 i¤­p+ i¤­p+ +

1

2
[¯; i¤ p+ ] + [i¤ p+;¯] :

Mais ­ p+ 0 d'oµu l'¶egalit¶e :

8 X; Y 2 T ~U P¡ ; [¯ X ; i¤ p+ Y ] + [i¤ p+ X ; ¯ Y ] 0 4

On en d¶eduit d'abord que

8 gP¡ 2
~U P¡; 8 x 2 p+; 8 y 2 kC; [x; ¯ gP¡ d ¼ ± Lg e:y] 0

oµu ¼ d¶esigne la projection GC ¡ GC P¡ Mais la repr¶esentation ad : kC

¡ gl p+ est ¯dµele donc la 1 -forme ¯ est nulle sur la distribution de plans de

T ~U P¡ translat¶ee µa gauche de kC Pour tout point gP¡ de ~U P¡ notons

¯gP¡ : p+ ¡ kC l'application ¯ gP¡ ± d ¼ ± Lg e ;j p+ D'aprµes l'¶equation 4
l'application ¯gP¡ v¶eri¯e l'¶equation

8 x; y 2 p+; [¯gP¡ x ; y] + [x; ¯gP¡ y ] 0
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c'est-µa-dire que ¯gP¡ d¶e¯nit un cocycle pour la cohomologie de Spencer H1 p+ ;
adgC jp+ ; kC Comme Xc 6 P n C cette cohomologie est nulle d'aprµes [1]
[11] Donc ¯gP¡ est un cobord donc nul Finalement ¯ 0

¤
Consid¶erons alors le diagramme

F2 Xc jU
Á2¡ F2 Xc jViU " " iV

~U P¡
Á1¡ ~V

P¡
:

On d¶e¯nit une section sV : ~V P¡ ¡ F2 Xc jV
par sV Á2 ± iU ± Á¡1

1 Soit
µ la 1 -forme canonique sur F2 M d¶e¯nie µa la section 4 1 Comme Á

¤2
µ µ

par fonctorialit¶e et que la restriction de µ µa GC s'identi¯e µa p+ © kC
on

d¶eduit du lemme pr¶ec¶edent l'¶egalit¶e :

s¤Vµ Á¡1
1

¤ i¤U p+ © kC i¤V p+ © kC i¤Vµ

Au vu de la d¶e¯nition de µ l'¶egalit¶e s¤Vµ i¤Vµ implique l'¶egalit¶e sV iV
Le diagramme pr¶ec¶edent est donc commutatif et Á2 iU ~U P¡ iV ~V P¡Par extension de groupe structural de KC µa Q¡ Á2 ~U

~V ce qui achµeve

la preuve de la proposition 4 4

4 4 Critµere de rigidit¶e globale

On d¶eduit des propositions 4 3 et 4 4 la

Proposition 4 8 Soit Xc un espace sym¶etrique hermitien compact irr¶eductible
de dimension n ¸ 2 Soit M une vari¶et¶e complexe de dimension n L'espace

de module T GC;Xc M des GC ; Xc -structures sur M compatibles avec sa
structure holomorphe s'injecte dans l'espace des sections holomorphes du ¯br¶e
F2 M Q¡ de ¯bre la vari¶et¶e a±ne G2 p+ Q¡ Si de plus Xc 6 P n C
l'espace T GC;Xc M s'injecte dans l'espace des sections holomorphes du ¯br¶e
F1 M KC de ¯bre la KC -vari¶et¶e a±ne GL p+ KC

Preuve Soit D : ~M ¡ Xc la d¶eveloppante holomorphe d'une GC ; Xc -
structure compatible sur M d'holonomie h : ¼1M¡ GC Comme D est un
biholomorphisme local le pull-back D¤ F2 Xc resp D¤ F1 Xc s'identi¯e

µa F2
~M resp µa F1

~M et le diagramme commutatif
D¤ GC ½ F2

~M ¡ GC ½ F2 Xc

# #
D¤ GC P¡ ½ F1

~M ¡ GC P¡ ½ F1 Xc

# #

~M
D¡ Xc
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est naturellement ¼1M -¶equivariant
On obtient ainsi une °µeche T GC;Xc M ¡ H0 M; F2 M Q¡ qui µa la d¶eve-
loppante D associe la section holomorphe sD

2
de F2 M Q¡ d¶e¯nie par la Q¡ -

structure d'ordre 2 ¼1 M n D¤ GC sur M Cette °µeche est injective : si D
et D0 sont deux d¶eveloppantes telles que les sections sD

2
et sD0

2 coÄ³ncident pour
tout ouvert U de ~M

sur lequel les restrictions DjU
et D0

jU
sont injectives la

transformation locale D0

jU ± D¡1

jU
de Xc pr¶eserve alors la Q¡ -structure GC

d'ordre 2 sur Xc D'aprµes la proposition 4 3 il existe alors un ¶el¶ement g de

GC tel que D0

jU
g ± DjU

c'est-µa-dire que les d¶eveloppantes D et D0 sont
¶equivalentes

De même on obtient une °µeche T GC;Xc M ¡ H0 M; F1 M KC qui µa la d¶eve-
loppante D associe la section holomorphe sD

1
de F1 M KC d¶e¯nie par la kC -

structure d'ordre 1 ¼1 M n D¤ GC P¡ sur M Quand Xc 6 P n C cette
°µeche est injective comme pr¶ec¶edemment d'aprµes la proposition 4 4

Le th¶eorµeme 1 2 est alors une cons¶equence des

Proposition 4 9 Soit M ¡ n X un quotient lisse de volume ¯ni d'un espace

sym¶etrique hermitien irr¶eductible de type non-compact X G K de dimension
complexe n ¸ 2 Alors le ¯br¶e non-vectoriel holomorphe F1 M KC admet
une unique section holomorphe

Proposition 4 10 Soit M ¡ n Hn
C

un quotient lisse de volume ¯ni de l'espace

hyperbolique complexe Hn
C

de dimension complexe n ¸ 2 Alors le ¯br¶e holo-
morphe F2 M Q¡ admet une unique section holomorphe

5 Preuve des proposition 4 9 et 4 10

5 1 Fibr¶es automorphes

Commen»cons par des rappels sur les ¯br¶es automorphes Etant donn¶ee une Q¡ -
vari¶et¶e Z on note FZ;Xc le ¯br¶e holomorphe GC -¶equivariant GC £Q¡ Z de

¯bre Z de base Xc et FZ;X le ¯br¶e holomorphe G -¶equivariant restriction de

FZ;Xc
µa l'ouvert X de Xc Si M ¡ n X est un quotient compact lisse de X on

note FZ le ¯br¶e holomorphe ¡ n FZ;X de ¯bre Z sur M Si l'action de Q¡ sur
Z est induite d'une action de KC ¶etendue trivialement sur le radical unipotent
P¡ de Q¡ le ¯br¶e FZ s'identi¯e topologiquement au ¯br¶e ¡ n G £K Z On
pose alors la

D¶e¯nition 5 1 Soit Z une KC -vari¶et¶e et M ¡ n X un quotient compact de

X on appelle ¯br¶e automorphe de base M associ¶e µa Z le ¯br¶e holomorphe FZ
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Exemples :
Le ¯br¶e tangent holomorphe TM resp cotangent holomorphe T¤M de M
¡ n X s'identi¯e au ¯br¶e vectoriel automorphe Fp+ resp Fp¡ oµu l'on identi¯e

p¡ au dual p¤+ de p+ par la forme de Killing de GC Le ¯br¶e des repµeres

F1 M s'identi¯e au ¯br¶e automorphe FGL p+ le ¯br¶e F1 M KC au ¯br¶e au-
tomorphe FGL p+ KC

Par contre le ¯br¶e F2 M qui s'identi¯e au ¯br¶e FG2 p+
n'est pas automorphe : l'action de P¡ sur G2 p+ par multiplication µa gauche

n'est pas triviale

5 2 Un r¶esultat d'annulation pour les ¯br¶es vectoriels automorphes

La strat¶egie pour d¶emontrer la proposition 4 9 consiste µa r¶ealiser le ¯br¶e automor-
phe F1 M KC FGL p+ KC

comme sous-¯br¶e d'un ¯br¶e vectoriel automorphe

FN dont on contrôle les sections holomorphes

Commen»cons par donner un critµere d'annulation pour un ¯br¶e vectoriel auto-
morphe associ¶e µa une repr¶esentation irr¶eductible de KC Avec les notations de

2:2 soit ¸ un poids entier dominant de KC relativement µa ¢+
k

et soit F ¸
le KC -module de plus haut poids associ¶e Si ® 2 ¢ et ¸ 2 hC ¤ on note
¸® 2 < ¸; ® > < ®; ® > Soit ¯ l'unique racine maximale non-compacte de

¢+ c'est-µa-dire le plus haut poids de p + relativement µa ¢+
k Remarquons que

la condition ¸¯ < 0 ¶equivaut facilement µa la positivit¶e stricte au sens de Gri±ths

de FF ¸ On a alors le r¶esultat dû µa Mok [14 p 211] :

Th¶eorµeme 5 2 [Mok] Si ¸¯ ¸ 0 alors H0 M; FF ¸ 0 sauf si ¸ 0 i e

F ¸ est le ¯br¶e trivial et H0 M; OM C

Ce th¶eorµeme de Mok est un corollaire de son th¶eorµeme de rigidit¶e pour les m¶etriques

µa courbure semi-n¶egative sur M [13] Nous en donnons ici une d¶emonstration
simple dans le cas oµu ¡ est cocompact comme cas particulier d'un r¶esultat plus

pr¶ecis de th¶eorie des repr¶esentations

Preuve dans le cas ¡ cocompact :

Notons N ¸ le gC -module N ¸ U gC ­U q+ F ¸ ; oµu U gC resp
U q+ d¶esigne l'algµebre enveloppante de gC resp de q+ Le gC -module
N ¸ est un module de plus haut poids et admet un unique quotient irr¶eductible
not¶e L ¸ [7] Rappelons que le gC -module L ¸ est dit unitarisable s'il est
¶equivalent au gC -module des vecteurs kC -¯nis d'une repr¶esentation unitaire de

G

Proposition 5 3 Si le gC -module L ¸ n'est pas unitarisable alors

H0 M; FF ¸ 0
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Preuve L'espace des sections lisses de FF ¸ s'identi¯e ¶evidemment aux kC -

invariants
C1 ¡ n G ­ F ¸ kC oµu l'action de kC sur C1 ¡ n G est induite

par la multiplication µa droite de K sur G et l'action sur F ¸ est donn¶ee par la
structure de KC -module de F ¸ L'espace des sections holomorphes de FF ¸
s'identi¯e alors aux q¡ -invariants C1 ¡ n G ­ F ¸ q¡ oµu l'action de q¡ sur
C1 ¡ n G est induite par la multiplication µa droite de G sur G et l'action de

p¡ sur F ¸ est triviale [12] [20] C'est-µa-dire :

H0 M; FF ¸ Homq¡ F ¸ ¤; C1 ¡nG ;

oµu F ¸ ¤ d¶esigne le gC -module dual de F ¸ Comme le r¶eseau ¡ de G est
cocompact la repr¶esentation unitaire L2 ¡ n G de G se d¶ecompose en somme

hilbertienne d¶enombrable de repr¶esentations irr¶eductibles unitaires de multiplicit¶es

¯nies :
L2 ¡nG M

¼2Ĝ

m¼ ¡ : ¼

oµu Ĝ d¶esigne le dual unitaire de G et m¼ ¡ la multiplicit¶e de ¼ dans L2 ¡ n G
D'aprµes un th¶eorµeme de Matsushima et Murakami [12] on a alors :

H0 M; FF ¸ X
¼2Ĝ

m¼ ¡ : Homq¡ F ¸ ¤ ; ¼ :

D'aprµes le th¶eorµeme de r¶eciprocit¶e de Frobenius :

Homq¡ F ¸ ¤ ; ¼ HomgC U gC ­U q¡ F ¸ ¤ ; ¼ :

Soit alors ¾ une involution de gC valant ¡1 sur hC et envoyant g® sur g¡®
une telle involution dite de Chevalley existe d'aprµes [2 prop 5 p 103] En

particulier l'involution ¾ pr¶eserve kC et ¶echange p+ et p¡ Pour tout gC -
module resp kC -module V notons ¾V le gC -module resp kC -module
obtenu en tordant l'action de gC resp kC par ¾ Si V est un gC -module
unitarisable alors ¾V l'est aussi Si V d¶esigne un kC -module on a l'¶egalit¶e

¾ U gC ­U q¡ V ' U gC ­U q+
¾V :

Comme le kC -module ¾ F ¸ ¤ est ¶equivalent µa F ¸ on a en particulier l'¶equiva-
lence de gC -modules

¾ U gC ­U q¡ F ¸ ¤ ' N ¸ :

Finalement
H0 M; FF ¸ P¼2Ĝm¼ ¡ : HomgC

¾ U gC ­U q¡ F ¸ ¤ ; ¾¼

P¼2Ĝ
m¼ ¡ : HomgC N ¸ ; ¾ ¼

P¼2Ĝ
m¾¼ ¡ : HomgC N ¸ ; ¼ :

Dire que le gC -module L ¸ n'est pas unitarisable c'est dire que pour tout ¼

dans Ĝ HomgC N ¸ ; ¼ 0 D'oµu le r¶esultat
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Le th¶eorµeme 5 2 dans le cas cocompact est alors un corollaire de la classi¯cation
par Enright Howe et Wallach [4] des modules de plus haut poids unitarisables

pour les paires hermitiennes On d¶eduit des lemmes 7:4 8:4 9:4 10:4 11:4
12:4 et 13:4 de [4] que si ¸¯ ¸ 0 alors le G -module L ¸ n'est pas unitarisable
sauf si ¸ 0
Etant donn¶e maintenant un KC -module N de dimension ¯nie non-n¶ecessaire-
ment irr¶eductible la mise en oeuvre du r¶esultat pr¶ec¶edent n¶ecessite de connaitre

la d¶ecomposition en modules irr¶eductibles de N Lorsqu'on cherche µa plonger la
KC -vari¶et¶e a±ne GL p+ KC de fa»con KC -¶equivariante dans un KC -module
N il semble di±cile en g¶en¶eral de d¶eterminer cette d¶ecomposition Ainsi dans le
cas oµu G SU p; q l'espace p+ s'identi¯e naturellement au produit tensoriel
C p ­ C q le groupe KC au produit S GL C p

£ GL C q des matrices de

GL C p
£GL C q de d¶eterminant 1 ; le quotient GL C p­ C q S GL C p

£
GL C q se r¶ealise naturellement dans

V
i S2 C p ­ C q oµu i d¶esigne un entier

convenable Sauf pour des cas simples je ne sais pas d¶ecomposer ce module en
S GL C p

£ GL C q -modules irr¶eductibles

D¶e¯nissons alors une classe de KC -modules pour lesquels nous obtenons un
th¶eorµeme simple d'annulation Soit V un KC -module de dimension ¯nie le
centre Z KC ' C¤ de KC agit r¶eductivement sur V Un poids de cette ac-
tion sera dit positif s'il a même signe que le poids de Z KC sur p+ On pose

alors la

D¶e¯nition 5 4 Soit V un KC -module de dimension ¯nie L'action de Z KC
sur V est dite positive si tous ses poids sont positifs ou nuls

Remarque:
Une action triviale de Z KC sur un KC -module V de dimension ¯nie est
positive D'autre part l'action de Z KC sur V est positive si et seulement si
elle l'est pour chacune des KC -composantes irr¶eductibles de V

On obtient alors le

Th¶eorµeme 5 5 Soit V un KC -module de dimension ¯nie tel que le centre
Z KC de KC agit positivement sur V et VKC 0 Alors H0 M; FV 0

Preuve On peut supposer V irr¶eductible de la forme F ¸ D'aprµes la proposi-
tion 5 2 il su±t de montrer que ¸¯ est strictement positif Soit h

¤k
l'hyperplan

vectoriel de hC ¤ engendr¶e par ¢k Soit ³ l'¶el¶ement de hC ¤ d¶e¯ni par <
³ ; h

¤k
> 0 et ³¯ 1 Le poids ¸ de KC s'¶ecrit de fa»con unique sous la forme

¸ ¹ + y³ oµu ¹ 2 h¤k
d¶esigne un plus haut poids de la partie semi-simple

[ KC ; KC ] de KC relativement µa ¢+
k

et y d¶esigne un nombre r¶eel poids relatif
du centre Z KC ' C¤ sur F ¸ On a alors l'¶egalit¶e ¸¯ ¹¯ +y Dire que le
centre Z KC agit positivement sur F ¸ c'est dire que y ¸ 0 D'autre part on
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v¶eri¯e ais¶ement que ¯ est strictement dominant pour ¢+
k

Comme ¹ est ¢+
k -

dominant on en d¶eduit l'in¶egalit¶e ¹¯ ¸ 0 avec ¶egalit¶e si et seulement si ¹ 0

Finalement ¸¯ ¸ 0 avec ¶egalit¶e si et seulement si F ¸ est la repr¶esentation
triviale Comme VKC 0 on en d¶eduit que ¸¯ > 0 et donc L ¸ n'est pas

unitarisable

5 3 Preuve de la proposition 4 9

Lemme 5 6 Soit L un groupe alg¶ebrique complexe lin¶eaire r¶eductif connexe

et ½; W un L -module rationnel irr¶eductible de dimension ¯nie Il existe un
GL W -module N de dimension ¯nie et un point f de N tels que :
1 La GL W -orbite de f dans N s'identi¯e µa l'espace homogµene GL W ½ L
2 Le centre Z L de L agit trivialement sur N

Preuve Comme le groupe L est r¶eductif l'image ½ L est un sous-groupe r¶eductif
de GL W et le quotient GL W ½ L est une GL W -vari¶et¶e a±ne D'aprµes un
th¶eorµeme classique de Chevalley [18 th 1 5] il existe un GL W -module rationnel
N de dimension ¯nie et un point f de N tel que la GL W -orbite de f dans

N s'identi¯e µa l'espace homogµene GL W ½ L Comme W est L -irr¶eductible
l'image ½ Z L est contenue dans le centre de GL W En particulier l'action
de Z L sur l'orbite GL W :f ' GL W ½ L est triviale Quitte µa remplacer
N par le sous-espace vectoriel de N engendr¶e par GL W :f l'action de Z L
sur N est triviale

Preuve de la proposition 4 9 :
Notons Z la GL p + -vari¶et¶e GL p + KC le ¯br¶e automorphe F1 M KC
FZ admet une section holomorphe canonique induite par l'application constante

de G dans Z de valeur e KC Soit N et f comme dans le lemme pr¶ec¶edent
appliqu¶e µa L KC et W p + La r¶ealisation de Z comme sous-vari¶et¶e de N
induit la r¶ealisation du ¯br¶e automorphe FZ comme sous-¯br¶e du ¯br¶e vectoriel
automorphe FN Notons V un KC -module suppl¶ementaire du KC -module
des invariants NKC dans N un tel module existe puisque KC est r¶eductif
La d¶ecomposition N NKC

© V induit la d¶ecomposition de ¯br¶es holomorphes

FN FNKC © FV D'une part H0 M; FV 0 d'aprµes le th¶eorµeme 5 5 D'autre

part le ¯br¶e FNKC
s'identi¯e holomorphiquement au ¯br¶e trivial sur M de ¯bre

NKC ses section holomorphes sont induites par les applications constantes de G
µa valeur dans NKC Soit alors s une section holomorphe de FZ elle est donc

induite par une application constante de G µa valeur dans NKC \Z Mais le point
e KC est le seul point ¯xe de Z H KC sous KC la section s est donc la
section canonique de FZ
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5 4 Preuve de la proposition 4 10

Nous red¶emontrons ici le r¶esultat de Mok-Yeung Notons X Hn
C n ¸ 2

Rappelons que le groupe G2 p+ s'identi¯e au produit semi-direct GL p+ n
S2p¤+ ­ p+ Consid¶erons S2p¤+ ­ p+ comme sous-GL p+ -module de p¤+ ­End p+ et notons S2p¤+­ p+ 0 l'intersection de S2p¤+­ p+ avec p¤+­End0 p+

oµu End0 p+ d¶esigne le GL p+ -module des endomorphismes de p+ de trace

nulle On a alors la d¶ecomposition en KC -modules irr¶eductibles : S2p¤+­ p+
S2p¤+­ p+ 0 ©p¤+ : En particulier le radical unipotent P¡ agit trivialement sur

la Q¡ -vari¶et¶e G2 p+ Q¡ qui s'identi¯e alors au KC -module S2p¤+­ p+ 0
Un ¶equivalent de la proposition 4 8 est alors la

Proposition 5 7 Soit M une P GL n + 1; C ; P n C -vari¶et¶e compacte
L'espace T PGL n+1;C ;PnC M des structures projectives complexes sur M com-
patibles avec sa structure holomorphe s'injecte dans l'espace des sections holomor-
phes H0 M; S2T¤M­ TM 0

Remarque Le ¯br¶e S2T¤M­ TM 0 n'est autre que le ¯br¶e ¼
¤Hom L; S de

Mok et Yeung [15 prop 2 1]

Pour conclure la preuve de la proposition 4 10 nous appliquons le th¶eorµeme 5 2
Choisissons comme sous-algµebre de Cartan hC de gC ' sl n + 1; C la sous-
algµebre des matrices diagonales de sl n + 1; C notons ®i 1 · i · n la forme

lin¶eaire d¶e¯nie sur hC par ®i x1; ¢ ¢ ¢ ; xn+1 xi ¡ xi+1 et choisissons

¢+ f¯i;j ®i + ®i+1 + ¢ ¢ ¢ + ®j; 1 · i · j · ng
¢+

k f¯i;j ; 1 · i · j < ng
¢+p f¯i;n; 1 · i · ng

:

On v¶eri¯e imm¶ediatement que le kC -module irr¶eductible S2p¤+ ­ p+ 0 a pour
plus haut poids ¡®n + ®n¡1 + ¢ ¢ ¢ + ®1 relativement µa ¢+

k Ainsi pour n > 2
on a < ¸; ®i > 0 pour 2 · i · n ¡ 2 < ¸; ®1 > 1 < ¸; ®n¡1 > 2 et
< ¸; ®n > ¡3 Pour n 2 on a < ¸; ®1 > 3 et < ¸; ®2 > ¡3 Comme

¯ ®1 + : : : + ®n on a ¯nalement ¸¯ 0 : le ¯br¶e FV FF ¸ n'a que la
section constante nulle comme section holomorphe
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