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Commentarii Mathematici Helvetici

On Nehari disks and the inner radius

Leila Miller-Van Wieren

Abstract Let D be a simply connected plane domain and B the unit disk The inner radius

of D ¾ D is de¯ned by ¾ D sup
©

a : a ¸ 0;

¯
¯
¯
¯

Sf
¯̄̄̄

D · a implies f is univalent in D
ªHere Sf is the Schwarzian derivative of f ½D the hyperbolic density on D and

¯
¯
¯
¯

Sf
¯
¯
¯
¯

D
supz2D

¯
¯

Sf z

¯
¯

½¡2
D z : Domains for which the value of ¾ D is known include disks angular

sectors and regular polygons as well as certain classes of rectangles and equiangular hexagons

All of the mentioned domains except non-convex angular sectors have an interesting property
in common namely that ¾ D 2 ¡ jShjB where h maps B conformally onto D Because

of the importance of this property for computing ¾ D we say that D is a Nehari disk if
¾ D 2 ¡ jShjB holds

This paper is devoted to the problem of characterizing Nehari disks We give a necessary
and su±cient condition for a domain to be a Nehari disk provided it is a regulated domain with
convex corners

Mathematics Subject Classi¯cation 2000 Primary 30C55; Secondary 30C20

Keywords Nehari disk inner radius univalence criteria

1 Introduction

We use the symbol C to denote the complex plane and C to denote the extended
complex plane Within C we use the symbol B to refer to the unit disk B

fz : jzj < 1g and U for the upper half-plane U fz : I m z > 0g The

symbol D will denote a domain in C with at least two points on its boundary
For z 2 B the hyperbolic density of B at z is the quantity ½B z given by

½B z 1 1 ¡ jzj
2 For a general simply connected domain D the hyperbolic

density ½D is then de¯ned in terms of ½B and h : B ¡ D where h maps B
conformally onto D see [11 page 5]

For f holomorphic in D ½ C with f 0 z
6

0 for z 2 D the Schwarzian
derivative Sf of f is de¯ned in D by Sf z f 00 f 0 0 z ¡ 1

2 f 00 f 0
2 z

This de¯nition can easily be extended to include locally univalent meromorphic
functions A detailed explanation of the extended de¯nition can be found in [11
page 52] To make our terminology more concise locally univalent meromorphic
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functions will be refered to simply as locally univalent functions

In order to discuss a univalence criterion for f we introduce a norm for Sf Let
D be a simply connected domain in C For f locally univalent in D we de¯ne

the hyperbolic norm of Sf with respect to D by jSfjD supz2D jSf z j ½¡2
D z

Now suppose D is a simply connected domain in C We de¯ne the inner
radius of D ¾ D by ¾ D supfa : a ¸ 0; jSf jD · a implies f is univalent
in Dg

All images of D under MÄobius transformations have the same inner radius as

D
Nehari [14] and Hille [8] proved that ¾ B 2 Later Lehtinen showed in [9]

that ¾ D · 2 for all simply connected domains in C with equality occurring
only when D is a disk in C i e an image of B under a MÄobius transformation
The inner radius of a domain has another important meaning that is not apparent
from its de¯nition Ahlfors and Weill [3] proved that if f is locally univalent on
D a simply connected domain with jSfjD < ¾ D then f is univalent and
can be extended to a quasiconformal mapping of C Ahlfors [1] and Gehring [5]
proved that when D is a simply connected domain ¾ D > 0 if and only if D is
a quasidisk

Next we list some known values of ¾ D If S denotes the parallel strip
de¯ned as the image of U under h z log z then ¾ S 0 Lehto and
Lehtinen have calculated the inner radii of angular sectors in [10] and [9] If Ak

fz : z 2 C ; 0 < arg z < k¼g then ¾ Ak 2k2 for 0 < k < 1 and ¾ Ak 4k¡2k2 for 1 < k < 2 Another class of domains for which the inner radii have been
calculated are regular polygons Calvis [4] proved that ¾ Pn 2 n¡ 2 2 n2

where Pn is an open regular n -sided polygon
In [12] we computed the inner radii for some classes of rectangles and equian-

gular hexagons We proved that if R is a rectangle whose ratio of longer over
shorter side is bounded from above by a speci¯c constant » 1:52346 : : : then
¾ R 1 2 and if H is an equiangular hexagon whose sides form the sequence

baabaa with b a · 1:67117 : : : then ¾ H 8 9 In the proofs of the just men-
tioned results the following simple but insightful lemma see [13] played a key
role
Lemma 1 1 If D is a simply connected domain and if h maps B conformally
onto D then ¾ D ¸ 2 ¡ jShjB
Proof Suppose f is locally univalent on D with jSf jD · 2 ¡ jShjB Then

f ± h is locally univalent on B and jSf±hjB jSf ¡ Sh¡1 jD · jSfjD + jSh¡1jD
jSfjD +jShjB · 2 see [11] This implies that f ± h is univalent on B and hence

f is univalent on D Thus ¾ D ¸ 2 ¡ jShjB ¤
It turns out that the lower bound 2 ¡ jShjB is equal to ¾ D in the case of

many domains for which ¾ D is known|disks parallel strips convex angular
sectors and regular polygons as well as the mentioned classes of rectangles and
equiangular hexagons see [13] and [12] Moreover this yields a good method for
computing ¾ D for many domains As will be seen later computing ¾ D for
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some domains can be based on merely understanding the behavior of the Riemann
mapping h This prompted us to introduce a special name for these domains we

¯rst introduced it in [12] A simply connected domain D in C is called a Nehari
disk if

¾ D 2 ¡ jShjB ;

where h maps B conformally onto D Nehari disks are essentially domains for
which the application of the Nehari univalence criterion to jSf±hjB jSf ¡ Sh¡1jDgives the best possible result and hence the name Nehari Disks parallel strips

convex angular sectors regular polygons and the mentioned rectangles and equian-
gular hexagons are all Nehari disks Of course there exist many simply connected
domains which are not Nehari disks From the calculations in Lehto [10] and
Lehtinen [9] one can easily see that the angular sectors Ak with 1 < k < 2 are

not Nehari disks Also from the presentation in Lehto [11 pages 60{61] we can
conclude that there are many domains D for which jShjB > 2 where h : B ¡ D
is the Riemann mapping No such domain can be a Nehari disk

In [13] it is demonstrated that some results previously known to hold for B
are valid for all Nehari disks We mention one of these generalizations here as we

will use it later on

Theorem 1 2 Suppose D is a Nehari disk If f is a locally univalent function
on D and if jSf jD · ¾ D then f D is a Jordan domain or the image of the

parallel strip S under a MÄobius transformation
This is a generalization of the analogous theorem of Gehring and Pommerenke [7]

for the unit disk We recall another result from [7]

Theorem 1 3 Gehring-Pommerenke Suppose f : B ¡ C is locally uni-
valent on B and lim sup

jzj 1 jSf z j 1¡ jzj
2 2 < 2 If f B is a Jordan domain

then f B is a quasidisk

In this paper we establish a necessary and su±cient condition for a domain to
be a Nehari disk provided it belongs to a large and well known class of domains

Before introducing our result we note a useful fact about how ¾ D is a®ected by
standard convergence of domains In [12] the following relation between the inner
radii of Dn and D when fDng converges to D in the sense of Carath¶eodory
kernel convergence is demonstrated for the de¯nition of this convergence see [16
page 13]

Theorem 1 4 If Dn and D are simply connected domains and if Dn ¡ D
with respect to w0 then ¾ D ¸ lim supn 1 ¾ Dn

2 Main result
In the introduction we saw that the de¯nition of Nehari disks springs naturally
from the problem of calculating ¾ D for domains D That computation could
be done using just the Riemann mapping provided we knew that the domain
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was a Nehari disk So the question that comes to mind is: \Can Nehari disks

be characterized in some interesting way " Many domains in the applications

of conformal mapping are bounded by ¯nitely many smooth arcs that may form
corners or may go to in¯nity By restricting attention to a class of domains known
as regulated domains subject to the added constraint of having all convex corners

a class wide enough to include all the domains described earlier we are able to
obtain a necessary and su±cient condition for a domain to be a Nehari disk

We begin with some de¯nitions see [16 pages 59{64] A real-valued function

¯ on an interval I in R is said to be regulated if the one-sided limits ¯ t¡lim¿ t¡ ¯ ¿ and ¯ t+ lim¿ t+ ¯ ¿ exist for t 2 I in case t is an endpoint
of I only one of the above limits applies Here and in what follows we will assume

that D is a Jordan domain and that h maps B conformally onto D Then h can
be extended as a homeomorphism of B onto D for which we retain the notation
h We shall use the parametrization of @D given by h eit for 0 · t · 2¼ and
periodically extended for t 2 R We present three slightly modi¯ed de¯nitions

from [16] as we are concerned with Jordan domains only We say that @D has a
corner of opening ®¼ 0 · ® · 2 at h ei»

6 1 » 2 [0; 2¼] if

arg
£
h eit ¡ h ei»

¤ ¡ ½
¯ as t »+;
¯ + ®¼ as t »¡:

It is assumed that arg z takes on values in [0; 2¼ We also say that @D has a

forward half-tangent of direction angle ¯ and a backward half-tangent of direction
angle ¯+®¼ in this case A corner and half-tangents at 1 are de¯ned by means

of a preliminary inversion
A Jordan domain D in C is said to be a regulated domain if

¯ t ½
lim¿ t+ arg

£
h ei¿ ¡ h eit

¤
for h eit

6 1;
lim¿ t+ arg

¡
h ei¿

¢
+ ¼ for h eit 1

exists for all t and de¯nes a regulated function
As discussed in [16] ¯ t is equal to ¯ t+ and represents the direction angle

of the forward half-tangent of @D at h eit ; the limit ¯ t¡ represents the

direction angle of the backward half-tangent at h eit In addition it is shown
that ¯ t+ ¯ t¡ for all but at most countably many t We note the following
useful proposition see [16 page 60]

Proposition 2 1 Suppose D is a regulated domain and 0 < ² < ¼ If j¯ t ¡ °j
< ² and h eit

6 1 for t 2 I where I is some interval in R then

¯
¯

arg[h ei¿ ¡ h eit ] ¡ °

¯
¯

< ² whenever t; ¿ 2 I and t < ¿

As a regulated function on [0; 2¼] ¯ can be written as ¯ ¯c +¯j where ¯c

is continuous on [0; 2¼] and ¯j is constant on [0; 2¼] except for at most countably
many jumps The jumps clearly correspond to corners of @D

Regulated domains admit a simple representation formula for the conformal
mapping h h B D The following formula due to Paatero [15] can also be
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found in [16] If h maps B conformally onto a regulated domain D then

log h0 z log jh
0 0 j +

i
2¼ Z

2¼

0

eit + z
eit ¡ z ³¯ t ¡ t¡

¼

2´ dt 2 1

for z 2 B From 2 1 we obtain

Sh z
2i
¼ Z

2¼

0

eit
eit ¡ z 3 ³¯ t ¡ t¡

¼

2´ dt

+
1

2¼2 ÃZ

2¼

0

eit
eit ¡ z 2 ³¯ t ¡ t¡

¼

2´ dt
2

2 2

for z 2 B whenever D is regulated and h h : B ¡ D is conformal
Now we are ready to state our result

Theorem 2 2 Suppose that D is a regulated domain with convex corners and
that h maps B conformally onto D Then D is a Nehari disk if and only if

lim sup
jzj 1

jSh z j³1 ¡ jzj
2

´
2

jShjB :

Since the proofs of the two directions are di®erent we will address them in
separate sections restating the above result as two separate theorems

3 The su±cient condition

We begin by proving two lemmas that describe the behavior of the Schwarzian
derivative of the mapping h near @B

Lemma 3 1 Suppose that D is a regulated domain that h maps B conformally
onto D and ¯ is as de¯ned earlier If ³ 2 [0; 2¼] and if ¯ is continuous at ³
then lim

z ei³ jSh z j³1 ¡ jzj
2

´
2

0

Proof By applying a preliminary rotation we may assume that ³ 2 0; 2¼ In
view of 2 2 we begin by showing that

lim
z ei³ Z

2¼

0

eit ³1 ¡ jzj
2

´
2

eit ¡ z 3 ³¯ t ¡ t¡
¼

2´ dt 0:

Let c ¯ ³ First we will verify that lim
z ei³ Z

2¼

0

eit ³1¡ jzj
2

´
2

eit ¡ z 3 ¯ t ¡ c dt 0

Fix ² > 0 Since ¯ is continuous at ³ we can choose ± > 0 so that ³ ¡ ± < t <
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³ + ± ¡ j¯ t ¡ cj < ²
8¼ : Next

¯
¯
¯
¯
¯
¯
¯

Z

³+±

³¡±

eit ³1 ¡ jzj
2

´
2

eit ¡ z 3 ¯ t ¡ c dt
¯
¯
¯
¯
¯
¯
¯

· Z
³+±

³¡±

³1 ¡ jzj
2

´
jeit ¡ zj

2
³1 ¡ jzj

2

´
jeit ¡ zj j¯ t ¡ cj dt

· 2
¢

²
8¼ Z

³+±

³¡±

³1 ¡ jzj
2

´
jeit ¡ zj

2 dt < ²
4¼

¢
2¼ < ²

2
3 1

using the Poisson representation formula [2 page 167] for z 2 B Let A±

[0; ³ ¡ ±]
S

[³ + ±; 2¼] Then for t 2 A± and z 2 B

¯̄

z ¡ ei³

¯
¯

<

¯
¯
¯

ei ³+ ±
2 ¡ ei³

¯
¯
¯

:

lim
z ei³

eit ³1 ¡ jzj
2

´
2

eit ¡ z 3 ¯ t ¡ c 0 and

¯̄
¯̄
¯̄
¯

eit ³1 ¡ jzj
2

´
2

eit ¡ z 3 ¯ t ¡ c
¯
¯
¯
¯
¯
¯
¯

is uniformly bounded:

From the Dominated Convergence Theorem see [17]

lim
z ei³ Z

A±

eit ³1 ¡ jzj
2

´
2

eit ¡ z 3 ¯ t ¡ c dt 0: Hence we can ¯x ±0 > 0 so that for

z 2 B and

¯
¯

z ¡ ei³

¯
¯

< ±0

¯̄
¯̄
¯̄
¯

Z
A±

eit
³1 ¡ jzj

2

´
2

eit ¡ z 3 ¯ t ¡ c dt
¯
¯
¯
¯
¯
¯
¯

< ²
2

: 3 2

Now from 3 1 3 2 and the triangle inequality

¯
¯
¯
¯
¯
¯
¯

Z

2¼

0

eit ³1 ¡ jzj
2

´
2

eit ¡ z 3 ¯ t ¡ c dt
¯
¯
¯
¯
¯
¯
¯

< ² for z 2 B

¯̄

z ¡ ei³

¯
¯

< ±0 Since ² > 0 was

arbitrary we have shown that

lim
z ei³ Z

2¼

0

eit ³1 ¡ jzj
2

´
2

eit ¡ z 3 ¯ t ¡ c dt 0: 3 3
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Now using integration by parts we get

¯
¯
¯
¯
¯
¯
¯

Z

2¼

0

eit ³1 ¡ jzj
2

´
2

eit ¡ z 3 ³c ¡ t¡
¼

2´dt
¯
¯
¯
¯
¯
¯
¯

¯
¯
¯
¯
¯
¯
¯

¡i¼ ³1 ¡ jzj
2

´
2

1¡ z 2 + i Z

2¼

0

³1 ¡ jzj
2

´
2

2 eit ¡ z 2 dt
¯
¯
¯
¯
¯
¯
¯· ¼³1 ¡ jzj

2

´
2

j1¡ zj
2 + Z

2¼

0

³1 ¡ jzj
2

´
2

2 jeit ¡ zj
2 dt

for z 2 B Again from the Poisson representation formula it is clear that

lim
z ei³ Z

2¼

0

eit
³1 ¡ jzj

2

´
2

eit ¡ z 3 ³c ¡ t¡
¼

2´ dt 0: 3 4

Thus from 3 3 and 3 4 lim
z ei³ Z

2¼

0

eit ³1 ¡ jzj
2

´
2

eit ¡ z 3 ³¯ t ¡ t¡
¼

2´ dt 0: In a

completely analogous fashion it can be veri¯ed that

lim
z ei³ Z

2¼

0

eit ³1 ¡ jzj
2

´
eit ¡ z 2 ³¯ t ¡ t¡

¼

2´ dt 0: Thus from 2 2

lim
z ei³ jSh z j³1 ¡ jzj

2

´
2

0 ¤
Next we show a general lemma describing the behavior of the Schwarzian

derivative of the mapping h near @B

Lemma 3 2 Suppose h maps B conformally onto a regulated domain D where
¯ ¯c + ¯j as de¯ned earlier and ¯j has jumps ¾k¼ at tk 2 [0; 2¼] for
k 1; 2 : : : there are at most countably many jumps Then

lim sup
jzj 1

jSh z j 1 ¡ jzj
2 2 sup

k

¯
¯

4¾k ¡ 2¾2
k

¯
¯

sup
k

¯
¯

2 ¡ 2®2
k

¯
¯where ®k 1 ¡ ¾k for all k

Proof Suppose k is arbitrarily ¯xed We will calculate lim sup
z eitk jSh z j³1 ¡ jzj

2

´
2

By applying a preliminary rotation we may assume that tk 2 0; 2¼ Let
¯k t ¯ t for t 2 [0; tk ¯k t ¯ t ¡ ¾k¼ for t 2 [tk; 2¼ Since ¯ is
regulated on [0; 2¼] and ¯ tk ¯ tk+ we deduce that ¯k is regulated on
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[0; 2¼] and is continuous at tk Let ¯¾k ¯ ¡ ¯k on [0; 2¼] If

I z Z

2¼

0

eit
eit ¡ z 3 ³¯k t ¡ t¡

¼

2´ dt + Z

2¼

0

eit
eit ¡ z 3 ¯¾k t dt

Z

2¼

0

eit
eit ¡ z 3 ³¯k t ¡ t¡

¼

2´ dt +
¾k¼i

2 ¡
eitk ¡ 1

¢ ¡
eitk + 1 ¡ 2z

¢
1 ¡ z 2 eitk ¡ z 2

and J z Z

2¼

0

eit
eit ¡ z 2 ³¯k t ¡ t¡

¼

2´ dt + Z

2¼

0

eit
eit ¡ z 2 ¯¾k t dt

Z

2¼

0

eit
eit ¡ z 2 ³¯k t ¡ t¡

¼

2´ dt + ¾k¼i
eitk ¡ 1

1 ¡ z eitk ¡ z
;

then from 2 2 we obtain Sh z 1 ¡ jzj
2 2 ·

2i
¼

I z +
1

2¼2
J z 2

¸³1 ¡ jzj
2

´
2

for z 2 B Thus

Sh z 1 ¡ jzj
2 2

"
2i
¼ Z

2¼

0

eit
eit ¡ z 3 ³¯k t ¡ t¡

¼

2´ dt 3 5

+
1

2¼2 µZ

2¼

0

eit
eit ¡ z 2 ³¯k t ¡ t¡

¼

2´ dt¶
2

#³1 ¡ jzj
2

´
2

+ ·¾k
eitk + 1 ¡ 2z

1 ¡ z ¡
1

2
¾2

k
1 ¡ eitk

1 ¡ z ¸ ·
1 ¡ eitk

1 ¡ z ¸"
1 ¡ jzj

2

eitk ¡ z
#

2

+
¾ki

¼ "Z

2¼

0

eit 1 ¡ jzj
2

eit ¡ z 2 ³¯k t ¡ t¡
¼

2´ dt# ·
eitk ¡ 1

1 ¡ z eitk ¡ z ¸ 1¡ jzj
2 :

From the proof of Lemma 3 1 it is apparent that

lim
z eitk "

2i
¼ Z

2¼

0

eit
eit ¡ z 3 ³¯k t ¡ t¡

¼

2´ dt

+
1

2¼2 ÃZ

2¼

0

eit
eit ¡ z 2 ³¯k t ¡ t¡

¼

2´ dt
2

# 1 ¡ jzj
2 2 0

and that

lim
z eitk

¾ki
¼ "Z

2¼

0

eit 1¡ jzj
2

eit ¡ z 2 ³¯k t ¡ t¡
¼

2´ dt#

¢ ·
eitk ¡ 1

1 ¡ z eitk ¡ z ¸ 1 ¡ jzj
2 0:
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From 3 5 and the above equations we get

lim sup
z eitk jSh z j 1 ¡ jzj

2 2

lim sup
z eitk ·¾k

eitk + 1 ¡ 2z
1¡ z ¡

1

2
¾2

k
1 ¡ eitk

1 ¡ z ¸ ·
1 ¡ eitk

1 ¡ z ¸ "
1¡ jzj

2

eitk ¡ z
#

2

¯
¯

4¾k ¡ 2¾2
k

¯
¯

:

Since k was arbitrary from Lemma 3 1 we deduce that

lim sup
jzj 1

jSh z j³1 ¡ jzj
2

´
2

sup
k

¯
¯

4¾k ¡ 2¾2
k

¯
¯

sup
k

¯
¯

2 ¡ 2®2
k

¯
¯

;

where ®k 1 ¡ ¾k ¤
In view of Lemma 3 2 if we know that lim sup

jzj 1
jSh z j³1 ¡ jzj

2

´
2

jShjB
then jShjB can be explicitly calculated for regulated D Consequently we would
know the value of 2¡ jShjB|a lower bound for ¾ D This becomes signi¯cant
when combined with the next lemma which shows that the inner radius of a domain
with a corner on the boundary is bounded from above by the inner radius of the

angular sector corresponding to it
Lemma 3 3 Suppose that D is a Jordan domain that h maps B onto D
conformally and that @D has a corner of opening ®¼ for some ® 0 < ® < 2

Then

¾ D · ½
2®2 if 0 < ® · 1;
4® ¡ 2®2 if 1 · ® < 2:

Proof Since h is sense-preserving D remains on the left side of @D as this curve

is traced out by h eit as t increases Let » 2 [0; 2¼] be the point for which @D
has a corner of opening ®¼ at h ei» By applying a suitable MÄobius transforma-
tion we may assume without loss of generality that h ei» 0 and that the back-
ward and forward half-tangents at h ei» coincide with p

©
z rei®¼ : r > 0

ªand q fz r : r > 0g respectively In other words the corner formed by
the two half-tangents at h ei» is A® Now for X µ C c 2 R we de¯ne

cX fcz : z 2 Xg
We will show that nD ¡ A® with respect to w0 for some w0 2 A® The

proof is based on the following well-known fact
If 0 < ² < ®¼ 2 then there exists r² > 0 such that the triangular sector

T²
©

z reiµ : ² < µ < ®¼ ¡ ²; 0 < r < r²ª
is contained in D

We can choose w0 2 T®¼
4

Then w0 2 T®¼
4 µ nT®¼

4 µ nD for n 2 N
so there is a neighborhood of w0 contained in nD for n 2 N
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Given any w 2 A® we can choose ² 0 < ² < ®¼ 4 and n0 n0 2 N such
that w n0 2 T² Then w 2 n0T² µ nT² µ nD for n 2 N n ¸ n0

Finally we check the boundary condition of kernel convergence Suppose w 2
@A® is arbitrarily ¯xed We need to show that dist w; @ nD ¡ 0 Suppose

this was not true Without loss of generality we can assume that w 2 p For
² > 0 let

S² fz : jjzj¡ jwjj < ²; jarg z ¡ ®¼j < ²g :

By our assumption there exists ² > 0 and an increasing sequence fnig ni 2 N
for i 2 N such that S²

T
@ niD ; for i 2 N Consequently 1

ni
S²

T
@D ;for i 2 N |this contradicts the fact that p is the backward half-tangent of @D

at h ei» Thus dist w; @ nD ¡ 0 for w 2 @A®

This completes the proof that nD ¡ A® with respect to w0 Since ¾ nD
¾ D for n 2 N if we consider the known values of ¾ A® and Theorem 1 4

the statement of the lemma follows ¤
We are now prepared to present the su±ciency portion of the main result

Theorem 3 4 Suppose that D is a regulated domain with convex corners and

that h maps B conformally onto D If lim sup
jzj¡ 1

jSh z j³1¡ jzj
2

´
2

jShjB then

D is a Nehari disk

Proof Suppose ¯ ¯c + ¯j and ¾k¼ k 1; 2 : : : are as in Lemma 3 2
Each jump ¾k¼ corresponds to a corner ®k¼ where ®k 1¡ ¾k if the corner
is at a ¯nite point on @D and ®k ¾k ¡ 1 if the corner is at in¯nity Also
0 < ®k < 1 for each k Lemma 3 3 implies that ¾ D · 2®2

k
for each k and

hence ¾ D · inf
k

2®2
k

: On the other hand Lemma 3 2 and the assumption of the

theorem imply that jShjB sup
k ¡

2 ¡ 2®2
k¢

: From the above and Lemma 1 1 we

get ¾ D ¸ 2 ¡ sup
k ¡

2 ¡ 2®2
k¢ ¸ inf

k
2®2

k
: Hence it follows that ¾ D infk 2®2

k
and that D is a Nehari disk ¤

In the proof of the above theorem we have also veri¯ed the following corollary
Corollary 3 5 Suppose D satis¯es the assumptions of Theorem 3 4 If @D has

corners ®k¼ k 1; 2 : : : then ¾ D infk 2®2
k

4 The necessary condition

Before moving on to the necessary condition we establish some preliminary facts

Lemma 4 1 Suppose D is a regulated quasidisk and f¸ng is a sequence of
similarity transformations such that there are points z1 z2 outside of all ¸n D
and ¸n D ¡ D0 with respect to some z0 2 D0 where D0 is some domain

Then D0 is MÄobius equivalent to D or D0 is a half-plane or D0 is MÄobius

equivalent to A® where ®¼ is a corner of @D
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Proof Let h : B ¡ D denote a ¯xed conformal mapping with h B D
During the course of the proof we will replace f¸ng by a subsequence and relabel
it several times|a process that does not a®ect the assumptions of the lemma
Since f¸ng is a normal family in D after passing to a subsequence and relabeling
we can assume that either ¸n ¡ ¸ locally uniformly in C where ¸ is a
similarity transformation or ¸n ¡ c locally uniformly in D where c is a
constant in C

In the ¯rst case it is easy to verify that D0 ¸ D so D0 is MÄobius equivalent
to D proving the lemma

Suppose ¸n ¡ c locally uniformly in D For n 2 N ¸n z anz + bn for
some complex an bn ; an 6 0 By passing to a subsequence and relabeling we

may assume that arg an ¡ µ¼ for some µ 2 [0; 2]
After passing to a further subsequence we may assume that h¡1

± ¸¡1
n ¡ w0

locally uniformly in D0 for some w0 2 @B Since D is a quasidisk we can
assume that h is a homeomorphism of B onto D

Now for n 2 N we can ¯nd a conformal mapping gn : B ¡ ¸n D con-
tinuously extended to the boundary with gn B ¸n D such that:

a gn 0 z0 ; b gn w0 ¸n h w0

Modulo extraction of another subsequence we may assume that gn ¡ g locally
uniformly in B where g is conformal and g B D0 Also since all ¸n D
are K -quasidisks for some ¯xed K we may extend each gn by re°ection to a

K2 -quasiconformal mapping of C and retaining the name gn for the extension
assume that gn ¡ g locally uniformly in C where g is a K2 -quasiconformal
extension of the original mapping g

Let ¹n h¡1
± ¸¡1

n ± gn In B ¹n is the restriction of a MÄobius transfor-
mation and from a and b limn 1 ¹n 0 w0 ¹n w0 w0 ¹n B B
Consequently after additional "pruning" and relabeling we may assume that
¹n z ¡ w0 for all but possibly one z 2 B Let t0 2 [0; 2¼ be the point
for which eit0 w0 Without loss of generality we may assume that t0 6 0 We

have ¹n z ¡ eit0 for all but possibly one z 2 @B and ¹n eit0 eit0 for each
n

Let »0 sup
©

» : » 2 [t0; t0 + 2¼ such that arg ¹nk ei» t0+ for some

fnkgª
From the de¯nition of »0 and the fact that ¹n are all sense-preserving

we conclude that:
i For any t0 < t < ¿ < »0 there exists a sequence fnkg such that
t0 · arg ¹nk eit · arg ¹nk ei¿ and limk 1 arg ¹nk ei¿ t0+ ;

ii For »0 < t < t0 + 2¼ limn 1 arg ¹n eit t0¡In case »0 t0 or »0 t0 + 2¼ only ii or i applies

Since D is regulated from Proposition 2 1 we know that
lim

0<t<¿<t0;t t0¡
arg

£
h ei¿ ¡ h eit

¤
¯ t0¡ °¼

lim
t0<t<¿<2¼;¿ t0+

arg
£
h ei¿ ¡ h eit

¤
¯ t0+ ¯¼
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for some °;¯ in [0; 2 Thus for t0 < t < ¿ < »0 there exists fnkg such that
arg

£
g ei¿ ¡ g eit

¤
lim

k 1
arg

£
gnk ei¿ ¡ gnk eit

¤

lim
k 1

arg
£
ank ¡

h ¹nk ei¿ ¡ h ¹nk eit
¢¤

and consequently since arg ank ¡ µ¼ arg
£
g ei¿ ¡ g eit

¤
¯¼ + µ¼ or

¯¼ + µ¼ ¡ 2¼ Analogously for »0 < t < ¿ < t0 + 2¼ arg
£
g ei¿ ¡ g eit

¤°¼ +µ¼ or °¼ + µ¼ ¡ 2¼ Since @D0 @g B is a Jordan curve we conclude

that D0 is a half-plane when ° ¯ while D0 is the image of A® under a
similarity transformation when ° 6 ¯ where ® 1 ¡ ¯ ¡ ° As @D has a
corner of opening ®¼ in the second case the proof is complete ¤

In the lemma that follows we will demonstrate that roughly speaking a se-
quence of Kn -quasidisks with Kn ¡ 1 can after passage to a subsequence be

"arranged" so that it converges to a non-Jordan domain We will express this fact
in terms of the three-point property see [6] First we introduce some notation
For x; y 2 C let x; y [x; y] denote the open closed line segment with end-
points x and y note that x; y y;x in this notation For a quasidisk D

in C set d D inf ½ jx¡ yj
jx¡ zj

: x; y; z satisfy ¾ where:

| x; y; z are distinct points on @D n f1g and z is in the component of
@D n fx; yg with minimal diameter
Lemma 4 2 Suppose fDng is a sequence of quasidisks such that d Dn ¡0 There exists a sequence of natural numbers fnkg a sequence of MÄobius

transformations f¹nkg and a domain N containing 0; 1 such that:
i N µ ¹nk Dnk

and 0; 1;1 2 @¹nk Dnk for all k ;
ii ¹nk Dnk ¡ D0 with respect to any point in N where D0 is a non-

Jordan domain containing N
Proof Without loss of generality we may assume that 1 2 @Dn for n 2 N
Let dn d Dn for n 2 N Also we may assume that dn < 1 for n 2 N
Now for n 2 N we pick xn; yn; zn and ²n > 0 so that:

i xn; yn; zn satisfy applied to Dn and zn is such that jxn ¡ znj is maximal;
ii dn · jxn ¡ ynj jxn ¡ znj · dn 1 + ²n ;
iii ²n ¡ 0

Without loss of generality we can assume that for each n either xn; yn µ Dn
or xn; yn µ C n Dn If not replace xn; yn with x0

n; y
0n

where x0
n; y

0n
are

picked from the intersections of the components of @Dn n fzn;1g that contain

xn; yn respectively with B µ
xn + yn

2
; jxn ¡ ynj

2 ¶ so that jx0
n ¡ y

0nj is minimal

then replace zn with z
0n

so that i holds for x0
n y

0n
z

0n
It is easy to ¯nd ²n > 0

so that ii and iii hold
By passing to a subsequence and relabeling we can assume that either xn; yn

µ Dn for all n or xn; yn µ C n Dn for all n We give the proof for the ¯rst
case only as a modi¯cation of the same argument works in the second case
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So assume that xn; yn µ Dn for all n For each n choose a similarity
transformation ¹n such that ¹n [xn; yn] [0; 1] and let z

0n ¹n zn From
ii it follows that:

dn ·
1

jz0nj
j0 ¡ 1j
j0 ¡ z

0nj · dn 1 + ²n

and that z
0n

is in the bounded component of @¹n Dn nf0; 1g It is easy to verify
that for each z 2 0; 1 we can ¯x ±z > 0 so that B z; ±z µ ¹n Dn for all n
We introduce some notation Let N [z2 0;1

B z; ±z ; V [z2 0;1
B z; ±z \U

W [z2 0;1
B z; ±z \L where L denotes the lower half-plane Thus N

V
S

0; 1
S

W Let Vn denote the component of ¹n Dn n 0; 1 containing V
Wn the component of ¹n Dn n 0; 1 containing W Also let An and Bn
denote the components of @¹n Dn n fz

0n
;1g containing 0 and 1 respectively

Two observations will be useful
Observation 1 If un 2 An vn 2 Bn with junj · k jz0nj jvnj ·

k jz0nj for some 0 < k < 1 then jun ¡ vnj ¸
1 ¡ k
1 + ²n

Indeed since z
0n

is in the bounded component of @¹n Dn n f0; 1g from the

de¯nition of dn it follows that

jun ¡ vnj ¸ dn jun ¡ z0nj ¸ dn 1 ¡ k jz0nj ¸ dn 1¡ k
1

dn 1 + ²n

1 ¡ k
1 + ²n

:

Since all domains concerned omit 0 1 and 1 we may pass to a subsequence and
assume that Vn ¡ V0 Wn ¡ W0 and ¹n Dn ¡ D0 with respect to any
point in V W N respectively where V0 W0 and D0 are domains containing

V W and N respectively It is easy to verify that D0 V0

S
0; 1

S
W0

Moreover since Vn
T

Wn ; for all n it easily follows that V0

T
W0 ;Observation 2 V0 is non-Jordan or unbounded and W0 is non-

Jordan or unbounded
We verify the assertion for V0 Suppose to the contrary that V0 is a bounded

Jordan domain Consider @V0
n 0; 1 For each v 2 @V0

n 0; 1 there exists a
sequence fvng vn 2 @Vn n 0; 1 such that v limn 1 vn Let

A
nv 2 @V0

n 0; 1 : v lim
n 1

vn with vn 2 An for in¯nitely many no ;

B
nv 2 @V0

n 0; 1 : v lim
n 1

vn with vn 2 Bn for large enough no
:

Then 0 2 A 1 2 B so A and B are nonempty sets with A
S

B @V0
n 0; 1

since z
0n ¡ 1 Since V0 is Jordan and 0; 1 µ @V0 it follows that @V0

n 0; 1

is connected Thus there exist u 2 A and v 2 B with ju¡ vj < 1 3 From this
and the de¯nition of A and B we conclude that there exists an increasing sequence

of natural numbers fnkg and unk 2 Ank vnk 2 Bnk
such that limk 1 unk u
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limk 1 vnk v and junk ¡ vnk j < 1 3 for each k Since V0 is bounded and

limn 1 z
0n 1 it follows that junk j ·

1

2

¯̄
z

0nk

¯̄

and jvnk j ·
1

2

¯̄

z0nk

¯̄
for large

enough k Thus by Observation 1 junk ¡ vnk j ¸
1

2 1 + ²nk
for large enough

k We have arrived at a contradiction Hence the observation is true

We know that 0; 1 µ D0 0; 1 2 @D0 It is not hard to see that the compo-
nents of D0

n 0; 1 are V0 and W0 From Observation 2 it follows that D0 is
non-Jordan proving the lemma ¤

We need the following de¯nition Suppose D is a simply connected domain
We say that a conformal mapping g : D ¡ C is an extremal mapping for D if

i jSgjD ¾ D ;

ii g cannot be extended to a quasiconformal mapping of C
When D U g z log z is an extremal mapping for D Extremal mappings

can also be easily demonstrated for angular sectors It is not known whether every
domain has an extremal mapping

Lemma 4 3 Suppose D is a regulated quasidisk Then there exists an extremal
mapping for D or ¾ D ¾ A® where ®¼ 2 0; 2¼ is such that @D has a
corner of opening ®¼

Proof Without loss of generality we may assume that D is bounded Suppose

that no extremal mapping for D exists We can ¯nd a sequence of conformal
mappings gn gn : D ¡ C such that:

i jSgnjD ¡ ¾ D ; ii For each n Dn gn D is a quasidisk and
d Dn ¡ 0

By Lemma 4 2 we may assume the existence of a sequence f¹ng of MÄobius trans-
formations such that 0; 1;1 2 @¹n Dn and B 1 2; ² µ ¹n Dn for each n
for some ² > 0 ; and ¹n Dn ¡ D0 with respect to 1 2 where D0 is some

non-Jordan domain
Let rn denote the distance of g¡1

n ±¹¡1
n 1 2 from @D and let zn 2 @D be a

point for which

¯
¯

zn ¡ g¡1
n ± ¹¡1

n 1 2

¯
¯

rn Choose a similarity transformation

¸n that maps B g¡1
n ± ¹¡1

n 1 2 ; rn onto B with ¸n g¡1
n ± ¹¡1

n 1 2 0 and

¸n zn 1 Since the domains ¸n D all contain B and omit 1 and 1 we

may assume by extracting a subsequence that ¸n D ¡ D0 with respect to 0
where D0 is some domain containing B

By Lemma 4 1 D0 is MÄobius equivalent to D or to U or to A® an angular
sector associated with some corner of @D In any case ¾ D0 ¸ ¾ D see

Lemma 3 3 Now let fn ¹n ± gn ± ¸¡1
n in ¸n D For any z 2 D0 fn z is

de¯ned for large enough n Since 0; 1;1 62 fn ¸n D ¹n Dn by assumption
the family ffng is normal in D0 We may therefore suppose that fn ¡ f locally
uniformly on D0 where f : D0 ¡ C Since

fn 0 ¹n ± gn ± ¸¡1
n 0 ¹n ± gn µg¡1

n ± ¹¡1
n µ

1

2¶¶
1

2
;
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B 1 2; ² µ fn ¸n D ¹n Dn for all n and ¹n Dn ¡ D0 with respect to
1 2 we conclude that f maps D0 conformally onto D0 Since D0 is non-Jordan

jSfjD0 ¸ ¾ D0 ¸ ¾ D On the other hand we have

jSfjD0 · lim inf
n 1 jSfn j¸n D

lim inf
n 1

¯
¯
¯
¯
¯
¯

S¹n±gn±¸¡1
n

¯
¯
¯
¯
¯
¯

¸n D
lim inf
n 1 jSgnjD ¾ D :

Thus jSfjD0
¾ D ¾ D0 Since f D0 D0 and D0 is non-Jordan

we conclude that there exists an extremal mapping for D0 Thus there exists

an extremal mapping for D if D0 is MÄobius equivalent to D or if D0 and
consequently D is a half-plane or ¾ D ¾ A® for some angular sector A®
associated with a corner of @D if D0 is MÄobius equivalent to A® The lemma
is proved ¤

If ¾ D ¾ A® for some corner of opening ®¼ of @D with 0 < ® · 1 then
®¼ is the smallest corner of @D Now we turn to the necessary condition portion
of the main result
Theorem 4 4 Suppose that D is a regulated domain with convex corners and
that h maps B conformally onto D If D is a Nehari disk then
lim sup
jzj 1

jSh z j 1 ¡ jzj
2 2

jShjB :

Proof Suppose D is a Nehari disk i e ¾ D 2 ¡ jShjB According to
Lemma 4 3 there are two cases Consider the ¯rst case i e assume that there

exists a conformal mapping g : D ¡ C with jSgjD ¾ D which has no

quasiconformal extension to C Since D is a Nehari disk from Theorem 1 2

it follows that g D is either a Jordan domain but not a quasidisk or is MÄobius

equivalent to a parallel strip Accordingly g ± h B g D ¯ts one of these two
descriptions From Theorem 1 3 we conclude that lim sup

jzj 1
jSg±h z j 1 ¡ jzj

2 2 ¸ 2

so

2 · lim sup
w @D jSg w j ½¡2

D w + lim sup
jzj 1

jSh z j 1 ¡ jzj
2 2

· jSgjD + lim sup
jzj 1

jSh z j 1¡ jzj
2 2:

Therefore jShjB 2 ¡ ¾ D 2 ¡ jSgjD · lim sup
jzj 1

jSh z j 1 ¡ jzj
2 2 so we con-

clude that lim sup
jzj 1

jSh z j 1 ¡ jzj
2 2

jShjB which proves the theorem in this

case

Now suppose that ¾ D ¾ A® for some corner of opening ®¼ of @D
Since D has convex corners only from Lemma 3 3 we have ¾ D mink 2®2

k2 ¡maxk 2 ¡ 2®2
k

where ®k¼ are the corners of @D Because D is a Nehari
disk jShjB maxk 2 ¡ 2®2

k
Now since D is regulated from Lemma 3 2 we
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conclude that lim sup
jzj 1

jSh z j 1 ¡ jzj
2 2 jShjB : This completes the proof of the

theorem ¤
We remark that as a consequence of Theorem 4 4 domains with smooth bound-

aries other than disks in C cannot be Nehari disks
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