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On Nehari disks and the inner radius

Leila Miller-Van Wieren

Abstract. Let D be a simply connected plane domain and B the unit disk. The inner radius
of D, (D), is defined by o(D) = sup{a ca >0, ”Sf”D < a implies f is univalent in D } .
Here Sy is the Schwarzian derivative of f, pp the hyperbolic density on D and ”Sf”D =

SUp,ep ISf(z)| pgz(z). Domains for which the value of (D) is known include disks, angular
sectors and regular polygons, as well as certain classes of rectangles and equiangular hexagons.
All of the mentioned domains except non-convex angular sectors have an interesting property
in common, namely that o(D) = 2 — |Sy|p , where h maps B conformally onto D . Because
of the importance of this property for computing o(D), we say that D is a Nehari disk if
(D) =2 —|Sp|g holds.

This paper is devoted to the problem of characterizing Nehari disks. We give a necessary
and sufficient condition for a domain to be a Nehari disk provided it is a regulated domain with
cOnvex Corners.

Mathematics Subject Classification (2000). Primary 30C55; Secondary 30C20.
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1. Introduction

We use the symbol € to denote the complex plane and C to denote the extended
complex plane. Within C , we use the symbol B to refer to the unit disk (B =
{z:]2| <1}) and U for the upper half-plane (U = {z: Zm(z) >0}). The
symbol D will denote a domain in € with at least two points on its boundary.

For z € B, the hyperbolic density of B at z is the quantity pg(z) given by
pe(z) = 1/(1 —|2*). For a general simply connected domain D, the hyperbolic
density pp is then defined in terms of pg and A : B — D where h maps B
conformally onto D (see [11, page 5]).

For f holomorphic in D ¢ C |, with f/(z) #0 for 2z € D, the Schwarzian
derivative Sy, of f, is defined in D by Sy(z) = (f"/f) () = 2 (f"/F) (2).
This definition can easily be extended to include locally univalent meromorphic
functions. A detailed explanation of the extended definition can be found in [11,
page 52|. To make our terminology more concise, locally univalent meromorphic
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functions will be refered to simply as locally univalent functions.

In order to discuss a univalence criterion for f we introduce a norm for Sy . Let
D be a simply connected domain in C . For f locally univalent in D , we define
the hyperbolic norm of Sy with respect to D by [Sy|, = sup,cp [Sf(2)] o2 (2) .

Now suppose D is a simply connected domain in C . We define the inner
radius of D, o(D), by o (D) =sup{a:a >0, [Sf|, < a implies f is univalent
in D}.

All images of D under Mobius transformations have the same inner radius as
D.

Nehari [14] and Hille [8] proved that o(B) = 2. Later, Lehtinen showed in [9]
that o(D) < 2 for all simply connected domains in C with equality occurring
only when D isadiskin C (i.e. an image of B under a Mébius transformation).
The inner radius of a domain has another important meaning that is not apparent
from its definition. Ahlfors and Weill [3] proved that if f is locally univalent on
D (a simply connected domain) with [|S¢|, < (D), then f is univalent and
can be extended to a quasiconformal mapping of C . Ahlfors [1] and Gehring [5]
proved that when D is a simply connected domain, ¢(D) > 0 if and only if D is
a quasidisk.

Next, we list some known values of o(D). If S denotes the parallel strip
defined as the image of U under h(z) = logz, then o(S) = 0. Lehto and
Lehtinen have calculated the inner radii of angular sectors in [10] and [9]. If A, =
{2:2€ C, 0 <argz < kr}, then o(A;) =2k? for 0 < k <1 and o(Ay) = 4k—
2k% for 1 < k < 2. Another class of domains for which the inner radii have been
calculated are regular polygons. Calvis [4], proved that o(P,) = 2(n — 2)? /n?
where P,, is an open regular n-sided polygon.

In [12] we computed the inner radii for some classes of rectangles and equian-
gular hexagons. We proved that if R is a rectangle whose ratio of longer over
shorter side is bounded from above by a specific constant (= 1.52346...), then
o(R) =1/2, and if H is an equiangular hexagon whose sides form the sequence
baabaa with b/a < 1.67117..., then o(H) = 8/9. In the proofs of the just men-
tioned results the following simple but insightful lemma (see [13]) played a key
role.

Lemma 1.1. If D is a simply connected domain and if h maps B conformally
onto D, then o(D) > 2 —|Sh|g -

Proof. Suppose f is locally univalent on D with [Sy[, < 2 — |Si|z. Then,
foh islocally univalent on B and [Stonlg = [Sf — Sa-1lp < IS¢lp +1Sa-11p =
IS¢lp +1ISklg < 2 (see [11]). This implies that foh is univalent on B and hence
f is univalent on D. Thus o(D) > 2 —|S4[z. O

It turns out that the lower bound 2 — |Sy| is equal to (D) in the case of
many domains for which o(D) is known—disks, parallel strips, convex angular
sectors and regular polygons, as well as the mentioned classes of rectangles and
equiangular hexagons (see [13] and [12]). Moreover, this yields a good method for
computing o(D) for many domains. As will be seen later, computing (D) for
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some domains can be based on merely understanding the behavior of the Riemann
mapping h . This prompted us to introduce a special name for these domains (we
first introduced it in [12]). A simply connected domain D in C is called a Nehar:
disk if

o(D) =2—Sh|gs,

where h maps B conformally onto D . Nehari disks are essentially domains for
which the application of the Nehari univalence criterion to [Syon|g = Sy —Sp-1]p
gives the best possible result (and hence the name Nehari). Disks, parallel strips,
convex angular sectors, regular polygons and the mentioned rectangles and equian-
gular hexagons are all Nehari disks. Of course, there exist many simply connected
domains which are not Nehari disks. From the calculations in Lehto [10] and
Lehtinen [9], one can easily see that the angular sectors Ay with 1 <k <2 are
not Nehari disks. Also, from the presentation in Lehto [11, pages 60—61] we can
conclude that there are many domains D for which S|z > 2, where o : B — D
is the Riemann mapping. No such domain can be a Nehari disk.

In [13], it is demonstrated that some results previously known to hold for B
are valid for all Nehari disks. We mention one of these generalizations here, as we
will use it later on.

Theorem 1.2. Suppose D is a Nehari disk. If f is a locally univalent function
on D and if |S¢|p < o(D), then f(D) is a Jordan domain or the image of the

parallel strip S under a Mdbius transformation.

This is a generalization of the analogous theorem of Gehring and Pommerenke [7]
for the unit disk. We recall another result from [7].

Theorem 1.3 (Gehring-Pommerenke). Suppose f: B — C is locally uni-
valent on B and limsup,,_,q [S¢(2)] (1 - |217)2 < 2. If f(B) is a Jordan domain,
then f(B) is a quasidisk.

In this paper we establish a necessary and sufficient condition for a domain to
be a Nehari disk, provided it belongs to a large and well known class of domains.
Before introducing our result, we note a useful fact about how o(D) is affected by
standard convergence of domains. In [12], the following relation between the inner
radii of D,, and D when {D,} converges to D in the sense of Carathéodory
kernel convergence is demonstrated (for the definition of this convergence see [16,
page 13]).

Theorem 1.4. If D, and D are simply connected domains and if D, — D
with respect to wq , then o(D) > limsup,, . o(Dy).

2. Main result

In the introduction we saw that the definition of Nehari disks springs naturally
from the problem of calculating o(D) for domains D. That computation could
be done using just the Riemann mapping, provided we knew that the domain
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was a Nehari disk. So, the question that comes to mind is: “Can Nehari disks
be characterized in some interesting way?” Many domains in the applications
of conformal mapping are bounded by finitely many smooth arcs that may form
corners or may go to infinity. By restricting attention to a class of domains known
as regulated domains, subject to the added constraint of having all convex corners,
a class wide enough to include all the domains described earlier, we are able to
obtain a necessary and sufficient condition for a domain to be a Nehari disk.

We begin with some definitions (see [16, pages 59-64]). A real-valued function
B on an interval 1 in R is said to be regulated if the one-sided limits B(t—) =
lim;_;— B(7) and B(t+) = lim,_,;4 B(7) exist for £ € 1 (in case ¢ is an endpoint
of I only one of the above limits applies). Here and in what follows, we will assume
that D is a Jordan domain and that » maps B conformally onto D. Then A can
be extended as a homeomorphism of B onto D, for which we retain the notation
h. We shall use the parametrization of dD given by h(e®), for 0 <t < 27 and
periodically extended for ¢t € R . We present three slightly modified definitions
from [16], as we are concerned with Jordan domains only. We say that dD has a
corner of opening ar, (0 < a <2) at h(e®) # oo, (€€ [0,27]) if

arg [h(eit) - h(eig)] - { ng o Zz i : ?—L7

(It is assumed that argz takes on values in [0,27).) We also say that dD has a
forward half-tangent of direction angle 5 and a backward half-tangent of direction
angle B+ am in this case. A corner and half-tangents at oo are defined by means
of a preliminary inversion.

A Jordan domain D in C is said to be a regulated domain if

o f i arg [(e) — he)]  for he®) £ oo,
/6( ) - hmTﬂtJraI'g (h(eﬂ')) T for h(e”):oo

exists for all ¢ and defines a regulated function.

As discussed in [16], B(t) is equal to B(t+) and represents the direction angle
of the forward half-tangent of 4D at h(e®); the limit B(t—) represents the
direction angle of the backward half-tangent at h(e®). In addition, it is shown
that B(t+) = B(t—) for all but at most countably many ¢. We note the following
useful proposition (see [16, page 60]).

Proposition 2.1. Suppose D s a regulated domain and 0 < e <7 . If |3(t) — |
< e and W) # oo for t € 1 where 1 is some interval in R, then
‘arg[h(e”) — h(e)] — 'y‘ < € whenever t,7T €l and t < T.

As a regulated function on [0,27], 5 can be written as 8 = ¢ +ﬁj where fc

is continuous on [0, 27| and ﬁj is constant on [0, 27| except for at most countably

many jumps. The jumps clearly correspond to corners of 9D .
Regulated domains admit a simple representation formula for the conformal
mapping h, h(B) = D. The following formula, due to Paatero [15], can also be
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found in [16]. If A maps B conformally onto a regulated domain D, then

et — 2

7 2m it
log '(2) = log |W/(0)] + i/o ¢tz (ﬁ(t) - g) dt (2.1)

for z € B. From (2.1), we obtain

Sn(z) = %/027r (eits ()t~ 3) d

s it — 2)
+2—71r2 (/Ozw (e;itz)z (/5(15) i g) dt) (2.2)

for z € B, whenever D is regulated and A, h: B — D, is conformal.
Now we are ready to state our result.

Theorem 2.2. Suppose that D is a regulated domain with conver corners and
that h maps B conformally onto D . Then, D is a Nehari disk if and only if

2
limsup|s, () (1= 17) = 1Snls
z|—1

Since the proofs of the two directions are different, we will address them in
separate sections restating the above result as two separate theorems.

3. The sufficient condition

We begin by proving two lemmas that describe the behavior of the Schwarzian
derivative of the mapping h near JB.

Lemma 3.1. Suppose that D is a requlated domain, that h maps B conformally
onto D and (3 4s as defined earlier. If { € [0,27] and if B is continuous at (,

2
. 2\
then lim_[Sy(2)] (1 — 2] ) ~0.

Proof. By applying a preliminary rotation we may assume that ¢ € (0,27). In
view of (2.2), we begin by showing that

‘ 2
im [ M (ﬁ(t) it E) dt = 0.

z—ei Jg (eit _ 2)3 2

2 et (1 - |z|2)
Let ¢ = B(¢) . First we will verify that lim —— = (B(t) —c)dt =0.

z—ei Jo (eit — 2)*
Fix ¢ > 0. Since [ is continuous at ¢, we can choose 6 >0 sothat (—d <t <
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(+0—|B(1) —c| < &=. Next

/CCH M (B(t) — c) dt| < /CH (1 B |z|2) <1 _ |Z|2) |B(t) — ¢| dt

s (et -2y sl 2 [ —2]

€ €
dt < — -2 — 3.1
5 |€n_z|2 <47r 7T<2 (31)

¢ ero (1-12P)
<9 _/ A
<

=% 8

(using the Poisson representation formula [2, page 167]) for 2 € B. Let A; =
[0, —0]U[¢ + 6,2n] . Then, for t € Ay and 2 € B, |z — €| < fet3) _ ¢

, 2
. ett (1 _ |Z|2)
zlfﬁg W (B(t) —c) =0 and

et (1 - |z|2)
—— 2 (B(t) — ¢)|is uniformly bounded.

(et — 2)°

From the Dominated Convergence Theorem (see [17]),

e (1 - |z|2)
lim / —— % (B(t) — c)dt = 0. Hence, we can fix ¢’ > 0 so that for
A

2t (eit — z)°
z€B and |z - €| < ¢,
2
et (1 - |z|2) c
——(Bt) —c)dt| < =. 3.2
N CORE : (2)

Now, from (3.1), (3.2) and the triangle inequality,
2

it( 2

B 1—|z|) .

/ — 2 (B(t) —c) dt <ef0rz€B,]z—el<’<(5’.Sincee>Owas
0

(et — 2)°

arbitrary, we have shown that

meit (1 —|z|?
lim i w(ﬁ(t) —c)dt = 0. (3.3)

z—ei Jg (eit — Z)S
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Now using integration by parts we get

/%M< ”)dt - 'MM/%Mﬁ

(et — 2)3 - (1-2)2 2(eft — 2)2

wi(l _ |Z|2)2 + /% (-kf) |Z|2)2dt
0

11— z|? 2 leit — 2|

for z € B. Again, from the Poisson representation formula, it is clear that

) 2
im [ o (1opr) (c—t-2)a = o (3.4)

sk o T (e —2)

it 2
27 e (1 — 7] ) 7
Thus from (3.3) and (3.4), lim — (ﬁ(t) —t— —) dt=0. In a
z—e¢ 0 (6” — z) 2
completely analogous fashion, it can be verified that
2m et (1 |2) "
lim [ —— 7 (5@) - —) dt = 0. Thus from (2.2),
z—e Jo (@7'75 — Z) 2
2

lim_[S5(2)] (1 - |z|2) —0. O

Next, we show a general lemma describing the behavior of the Schwarzian
derivative of the mapping h near 9B .

Lemma 3.2. Suppose h maps B conformally onto a requlated domain D where
8 = fBe +ﬁj (as defined earlier) and ﬁj has jumps opm at t, € [0,2x] for
k=1,2... (there are at most countably many jumps). Then

limsup [Sp ()] (1 — |2[*)?

|z]—1

sup|4ak —20%‘ = sup‘Z—Zoz%‘
k k
where o =1 — oy for all k.

2
Proof. Suppose k is arbitrarily fixed. We will calculate limsup |Sy(z)] (1 — |z|2)
z—reftk

By applying a preliminary rotation we may assume that ¢, € (0,27). Let
Br(t) = B(t) for t € [0,ty), Br(t) = pt) — oxm for ¢ € [tg,2n). Since [ is
regulated on [0,27] and [(tx) = B(tx+), we deduce that 3 is regulated on
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[0,27] and is continuous at t; . Let 3,, =3 — B on [0,2x]. If

2 it 2w it
B 27 eit O_k’f('i (eitk _ 1) (eitk + 1— 22)
| =

e ( ) 2 (g ey
and J(z):/o (L(ﬁk(t)—t—g)dw/o B (t)dt
( )

it
it 2 it
et — z) (et — 2)
i eit eits _ 1
:/0 (eft — Z)Q

((EPICED)
then from (2.2) we obtain Sp(2)(1 — |2/*)? = {%I(z) + % (J(z))ﬂ (1 - |z|2)2
for z € B. Thus
Sn(2)(1 — [2*)?

%/O% ﬁ (8ot -t - g) dt (3.5)

+21? (/O%ﬁ <5k(t) - g) dt)zl (1 _ |Z|2)2

: . 5 2
eite 1122 1 21—61%} {1—6“1 [1—|z|2]

1—=z _20k 1—=2 I —z ette — 2

o2 [ G4 -1 5)a] [ o+

From the proof of Lemma 3.1, it is apparent that

. 2; (%7 et bis
i, [? /0 m(ﬁk(”—t—a) dt

it 2
*%(/02 ﬁ(ﬁk@)—t—%)fh) ](1—|z|2>2—o

- |:Uk

and that

z—efte T o cit _ 3
' {(1— _Z;lzetl_z)} 11— =0.
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From (3.5) and the above equations we get

limsup [Sr(2)] (1 — |2|*)?

z—ettk

; : , 2
. €tk 41 -2z 1 ,1—¢t] [1—¢ite] [1— |2
= limsup |0 — =0} :
1—2 2 1—2 1—2 ettt — 2

z—ettk
= |4ak — 202‘ .
Since k was arbitrary, from Lemma 3.1 we deduce that
2
limsup |Sy(z)] (1 — |z|2) = sup |doy — 20,§| = sup ‘2 — 2ai| ,
|z|—1 k k

where ap, =1 -0, . O :

In view of Lemma 3.2, if we know that limsup |S(2)| (1 - |z|2) = |Sklg

|z|—1

then |Sp|lg can be explicitly calculated for regulated D . Consequently, we would
know the value of 2 — |Sy,|5 —a lower bound for o(D). This becomes significant
when combined with the next lemma which shows that the inner radius of a domain
with a corner on the boundary is bounded from above by the inner radius of the
angular sector corresponding to it.

Lemma 3.3. Suppose that D is a Jordan domain, that h maps B onto D
conformally and that D has a corner of opening am for some o, 0 < a0 < 2.

Then

202 if0<a<l,
o) = {4a—2a2 fl<a<2.

Proof. Since h is sense-preserving, D remains on the left side of 9D as this curve
is traced out by h(e') as t increases. Let & € [0,27] be the point for which dD
has a corner of opening ar at h(e®). By applying a suitable Mobius transforma-
tion we may assume without loss of generality that h(e®) =0 and that the back-
ward and forward half-tangents at h(e’®) coincide with p = {z = reto™ iy > O}
and ¢ = {z=r:7r >0}, respectively. In other words, the corner formed by
the two half-tangents at h(e®) is A,. Now for X C C, ¢ € R we define
cX = {ez:2€ X}.

We will show that nD — A, with respect to wq , for some wo € A, . The
proof is based on the following well-known fact.

If 0 < e < an/2, then there exists r. > 0 such that the triangular sector

Te = {z=re? e<@<am—e0<r<r

is contained in D .
We can choose wq € TaTw. Then wq € T% (a nT% C nD for ne N,
so there is a neighborhood of wy contained in nD for n € N .
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Given any w € A, , we can choose €, 0 < e < an/4 and ng, ng € N such
that w/no € Te . Then w € ngTe € nTe C nD for ne N, n>ng.

Finally, we check the boundary condition of kernel convergence. Suppose w &
0A, is arbitrarily fixed. We need to show that dist (w,d(nD)) — 0. Suppose
this was not true. Without loss of generality we can assume that w € p. For
e>0 let

= {z:|]z| — |w|| <¢ |argz —an| < €}.

By our assumption, there exists ¢ > 0 and an increasing sequence {n;}, n; € N
for i € N such that S (n;D) =0 for i € N . Consequently iS oD =0
for i € N —this contradicts the fact that p is the backward half- tangent of oD
at h(e®). Thus dist (w,d (nD)) — 0 for w € A,

This completes the proof that nD — A, with respect to wq . Since o(nD) =
o(D) for n € N, if we consider the known values of o(A,) and Theorem 1.4,
the statement of the lemma follows. O

We are now prepared to present the sufficiency portion of the main result.

Theorem 3.4. Suppose that D is a requlated domain with conver corners and

2
that h maps B conformally onto D . If limsup |Sp(z)] <1 — |z|2) = [Sulg , then
1

|z]—
D is a Nehari disk.

Proof.  Suppose 8 = .+ B; and opm, k = 1,2... are as in Lemma 3.2.
Each jump opm corresponds to a corner oym, where o = 1 — oy, if the corner
is at a finite point on D and «a; = o — 1 if the corner is at infinity. Also
0 < ap <1 for each k. Lemma 3.3 implies that o(D) < 2a% for each k£ and
hence o(D) < i%f 2a4. On the other hand, Lemma 3.2 and the assumption of the

theorem imply that [Sy|p = Sup (2 —207) . From the above and Lemma 1.1, we
get o(D) >2— = (2 —207) > inf 2. Hence, it follows that o(D) = infy 2o}
and that D is a Neharl disk. O

In the proof of the above theorem we have also verified the following corollary.

Corollary 3.5. Suppose D satisfies the assumptions of Theorem 3.4. If 0D has
corners aym, k=1,2..., then o(D) = inf;2a3 .

4. The necessary condition

Before moving on to the necessary condition, we establish some preliminary facts.

Lemma 4.1. Suppose D is a regulated quasidisk and {\,} is a sequence of
similarity transformations such that there are points z1, 2z outside of all A, (D)
and Ap(D) — Dg with respect to some zg € Do, where Dy 4s some domain.

Then, Do is Mobius equivalent to D, or Dq is a half-plane, or Do is Mobius
equivalent to A, , where am is a corner of 0D .
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Proof. Let h : B — D denote a fixed conformal mapping with A(B) = D.
During the course of the proof, we will replace {\,} by a subsequence and relabel
it several times—a process that does not affect the assumptions of the lemma.
Since {A,} is a normal family in D , after passing to a subsequence and relabeling,
we can assume that either A, — X locally uniformly in C , where X is a
similarity transformation, or X, —— c¢ locally uniformly in D, where ¢ is a
constant in C .

In the first case, it is easy to verify that Dy = A(D) so Dg is Mébius equivalent
to D, proving the lemma.

Suppose A, — ¢ locally uniformly in D. For n € N, A\, (z) = anz+b, for
some complex a, , b,; a, # 0. By passing to a subsequence and relabeling, we
may assume that arga, — 6n for some 6 € [0,2].

After passing to a further subsequence, we may assume that A= 1o\ ! — wy
locally uniformly in Dy, for some wy € dB. Since D is a quasidisk, we can
assume that A is a homeomorphism of B onto D .

Now, for n € N, we can find a conformal mapping g, : B — A\,(D) (con-
tinuously extended to the boundary) with g,(B) = A, (D), such that:

(a) gn(0) =205 (b) gn(wo) = An(h(wo)).
Modulo extraction of another subsequence, we may assume that g, — ¢ locally
uniformly in B, where ¢ is conformal and g(B) = Dg. Also, since all A, (D)
are K -quasidisks for some fixed K, we may extend each g, by reflection to a
K2 -quasiconformal mapping of C , and retaining the name g,, for the extension,
assume that g, — ¢ locally uniformly in C , where g is a K?-quasiconformal
extension of the original mapping ¢ .

Let w, = h~to )\;1 ogn. In B, p, is the restriction of a Mdbius transfor-
mation, and (from (a) and (b)) limy—eo pn(0) = wo, pn(wo) =wo, un(B) =B.
Consequently, after additional ”pruning” and relabeling, we may assume that
pn(2) — wq for all but possibly one 2 € B. Let ¢y € [0,27) be the point
for which e = w, . Without loss of generality, we may assume that ¢y #0. We
have py,(2) — €' for all but possibly one z € B and ju,(e®?) = e for each
T

Let & =sup{¢: £ € [to,to + 2m) such that arg(u,, (e**)) — to+, for some
{nk}} . From the definition of £, and the fact that u, are all sense-preserving
we conclude that:

(i)For any tg <t < T < &y, there exists a sequence {n;} such that

to < arg(pimy (€")) < arg(pm, (7)) and limg o0 arg(im,, (€')) = tot ;
(ii)For & <t <tg+2m, limy oo arg(pn (e)) = to—.
(In case & =tg or & =tg+ 27 only (ii) or (i) applies.)

Since D is regulated, from Proposition 2.1 we know that

O<t<‘r1<igl7t~>t0* arg [h(@rr) N h(@zt)] - ﬁ(to_) =am
lim arg [h(e”) - h(e”)] = Btot+) = pr

to<t<T<2m,T—to+
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for some ~, 8 in [0,2). Thus, for tg <t <7 <&, there exists {n;} such that
278 [9(6") = 9(e")] = Jim arg [, (") = gn, ()]
= Jim arg [an, (h(pn, (7)) = bl (€)))]

and consequently, since arga,, — 60, arg [g(e”) — g(e”)] = fBrn + 6n (or
Bm + 0m — 27 ). Analogously, for § <t <7 < to+ 2w, arg[g(e'") — g(e')] =
yw+0nr (or yw +60n — 27w ) . Since dDg = dg(B) is a Jordan curve, we conclude
that Dy is a half-plane when ~ = 3, while D¢ is the image of A, under a
similarity transformation when ~ # 3, where aa = 1— (8 —«). As dD has a
corner of opening an in the second case, the proof is complete. [

In the lemma that follows, we will demonstrate that (roughly speaking) a se-
quence of K, -quasidisks with K,, — oo can, after passage to a subsequence, be
7arranged” so that it converges to a non-Jordan domain. We will express this fact
in terms of the three-point property (see [6]). First we introduce some notation.
For z,y € C | let (z,y) ([x,y]) denote the open (closed) line segment with end-
points z and y (note that (z,y) = (y,z) in this notation). For a quasidisk D

in C,set d(D) = inf { :x — y: s x,y, 2z satisfy (%) » , where:
z—2z
(x) — =,y,2 are distinct points on 9D \ {00} and z is in the component of

OD\ {z,y} with minimal diameter.

Lemma 4.2. Suppose {D,} is a sequence of quasidisks such that d(D,) —
0. There erists a sequence of natural numbers {ny} , a sequence of Mobius
transformations {p,, } and a domain N containing (0,1), such that:

() N C pin, (Dy,,) and 0,1,00 € Opn, (Dy,,) for all k;

(#) pin,, (D, ) — D’ (with respect to any point in N ), where D is a non-

Jordan domain containing N .

Proof. Without loss of generality, we may assume that oo € 9dD,, for n € N .
Let d, = d(D,,) for n € N . Also, we may assume that d, <1 for n € N.
Now for n € N we pick xy,yn, 2, and €, >0 so that:

(i) Zn, Yn, 2n, satisfy (x) applied to D,, and z, issuchthat |z, — z,| is maximal;
(11) d, < |$n _yn| / |xn - znl < dn(l + En) )

(iif) €, — 0.

Without loss of generality we can assume that, for each n , either (z,,y,.) C Dy
or (2n,9,) € C\ D, . (If not, replace z,,y, with /vy, , where 2/, 4/ are
picked from the intersections of the components of dD,, \ {z,, 0}, that contain

2 ’ 2
then replace z, with 2/, sothat (i) holds for =] , v/, , 2} . Itis easy tofind ¢, >0
so that (ii) and (iii) hold.)

By passing to a subsequence and relabeling, we can assume that either (z,,yn)
CD, forall n,or (z,,y,) € C\ D, forall n. We give the proof for the first
case only, as a modification of the same argument works in the second case.

ZTn,Yn respectively, with B ,sothat |z, —y,| is minimal,




Vol. 76 (2001) On Nehari disks and the inner radius 195

So assume that (z,,y,) € D, for all n. For each n, choose a similarity
transformation g, such that g, ([z,,y,]) = [0,1], and let 2/, = p,(z,). From
(ii) it follows that:

1 0-1
d, £ — = | | < dy(l1+e€y)

Tl 10—z

and that 2z, is in the bounded component of A, (Dy)\{0,1}. It is easy to verify
that for each z € (0,1), we can fix ¢, >0 so that B(z,6,) C u,(D,) for all n.
We introduce some notation. Let N = U B(z,4,), V= U (B(z, 5z)ﬂU)7
z€(0,1) z€(0,1)
W= U (B(z,0,) ﬂL) (where L denotes the lower half-plane). Thus N =
z€(0,1)

VJ(0,1) JW . Let V,, denote the component of 1, (Dy)\ (0,1) containing V,
W,, the component of pu,(Dy)\ (0,1) containing W . Also, let A, and B,
denote the components of du,(D,,)\ {2}, 00} containing 0 and 1 respectively.

Two observations will be useful.

Observation 1 If up € Ay, vy € By, with |uy| < k2., |vn| <
14e,

Indeed, since 2z, is in the bounded component of dpu, (D, )\ {0,1}, from the
definition of d,, it follows that

k|z]| for some 0 < k < 1, then |u, —v,| >

1 11—k
CRTIE T,

Since all domains concerned omit 0, 1 and oo, we may pass to a subsequence and
assume that V,, — V', W,, — W’ and p,(D,) — D’ (with respect to any
pointin V, W, N respectively), where V', W’ and D’ are domains containing
V, W and N respectively. It is easy to verify that D/ = V/[J(0,1)|JW’.
Moreover, since V,, (YW, =0 for all n, it easily follows that VW' =0.

Observation 2 V' is non-Jordan or unbounded, and W’ is non-
Jordan or unbounded.

We verify the assertion for V’. Suppose, to the contrary that V' is a bounded
Jordan domain. Consider 9V’ \ (0,1). For each v € aV'\ (0,1) there exists a
sequence {v,}, v, € dV, \ (0,1), such that v = lim,, . v, . Let

lun —vn| 2 dn [un — 2| 2 dn(1 — k) 2] > dn(1 — k)

A = {v e OV'\(0,1): v = lim v, with v, € A,, for infinitely many n} ,
B = {v € 0V'\ (0,1) : v = lim v, with v, € B,, for large enough n} .

Then 0 € A, 1€ B,so A and B are nonempty sets with A(JB = adV’'\ (0,1)
(since z], — o0 ). Since V’ is Jordan and (0,1) C 9V’ it follows that dV’\ (0, 1)
is connected. Thus, there exist v € A and v € B with |u —v| < 1/3. From this
and the definition of A and B we conclude that there exists an increasing sequence
of natural numbers {n;} and w,, € A,, , v,, € B,, suchthat lim; ,ocu,, =u,
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limy o0 Upy, = v and |y, — vy, | < 1/3 for each k. Since V'’ is bounded and

1
| and |v,, | < = |z, | for large

Len

for large enough

1
lim,, .o 2, = oo it follows that |u,,| < % ES

enough k. Thus, by Observation 1, |up, —vn, | > ———
2(1 + €n,.)
k. We have arrived at a contradiction. Hence, the observation is true.

We know that (0,1) C D’ , 0,1 € dD’. It is not hard to see that the compo-
nents of D'\ (0,1) are V' and W’. From Observation 2 it follows that D’ is
non-Jordan, proving the lemma. O

We need the following definition. Suppose D is a simply connected domain.
We say that a conformal mapping g : D — C is an extremal mapping for D if

(@) ISl = o(D); B
(ii) g cannot be extended to a quasiconformal mapping of C .

When D =U, g(z) =logz is an extremal mapping for D. Extremal mappings
can also be easily demonstrated for angular sectors. It is not known whether every
domain has an extremal mapping.

Lemma 4.3. Suppose D is a regulated quasidisk. Then there exists an extremal
mapping for D or o(D) = o(A,), where an € (0,27) is such that 0D has a
corner of opening am .

Proof. Without loss of generality we may assume that D is bounded. Suppose
that no extremal mapping for D exists. We can find a sequence of conformal
mappings gn, gn : D — C such that:
i) ISg.lp — ¢(D); (i) For each n, D, = g, (D) is a quasidisk and
d(D,) — 0.

By Lemma 4.2 we may assume the existence of a sequence {u,} of Mébius trans-
formations such that 0,1,00 € du,(Dy) and B(1/2,¢) C u,(D,,) for each n,
for some ¢ > 0; and u,(D,) — D’ with respect to 1/2 where D’ is some
non-Jordan domain.

Let 7, denote the distance of g, 'ou'(1/2) from 8D and let z, € D be a
point for which ‘zn — g lop N1/ 2)‘ = 7y, . Choose a similarity transformation
An that maps B(g,! o pu,'(1/2),7,) onto B with \,(g, ' o, (1/2)) =0 and
An(zr) = 1. Since the domains A, (D) all contain B and omit 1 and oo we
may assume, by extracting a subsequence, that A, (D) — Dg with respect to 0,
where Dy is some domain containing B .

By Lemma 4.1, Dg is Mébius equivalent to D or to U or to A, , an angular
sector associated with some corner of dD. In any case, o(Dg) > o(D) (see
Lemma 3.3). Now let f, = pip0gn oAt in A\, (D). (For any z € Do, fn(z) is
defined for large enough n.) Since 0,1,00 & f,,(A,(D)) = pn(D,,) by assumption,
the family {f,,} isnormalin Dy . We may therefore suppose that f,, — f locally

uniformly on Dy, where f: Dy — C . Since

1 1
Fn(0) = pin 0 gn 0 A, H(0) = pn 0 g (in o ! (—)) = 51
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B(1/2,¢) C frn(An(D)) = pn(Dy,) for all » and p,(D,) — D’ with respect to
1/2, we conclude that f maps Dy conformally onto D’. Since D’ is non-Jordan,
IS¢lp, = (Do) > (D). On the other hand, we have

1571, <lminf[Sy, ], o,

— Fimdn HS

n—oo

y,nogno)\.zl An(D) = lgglorolf"SQnHD = O(D)

Thus, |S¢lp, = (D) = o(Do). Since f(Dg) = D’ and D’ is non-Jordan,
we conclude that there exists an extremal mapping for Dg. Thus, there exists
an extremal mapping for D (if Dy is Mobius equivalent to D or if Dy and
consequently D is a half-plane) or o(D) = o(A,) for some angular sector A,
associated with a corner of 9D (if Dy is Mébius equivalent to A, ). The lemma
is proved. O

If (D) =0(A,) for some corner of opening am of dD with 0 < oo <1, then
ar is the smallest corner of dD . Now we turn to the necessary condition portion
of the main result.

Theorem 4.4. Suppose that D is a requlated domain with conver corners and
that h maps B conformally onto D . If D is a Nehari disk, then

imsup 91 (2)] (1~ 121%)° = [Snl-

Proof.  Suppose D is a Nehari disk i.e,, o(D) = 2 —|Sp|z. According to
Lemma 4.3, there are two cases. Consider the first case i.e., assume that there
exists a conformal mapping g : D — C with |Sy|, = (D) which has no
quasiconformal extension to C . Since D is a Nehari disk, from Theorem 1.2
it follows that g(D) is either a Jordan domain but not a quasidisk or is Mébius
equivalent to a parallel strip. Accordingly, g o h(B) = g(D) fits one of these two

descriptions. From Theorem 1.3 we conclude that limsup [Syon(2)] (1 — 12]%)? > 2,
|2]—

SO

2 < limsup [S(w)| pp” (w) + limsup Sy (2)] (1 — [2[*)?

w—39dD |z]—1

< ISslp +limsup S (2)| (1 — |2)°.

|z|—1

Therefore, |Sp|g=2—0(D)=2— S|, <limsup|Sy(2)[(1 — 121%)? so we con-

|z|—1

clude that limsup |Sk(2)| (1 — |2|*)? = ISklg , which proves the theorem in this
|z]—1
case.

Now suppose that o(D) = o(A,) for some corner of opening ax of 9D .
Since D has convex corners only, from Lemma 3.3 we have o(D) = miny 2a; =
2 —maxy(2 — 2a2) (where oy are the corners of 9D ). Because D is a Nehari
disk, |Sn|g = maxs(2 —2a3). Now, since D is regulated from Lemma 3.2 we
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conclude that limsup [Sy(2)| (1 — |2*)? = S |lg - This completes the proof of the
|z|—1
theorem. [
We remark that, as a consequence of Theorem 4.4, domains with smooth bound-

aries, other than disks in C , cannot be Nehari disks.
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