Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 75 (2000)

Artikel: Lusternik-Schnirelman theory for closed 1-forms
Autor: Farber, Michael

DOl: https://doi.org/10.5169/seals-56612

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 06.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-56612
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

© 2000 Birkh&user Verlag, Basel
Comment. Math. Helv. 75 (2000) 156-170

0010-2571/00/010156-15 $ 1.504-0.20/0 Commentarii Mathematici Helvetici

Lusternik—Schnirelman theory for closed 1-forms
Michael Farber

Dedicated to S.P. Novikov on the occasion of his 600 birthday

Abstract. S. P. Novikov developed an analog of the Morse theory for closed 1-forms. In this
paper we suggest an analog of the Lusternik - Schnirelman theory for closed 1-forms. For any
cohomology class £ € H' (M, R) we define an integer cl(§) (the cup-length associated with €); we
prove that any closed 1-form representing £ has at least cl(£) —1 critical points. The number cl(§)
is defined using cup-products in cohomology of some flat line bundles, such that their monodromy
is described by complex numbers, which are not Dirichlet units.

Mathematics Subject Classification (1991). 58E05.
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¢1. The main result

1.1. Let M be a closed manifold and let £ € H1(M;R) be a nonzero cohomology
class. The Novikov inequalities [N1], [N2], [N3] estimate the numbers of zeros
¢i(w) of different indices of any closed 1-form w with Morse type singularities on
M lying in the class &.

Novikov type inequalities were constructed in [BF1] for closed 1-forms with
slightly more general singularities (non-degenerate in the sense of Bott [B]). In
[BF2] an equivariant generalization of the Novikov inequalities was found.

In this paper we will consider the problem of estimating the number of critical
points of closed 1-forms w with no non-degeneracy assumption. We suggest here
a version of the Lusternik - Schnirelman theory for closed 1-forms.

An announcement [F1] describes some results of this paper.

My recent preprint [F2] suggests a different approach to the Lusternik - Schnirelman
theory of closed 1-forms; it uses untwisted cohomology and Massey products. Ex-
amples computed in [F2], show that the results of [F2] and of the present paper

The research was supported by a grant from the Israel Academy of Sciences and Humanities
and by the Herman Minkowski Center for Geometry



Vol. 75 (2000) Lusternik—Schnirelman theory for closed 1-forms 157
are independent.

1.2 Let ¢ € HY(M;Z) be an integral cohomology class. We will define below a
nonnegative integer cl(§), which we will call the cup-length associated with &.

Recall, that a complex flat vector bundle F over M is determined by its mon-
odromy, a linear representation of the fundamental group 71 (M, zg) in GLc(FEp),
where Fj is the fiber over the base point zg € M; this representation is given by
the parallel transport of vectors along loops. For example, a flat line bundle is
determined by a homomorphism Hi(M;Z) — C*, where C* is considered as a
multiplicative abelian group.

Given class ¢ as above and a nonzero complex number a € C*, we have the
complex flat line bundle over M with the following property: the monodromy
along any loop v € m1(M) is the multiplication by a'$? . We will denote this
bundle by af. If a,b € C*, we have the canonical isomorphism of flat line bundles

at ® b¢ ~ ab.

A lattice £ C V in a finite dimensional vector space V' is a finitely generated
subgroup with rank £ = dimg V. We will say that a complex flat bundle £ — M
of rank m admits an integral lattice if its monodromy representation 71 (M, zg) —
GLc(Fp) is conjugate to a homomorphism my (M, zg) — GLgz (L), where Lo C Ey
is a lattice in the fiber. This condition is equivalent to the assumption that F is
obtained from a local system E of finitely generated free abelian groups over M
by tensoring on C.

1.3. Definition. The cup-length cl(€) is the largest integer k such that there exists
a nontrivial k-fold cup product

H®(M; E1) © H2(M; E) ® --- © H*(M; By) — HY(M; E),  (1-1)
where d = d1+---+dp, FE= F10Fy®---@F;, d1 >0, ..., dp >0, and the first two
flat bundles E1 and Ey have the following property: there exist nonzero complex

numbers a1,a2 € C*, and complex flat bundles Iy and Fy over M, admitting
integral lattices, so that

E,~at®F, for i=1,2, (1-2)

and both numbers a1 and ag are not Dirichlet units.
Recall that a Dirichlet unit is defined as a complex number b # 0 such that b
and its inverse b1 are algebraic integers. In other words, Dirichlet units can be

characterized as roots of polynomial equations

B b by 1b b =0,
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where all +; are integers and ~,, = £1.

Note that the cup-length cl(¢), defined by 1.3, satisfies 0 < ¢l(§) < dim M. We
will see examples below showing that cl(¢) = dim M is possible.

The definition of the cup-length cl(§) above is slightly different from the one
given in [F1]; following the present definition, we may have a larger cup-length

cl(§).

Theorem 1. Let w be a closed 1-form on M lying in an integral cohomology class
¢e HY(M;Z). Let S(w) denote the set of zeros of w, i.e. the set of points p € M
such that w, = 0. Then the Lusternik - Schnirelman category of S(w) satisfies

cat(S(w)) > cl(¢) — 1. (1-3)

In particular, if the set of zeros S(w) is finite, then for the total number |S(w)| of
zeros

IS(w)] > el(§) — 1. (1-4)

Here cat(S) denotes the Lusternik - Schnirelman category of S = S(w), i.e. the
least number k, so that S can be covered by k closed subsets A; U ---U Ay such
that each inclusion A; — S is null-homotopic.

Proof of Theorem 1 is given in §2.

1.4. Corollary ([F1]). Suppose that there exist complex numbers a1, a9, ..., an €
C*, not all Dirichlet units, such that a cup product

HU(M;a1%) @ H2(M;a98) ® - - - @ H¥*(M; a3*) — HY(M; af),

with d; >0, 5 =1,2,...k, is nontrivial. Then for any closed 1-form w on manifold
M, lying in class € € HY(M;Z), holds cat(S(w)) >k — 1.

Proof. We may assume that & # 0; otherwise the statement follows from the
Lusternik - Schnirelman theory for functions.

Corollary 1.4 directly follows from Theorem 1, if there are at least two non
Dirichlet units among a1, a9,...,ar. Suppose that there is precisely one non
Dirichlet unit. Denote @ = ajag---ar. Then a is not a Dirichlet unit, and, in
particular, a # 1. Hence H"(M;af) = 0. Therefore, the dimension of the nontriv-
ial cup-product above d =di +dg + -- - + dr <n =dim M is less than n. By the
Poincaré duality, the cup-product pairing

HYM;a*) ® H* *(M;a * ® Lag) — H"(M; L)

is non-degenerate. Here Lj; denotes the orientation flat line bundle of M. The
monodromy of Ly, along any loop v equals £1 depending on whether the orienta-
tion of M is preserved or reversed by . Note that £3; admits an integral lattice.
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Hence, we may find a nontrivial cup-product of length £ + 1 with an extra factor
in H"~%(M;a=¢ ® L;). Now, Theorem 1 applies and gives cat(S(w)) > k. O

1.5. It is clear that Corollary 1.4 becomes false if we remove the requirement that
one of the numbers a; are not Dirichlet units. The simplest example is provided by
the torus 1T™; any cohomology class & € Hl(T"; R) of the torus M = T™ contains
a closed 1-form without zeros, but the cup-length of T is n.

1.6. Remark. A crude estimate for the cup-length cl(€) can be obtained by taking
the maximal length of a non-trivial product (1-1) with F; = a§ and a; € C* being
transcendental, 7 = 1,2,..., k. We will give an example (cf. 1.10, example 3)

showing that this estimate can be really worse than the one provided by Theorem
1.

1.7. Remark. In the longest nonirivial product (1-1) the number d must be equal
the dimension of the manifold n = dim M. Indeed, any nontrivial cup-product
(1-1) with d < n can be made longer by using the Poincaré duality.

1.8. Forms with non-integral periods. In general, the cohomology class
determined by a closed 1-form w belongs to H1(M, R), i.e. it has real coefficients.
It is clear that multiplying w by a non-zero constant A # 0 does not change the set
of critical points S(w) and multiplies the cohomology class by A. Hence Theorem 1
also gives estimates in the case of cohomology classes € € HY (M, R) of rank 1 (i.e.
for classes, which are real multiples of integral classes) if we define the associated
cup-length cl(§) as follows

A(XE) =cl(€), AeR, M£0, e H'(M,Z).

Recall, that given a cohomology class £ € H 1(M ,R), its rank is defined as the
rank of the abelian group, which is the image of the homomorphism Hy{(M,Z) —
R, determined by £. Note that the cohomology classes of rank 1 are dense in
HY(M,R). Therefore the following definition makes sense.

Definition. Given a class € € H!(M,R) of rank > 1, we define cl(€) as the largest
number k, such that there exists a sequence of rank 1 classes &,, € H 1(M ,R) with

Am) 2k, lim &m =, (1-5)

and each &,,, considered as a homomorphism Hi(M;Z) — R, vanishes on the
kernel of the homomorphism & : Hi(M;Z) — R.

Theorem 2. Let w be a closed 1-form on M lying in a cohomology class & €
HY(M;R). Let S(w) denote the set of zeros of w. Then the Lusternik - Schnirelman
category of S(w) satisfies

cat(S(w)) > cl(§) — 1. (1-6)
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In particular, if the set of critical points S(w) is finite then for the total number
|S(w)| of the critical points,

IS(w)] 2 el(§) - 1. (1-7)

For the proof see §3.

1.9. Connected sums. Let M and Ms be two closed n-dimensional manifolds.
Assume for simplicity, that n > 2. We will denote by M4 Ms the connected sum
of M1 and Ms. Given cohomology classes &, € Hl(M,,; R), where v = 1,2, the
class &1#& € H (M#Ms; R) is well defined, in an obvious way.

In the description of examples (cf. 1.10) we will use the following statement:

Proposition 1. In the situation described above,

cl(§1#&2) = max{cl(&1),cl(§2)} (1-8)

Proof is given in §3.

1.10. Examples. 1. In the notations of the previous subsection, let £ = 0 and
suppose that & # 0 can be realized by a closed 1-from with no critical points
(for example, fibration over the circle). Then we obtain from Proposition 1 that
cl(&1#&2) = cl(&1). Since &1 = 0, the cup-length cl(£1) can be estimated from
below by the usual cup-length of the manifold A with complex coeflicients.

To have a specific example, let us take M1 =T", My = St x S"fl, &1 =0 and
€9 € HY(Msy; Z) being a generator, where n > 2. Then we have for £ = &1#&9 €
HY(M#Ma; R)

cl(§1#&2) = n. (1-9)

Therefore, by Theorem 1, any closed 1-form w on Mi#Ms lying in class € has a
least n — 1 critical points.

2. In a similar way one may construct examples of cohomology classes of higher
rank with many critical points. Namely, suppose that M = T™, where n > 2 and
&1 = 0; take for My arbitrary closed manifold of dimension n with a cohomology
class &9 € H1(Ma; R) of rank ¢. Then for the class & = &1#& € HY(M# My;R)
(having rank ¢) we again obtain cl(¢) = n (by Proposition 1).

One may take, for example, Mo = T'9 x S™ 7 with & induced from a maximally
irrational class on the torus 79.

3. Let M be a 3-dimensional manifold obtained by 0-framed surgery on the
knot 59:
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This knot has Alexander polynomial A(7) = 2—37+272. Then H\(M;Z) = Z
and taking ¢ € H1(M;Z) to be a generator we find that H(M;af) is trivial for
all @ € C*, which are not the roots of the Alexander polynomial. It is easy to
check that if a is one of the roots of 2 — 3a + 2a® = 0 then H!(M;af) # 0. Note
that the roots of 2 — 3a + 2a? = 0 are not Dirichlet units. Hence we obtain that
all Novikov Betti numbers are trivial (since, as it is known [N3], that the Novikov
Betti numbers equal to dim H*(M; af) for generic @ € C). However by Corollary
1.4 we obtain that any closed 1-forms in class £ has at least 1 critical point.

Figure 1.

§2. Proof of Theorem 1

2.1. Since we assume that the cohomology class £ of w is integral, £ € Hl(M7 Z),
there exists a smooth map f : M — 81, such that w = f*(d0), where df is the
standard angular form on the circle S1 ¢ C, 1 = {z;|2| = 1}.

Denote f"l(b) by V C M, where b € Slisa regular value; it is a codimension
one submanifold. Let N denote the manifold obtained by cutting M along V.
Note that N and V could be disconnected.

Each connected component of V' yields two connected components of NV, the
positive and the negative. In order to distinguish between the positive and the
negative boundary components of N, we use the orientation of the normal bun-
dle to V in M, given by the form w. The positive components are defined as
those with the internal normal vector field to N being positive. The union of all
positive (negative) boundary components of N will be denoted by 04N, or 0_N,
correspondingly.

Let p : N — M denotes the natural projection. Then p*w = dg, where
g : N — R is a smooth function, determined up to a constant on each connected
component of N. It is clear that g is constant on each connected component of
ON. The points of 9 N are points of local minimum of g; the points of 0_N are
points of local maximum of g. The map g sends the set S(g) of critical points of
g diffeomorphically onto the set S(w).
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2.2. Relative Lusternik - Schnirelman category. We will use the well-known
notion of relative Lusternik - Schnirelman category, cf. [Fa], [Fo], [S]. Let’s recall
it.

For any subset X C N containing 0 N we will denote by cat(N’a_FN)(X) the
minimal number k& such that X can be covered by k + 1 closed subsets

X CAgUAIUAU---UA, CN

with the following properties:
(1) Ag contains 04N and the inclusion Ag — N is homotopic to a map Ag —
O+ N keeping the points of 04N C A fixed;
(2) for y=1,2,...,k, each inclusion A; — N is null-homotopic.
We claim, that

cat S(w) = cat S(g) > cat(N}mN)(N). (2-1)

This follows from known results, cf., for example, [Fo], Th. 4.2. We apply Theorem
4.2 of [Fo] to each of the connected components of N and to the restriction of
function g on it; we use the additivity of the relative Lusternik - Schnirelman
category with respect to disjoint union, cf. [Fo], Prop. 2.8.

Our next purpose will be to prove the inequality

cat(y o, n)(IV) = cl(§) — 1. (2-2)
Together with (2-1) this will complete the proof of the Theorem.

2.3. The deformation complex. The proof of (2-2) will consist of building
a polynomial deformation, a finitely generated free cochain complex C* over the
ring P = Z[r] of polynomials with integral coefficients, having properties (a), (b)
described below. With the help of the deformation complex we will prove the
Lifting Property, cf. Corollary 2.6, playing a crucial role in the proof.

In [F3] we show how the deformation complex leads to inequalities, which are
stronger than the Novikov inequalities.

The construction of the deformation complex is similar to [F2]; the difference
is that in the present paper we will work over the integers, and in [F2] over a field.

Claim. Let E — M be a flat vector bundle over M, admitting an integral lattice,
and let E be a local system of free abelian groups over M such that E®C ~
E. Denote by Ey = p*(E); it is a local system over N. There exists a free
finitely generated cochain compler C* over the ring P = Z[r] having the following
properties:

(a) for any nonzero compler number a € C* there is a canonical isomorphism

HI(C*®p C,) = HUM;a € ® E). (2-3)
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Here C, is C, which is viewed as a P-module with the following structure: Tx = ax
for x € C.

(b) for a =0 there is a canonical evaluation isomorphism
HY(C* ®p Zo) — HU(N, 04 N; Fy), (2-4)
where Zg is Z with the following P-module structure: 7o =0 for any x € Z.

To construct C*, we shall assume that N is triangulated and N is a subcomplex.
Let iy : V — N be the inclusions, which identify V with 8. N correspondingly. F
determines also an isomorphism of local systems o : ziEN’O — i* gy over V.

Denote by C4(N) and C(V) the free abelian groups of Eg-valued cochains; & :
C4(N) — CTH(N) and oy : C4(V) — CHL(V) will denote the corresponding
coboundary homomorphisms.

Let C4(N)[r] and €7 1(V)[r] denote the free P-modules formed by polyno-
mials with coefficients in the corresponding abelian groups; for example, an el-
ement ¢ € CU(N)[r] is a formal sum ¢ = >,o ;7" with ¢; € CI(N) and on-
ly finitely many ¢;’s are nonzero. The P-module structure is given as follows:
Tc= Yusoar Tl It is clear that CY(N)[r] and C9~1(V)[r] are free finitely
generated P-modules.

The natural P-module extensions

6y 1 CUN)[r] = CTH (N)[7], and &y : CIV)[r] — CTTL(WV)[7].  (2-5)

of the boundary homomorphisms act coefficientwise, so that iy and dy are P-
homomorphisms. If o = _,5 0 a;7° € CI(N)[7], then dn(a) = ,500n(as)7".

Define a finitely generated free cochain complex C* over P = Z[7| (the defor-
mation complez) as follows: C* = @CY, where

C? = CUN)[r] @ C L (V).

Elements of chain complex C? will be denoted as pairs (o, 3), where oz € CI(N)[7]
and 3 € C91(V)[r]. The differential § : C?7 — €9l is given by the following
formula

(e, f) = (on(a), (0 @ & — i )(a) — dv(B)), (2-6)

where o € C4(N)[r] and 3 € C4~1(V)[r]. Obviously, C* is the cylinder of the
chain map o ® i} — 7i* with a shifted grading.

To show (a) we note that M is obtained from N by identifying all points i4(v)
with i_(v), where v € V; the flat bundle £ over M is obtained from the flat
bundle E over N by identifying the vectors ey € E|3 N ande_ € E lo_ v with
ot (e4) = ai* (e ). Hence H(M; a~¢® E) can be identified with the cohomology
of complex C*(M;a=¢ ® E), consisting of cochains a € CY(N) satisfying the
boundary conditions

ai* () = o @i} (o) € CUV).
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The complex C4 ®p C, = C4(N) & C? (V) has the differential given by
(e, f) = (on(a), (0 @] — ail)(e) - dv(B)), (2-7)

where o € C4(N) and 3 € C9~1(V). It is clear that there is a chain homomorphism
C*(M;a ¢ ® FE) — C* ®p C, (acting by o — (a,0)). It is easy to see that it
induces an isomorphism on the cohomology. Indeed, suppose that a cocycle o €
C9(M;a € ® E) bounds in the complex C* ® p C,. Then there are a; € CIH(N),
B1 € CT2(V) such that o = dy(cvq), o ® i* (1) — ai* (1) — v (B1) = 0. We
may find a cochain By € C42(N) such that ail (B2) = B1 and i* (B2) = 0 (by
extending 31 into a neighborhood of 4 N). Then setting ag = a3 — dn(F2) we
have

a=dy(a), ol (ag) — ai* (ag) =0, (2-8)

which means that o also bounds in C9(M;a¢ ® E).

Similarly, suppose that («, ) is a cocycle of complex C* ®p C,. As above
we may find a cochain # € C9~1(N) with i (') = 8 and i* (3') = 0. Then
(e — dn(5),0) it is a cocycle of C*(M;a~¢ ® E) and it is cohomologous to the
initial cocycle (e, 3). This proves (a).

(b) follows similarly. O

2.4. Relative deformation complex. We will define now a relative version of
the deformation complex C*.

Let A C N be a simplicial subcomplex. We will assume that A is disjoint
from 0L N. Let CI(N, A) denote the free abelian group of FEpy-valued cochains on
N which vanish on A. Let C9(V, A)[r] be constructed similarly to C4(N)[r], cf.
above. We define the complex C% as follows:

CY% = CU(N, A)lr] @ cTH(V)[r]. (2-9)
The differential 6 : C4 — C’Z;rl is defined by the following formula:
(e, B) = (On,ale), (01} — 7iZ)(a) — ov(B)), (2-10)

where a € C4(N, A)[7] and 3 € C1(V)[r]. Here oy 4 : C4(N,A) — CTH (N, A)
and dy : C1(V) — C9tL(V) denote the coboundary homomorphisms and also
their P-module extension. % : C%(N,A) — C9(V) denote the restriction maps
of cochains, and the same symbols denote also their polynomial extensions % :
C1(N, A)[r] — CI(V)]].

Similarly to (a) and (b) in 2.3 we have:

(a’) for any a € C* there is a natural isomorphism

HY(Ch ®p Co) = H' (M, p(A);a ¢ ® E), (2-11)

where p: N — M is the identification map, cf. 2.1;
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(b’) also, }
HY(CH ®p Zo) ~ H'(N,AU 84+ N; Ep). (2-12)

2.5. Algebraic integers and lifting. In this section it will become clear why
our definition of the cup-length cl(§) involves the condition of not being a Dirichlet
unit.

Proposition 2. Suppose that A C N is a subcomplex, disjoint from 01N, such
that the inclusion A — N is homotopic to a map A — 04y N. Let a € C* be a com-

plex number, such that a=1 is not an algebraic integer. Then the homomorphism
C% — C* induces an epimorphism on the cohomology

HY(C4 ®p C,) — H'(C* ®p C,), i=0,1,2,.... (2-13)
Proof. Let Zg denote the group Z considered as a P-module with the trivial 7
action, i.e. Zg = P/7P. We will show first that
HY(C% ®p Zy) — H(C* ®p Zo) (2-14)
is an epimorphism. We know from (2-4) and (2-12) that
HY(C% ®p Zo) ~ H(N,AU, N; Fy) and H'(C*®pZo) ~ H(N,d, N; Ey).

In the exact sequence

= H"(N,AU(%FN;EO) — Hi(N,aJrN;E()) L Hi(AU8+N,E)+N;E0) — ...

J* acts trivially (since the inclusion (AUO4 N, 04 N) — (N, 94 N) is null-homotopic)
and hence HY(N, AUO N; Ey) — HY(N,04N; Ep) is an epimorphism. This proves
that (2-14) is an epimorphism. Now, Proposition 2 follows from Proposition 3 be-
low. O

Proposition 3. Let C and D be chain complexes of free finitely generated P =
Z[r]-modules and let f : C — D be a chain map. Suppose that for some q the
induced map [, : Hy(C ®p Zo) — Hy(D ®p Zo) is an epimorphism; here Zo is Z
considered with the trivial P-action: Zo = P/TP . Then for any complex number
a € C*, such that a1 is not an algebraic integer, the homomorphism

fo 1 Hy(C®p C,) — Hy(D ®p Cy) (2-15)

is an epimorphism; here C, denotes C with T acting as the multiplication by a.
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Proof. Denote by Z,(C), Z,(D) the sets of cycles of C and D and by B,(C) and
B, (D) the sets of their boundaries. Recall that the homological dimension of P is
2. We have the exact sequence

0 — Z4(C) = Cg — Bg_1(C) — 0

and hence Z,(C) is a free P-module (since B, 1(C) is a submodule of a free
module and so has a homological dimension < 1). Similarly Z4(D) is free.
Choose free bases for 7,(C), Z,(D) and Dy41, and express in terms of these
bases the map
f@d: Zy(C)® Dyy1 — Zy(D). (2-16)

The resulting matrix G is rectangular, with entries in P.
We claim: there exist integers b; € Z and minors A;(1) € P of the matriz G of
size tk Zg (D) x tk Zy(D), such that the polynomial with integer coefficients

p(r) = biAs(7) (2-17)

satisfies
p(0) = 1. (2-18)
In fact, we will show that our claim is equivalent to the requirement that f, :
H,(C®pZo) — Hy(D ®p Zp) is an epimorphism. Namely, using the resolvent

0 — P - P — Zy— 0it is easy to see that Torf(Bq,l(C),Zo) = 0 (since
B,_1(C) is a submodule of a free module). Hence we have the exact sequence

0— Z,(C)®pZo— Cq®pZo — By 1(C)®Zy — 0.

This means that Z,(C)®pZo = Z,(C ®p Zo), and B,_1(C)®pZy = By_1(C®p
Zp). Hence, the hypothesis of the Proposition, the homomorphism

F@d: (Z,(C)®pZo)® (D11 ®p Zo) — Zy(D) ®p Zo

is an epimorphism. This epimorphism is described by the matrix G(0), where we
substitute 7 = 0 into G. Therefore, there are minors A;(7) of G of size rk Z,(D) x
rk Z4(D), so that the ideal in Z, generated by the integers A;(0) contains 1. This
proves (2-18).
Since p(7) is an integral polynomial with p(0) = 1 and a1 is not an algebraic
integer it follows that
pla) £0. (2-19)

Let us show that (2-19) is equivalent to the statement that (2-15) is an epi-
morphism. We have the exact sequence

0—Z,C)®pCq— CyopCy = B 1®C, —0
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(here we may work over C[r] which is a PID). Hence, similarly to the arguments
above, we obtain that the map

F@d: (Z(C) ®p Ca) ® (D1 ®p Ca) — Zy(D)®p Ca  (2:20)

is described by the matrix G with substitution 7 = a. We conclude that at least
one of the 1k Z,(D) x rk Z4(D) minors A;(a) is nonzero because of (2-19), and
hence (2-20) and (2-15) are epimorphisms. O

2.6. Corollary (Lifting Property). Let E — M be a flat vector bundle admit-
ting an integral lattice. Let a € C* be a complex number, not an algebraic integer.
Let A C M be a closed subset such that A = p(A’), where A’ C N — 04N is a
closed polyhedral subset such that the inclusion A’ — N is homotopic to a map
with values in 04 N. Then the restriction map

HY(M, A0t @ E) — HY(M;a* 9 E) (2-21)
is an epimorphism.

Proof. We just combine the isomorphisms (2-3) and (2-11) and Proposition 2. O

2.7. End of proof of Theorem 1. We need to establish inequality (2-2). In
other words, we want to prove the triviality of any cup-product

vpUv UvgU---Uvpyyy =0, where v; € H%(M; Ey), (2-22)

(where m denotes m = cat(N73+N>(N)) assuming that d; > 0forj =0,1,2,... m+
1, and the bundles Fy and Ej are of the form af ® F;, where ¢ = 0,1, with the
numbers ag,aq; € C not Dirichlet units, and the bundles Fy and Fy admitting
integral lattices.

Moreover, we will assume that one of the numbers ag and a1 is not an algebraic
integer. In the case when both ag and a1 are algebraic integers, the inverse numbers
ag Land afl are not algebraic integers, and we shall apply the arguments following
below to the form —w (representing the cohomology class —&), which obviously
has the same set of critical points.)

Since we may always rename the numbers ag and ay, we will assume below
that ag is not an algebraic integer.

Suppose that N can be covered by closed subsets Ag, A1 U---U A,, = N so
that Ag contains d4 N and the inclusion Ag — NV is homotopic to a map into 94 N
keeping the points of 04 N fixed, (c¢f. 2.2), and for j = 1,2,...,m the subset A;
is null-homotopic in N. Without loss of generality we may assume that all A; are
polyhedral.

Let Uy be a small cylindrical neighborhood of 9. N in N. We observe that for
7 =2,3,...,m+ 1 we may lift the class v; to a relative cohomology class lying in
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rt) pd)

Figure 2.

v; € H% (M, B;; F;), where B; = p(A;_1 —Uy.), since B; is null-homotopic in M
and d; > 0. Recall that p: N — M denotes the natural identification map.

Applying Corollary 2.6, class v can be lifted to a class ¢y € H%(M, By; Ep),
where By = p(Ag — Uy).

Let B1 be a closed cylindrical neighborhood of V' in M containing p(U_) U
p(U4). We claim that we may lift the class v1 € H%(M;Eq) to a class ©1 €
H% (M, By; Ey). We will use Corollary 2.6. First, find two shifts of V into M — By,
one (denoted V') in the positive normal direction and the other (denoted V") in
the negative normal direction (cf. Figure 2). If the number aj is not an algebraic
integer we may apply Corollary 2.6 to the cut V”. If the number al’1 is not an
algebraic integer we may apply Corollary 2.6 to the cut V.

Now, it is clear that the product vg U --- U v,, 1 must be trivial since it is
obtained from the product @9 U - - U y,41 (lying in H(M, U;.”:JBIBJ-; E), where
E= ®;’Z61Ej) by restricting onto M, and the group H(M, U?:%lBj; E) vanishes,
since M = U;.”:HBj. O

§3. Proofs of Theorem 2 and Proposition 1

3.1. Proof of Theorem 2. Let w be a closed 1-form lying in a cohomology class
¢ e H'(M;R) of rank = r > 1. Let S = S(w) denote the set of zeros of w. It is
clear that ¢|s = 0.

Let 7 be the rank of ¢ and let &,...,& € H'(M;Z) be a basis of the free
abelian group Hom(H;(M)/ker(§);Z). We may write £ = >0 ; ;&;, and the
coefficients are real a; € R.

Suppose that &, is a sequence of rank 1 classes with cl(&,,) > cl(€), which
converges to & as m — oo, and each of the classes &,, vanishes on ker(¢). Then
we have &, = >, & m&, Where o m = Ay - im, A € R, and n;,, € Z for
1=1,2,...,r. Each sequence o; ,, converges to a; as m tends to co.

Choose a closed 1-form w; in the class & for ¢ = 1,...,r; since &|s = 0 we
may choose it so that it vanishes identically on a neighborhood of S. Define the
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following sequence of closed 1-forms

T

Wy = W — Z(ai — O W5

i=1
It is clear that w,, has rank 1 and for m large enough S(w,) = S(w). The
cohomology class of wy, is &,,. By Theorem 1 we have cat(S(w)) > cl(&y) — 1.
Hence we obtain cat(S(w)) > cl(¢) — 1. O

3.2. Proof of Proposition 1. It is clear that it is enough to prove (1-8) assuming
that the classes &1 and &9 are integral &, € Hl(ML,; Z) for v = 1,2. The general
statement then follows automatically due to the nature of our definition of cl(§)
for general &, cf. 1.8. One may use here an equivalent definition of the cup-length
cl(€) for rk(€) > 1, which can be obtained from the definition given in 1.8 if in
(1-5) we will additionally require that the approximating rank 1 classes &, belong
to H1(M; Q).

Position M1 and M» so that their intersection is a small n-dimensional disk D",
where n = dim My = dim Mo, and then the connected sum AM#Ms is obtained
from the union Mj U Ms by removing the interior of D™. Let E be a flat bundle
over the connected sum M #Ms and let E, be a flat bundle over M,, so that

E| o =~ E| o, (3-1)
M, —Dn M, —Dn
for v = 1,2. Here we use the assumption that n > 2 and so the sphere 71 is

simply connected.
As follows from the Mayer - Vietoris sequence, there is a canonical isomorphism

¢ HY(My; E1) ® H1(My; Eg) — HY(M#M>; E)

for 0 < ¢ < n. It will be clear from the rest of the proof that we do not need to
worry about the case ¢ = n. ¢ is multiplicative in the following sense. Suppose
that we have another flat bundle I’ over the connected sum Mi#M> and let
F, be flat bundles over M,, v = 1,2, satisfying condition (3-1). Then for any
v € H{(My; E1) and w € HI(My; Fy) with 0 < ¢, 0 < 4, and ¢ + 5 < d, holds
(v Uw,0) = ¢(v,0) Up(w,0). Similar property holds with respect to the other
variable.

Suppose now that k = cl(¢1) and we have cohomology classes v; € H% (Mjy; Ej),
where j = 1,2,...,k, satisfying all the properties of Definition 1.3; in particular,
their product vy U---Uwy is non-trivial. Then Y d; = n (cf. 1.7). Extend each
flat bundle I; to a flat bundle Ej over M; for 7 = 1,2 we will make this extension
so, that Eq and Eo will still satisfy condition (1-2).

We will first assume that £ > 2. Then the classes

uj:w(UJ7O)EHd](M7Ej)7 j:1727"'7k_17
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have non-trivial cup product uq U---Uwuy_1 and satisfy all the properties of Defi-
nition 1.3. Using the Poincaré duality (as in the proof of Corollary 1.4), we may
find a non-trivial cup product uy U --- Uwug_1 Uwu, where u € H%*(M; E* ® L),
E= ®§;%Ej, and Ly is the orientation flat line bundle of M.

In case, when & = 2 by the same reasons we will have a non-trivial cup-product
uq Uu, where u € H® (M, Ef ® L) and the bundle Ef ® Ly satisfies (1-2)
assuming that F; does.

This proves inequality cl(€) > cl(&1). Therefore cl(€) > max{cl(&1),cl(&2)}.

The inverse inequality follows similarly, using the properties of the map
mentioned above. |
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