Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 75 (2000)

Artikel: The skein relation for the (g2, V)-link invariant
Autor: Berger, Anna-Barbara / Stassen, Ines

DOl: https://doi.org/10.5169/seals-56611

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 06.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-56611
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

© 2000 Birkh&user Verlag, Basel
Comment. Math. Helv. 75 (2000) 134-155

0010-2571/00/010134-22 $ 1.504-0.20/0 Commentarii Mathematici Helvetici

The skein relation for the (go, V)-link invariant

Anna-Barbara Berger and Ines Stassen

Abstract. Pulling back the weight system associated with the exceptional Lie algebra g> by a
modification of the universal Vassiliev-Kontsevich invariant yields a link invariant; extending it
to 3-nets, we derive a recursive algorithm for its evaluation.

Mathematics Subject Classification (1991). 57M25.

Keywords. Skein relations, monoidal category, universal Vassiliev—Kontsevich invariant, repre-
sentation theory of Lie algebras.

0. Introduction

There is a well-known technique for the construction of Vassiliev link invariants:
define a weight system (i.e. a linear form on the space of chord diagrams respecting
certain relations) on the basis of some Lie algebraic data and pull it back by
the universal Vassiliev-Kontsevich invariant. But unfortunately, the latter is not
known explicitly enough to allow direct evaluation of these link invariants.

Efforts have been made to handle the universal Vassiliev-Kontsevich invariant
by considering only “elementary” parts of links into which any link may be cut.
This approach has been successful in so far as one may hope to find skein relations
for the link invariants coming from Lie algebras—a skein relation being an equation
implying a recursive algorithm for the computation of a link invariant, for example
the one that determines the famous Jones polynomial up to normalization:

2P )=t )=t -nP( =),

It has been shown that the link invariants obtained from the classical simple
Lie algebras sl,, s0,, and sp,, satisfy certain versions of the skein relation of the
HOMFLY polynomial (sl,; see [LM 1]) resp. the Kauffman polynomial (s0,,, 5p,,;
see [LM 2]). But what about the exceptional simple Lie algebras?

The authors are partially supported by the Schweizerische Nationalfonds.
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In this paper, we deal with the case of the exceptional Lie algebra go. By means
of a generalization of the notion of links—since we have to introduce branchings, we
call them 3-nets—we manage to establish a skein relation for the (go, V')-invariant,
V being the 7-dimensional “standard” representation of go. As a by-product, we
obtain an extension of the (gg, V)-invariant to closed 3-nets. Kuperberg’s skein
relation for the quantum go-invariant (see [K]) turns out to be a special case of
ours; it is not too surprising that there is a connection between these skein relations
since the restrictions to knots of the two invariants coincide according to a result
of Piunikhin’s in [P].

We expect that our method can be adapted to the case of the other exceptional
Lie algebras.

To the reader not familiar with Lie theory, we recommend [H] and [FH]. For an
introduction to Vassiliev invariants and weight systems, see [BN 1]; a more general

definition of weight systems is given in [V], section 6.

Overview over the categories and functors appearing in this paper:

Tgsv)

the (go, V)-invariant

Zg N

Y:ip f — Ds — C(gg)
the category of universal Vassi- the category of (g2, V)-weight sys- a modification of
trivalent, paran-  liev-Kontsevich in- 3-diagrams (a tem a subcategory of
thesized, framed  variant generalization the category of
tangles; every 3- of chord diagrams) representations
net corresponds of go

to a morphism
of this category

1. 3-nets and 3-tangles

In this section, we will define 3-nets and 3-tangles. They are generalizations of
links and tangles. We will also construct the category 7y, of trivalent framed
tangles, which will allow us to work in a category-theoretical setting.

A 3-net will be something like a “link with branchings”. To describe the situa-
tion near a trivalent vertex (i.e. near a branching point), we will need the following
notion:

Let B be the open unit ball in R3, ie. {z € R3;|z| < 1}, together with the
distinguished subset T == {(¢,0,0)]0 < ¢ < 1} U {(=4,%,0)¢0 < ¢ < 1} U
{(-3.—2. 0o <t <1},
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Definition 1.1. A framed 3-net is a subset N of R> with a finite subset {t1,. .. t,}
C N such that:
(i) there exist disjoint open subsets Uy, ... U, of R? and diffeomorphisms f;
U, — B(i=1...n) such that U; is a neighbourhood of t;, f(t;) = (0,0,0),
(ii) N := N\ (U?:l 7z e B;lz| < %})) is an embedded smooth closed com-
pact 1-dimensional manifold,
together with:
(#3) a smooth vector field on N that is nowhere tangent to N (and in particullary
nowhere zero)
The points ty,... 1, are called trivalent vertices of N; boundary points x ofN
with z & U; (Vi) are called univalent vertices of N.

Observe that 3-nets without trivalent and univalent vertices are simply framed
links. When we represent a framed 3-net N by a diagram, the framing of NV is
given by the blackboard framing!.

The 3-net in the following figure is a 3-net with 7 trivalent and 3 univalent vertices.

A AN
~ (=
V)

As all 3-nets in this paper will be framed 3-nets, we will usually omit the word
“framed”.

Definition 1.2. Two 3-nets N1 and No are equivalent if N1 can be deformed into
Ny within the class of framed 3-nets by a smooth 1-parameter family of diffeomor-
phisms of R3.

A closed 3-net is a 3-net without univalent vertices.

A 3-net is planar if it is equivalent to a 3-net M with M C R? x {0} and the

1

i.e. the vector field assigned to N consists of vectors pointing upward
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vector field assigned to M consists of vectors of the form (0,0,1).

Remark 1.3. The overview in the introduction intimates that we will obtain an
invariant of closed 3-nets that is composed of Vassiliev invariants (see also section
6). Vassiliev invariants are usually defined for oriented links, but we remind the
reader that there is a definition for unoriented links (see e.g. [St]):

A link invariant? f is a Vassiliev invariant of type m if for any link L, any diagram
D(L) of L and any subset C of the set of crossings of D(L) with cardinality greater
than m the following equation holds:

> (DN F(DL)x]) =0,

Xco
where | X is the cardinality of X, D(L)x is the link diagram obtained form D(L)
by changing all the crossings in X, and [D(L)x] is a link with diagram D(L)x
(such that the framing on the link is given by the blackboard framing of the
diagram).
Of course, this definition can be extended to 3-nets.

Definition 1.4. A (framed) 3-tangle is a framed 3-net N with N C [0,1] x R?
such that the points of N lying in the planes {0} x R? and {1} x R? are exactly
the univalent vertices of N and these lie on one of the lines {0} X R x {0} and
{1} x R x {0}. Additionally, we require that the normal plane of N in a univalent
vertez v is parallel to the plane {0} X R2, and the vector field assigned to N is
(0,0,1) inv.

Definition 1.5. Two 3-tangles T and T are equivalent if one can be deformed
into the other within the class of 3-tangles by a smooth 1-parameter family of
diffeomorphisms of R,

A S-tangle is planar if it is equivalent to a 3-tangle M with M C [0,1] x R x {0}
and the vector field assigned to M consists of vectors of the form (0,0,1).

Now we will define the category of trivalent, parenthesized, framed tangles
Tipr. It is an (unoriented) generalization of the category of non-associative tangles
in [BN 2].

First, we will define non-associative words (which will be the objects of 7y, ).

Definition 1.6. A non-associative word is a word w in the alphabet {o,), (} such
that w is equal to the empty word, (o), or (wiwg) where wi,ws are non-associative
words. For every word, we identify (w) with w.

The length [(w) of a non-associative word w is the number of symbols ¢ in w.

2 je. a function assigning to each link an element of an abelian group (usually C) that is

constant on the equivalence classes of framed links
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Example 1.7. L((@)(((2)((e)((0)(0))))(0))) = 6

Definition 1.8. Let ,Epf be the monoidal C-category whose objects are non-as-
sociative words (where the tensor product wi @ wy is (wiws) and the unit object
is the empty word) and whose morphisms are freely generated by the following
morphisms:

(G1) A morphism

(G2)

(G3)

(G4)

v @nd a morphism _~ for each triple (v,w,z)
of non-empty non-associative coloured words: The sources of these mor-
phisms are ((vw)z) and (v(wz)) and their targets are (v(wz)) and ((vw)zx)
respectively.

Graphically, we represent these morphisms as the following examples in-
dicate (the parenthesation of source and target is encoded in the distances
between the strands):

4

((0)(e)), (), ((0) (o)) -

N/

()N ()] -

A morphism > vl and a morphism > - for each pair (v,w) of non-
empty non-associative words: The source of these morphisms is (v,w) and
their target is (w,v). We will depict them as follows:

X (o), (((0)(0)) (o)) o

@M@ -

A morphism ( and a morphism ) with source () and (00) and target (0o)
and () respectively; graphically:

-

A morphism — and a morphism >— with source o and (00) and target
(00) and o respectively; graphically:
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The graphical representation of the tensor product of two morphisms is ob-
tained by putting the first above the second, the graphical representation of the
composition S90St is obtained by glueing the graphical representation of Sa to the
one of Sy from the right:

51 ® So —

SQ o Sl — -

The graphical representations of the morphisms allow us to assign a 3-tangle
to each morphism M (namely a 3-tangle T with the graphical representation of
M as diagram, supplied with the blackboard framing).

Definition 1.9. The monoidal C-category Ty is the category whose objects
are the objects of pr and whose morphisms are the equivalence classes of the
morphisms of ’]v}pf under the following equivalence relation: Two morphisms from
u to w are equivalent if they get assigned equivalent 3-tangles.

Remark 1.10. The equivalence relation in the above definition can be described
locally. For morphisms generated by (G1)-(G3) this is done in [BN 2]. If we take
the generators in (G4) as well, we have to add the following relations for any word
w:

Relation Graphical representation

(id<>® )) io,o,o(% ®id<>): >—

%

j—
(ide ® >—) o000 (( ®ido) = —< o
(ide ® > ) > ooy = D ol — ®idy) > -
(>* ®idw) Xw,(oo) = X w,o(idw ® }) X

Remark 1.11. Observe that any 3-tangle, and in particular any closed 3-net, is
equivalent to a 3-tangle assigned to a morphism of 7;,f, and so the equivalence



140 A.-B. Berger and I. Stassen CMH

classes of 3-tangles correspond exactly to a basis of the morphisms of 7;,;. One
might achieve this by taking much simpler generators (e.g. only generators without
multiple strands), but then the local description of the equivalence relation given
in remark 1.10 would be more complicated.

2. The universal Vassiliev-Kontsevich invariant extended to 3-
tangles

Now we want to extend and adapt the universal Vassiliev-Kontsevich invariant to
the 3-tangles in 7;,;. Since this invariant operates by taking a diagram represent-
ing the given tangle as support and adding some chords, we have to generalize the
notion of chord diagram and introduce trivalent vertices in the support, too.

Definition 2.1. A 3-diagram is a finite trivalent graph K (by which we understand

a graph with every wvertex being either univalent or trivalent or else bivalent and

adjacent to a loop) equipped with the following data:

e a colouring of the edges by ----- or —— such that there is not a vertexr adjacent
to two edges coloured by ----- and one coloured by ——

e a colouring of the univalent vertices by o or e according to whether the edge
arriving there is coloured by ----- or —

e for every trivalent vertex x of K, a cyclic order of the edges arriving at .

The union of the edges coloured by is referred to as the support of the diagram;

the edges coloured by ----- are called chords.

The degree of a 3-diagram is the number of trivalent vertices adjacent to at least

one chord?®.

Usually, we describe the 3-diagrams by graphical representations in the plane
encoding the information about the cyclic order near the trivalent vertices by
arranging the adjacent edges counterclockwise.

Definition 2.2. The category D3 is a monoidal C-category whose morphisms are
linear combinations of certain graphical representations of 3-diagrams. It is given
by the following data:

objects: Obj(D3) := ;" {o,8}™. The tensor product on Obj(D3) is the juztapo-
sition.

generators: The morphism spaces are generated by:

3 Note that for a 3-diagram without univalent vertices adjacent to a chord, this is twice the

classical degree.
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the source (resp. the target) being denoted on the left-(resp. right-)hand side from

top to bottom?.

The tensor product of two morphisms is obtained by putting the first above the
second, the composition by glueing together the corresponding entries of the target

of the first and the source of the second.

relations: Of course, different graphical representations of isomorphic 3-diagrams
are to represent the same morphism; in addition, we impose the following rela-

tions® :
(AS1) e R
. -
(AS2) I —

(AS3) -
(IHX1) - [ _
(IHX2) .—. - l—l _
(IHX3) N - | _

O\\
_ \:>77—fo
o
0
— O0-==--< .
"o

Obviously, the morphisms involved in the relations described above can be

4 The apparent 4-valent vertices are no vertices at all - they are just crossings of two edges

(there is no need to say that one of them passes over the other).

5 The reader familiar with Bar-Natan’s way of defining weight systems should pay attention

to the sign in our relation (AS3).
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composed of the generators of Ds; the relation (IHX2) for example can be written
as follows:

But for obvious reasons, we refrain from doing so.

Remark 2.3. The relations (AS1), (AS2), and (IHX1) allow introducing trivalent
vertices adjacent to three chords in a consistent way, which are convenient e.g. for
the formulation of (THX2). The relations (AS8), (IHX2), and (IHX3) are required
for the existence of the universal Vassiliev-Kontsevich invariant. See proof of 2.8
for (AS3) and proof of theorem 1 (1) in [BN 1] for (IHX2) (the 4T-relation);
(IHX3) reflects a similar situation near a trivalent vertex.

Definition 2.4. Let D3 be the completion of the (graded) category Ds.

For convenience of notation, we define a functor A from a specialized version
D3 of the category D3 into Ds.

Definition 2.5. Let D} be the category whose objects and morphisms are those
of ﬁg together with some ertra information: in the morphisms, some connected
components of the support containing no trivalent vertices adjacent to three edges
coloured by —— may be labelled by replacing the adjacent components of the source
and/or the target by x.

The composition of morphisms is to respect the labelling.

The relations of D} are those of Dy with any possible labelling.

If D is an arbitrary morphism in 153, we denote by Dy the morphism of D3
that is D with the component departing from the k-th entry of the source labelled.

Definition 2.6. Let A be the monoidal functor D5 — Dy doubling the labelled
components and taking the sum over all possible ways of lifting arriving chords to

the new components of the support; thus, A is given by:

A(*) = e @ Ale) = e A(o) =0

A>T ) = %A(X) = &NX) -
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A() = ? M) = s

AD) =D ) A= ST
— T
AMC) = CA—) = L —

All the other generators (without any labelling) are not affected by A.

As an immediate consequence of the relation (THX3), we obtain:

Lemma 2.7. :m >‘@“ :@—<

" e
no i I o

for any fitting 3-diagram D. O
Finally, we get to the definition of the universal Vassiliev-Kontsevich invariant:

Definition and Theorem 2.8. The following assignments define a monoidal
functor Zy : Ty — D3, the (unoriented) universal Vassiliev-Kontsevich inva-
riant:

A~

Z(u) = o™, where u is a non-associative word of length n.

Z(X) = 21(X) e
Zi(20) = ok () =
2:(0) = Z(C) = |C”

I
Q
N7

3
e

=
E
N

Zi(—) = Z9(—) = #+—(B"
where 3 T = S0 (:I:%)";lr iw
D is the Knizhnik-Zamolodchikov associator (for definition see [LM 3])

C = ( (@) )!
7e C\ {0}
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A= A(‘D;)),B: 7A(CI>3) .

. " P / S = —=
For generators with multiple strands, i.e. > Ty pod wyr Seuvw OF o www

for some non-associative words u, v, and w, the image under 2f is obtained by
splitting the corresponding components of Zi( > 60), Z1( L 0.0)s Zi{ O 600);
or Zf( _ o00) respectively by repeated use of A, e.g.

A

Zi( X up)= A (A (A (A (Z( X)) 1). tw)+1)-
1(v)—1times I(u)—1times

Remark 2.9. As &, A, B, C are formal power series in certain 3-diagrams with
degree O-part 1, one may take their inverses and square roots by substituting « for
their higher degree parts and expand the corresponding function of = in a Taylor
series.

Remark 2.10. Since the number of trivalent vertices in a 3-tangle is invariant, 7
may be chosen freely.

Proof of 2.8. In section 1 of [MO], Murakami and Ohtsuki define the universal
Vassiliev-Kontsevich invariant for oriented 3-tangles and prove that it is indeed
an invariant. Their definition can be modified—without destroying the invariance
of the functor—as follows: Omit the signs accounting for the orientation of the
strands, and introduce the antisymmetry relation (AS%) instead of the correspond-
ing (implicit) symmetry relation in the category of oriented 3-diagrams. In order
to obtain as degree 1-part of Z;( () = Z;( > ) — Z;( ) the diagram in
which the double point is replaced by a chord (arriving at the support on either
side like this: | ), we have adjusted the sign in the exponent of the image of
the crossings.

With this modified version, nothing can keep us from forgetting the orientations
both of the 3-tangles and of the 3-diagrams. O

)

3. The (g9, V)-weight system extended to 3-diagrams

Let A be the subspace of the morphisms of ﬁg generated by diagrams with support
51 and without univalent vertices. It has been known for some time that given a Lie
algebra g, a representation V' of g, and an ad-invariant symmetric non-degenerate
bilinear form on g, one can construct a linear form—called weight system—on A if
an orientation on the support is added (see e.g. [BN 1], section 2.4, or [V], section
6)6. In this section, we construct an unoriented and extended version of the weight

6 Our approach is closer to the one described in [V].
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system one gets from go with its 7-dimensional standard representation’and the
bilinear form hx (where h is any non-zero complex number and & the Killing form
on go). We do this by defining a functor ¥ from D3 to C(g2), a modification of a
subcategory of the category of representations of go.

Denote by V' the 7-dimensional irreducible representation and by L the adjoint
representation of go. Let the highest weights of these representations be (1,0) and
(0,1) respectively.

The following fact assures that V is selfdual (i.e. V' =2 V*) and that there exist
go-linear embeddings i and ¢y from C and V respectively into V ® V unique up
to scalars.

Fact 3.1.
VeVCoVaeLoW

with Sym?V =~ CeW, ANV=Vael
where W is the irreducible representation of go with highest weight (2,0).

For the construction of the functor ¥, we will also need the following go-linear

maps:

e pc VRV — Candpy : VoV — V, the projections belonging to the
embeddings i and iy (i.e. po 0 iq = idga, pv ody = idy).

e flipxgy : X ®Y — Y ® X, the go-linear map taking z ® y to y @ = (Vo €
X,yeY for X,Y € {V,L}).

e cas : C — L ® L with (hk) o cas = 14idc. Observe that cas maps 1 to the
Casimir belonging to hk.

Now we define the category C(gs) that will be the target of the functor ¥. Let
h be a formal parameter.

Definition 3.2. The category C(ga) is the monoidal C[[h]|-category with objects

0bj(C(g2) )= {C[h]] ®c U |U is a tensor product over C with factors V and L}
and with the following morphism spaces:

More(y,)(Clh] ®c U1, C[h] ®c Uz) := C[[h] ®¢ Homy, (U, Us).
The definition of ¥ is contained in the following proposition whose proof will

be omitted, because it just consists in checking straightforwardly that ¥ respects
all relations required.

7 “Standard” in the sense that every irreducible representation of ga occurs as a direct sum-

mand of some tensor power of V.
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Proposition 3.3. For any ga-linear embeddings i and iy of C and V respectively

into V. ® V, there exists k € C for which we obtain a well defined Cl[[h]]-linear
monoidal functor ¥ : D3 — C(ga) by setting

(i) ¥(o) =Clh] ® L (o) :=Clh] &V
(i) ®( <) i=1® fliprer  ¥(_< ) =18 flipvey
V() =18 flippey () =18 flipves
(#1) ¥( G_:l )i =1® hx, v ( ’\/\@ )i =1® cas
¥())=1®Tpc ¥ () =1wic
(i) ¥ Ui::»ffa ) = h® Lie bracket on ga
(o) = h® dual®of the Lie bracket on gy
() W( )= 1w kpy V() =1®iy
(vi) ¥( /—- ) := h® representation
U \—- ) := —h® representation.

Remark 3.4. The factor &k in (v) depends on the embedding iy : V — V@ V.
The value of k for a fixed embedding ¢y can be found by solving the equa-
tion (1® (pc ®idy)) o (1® (idy ®iy)) = 1 ® kpy representing the fact that

V()= ¥( >—) must hold.

The factor 7 in (#4) has been chosen to assure ¥( —, ) = ¥( — ); it is indepen-
dent of the embedding i¢.

The formal parameter i has been introduced to assure the existence of (D) for
every morphism D of @3: The powers of h induce a grading on the morphism
spaces of C(ga), and with respect to this grading ¥ is a grade preserving functor
that is well defined in every degree and hence on the whole of Ds.

Remark 3.5. In the introduction to this section, we mentioned the construction
of a weight system W (out of Lie algebra information) given in [BN 1] and [V]. In
these papers, the support of the diagrams is oriented, and so the reader familiar
with them might ask if there is still a connection between ¥ and ¥. From the
following observations, one can deduce that U of an oriented diagram of degree m
is exactly the degree m part of ¥ of the underlying unoriented one:

le¥(S) = US) hichords @ §(C7) = W(C))

8 Observe that hx induces an isomorphism from L to L*.
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lo¥(2) = ¥(2) flﬁChOrds®¢j(é) _ ‘I’(E)

(where W(D) is obviously regarded as map and not as tensor).

4. The skein relation for the (go,V)-invariant

What we have achieved so far, is the construction of an invariant for 3-tangles:
I(gzy) = Vol t.  Unfortunately, we cannot evaluate it directly because the
expression known for the associator ¢ is not explicit enough to allow concrete
computations. But we will derive a skein relation, i.e. recursive rules by which we
can reduce the problem to finding the values for planar 3-tangles (with these, we
will deal in the next section).

The idea is to cut out a small neighbourhood of a crossing and insert something
else without changing the value of the invariant. The substitute for the crossing has
to be a linear combination of small, simple 3-tangles with four univalent vertices.
Obvious candidates for such are the inverse crossing, = , and )( ; as their values
will prove to be linearly independent in the space of endomorphisms of V @ V,
these are not sufficient, and therefore, we include )< into our considerations.

As V®V decomposes into four different irreducible representations (namely C,
V, L and W; see fact 3.1), each go-linear map V@V — V@V is determined by the
four corresponding eigenvalues. To establish our skein relation, we have to ascer-
tain the four eigenvalues of Iy, 1y( ), Iigy vy(A); Ligy vy (=) Tigy 1) (DO,

and I(EQ,V>( >—< )

Eigenvalues of I(g%v)( ) and I(QQ,V)( )
The eigenvalues of Iy, )( >() and Ligy v)( <) are the products of the corre-

sponding eigenvalues of ¥(e T yand ¥( X< ).
Qulte a bit of explicit calculatlon yields that the eigenvalues of ¥( ) are TZ on
(S 4— on Vv, O on L and —-D— on W; accordingly, the eigenvalues of \If(e%i -)

72
are e¥ & e¥ E , 1, and e* 24h, respectively.
The elgenvalue of U( < Vis1onSym?V = Ca& W and-1 on A2V =V @& L.

Eigenvalues of I(5, (=)
As I, v)( =) is the identity on V ® V, its only eigenvalue is 1.

Eigenvalues of (5, y( ()
Let ¢ be the scalar by which ¥( ) operates on V. Then we have:

Iy OO =¥( " €' ) = e¥( () =Tcic ope.
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Hence I(gz,V)( ) ) is 0 everywhere except on C, where it has the eigenvalue 7c.

Remark 4.1. Observe that:

Iy (O)=¥0Z;(O)=c¥(O))="e

As Piunikhin has shown in [P] that for framed knots the Reshetikhin-Turaev quan-
tum invariants yield the same values as the invariants obtained by using the cor-
responding weight systems, we can use a result of Rosso and Jones in [RJ] to
determine the value of ¢:

B (A 6,0) _ B3R (A+,0)

I(BQ,V)( O )=

h2h h2n
= et (0,0) _ —P5R(8,0)

where Ay is a possible choice for the set of positive roots of go
A is the highest weight of V

0= ZR€A+ R
(, ) is the bilinear form on the weight space of go induced by
the bilinear form hx on go.

22
Simplifying this expression and setting ¢ := e*ﬁ?, we get:

7c:q5+q4+q+1+q*1+q*4+q‘5.

Eigenvalues of I(;, y( )
Let a (resp. b) be the eigenvalue of ¥( ) (resp. ¥( )) on V. Then we

have:
Igp iy () = ¥( {5"] >:¢%\IJ(H).

Since ¥( ) ) is 0 everywhere except on V, the parameter # occurs nowhere but in

the eigenvalue of Iy, 1)( ) on V, which is f/iib (and # 0); therefore, we do not

have to care about the factor \/%, but can simply shift the possibility of choice

k72
Vab’

from 7 to r .=

Remark 4.2. It is nonetheless possible to determine ab by using the following
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result of [LM 4] section 4: AB = (C~1 @ C~1)A(Cy), and lemma 2.7:

ab®()) = ¥(>~{BIAL")

thus

Remark 4.3. The invariant I, (g2,V) takes actually values in C[[iAz]], but as long as

we do not want to fix h and r, we can regard them as elements of C[[}Az7 %7 ] and,

accordingly, C(go) as Cﬂfz, %,r]]—category.

72
To summarize (recall that ¢ = e‘ﬁi):

vatneon |17 (O e O Miga iy (0 1Taan OO g OO
C g8 q° 1 Tc 0
1% —q73 —q3 1
L —1 —1 1
w q (f1 1

The leftmost column can be expressed as a linear combination of the other
columns; i.e. substituting this linear combination of the 3-tangles >, =, )(,
and )< for a crossing > in a 3-tangle does not change the value of I(gz,V)'

Theorem 4.4. For the invariant 1(927‘,), the following skein relation holds:

Tigy vy (D) = gy vy () 4 Blgy vy (X) + L (g, 1) (D) + 8115, 1 ()

where a = q
p o= q-1
v = (- +a b —q+1)
§ = g —q 3 —q+1).
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Since [, (go,V) 15 8 monoidal functor and invariant under ambient isotopy, we can
deduce another skein relation as follows:

I(gg,V)(X):I(QQV (N)
:al(gzv)(f )+ Bl (g, v ( (&) )+ g, v) (@)WL(SI(E;ZV ()
= al(g, vy () + Bligy 1) (D) + M (g,1) ( R) + 8L(gy 1y ().

Combining these two versions of the skein relation, we obtain:

Corollary 4.5. For the invariant I(gz’v), the following skein relation holds® :

Ty ) (00) = Mgy vy () + gy vy (O C) + pLigy vy () + 0y ()

where A\ = %ﬁg

Bo= 7

(3K T—a2
g = TP

It is clear that by means of this relation, every 3-tangle can be reduced to a
linear combination of planar 3-tangles.

Remark 4.6. The invariant I, (92,) = Yo/ 7 of closed oriented 3-nets itself is
not a Vassiliev invariant, but “consists of” Vassiliev invariants in the following

sense: For each m € N, let I(m)v> be the function with values in C[[—ﬁm]] such

that I(gg,V) = Zm 0 Ié;>v)h2m Then Iég )V) is an invariant of type m.

5. Values of the (go,V)-invariant on closed planar 3-nets

In this section, we show how the value of I(gz,v) on a closed planar 3-net can be
calculated recursively.
The following lemma assures that it is sufficient to consider connected 3-nets.

Lemma 5.1. If a closed 3-net N is equivalent to a 3-net consisting of two closed
3-nets N1 and No with Ny C R~ x R2, Ny ¢ Rt x R2, then

gy vy (N) = Igy v)(N1) - L (g, vy (NV2). O

9 Setting » = —(¢2 + g+ 1+ ¢ 2+ ¢ 2 + ¢ *), we obtain the skein relation given in [K].
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As, by definition, every planar 3-net is equivalent to a 3-net contained in R2 x
{0} with only upward pointing vectors assigned, it is enough to calculate I (82,V)
for these. Therefore, we assume that all planar 3-nets in this section are of this

type.

Definition 5.2. Let N be a planar 3-net. A mesh of N is the closure of a
conmected component of (R? x {0})\N. A n-mesh is a mesh with n trivalent
vertices in the boundary.

We will show how in any non-empty connected closed planar 3-net the number
of meshes can be reduced without changing the value of the invariant. As we know
that I(QQ’V)(empty 3-net) = 1 (the empty 3-net is the unity in 7, ¢and lig,v)isa
monoidal functor), this will allow us to calculate the invariant of a closed planar
3-net recursively.

Proposition 5.3. Let N be a non-empty closed connected planar 3-net with m
meshes. Then there erist closed planar 3-nets Ni,...,N, (not necessarily con-
nected) with fewer than m meshes and coefficients Aq,... A\, € C such that

Tigo, vy (N) = 3001 Mid(g, 1) (Vi)

Proof. The idea is to cut out a mesh and replace it by a linear combination of
pieces that lead to 3-nets with fewer meshes.

Thanks to the following lemma, the mesh we want to cut out can always be
chosen to be a simply connected n-mesh with n <5.

Lemma 5.4. Let N be a planar non-empty closed connected 3-net. Then N has
at least one simply connected n-mesh with n < 5.

Proof of the lemma. If N is an embedded S1, N has a bounded 0-mesh, and so in
this case, the lemma holds.

Let § denote “number of” and let N be a 3-net without 0-mesh.

Observation 1: § vertices of N —# edges of N + f meshes of N = 2 (Euler charac-
teristic of S?2).

Observation 2: If we assign to each mesh M the appropriate part of the contribu-
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tions of its vertices, its edges, and its region, i.e.

(# vertices of M)

+
o=

(# vertices of M for which all adjacent edges belong to M)
(# vertices of M that belong only to M)

(4 edges of M)

(# edges of M that belong only to M)

+

=
S
|
_|_
Ll & [0 N TR PRIt [

then Z XM = 2.
M mesh of N

Observation 3: For a simply connected n-mesh M of N, we have xar =1 — %n
Observation 4: If the unbounded mesh M’ of N does not contain an edge belonging
to M’ only, then xppr < 1.

If N does not contain an edge that belongs to one mesh only, the lemma is a
consequence of observations 2, 3 and 410,

Now suppose that there are edges eq,...,e; such that ¢; belongs to only one
mesh M;. Note that forgetting such an edge ¢; would split the 3-net N into two
connected components N;; and Njo. As there are only finitely many edges e;,
there is an edge e; for which at least for one k € {1,2} N;;, satisfies the following
properties:

(1) N does not contain an edge that belongs to only one mesh;

(#¢) any mesh M of N that is also a mesh of N;; is bounded.

The sum > xar over all meshes M of N mentioned in (4:) is greater than 0 (look
at > xa with M considered as mesh of N;i, use observation 4, and subtract % for
the influence of e;), and thus observation 3 guarantees that at least one of these
meshes has fewer than 6 vertices. |

To replace n-meshes for n < 5, we will use the following lemma:

Lemma 5.5. The following equations hold:

(o) Iig, n(O) =Telg, () =Te,
() Ig,n(O—) =0,
(i) I(gz,v)( -O-) = TI(QQ,V)( — Ja

y(

(iii) Ty ) (20=) =t gy (> ) witht = 3(=¢> + aq™> =),

10 Note that any bounded mesh M that does not contain an edge belonging only to M is simply
connected.
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2 5

(w) Lg, (L) = st Ligs v ) A gy vy (O0))

r 22
44 (f; +1) (1@27‘,)( ) +](g27v>( )
with g = ¢® +¢° + ¢* + ¢+ q+ 1,

| |
© Tap (L) = AL+ Hrn YL )+ Tignir (L)
(g, v)( ﬁ\/ )+ Ly vy %2/ )

|
P T+ a0 )+ ()
e

\
+[(927V)(\§()+I(92,V)( )

3
with d = 13—.

Proof of the Lemma. Equation (o) is proved in remark 4.1.

Equation (¢) is true because I(g, )( (CO— ) is a go-linear map from C to V' and
must therefore be 0.
Equation (i), we get from Iy, 1)( — ) =U( a5 ) Fe, r¥U(—).
To get equation (7i¢), we use the skein relation given in theorem 4.4 (rotated by
90°):

1 S
gy ) (20 ) = 5 gy 1) (77)

—al(g, v) (PO ) = Bligy vy (2 O ) = (g, vy (7).

Note that [y, y( 7O ) = Iigy vy (77 ) 0 Lg, 1y ( X)) = —q3I<gzlv)( >—) (only
the eigenvalue of Iy, 1( A ) on V matters).
Equation (iv) and (v) can be obtained in a similar way. For (v), it may help to

use that > = ~ xT= . O

As (g, v) is a monoidal functor, equations (o)-(v) will still hold if the 3-
nets depicted in the arguments of I(gz’v) are parts of bigger 3-nets that are
identical outside the depicted region for all arguments in the same equation. The
observation that for all equations, the 3-nets appearing on the right-hand side
have fewer meshes than the one on the left-hand side concludes the proof of the
proposition. O

Now we are able to compute the value of the I, (927v>—invariant for every oriented
closed planar 3-net recursively. Planar 3-tangles that are not closed can often be
reduced by the same technique, but because in this case, lemma 5.4 is no longer
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true, it may happen that we get stuck before reaching the empty 3-net (example:

).

6. Some examples

To do explicit calculations, the following lemmas may be helpful, the first com-
paring 3-nets to their mirror images, the second suggesting some short cuts.

Lemma 6.1. As taking mirror images essentially comes to changing crossings,
the value of I(gzyV) on the mirror vmage of a 3-net N is obtained by substituting

gL for g in I(gz’v)(N). O
Lemma 6.2.

Tig,v)( U )= QGI(QZ’V)( —)
I(gg,V)( D_ ) = _q31(927v)( >_ )

Tigy vy (2 X) = 51(92%/)( X)) +OJ(92,V)(3X )
+7q (g, 1 (D) =8q7 2 I, vy( )

s

Example 6.3.

I(QQ,v)(@) =7c(q +*+ @ +1+q2+q 3 +q77)

Tigy1)( CQ) ) =T+ - PP ra-1+g gt —2g5 42476
_q77 _ qu _ qflo +q711 _ q712 + q713)

Tigy)( Q@ ) TelgM — 13+ 2412 — 2¢M + ¢° — 268 +4¢7 — 465 + 445 — 2¢*

—®+3¢> —5q+5-5¢ 1 43¢ 2 —q ¥ -2t 4 4g7% —4g76
+4q77 _ 2(]78 1 qu _ 2(]711 . 2(»]712 _ q713 + q7]4)

I(QQVV)( @ ) Ter

2
Lo ()  ~TeqLritly?
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