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The explicit general solution of trivial Monge-Ampere
equation

Vitaly Ushakov

Abstract. The general solution of the equation zizzyy — zgy = 0 with minimal smoothness

requirements is presented in explicit form; it depends on 2 functions of one variable. In particular,
it allows to describe explicitly all developable surfaces (without planar points) in R3. The domain
and singularities of the solution are investigated.

Mathematics Subject Classification (1991). Primary: 35A10, secondary: 53A05, 35A20,
35B05, 35E15
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1. Main Theorem

The trivial Monge-Ampére equation is
Hess(z) = zga2yy — zgy =0 (1)

and sometimes it is called the equation of developable surfaces [CH, p. 10].

Theorem. The general solution of the equation Hess(z) = 0, with the assumption
Zozw # 0 everywhere, is given in parametric form.:

2(,0) = glu) — v ()
y(u,v) =v " 7 (2)
() = - () — /O o(t)dt +v- {f(u) —u- f'(u)}

where f(u) and g(u) are arbitrary functions such that f € C%, g e C1, ¢g/(u) # 0
everywhere. Furthermore, the Hesse matriz is

(G ) e (e vor)- @
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Since the change of variables (x,y) «—— (u,v) is C'! smooth, system (3) gives
the following corollary complementing and containing Theorem 1 from [U3].

Corollary. The general solution z(x,y) of the equation Hess(z) = 0, with the
assumption z,, # 0 everywhere, is &2 smooth, but need not to be >, Moreover,
the quotient zyy : 2y s Cl and need not to be C2.

In Section 3 we shall discuss how to remove the assumption z,, # 0.

An incomplete solution with g(u) = w and arbitrary f(u) was presented in
[HW, pp. 169-170].

Solutions of a similar equation Hess(z) = 1 over various domains have been
considered in [J1, J2 and SW].

Proof of Theorem. Classical change of variables. The solution of equation (1)
can be written explicitly in new coordinates (u,v) which we will now introduce.
Let z(z,y) be a solution of equation (1) in the vicinity of the z-axis. Then we
assign

U= Zil

{ - =(y) ()

v=y
This new coordinate system has the following geometrical motivation: the zy-
plane is fibered on rectilinear generators along which the function z, is constant;
in the uwv-plane these generators become the coordinate lines v = const. Or, that
is to say, the surface (z,y, 2(z,y)) is fibered on rectilinear generators along which
the tangent plane is constant. More detailed discussion can be found in [U3]. The
Jacobi matrix of the change (4) is

) = 240 7 0 and (4) does give a change of variables.

joi}

thus det <8(u7 v)
o(z,y)

Now our goal is to express z, ¥ and z as functions of v and v.

Introduction of function zy = f (2,). It is not difficult to show that along the
rectilinear generators not only the function z,(z,y) but also the function z,(z,y)
is constant (see [U3]). Thus, z, depends only on the value of z, = u, does not
depend on v, and we can introduce a new function f:

zy = f(u). (5)
Then from (4) and (5) one can get
Uy = (2ay = 2ya) = () - ua. (6)

In this equation the dependent variable is u(x,y). We shall transform the equation
to a new one with the dependent variable z(u,v). In order to do that we need:
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The connections between (z,,z,) and (uz,uy). The Jacobi matrix of the
change (4) (z,y) — (u,v) can be written as follows

8(“‘7”) _ [ Uz Uy
Az,y) O 1 /7
The matrix of the inverse change (u,v) — (z,y) is
owy)  (wa @) _ () (L
ANu,v)  \¥u Yo/ \O(z,9) S\ 0 I

Hh—= 1 -0
{xu e and {yu . (7)
Ty Uy +uy =0 Yy = 1

Hence

The function x(u,v). Now equation (6) can be transformed into
—xy - Uy = f'(u) - uy, hence z, = —f'(u) (for uy = 2., # 0) and therefore

z(u,v) = g(u) —v - f'(u), (8)

where the function g(u) is an arbitrary function (initial condition) assigning the
change u +— z on the z-axis: z(u,0) = g(u); the existence of the change requires
g'(u) #0.

The function z(u,v). Now we can obtain the equation on z(u,v).

)

&)
U = Zg = 2y Ug + 2y - Up = 2y~ Ug,

hence
u:i<2u-xu. (9)
Ug,
On the other hand,
flw) (i) Zy = Zy Uy + 2y - Uy (i) Zy Uy + 2y (2 2y (—2y - ug) + 2y (i) —Ty U+ 2y,

hence 2, = f+zy - u ® f(u) —u- f'(u). Therefore

z=hu)+v-(f-u-f).

In order to find the function h(u) (depending on f(u) and g(u) since they
completely determine the initial Cauchy problem) let us take advantage of (9):

U+ Ty Q)zu:h/+v~(f/—f/—u~f”):h/—v~u~f//.
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From (8) z, = ¢'(u) —v - f"(u), hence u - ¢'(u) = I/(u), and finally

h(u) = /Out g () dt = ug(u) — /O“ g(t) dt.

Evaluation of the partial derivatives 2., 2,y and zy,:

L W, 01® 1
rxT x Ty g/—vf/"
vy Do @ g g, @20 ® S
xry Y v P T g/—vf/"
®) ) @ gz ® ()
zyy - [f(u)]y :f/'uy = _f/'x'u Uy — _f/z - 9/(_ 3}](//.

Initial-value problem. Thus, the function z(z,y) = z(u(z,y),v(z,y)) s a solu-
tion of (1). It turns out that any solution allows representation (2), i.e., varying

f(u) and g(u) (preserving g’ % 0) we obtain the full set of solutions. Indeed,
2

2
since z,, # 0, equation (1) can be represented as z,, = Y Then the initial

Rzx
conditions of the Cauchy problem for this equation can be set along the z-axis
as two functions in one variable: z(z,0) and z,(x,0). As we have seen before
on the z-axis the variables = and v are interchangeable: « = g(u). Therefore,

2,(x,0) = u = g~ (2); besides that z,(z,0) ©) fluy=1f (gil(x)). Altogether:
2(z,0) :/ g () dt € C2,
0

5y (@0 = (57 @) e C".

Thus, the pairs of functions f(u), g(u) and z(x,0), zy(x,0) are interchangeable
which means system (2) gives the general solution of (1).

(10)

Smoothness of the initial conditions f(u) and g(u). As one can see from
(3), for the existence of z,, it is necessary that g(u) € C! and f(u) € C?. At the
same time these conditions are sufficient for the existence of 2,4, 24y and z,,. 0O

2. Domain of the solution. Caustic

The surface F' C E? as the domain of the solution. The change of variables
(z,y) — (u,v) (4) is not accidental in the least. The matter is that the natural
domain for the solution of (1) is the surface ' ¢ FE? with the radius vector
(z(u,v),y(u,v), z(u,v)) rather than the zy-plane. The surface I’ is rectilinear:

x g _f/
y | =alu)tv-blu) with a(u)= 0 , blu) = 1 . (11)
z ug—[g f—uf’
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Moreover, it is a torse (i.e., a rectilinear surface with tangent plane stable along
the generators), a characteristic property of which is the condition be span{a,b}
([Sp, p. 284] or [U3]). Indeed, b = —fg—ﬂ'a.

Let us notice that the surface F is C? smooth (because in the cartesian parame-
trization (z,y,z(z,y)) the function z(x,y) is C?) despite the C! smoothness of
the parametrization given by (11). Such a drop in smoothness for this more
“geometrical” parametrization is a common occurrence — see Theorem 1 [U4].

There are no planar points on the surface ' (due to z,, # 0) and consequently
it consists of the parts of cylinders, cones and tangent developables glued pairwise
along their rectilinear generators [U1].

Singularities. If we assign the initial conditions f(u) and g(u) defined on the
segment [u1,us] of the z-axis (to be more precise on the segment [z1,29] with
z1 = g(u1), zo = g(ug)) then the equations (2) give the solution on the whole
strip (u,v) € [ug,ug] X (—o00,00). Thus one can say, the solution is naturally
extended to infinity along the generators of the surface.

Yet, in the general case on every generator there is a singular point at which
the tangent plane to F' degenerates into a line. Indeed, the tangent plane of the
surface a(u) 4 v - b(u) is spanned by the basis tangent vectors a + v - b and b:

. 1 -/
atvb= (g —vfY[O0], b= 1
u f—uf

and the degeneracy condition, rank {d + vi;, b} < 2, is equivalent to

g'(u) —vf"(u) = 0. (12)

Thus on the generator ug all points except v = g’ (ug) / f” (ug) have non-degenerate
tangent planes.

Cylinders. If we want to have no singularities in the strip [uq,ug] X (—00,00)
we must require f’(u) =0, i.e., f(u) = cu+ [ with constant @ and 3. Then the
direction of the generators b(u) = (—a, 1,3) is constant (see (11)); the surface I
is a cylinder a(u) x b C E3.

The last statement in fact is equivalent to the well-known Pogorelov’s theorem:
a complete surface of vanishing Gaussian curvature is a cylinder [P, p. 696] or
[Sp, pp. 363— 367] (true, in that theorem planar points were also taken into
consideration, but our treatment could be extended to cover them too — see
Section 3).

The singularities found are preserved under the projection of the surface F
onto the xy-plane (that will be discussed further). Therefore the last statement
can be reformulated as follows: the solution of equation (1) is defined and regular
over the whole zy-plane if and only if the initial function f(u) is linear.
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Now we shall assume that there are no points with f” = 0 on the segment
[u1,ug]. Then equation (12) specifies the singularity curve

a*(u) = afu) T Jf—f,w) b(u) (13)

on the strip [u1,ug] X (—00, 00) of the surface I. In order to understand the general
picture we impose two additional assumptions.

a) Let us suppose the function g’/ f” to be C! smooth. Then the singular-

ity curve (13) is also C'! smooth and its tangent vector is a* = (g'/f") -b.

b) We will assume that, on the segment considered, either (g’/f") =0

or (¢'/f") is never zero.

Cones. Let (¢//f”) = 0. Then a* = 0 and the curve (13) degenerates into a point:
a*(u) = af. All the generators of the surface I’ pass through that point. Under
the projection onto the xy-plane the picture is preserved: all the generators in the
plane pass through some fixed point Py, the strip [u1,us] X (—o00,00) is projected
onto the interior of two vertical angles between the straight lines (z (u1), Py) and

(z (u2) , Po).

Tangent developables. Let us now consider the case (g'/f")" # 0 everywhere on
[u1,ug]. In this case the singularity curve (13) is a genuine curve which envelopes
the generators of the surface F'. Such a surface is called a tangent developable and
the curve itself is called the edge of regression. A general idea of what a tangent
developable looks like can be obtained from a drawing in [Sp, p. 208|. After the
projection of F' onto the xzy-plane, the edge of regression (13) turns into a curve
called the caustic of the solution (2). The generators v = const in the zy-plane
are tangent to the caustic, each generator at its own point. The caustic is a conver
curve since its tangent vector 7(u) (which is the projection of b(u)) is (—f’,1) and
the frame {7, 7} keeps its orientation as long as f” # 0. Comparing (12) and (3)
we notice that while approaching the caustic the Hesse matrix goes to infinity.
Every generator is divided by the caustic point into two parts; correspondingly,
the domain of the solution (2) is decomposed into the parts consisting of the points
of the “bottom rays” and “top rays” of the generators. The foregoing can be
illustrated as follows.
|3

Example. Let the functions f(u) = |u|° and g(u) = u be given on the whole

z-axis. Then the surface F' is

x u —3u|u|
y | = O2 +wv- 1
z 4 —2|u?

The equation of the caustic (12) in the wwv-plane is 6Jujv = 1. In the zy-plane
the caustic is as follows:

()-6) e (1))
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hence, eliminating u, we get
12]zly =1, (14)
i.e., the caustic consists of two branches of hyperbolae:
. { -1—1%, forz >0
—-1—1%7 for z < 0.

When z approaches zero, the caustic goes to infinity and this is to be expected
since f” = 6Ju] — 0. There are three different branches of the solution z(z,y).

Branch 1. This is defined at the points of generators which are below the caustic,
on “bottom rays”, i.e., whenever y < -D% The map (u,v) — (z,y)

{xu—3v~u|u| -

y=v
can be inverted in this domain:
N 21
1+, where 1 =1 — 12|z - y.
v=y

U

2
The solution z(z,y) = 2 <1 — %)
8 (1+ V1)
Branch 2. This consists of the points of the “top rays” tangent to the right
hyperbola. In this case u > 0, the branch is defined in the whole Quadrant II and
in Quadrant I below the hyperbola y = -1—1% The inversion of (15) is

2x
Uy = —
1=+, where 9 =1 — 122 -y,
v=y
2 2
and the function z(z,y) = % <1 — %)
(1 - v2)

Branch 3. This consists of the points of “top rays” tangent to the left hyperbola.
In this case u < 0, the branch is defined in the whole Quadrant I and in Quadrant
1T below the hyperbola y = —1—51. The inversion of (15) is

- 2z

1= 4s where 3 =1+ 12z -y,

v=1Y

U

2
and the function z(z,y) = 227 <1 - (L)
1—

3 \/%)2
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3. Points with z,, =0

In this Section we discuss the extension of Theorem 1 removing the assumption
Zze 7 0. The points with z,, = 0 are naturally split into two classes: parabolic
and planar points.

Parabolic points: z,, = 2,y = 0, 2y, # 0 The necessity for individual con-
sideration of these points (they are not in the solution (2) — see (3)) is entirely
generated by the choice of the coordinate system. If we swap the axes z and y
then the points zyy = 24y = 0, 242 # 0 (which are currently in the solution (2))
will be found in the same disadvantageous position.

It can be easily seen from (3) and by interchanging x and y that the parabolic
points with z,, = 0 always lie on a generator parallel to the z-axis. Such a
generator cannot intersect the z-axis (unless it coincides with the whole z-axis)
and therefore setting the initial values for (2) along the z-axis, we automatically
exclude the points in question from consideration.

Changing the locus of initial values from the z-axis to an arbitrary (even space)
curve we can include the points discussed in the solution but lose the elegance of
formulae (2).

Planar points: 2,, = 2,y = 2y, = 0 These points in turn are split into two
classes:

(1) planar points possessing planar neighbourhood;

(2) planar points being a limit of parabolic points.

Points which are planar together with the vicinity lie on a flat piece of the
surface F'; the function z in that vicinity is linear.

The planar points of type (2) inherit the rectilinear structure from close parabol-
ic points: these points fill the whole generator which is the limiting position of the
corresponding parabolic generators (this statement is implied by the following
easy-to-check fact: if a generator of the surface F' has a parabolic point then all
the points of that generator are parabolic; a detailed discussion and bibliography
can be found in [U2]).

Therefore, the surface F' without flat pieces is rectilinear; some generators are
parabolic, the rest are planar. The parabolic generators make up an open set;
the planar generators form a closed one. The latter may have a rather compli-
cated structure: for instance, they might cut out the Cantor set on a trajectory,
transversal to the generators.

The planar points of type (2) possess another interesting property. Despite
the C2 smoothness of the surface I, the vector field assigning the directions of
the generators (and its projection onto the zy-plane) is C L smooth when we allow
only the planar points are present parabolic points and is only €9 smooth. Such
an effect may appear even in the case of a single planar generator [U2].
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