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Weierstrass representation of Lagrangian surfaces in
four-dimensional space using spinors and quaternions

Frédéric Hélein and Pascal Romon

Abstract. We derive a Weierstrass-type formula for conformal Lagrangian immersions in Eu-
clidean 4-space, and show that the data satisfies an equation similar to Dirac equation with
complex potential. Alternatively this representation has a simple formulation using quaternions.
We apply it to the Hamiltonian stationary case and construct all possible tori, thus obtaining a
first approach to a moduli space in terms of a simple algebraic-geometric problem on the plane.
We also classify Hamiltonian stationary Klein bottles and show they self-intersect.

Mathematics Subject Classification (2000). Primary 53C42, 53D12, Secondary 49Q10,
53A05.

Keywords. Lagrangian surfaces, Weierstrass representation, Dirac equation, minimal surfaces,
variational problem with constraint.

Introduction

In this paper we revisit and generalize some aspects of the Weierstrass construction
for Hamiltonian stationary Lagrangian surfaces which was given in [HR]. We are
interested here in Lagrangian surfaces in R ~ €2, equipped with the standard
symplectic form, a priori without the assumption of being Hamiltonian stationary.
In order to build a Weierstrass representation of these immersions, it is natural
in a first step to consider the set of weakly conformal Lagrangian immersions of
a Riemann surface: they are maps which coincide with a conformal immersion
outside isolated points where the Jacobian matrix vanishes, and such that the
pull-back of the symplectic form vanishes. In [HR], we analyzed weakly conformal
Lagrangian immersions which are Hamiltonian stationary, i.e. critical points of
the area functional with the requirements of (i) being Lagrangian and (ii) the only
infinitesimal variations allowed are the one given by Hamiltonian vector fields
(see [O1], [02], [SW]). They enjoy a nice characterization using the canonical
Lagrangian angle map defined over any Lagrangian surface and with values in the
circle §1 (it is actually a part of the classical Gauss map of the immersion). A
precise definition is given in Section 1 below. A Lagrangian surface is Hamiltonian
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stationary if and only if the Lagrangian angle map is a harmonic map from the
surface to the circle. This leads to many nice properties which may be summarized
by saying that these surfaces are solutions of a completely integrable system.

In the first Section, we show that the Hamiltonian stationary assumption may
be removed and that we still have a Weierstrass type representation of all weakly
conformal Lagrangian immersions. This is very similar to the Weierstrass repre-
sentation for weakly conformal immersions in R3 due to B. G. Konopelchenko [Ko].
Some variants were proposed also in [Ke| and this representation has been stud-
ied by many authors [KoT1, KoT2], [B1, B2|, [KuS], [T1, T2]. Actually we shall
first present our representation using notations that make evident the similarities
between the two theories, since they rely on a kind of Dirac equation.

In the second Section, we propose an equivalent representation using quater-
nions. The gain is not only formal, but it also unveils the quaternionic structure of
the problem. In particular when we specialize back to Hamiltonian stationary La-
grangian immersions, we see immediately that the set of solutions has the structure
of a vector space over the quaternions. Exploiting this structure leads to formulae
equivalent to the one in [HR] but much simpler to handle.

In the last Section, we present computations using these formulae and we focus
on immersed Klein bottles. We classify all such surfaces and show that none is
embedded.
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1. Weierstrass representation for Lagrangian surfaces in C?

Let (€1, €2) be the canonical basis of C2 over C. We equipp C2 with the Hermitian

product

(w,w) g = viw! + v*w?,
so that, as a real four-dimensional space, C2 has the Euclidean scalar product
{., .y g and the symplectic form w given by

(v, wyg = (v,w)p — iw(v,w). (1)

Let Q C C be a simply connected domain and X : Q@ — C2 some conformal

- . . 2 2
Lagrangian immersion. Letting e/ = ‘%—f = ‘%—)‘; ,and e ;= e*i/Q%_iQ €9 1=

e*f/Q%—X, we have
y

dX = e/ ?(eydx + eady), (2)
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and (e, eg) is necessarily the orthonormal basis of some Lagrangian plane in C2.
By (1) this condition amounts to (eq,e2)y = 0. Hence, for all (z,y) € €, the
components of e1(z,y) and ea(z,y) in the basis (e1,€2) form a matrix

€

w3 )@, @)

which belongs to U(2). Decompose e(z,y) as
e(w,y) = /%, (4)

where 5 € R/277Z and g € SU(2). Notice that such a decomposition is not unique;
the other possible one is e(z,y) = ei(ﬁ+2”)/2(—g). But since € is simply connected,
we can construct smooth functions 8 : Q — R/277Z and g : Q@ — SU(2), such
that (4) holds everywhere. The angle 3 is called the Lagrangian angle function, is
characterized by dz' A dz?(eq, e9) = ¢*P.

Let us focus on (z,y) — ef<957?/>/29(357y)7 a map with values in R* .SU(2). We
remark that Ry .SU(2) is isomorphic to the set of quaternions H. Namely, letting

10 0 -1 i 0 0
(o 0) = (0 9) (o 2) e (0))

the map

H: Ry .SU(2)— H
tl+azl+yJ+zK—t+ai+yj+ zk
is a field isomorphism?!. Using the fact that each quaternion ¢ can be written in

an unique way ¢ = a + jb, where a,b € C C H, we shall define two functions
51,82 : € — C such that

H (/) g(a,)) = si(a,y) + jsa(e,y) = si(e.y) + 55w,y
A computation shows that

T@N/2 000 ) — Re(s1) + ‘Re(s2) —Im(s1) — ¢lm(sg)
e g(a,y) <Im(31)—i1m(sg) Re(s1) — iRe(s2) >( 9)-

-b

> — a + jb. Both isomor-
a

~ a
1 One could also use the more natural isomorphism H : (

phisms are actually conjugate through H(.) = 7Hr 1, where 7 := @(z + 7). But H will be

more suitable in the following.
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We deduce from (2) and (4) that in the basis (€1, €3),

i eiﬁ/g( (Re(81) + iRe(52)> e

Im(sq) — 7Im(sg)
—Im(s1) —ilm(so)
* ( Re(s1) — iRe(so) ) dy)

ol o] v (1) ] )

671

We look for the necessary and sufficient conditions on (s1, sg) such that a solution

of (5) exists on all simply-connected domain, i. e.

0=d <eiﬁ/2Re K 51 > dz} +ie'P/?Re K 52 ) dzD
—1851 152
i (5 — $%) — itm (3 + %27

J55 ] . ] OB —
Re (52 — 4%2s1) +iRe (32 + $%2%3)

) dz N dz.

We see that (6) is true if and only if

os1  198_
& 20z 2
95 _ 196

9z 28z v

This system may be written using a kind of Dirac operator. Set

_10p (s o 0 %
o4 (1), o (2 #),

then (7) is equivalent to the following

D = <g 3>¢.

(6)

(8)

Conversely one may check directly that, for any smooth function g : Q@ — R/27Z,

any solution ¢ = <Z_1> of (8) produces a C2-valued closed 1-form on € given by
2

el o] (2) )

And if ¢ #£ 0, any solution X : Q — C2? of dX = a is a conformal Lagrangian

immersion, with Lagrangian angle map 3. Thus we obtain the following
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Theorem 1. Let Q C C be a simply connected domain. For any conformal
Lagrangian immersion X : € — (CQ, there exist smooth functions B : Q —
51

R/27Z and ¢ = 5) :Q — C2\ {0}, determined by (5) and then ¢ is a

solution of the Dirac equation (8). Conversely any never vanishing solution of (8)
gives rise to a conformal Lagrangian immersion obtained by integrating (5).

Remark that the case where ¢ vanishes on isolated points corresponds to weakly
conformal immersions. All this construction can actually be understood in terms
of a decomposition of the complexification of the Hermitian Galilee group of C2,
U(2) x €2 by an order fourth automorphism (see [HR] for details).

It is tempting to compare this result with the spinorial Weierstrass repre-
sentation due to B. G. Konopelchenko [Ko| of surfaces in R? (see also [KoT1,
KoT?2], [B1, B2], [KuS], [T1, T2]). Let p : @ — R be a smooth function and

o= <z_;> . Q) — €2\ {0} be a solution of the Dirac equation

D¢:<§ 2>¢ (9)

Then the following 1-form

s%dz - EQCE
n:=Re | —i(s}dz —55°dz) (10)
s182dz +S189dz

is closed and any solution ¥ : @ — R3 of the equation dY = 7 is a conformal
immersion. Moreover the mean curvature of this surface satisfies

2p = H(|s1]* + |sal*)

o 2
and the pull-back metric is (|s1]? + |s2|?)” dzdz.
The similarity between the two algorithms is striking but not total, since the

potentials <€ 2) and <[é 8) generally differ. For an arbitrary function U :
) — C and for a solution ¢ of

D¢:(g 3>¢

the relation (5),which gives rise to a map into €2, makes sense only if U has the
form U = %%g, with 3 real valued. And the Konopelchenko ansatz integrates only
if U is real. Thus there is an intersection case, where U is both real valued and
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of the form U = %%7 which is realized if and only if 3 is a real valued function
of the variable z. An interesting subcase is when f(z,y) = 4z & U = p = 1.
The corresponding surfaces in R? have been studied by J. Richter [R] in his thesis
where there are named Dirac surfaces. Another intrinsic difference between the
two representations becomes obvious at the global level: in Konopelchenko’s case
the quantities si,s9 are spinors and the potential p is a density, while in the
Lagrangian case they are all 1-forms (though with a similar sign twist).

2. Formulation using quaternions

We identify C2 with the set of quaternions H using the real vector space isomor-
phism
P ¢ —H
1
2= <22> — (2t 522,

where 7 := @(z +7) and C = R+4iR C R+ iR + jR + kR = H. Notice that
P(e1) = 1 and P(eg) = 4. Similarly we recall the field isomorphism already used
in the previous section between Ry .SU(2) and H,

H: R,.SU@2)—H

Then a short computation shows that ¥e” e S' ¢ C, YR € R;.SU(2) and
Vz e C?, ‘ ‘
B Rz) = H(R)®(2)e??. (11)

Thus, if X : Q — C2 and we denote dX = eI +8)/2 (g(e))da + gleo)dy),
d(®PoX)=H <€f/29) (q)(el)ejﬂ/gdx + <I>(62)ejﬁ/2dy) =H (ef/Qg) dz e3P/2,

where dz := dx + idy is viewed as H-valued?. In the remainder of this section,
we shall abuse notations and denote X ~ ® o X (X is then a map into H) and
we also set h :="H (ef/Qg). Moreover in our computations, we shall assume that
© C C C H. Thus we define the Cauchy-Riemann operators 0z \ 9, 0z \ 9, 9/0z
and 0/0z, such that

dh = (8h/dz) dz + (9h/F) dE = dz (92 \ Oh) + dz (9% \ OR).

2 The quaternionic notation may mislead the Reader into viewing d(® o X) as a (1,0)-form,
since no dz term is present. That notion however is not valid, and we might introduce dz using
the property dz j = 7 dz.



674 F. Hélein and P. Romon CMH
Hence the compatibility condition for a solution X of dX = hdz ¢78/ 2 to exist is

0= ((0h/82) dz + (Oh)IZ) dZ) A dz €972 — hdz A dﬁ%eﬂ’/?

_ 283
% 2

_ (12)
= <(ah/az) ) dz A dz e7P/2,
(We shall constantly use the fact that if u € C C H, ju = uj and ku = uwk. Here
this is reponsable for the signs in the formula, since dz A dz = 2idx A dy.) Hence
the compatibility condition writes
9B j
Oh/0Z) = h—=. 13
(Oh/07) = h—% (13)
If we let h = s1 + jso and substitute in this equation, we see that s{,so are
solutions of the system (7) or (8).

2.1. Hamiltonian stationary Lagrangian immersions

As proven in [HR], Hamiltonian stationary Lagrangian immersions are characte-
rized in this framework by the additional condition that 3 is a harmonic function.
Thus they may be constructed by first picking up some harmonic function § and
second solving Equation (13), where h : Q@ — H is the unknown function. It is
then clear that the set of solutions of this equation is a quaternionic vector space
(H acting on the left).

Let us focus (as in [HR]) on the toric solutions. Since any torus is conformally
equivalent to some C/T", where I' := v1Z + voZ is a lattice in C, it amounts to
looking for I'-periodic Hamiltonian stationary Lagrangian immersions X : C —
H. Setting

dX = hdz e99/2,

we are led to look for (a priori) 2I'-periodic maps h : C — H and I'-periodic
maps 8 : C — R/27Z, such that heiP/2 is I-periodic, B is harmonic and h
is a solution of (13). The only such f’s are of the form 8(z) = 27 {8y, 2z — 20) =
7(Bo(z—20)+ Bo(Z—720)), with By € I'*, where I'* is the dual lattice to I'. Without
loss of generality we shall assume that zg = 0. The 2I'-periodic maps h: C — H

are of the form 4
B Z h7612W<7’z>7
76%F*

where 37 are unique Fourier coefficients®in H. Now the equation (13) is written

3 Notice that we do not need here reality conditions on the Fourier coefficients fALfy. A way
to convince oneself that any 2I-periodic function f : C — H has such a unique Fourier
decomposition is to set f = f1 + jf2, where fi and fo are complex valued and to Fourier
decompose fi and fo.
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as _
h 27 {y,2) }Alg @ 127 (y,2)
> et 09 = 3 b DR
767 7€7F*
which is satisfied if and only if
P

g
hy = hoy ks vy € 2F* (14)

The relation (14) implies h7 = hyr“g Hence all ﬁ 's vanish except when |y| =

"80‘ , and then 270172 k= ék Conversely, as shown in [HR], the map h yields after

integration a F—perlodlc immersion if and only if the «’s for which h7 does not
vanish belong to

Bo

|ﬂ0|
r* =
2T =

f=lre 2 2 8y,

and the relation (14) is true. We can describe the solutions by considering a subset
containing half of the relevant frequencies ~y

Fﬂo + {’Y € Fﬂo/lm(7ﬁ0 ) > 0}7

and then, thanks to (14),

x— Y iy <ei2ﬂ<%z> Ll k67i27r<%2>> & &I7(F0:2)

76F20’+ ﬁO
Z;wwwofﬁk@wm»
Bo
VEFB —+

We can integrate explicitly this equation and we obtain

X(z)=Xo+ Z EWXV(Z%

yel™

B+
where X, fzy € H are constants and
X, (2) = 2712 M £Im(B02) (15)
2rIm(vyfo)

Hence, given 0y, the set of doubly periodic Hamiltonian stationary Lagrangian
weakly conformal maps having a Lagrangian angle function 27(fp, 2) is a quater-

nionic vector space of dimension 1 + Card F;O + ) over H.
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3. Construction of immersed Hamiltonian stationary Lagrangian
Klein bottles

We depict an abstract Klein bottle K as the complex plane C quotiented by the
following (renormalized) group action: z +— z + i7 and z — z + 1 where 7 is a
real number. Iterating the second relation, we get z — 2z + 2, hence the torus
T =C/T", where I' = 2Z & i7Z, is a rectangular orientable double cover of K. We
can now use the formalism in the previous section and characterize the immersed
Klein bottles as giving rise to particular cases of immersed tori.

Theorem 2. There erist Lagrangian Hamiltonian stationary Klein bottles; they
are never embedded.

The proof proceeds in three steps.

Step 1: The Lagrangian angle.

The dual lattice I'* is %Z & %Z, and Gy belongs to I'" so fy = % +iZ for some
integers m,n. Since z — z + 1 reverses orientation of the tangent plane, we need
B2+ 1) = B(2) + 7 mod 27.

B(z+1) =2m(Bo, 2+ 1)=m <m(a:+ 1) - i—ny>

— B(2) + mm — 207

T

which imposes n = 0 and m odd. Finally 5(z) = mnrz.

Step 2: The basis vectors.
Take v = %’Tlﬁ € I';, 4 (recall that I'5 | C %Q +TI'* so a is odd, b is a positive

integer) and |vy| = |%l| reads
(a® = m?)7r? + 1662 = 0. (16)

We associate two linked frequencies v and 4/ = 7 to write ?LVX7 + %Xg =: fHY77
where

e OT +4bi
gmtall TP
mT

Yy(2) = Xy(2) + Xy

= 5 <m7’e%<az+4_ig> + (a7 + 4bi)k6:$(‘m+4_ig>
Thm

— ieraM (mT@z’T"(azfél%) + (a7 — 462’)/%7%(‘”74%)) >6j7r(ﬂ0’z>

mT

1 im —3m
=5 <m7’eT(az+$) + (a7 + 4bi)keT(“+$)
Thm
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s IR ((CL’T + 4bi)€%(az74¥> + mTke*%(az*tﬂU )ej”<f6072>

=50 [ (m7 + (a1 + 4bi)k)
2mbm

) _ i2nby
_ Zm—f—ae

= (m7 — (a1 + 4bi)k)k)e&2u

1 2rby s,y —2nby <oy
= 57— <e Y'(z)+e Y (x))
with
Y'(z) = 6”%(771’7' + (a7 + 4bi)k)e#
irax M% — _%
— = (mr + (ar + 4bi)k) L) = (L)
6%(a+m)z
5 ((m—a)T —4bi) (1 — k)
eiT"(afm)x )
5 ((m 4+ a)T + 4b8) (1 + k).
Similarly
%}“(a+m)z
Y"(z) = imte (eT ((m — a)T — 4bi) (1 — k)
S (a—m)a ’
—— ((m 4 a)T + 4bi) (1 + k)>
Finally

Yy(2) = . < (emey + ier“e’ﬂzby) eF @M (m — a)r — 4bi) (1 — k)

 4rwbm

1 (6@ _ im+a€7i2:by) 6%(a+m)x ((m + a)’T + 4[)’&) (1 -+ k)) .

If m 4+ a =0 mod 4,

=3 tm(Cos2ﬂ—bye%(a+m>z((m—a)7—4bi)(1—k)
s T

by

tisin 2 S @m) (s 4 a)r + 4b5) (1 + k)) ,
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while m + a = 2 mod 4 gives a similar expression for Y., where only cos and 7sin
are exchanged. We may sum up saying that Y, has the form

2mby o . 2mby
Zp,q(2,y) = cos Ty 2Py isin . Y iaracy

where
e if m+a=0mod4, (p,q) = (“—t#f’—*ﬂ) and

e if m+a=2mod4, (p,q) = (“—’ﬁ,‘ﬁr’”) and

T bm
- .
Oy BT
mhm
Notice that in both cases p = 0 mod 2 and ¢ = 1 mod 2. We conclude with the

following property, obvious on the form above
k
Zpqn(@+ %: br/2) = (‘UkJrepr,q,b(x:O)-

Step 3: Self-intersections.
Consider a Klein bottle, hence a H-linear combination of terms Zp, 4, 5
condition (16) implies

.. The

bipsa; = b3pidi - (17)
Assume some optimal vertical periodicity; in particular the b;’s are not all even
(otherwise we change the lattice I'). Now

1 b
Zpirqisbi {z+ §7Zi7/2) = (_1)p1+&bizpz‘,qz}bz’(170) .

We claim that there exist an integer ¢ such that
p; + £b; = 0 mod 2. (18)
Assume — up to reindexing — that by = 1 (all equivalences are taken mod 2) then
¢ = p1 works. If for some i, b; = 1 then (17) implies p; = p; and equation (18)
holds. If on the contrary b; = 0, then p; = 0 necessarily, and (18) holds again.
We conclude that thqhbi(x‘i*%, br/2) = Zp, q:p; (2, 0) for any ¢; the same holds
for any linear combination. So the Klein bottle is not embedded. Notice that one

may construct Klein bottles having only that self-intersection, and no other, but
not on a square lattice.

An example. Taking 7 =1 and a =3, b =1, m = 5, we obtain:

1—42 ; ;
Y, = 57: (cos 2mye™ (1 — k) — sin 2rye (1 + k)) ;
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