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Geometry for palindromic automorphism groups of free
groups

Henry H Glover and Craig A Jensen

Dedicated, to Peter Hilton
DOC NOTE I DISSENT A FAST NEVER PREVENTS A FATNESS I DIET ON COD

Abstract. We examine the palindromic automorphism group HA(Fn) of a free group Fn, a

group first defined by Collins in [5] which is related to hyperelhptic involutions of mapping
class groups, congruence subgroups of SL„(Z), and symmetric automorphism groups of free

groups Cohomological properties of the group are explored by looking at a contractible space on
which HA(Fn) acts properly with finite quotient Our results answer some conjectures of Collins
and provide a few striking results about the cohomology of IlA(Fn), such as that its rational
cohomology is zero at the vcd
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1. Introduction

Let Aut(Fn) be the automorphism group of a free group Fn on n generators
a\,a<2, ,an A reduced word x^-x^ x€r™ is called a palindrome if it is equal
to its reverse xe^x™Z\ x<i\ In [2] Collins defines the palidrornic automorphism
group HA(Fn) as the subgroup of Aut(Fn) consisting of all automorphisms a for
which a(at) is a palindrome for all i He showed that the group was generated by
three types of automorphisms
• Maps (aj||aj), i^j, which send at i—> a^a^ and fix all other generators au

• Maps aa% which send at i—> a~ and fix all other generators aj.
• Maps corresponding to elements of the symmetric group Sn which permute the

a\, an among themselves
The portion of HA(Fn) generated by just the (aj||aj) is called the elementary
palindromic automorphism group of Fn and denoted EHA(Fn) Note that HA(Fn)
EHA(Fn) x (Z/2 I En) Collins showed that a set of defining relators for EUA(Fn)
is given by relations of the form

(1)
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(2)
(3)

He remarked how similar this was to the relations for the pure symmetric
automorphism group PY,A(Fn) (see Gilbert's work in [10]):

(1) (aj|afc)(aj|afc) (aj|afc)KK)
(2) (aj|afc)(aj|ai) (a, |a;)(aj|afc)
(3) (aî|afc)(aJ|afc)(aî|aJ) (aî|aJ)(aJ|afc)(aî|afc)
where (a^a^), i ^ j, sends a% i—> a~ a%a3 and fixes all other generators a^.

On the basis of this, Collins conjectured that one could find the virtual coho-

mological dimension of HA(Fn) by employing the methods of [7], as he did for
T,A(Fn) in [4]. He also speculated that EUA(Fn) is torsion free, just as PT,A(Fn)
is. We are able to answer both of these questions in this paper, as well as obtaining
several interesting facts about the cohomology of HA(Fn).

Theorem 1.1. Let HA(Fn) be the palindromic automorphism group of the free
group Fn on n letters and let EHA(Fn) be the subgroup of elementary palindromic
automorphisms. Then
a) The virtual cohomological dimension ofHA(Fn) is n — 1.

b) (i) For the prime 2, the Krull dimension of H*(TlA(Fn); Zmj) is n. For odd

primes p, the Krull dimension of H*(UA(Fn); Z(p)) is Ul.
(n) In the range where the Krull dimension of H*(HA(Fn); Ztp\) is 1, the period

u2(p-l).
c) The group EHA(Fn) is torsion free.
d) The cohomology group Hn-x{nA{Fn)] Q) 0.

e) Ifp is an odd prime and n p,p+l,p+2, then the Farrell cohomology of the

palindromic automorphism group is the same as that of the symmetric group onp
elements:

For analogous results concerning Aut(Fn), see [3] and [11]. See [9] for the
définition of the Farrell cohomology H*(G;M) of a group G of finite vcd with
coefficients in a G-module M and also see [2] for several useful properties of these

cohomology groups.
The remainder of this paper is structured as follows. In section 2, we discuss

HA(Fn) and note how it relates to some other groups, while in section 3 we introduce

the space Lan which HA(Fn) acts on and prove parts a) and d) of Theorem
1.1. Section 4 is concerned with a realization proposition which allows us to
establish parts b) (i) and c) of the main theorem. Finally, section 5 looks in more
detail at the cohomology of HA(Fn) at odd primes p and establishes parts b) (ii)
and e) of the main theorem.

The authors would like to thank John Meier for an enlightening conversation
about symmetric automorphisms of free groups, aiding the presentation of this
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paper.

2. Relationships with other groups

Let Xn be the spine of auter space (see [7], [13], [14]) and Qn Xn/Aut(Fn). Let
crn G Aut(Fn) be the automorphism which sends a% i—> a~ for each i.

Define the ö-graph 9m to be a graph with 2 vertices and m + 1 edges, where
each edge goes from one vertex to the other one. Choose one of the two vertices
of 9\ to be the basepoint *, and define the rose Rn to be the result of wedging
together n copies of 9\ at the basepoint.

The petals of the rose Rn can be identified with the generators at of Fn, so
that Tri(!?„,*) Fn. There is an action of (an) Z/2 on Rn given by inverting
each petal of the rose. This action realizes the subgroup (an) in the sense of [22]

(also cf. [6].) An action of a group G on a graph F is without inversions if G
does not send any edge e to its inverse ë, and an action is reduced if there are no
G-invariant subforests in F. The action of an on Rn is both without inversions and
reduced. From now on, when we refer to a group action on a graph, it is assumed
that the edges of the graph are subdivided as necessary to insure that the group
acts without inversions.

Note that the palindromic automorphism group HA(Fn) is just CAutrF\(an).
This follows because an easy argument shows that every element of GAutiF\{an)
is palindromic, and because the generators of HA(Fn) are all in C'AutiF )(o~n)- For

example, the generators (aj||aj) are just products of <rn-Nielsen transformations
(see [20] where the G-Nielsen transformation (e, f)T of a G-graph F has the same
vertex and edge set as F but where the terminal point of an edge eg, g G G, in the
new graph is the initial point of the edge fg in the original graph; this induces a

map (e, /} from the fundamental groupoid of the first graph to that of the second
where eg is sent to (ef)g and all other edges are sent to themselves.) That is, if
the petal at of the rose consists of the edges ëtft, then (aj||aj) is the composition
(e»,/j)o (e,,ej).

As a note for the curious, it follows that HA(Fn) and Y,A(Fn) are distinct groups
for n > 2, since a direct argument shows that Y,A(Fn) has no element of order 2

in its center. In addition, EHA(Fn) and PT,A(Fn) are also obviously distinct (for
n > 3; for n 1,2 they are the same group with the same presentation,) since
the former abelianizes to an elementary abelian 2-group of rank n(n — 1) while the
latter abelianizes to a free abelian group of rank n(n — 1).

In addition to its formal palindromic properties, the group HA(Fn) arises
naturally from looking at hyperelliptic subgroups of mapping class groups (cf. Gries
[12] for corresponding homological properties.) We have a commutative diagram

p2,pure pi p1
g L9 iS
I I I (2.1)

Aut(F2g) -+ Out(F2g) -+ GL2g(Z)
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where Tg is the mapping class group of an orientable surface of genus g, F* is

the mapping class group of an orientable surface of genus g with 1 puncture,
and Y^'pure is the mapping class group of an orientable surface of genus g with
two punctures, where each puncture is fixed pointwise. The map from Y^<pure to
Aut{F<2g) is obtained first by taking an intersection basis a\, b\,... ,ag,bg for the
fundamental group of the surface S with two punctures. One of the punctures
should serve as the basepoint for fundamental group considerations. The other is

treated as an actual puncture, so that the fundamental group of the surface minus
this point is a free group F<ig on 2g generators. The map from Y^'pure to Aut{F<2g)
is now obtained by sending an element of Y^'pure to the automorphism of F<ig that
it induces. The map from F* to Out(F2g) is obtained similarly.

Let ip G Yg'pure be a hyperelliptic involution (see, for example, [8].) Then ip
has 2g + 2 fixed points, two of which are of course the punctures on the surface
S. Choose loops a\,b\,... ,ag,bg, based at one of the punctures, which form an
intersection basis for the surface S (say the ones described in [8] in the section on
hyperelliptic Riemann surfaces.) By going along the top row of diagram 2.1 and
then projecting downward, we see that the image of ip in GL>2g{1i) is —/. Let ip

be the image of ip in Aut(F2g). Our goal is to show that ip is conjugate to a^g in
Aut{F2g).

Lemma 2.2. //</> G Aut(Fn) and the image of (p in GLn(Z) is —I, then the image
of any conjugate a~^<f>a of (p, a G Aut{Fn), is also —I.

Proof. This follows directly since —/ is in the center of GLn (Z). D

Lemma 2.3. If (p G Aut(Fn) is an involution whose image in GLn{7L) is —I, then
(p can be realized, on a marked, graph whose underlying graph is the rose.

Proof. Realize <p> on a reduced marked graph whose underlying graph is A. First,
we show that if e is an edge of A which is not fixed by </>, then we can assume that
one endpoint of e is the basepoint *. Let / </>(e). Choose a shortest path 7 from
e to *. Since stab(e) (1), stab(e) Ç stab(h) for every h in the path 7. So we
can apply a sequence of Nielsen transformations (see [20] and slide e along 7 to
*. Note that since A is reduced, {e, /} now forms either a rose R<2 based at *, or
a 9\. Proceeding in this manner, we can slide all of the edges of A not fixed by </>

to the basepoint.
By way of contradiction, suppose that two of these 6>i-graphs (that have been

moved so that one vertex of each 9\ is the basepoint), say {e\, f\\ and {e2,/2J,
share another common vertex in addition to the basepoint *. That is, suppose that
there is a vertex »/* and each of e\, fi,e<2, fy go from v to *. Say g : Rn —s- A
is the marked graph, and recall that 7ri(!?n) {a\,... ,an) Fn. By replacing <p>

by a conjugate if necessary (see Lemma 2.2) we can assume that g sends the petal
a\ of Rn to e^ f\, the petal 0,2 to e^ /2, and the petal 03 of Rn to e^ fa- So in
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Tri (A) we have
l 1

and
4> ¦ a3 /f1e2 gio

Hence the first column of im{4>) in GLn(Z) is — 1,0,... ,0), the second column
is (0,-1,0,... ,0), and the third column is (-1,-1,1,0,... ,0). This contradicts
the fact that im{4>) —I.

If the result of sliding to the basepoint * all edges of A not fixed by </> yields a
rose Rn, then we are done. Otherwise, suppose by way of contradiction that there
exist edges e,/, and h of A such that
• Both e and / go from some vertex v ^ * to *.
• 4>(e) /.
• h goes from v to v.
• <t>(h) h.

As before, say g : Rn —s- A is the marked graph. By replacing </> by a conjugate
if necessary (see Lemma 2.2) we can assume that g sends the petal a\ of Rn to
e^1/ and the petal ai of Rn to e~^hf. So in tti(A) we have

and

Ç ' a2 f he (e j) (e

Hence the first column of im(</>) in GLn(Z) is — 1,0,... ,0) and the second column
is (-2,1,0,... ,0). This contradicts the fact that im(4>) -I. D

Proposition 2.4. If </> € Aut(Fn) is an involution whose image in GLn{7L) is —I,
then <f> is conjugate in Aut(Fn) to an.

Proof. Realize </> on a marked graph # : I?n —s- I?n. By replacing </> by a conjugate
if necessary, we can assume g(at) at for all i. The involution </> of the graph Rn
must send the petal a\ to some aj since it is a graph automorphism. But since

im{4>) —I G GLn{X), we see that a^ must be a^. Similarly, we can see that
the graph automorphism </> sends, for each i, the petal a% to the petal a~ This
means our current </> is equal to <rn (and thus our original </>, before we replaced it
by a conjugate, was conjugate to an.) D

The following corollary is immediate:

Corollary 2.5. The image tjj of ip in Aut(F2g) is conjugate to a^g- Hence the

hyperelliptic subgroup C-p2,PurC(ip) is conjugate to a subgroup of CAut^p2 )(<T2S).
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As remarked in [5], the image of HA(Fn) in GLn(Z) is the subgroup of GLn(Z)
consisting of invertible matrices where each column has exactly one odd entry
(and the rest are even.) The subgroup is the semidirect product 1*2 (Z) x Sn where
1*2 (Z) is the 2-congruence subgroup defined by the short exact sequence

(1) - f2(Z) ~ GLn(Z) -» GLn(Z/2) -+ (1)

and Sn is standard inclusion of the symmetric group

Sn c GLn{Z).

3. A space for UA(Fn) to act on

We define a certain contractible space Lan, related to auter space, which HA(Fn)
acts on with finite stabilizers and finite quotient. This allows us to obtain some
cohomological results.

A graph F is a 9\-tree of rank n if there exists a pointed tree T such that F is

obtained by "doubling" every edge of T into a 6>i-graph. That is, the vertex set
of F is the same as the vertex set of T and for every edge e of T going from v to
w, F has two edges e\ and e%, both of which go from v to w. There is a natural
Z/2-action on such a graph F, which is given by switching the two edges in each

6>l-graph. Note that the orbit space of F under this action is just the tree T.

Claim 3.1. The reduced graphs F which realize the subgroup (an) of Aut(Fn)
are exactly the 9\-trees of rank n, where an acts on the trees via their natural
Z/2-action.

Proof. We have already mentioned that the rose Rn realizes an. From Theorem 2

of [20], the other reduced graphs F which also realize a are those that are Nielsen
equivalent to Rn (up to an equivariant isomorphism.)

If e is an edge in one of the copies of 9\ in Rn and / is an edge in a different 9\
in Rn, and both e and / point toward the basepoint, then Nielsen transformation
(e, /} has the result of pulling the 6>i-graph {e,ane} through the 6>i-graph {/, anf},
so that now e terminates at the initial vertex of /, rather than at the basepoint *.
In other words, the result of applying one Nielsen transformation to Rn is that of
sliding one of the petals of Rn up though another petal.

A basic induction argument now yields that the result of applying a series of
Nielsen transformations fo Rn will be some #i-tree F. D

Recall from [21] that an edge e of a G-graph F is inessential if it is in every
maximal (^-invariant subforest of F. A G-graph F is inessential if it has at least
one inessential edge and is essential if it is not inessential. Let X^ be the fixed
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point subspace of Xn corresponding to some finite subgroup G of Aut(Fn) From
[17] (cf part III of [18] and [21]), both the centrahzer GAutiF\{G) and the nor-
malizer NAutrF\{G) act on the contractible space X^ with finite stabilizers and

finite quotient Moreover, the space X^ G-equivanantly deformation retracts to
the space Lq, where Lq is constructed from X^ by considering only essential
marked graphs Hence Lq is a good space to study if one wishes to calculate the
cohomology of CAut(Fn)(G) or NAut^Fn){G)

Further recall that a G-graph F is a G-equivanant blowup of a G-graph F if some
G-mvanant subforest F of F can be collapsed away to yield F Let </> Rn —s- F be

some reduced marked graph realizing (an) From Claim 3 1, F is a 6>i-tree Blow
up F <7n-equivanantly to some maximal essential blowup F

Claim 3.2. The fixed points/cells of the action ofan on F are exactly the valence
2 vertices of F

Proof Note that vertices m F have valence 2 or 3 and that F is obtained from
F by blowing up an oriented ideal forest (see [17], [21], [18] Briefly, ideal edges

(oriented ideal forests) correspond to subsets of edges (chains of subsets of edges)
which are pulled away from existing vertices m order to create new graphs which
collapse down to the original graph

No edge is m Fixan (F) because no edge is m Fixan (F) and so blowing up ideal
edges will not create any new edges that are fixed under the action of an (see [21]

page 229

If a valence 3 vertex is m Fixan(T), then at least one edge of F must be fixed
by an, which is a contradiction

All of the valence 2 vertices of F are m Fixan{Y) New valence 2 vertices
created as ideal edges are blown up correspond to either
• Old vertices of F that used to be valence higher than 2 but have since had edges

stripped (pulled away) from them These are m Fixan (F) because all vertices
of F are m Fixan (F)

• New valence 2 vertices inserted to insure that an acts on F without inversions
These are also clearly m Fixan (F) D

Note that * G Fixan{Y) Cut F along each of its valence 2 vertices, yielding
a graph Tcut with the same number of valence 3 vertices and edges as F had, no
valence 2 vertices, and twice as many valence 1 vertices as F had valence 2 vertices

Claim 3.3.

the disjoint union of two trees T\ and T^, where Y% crnT\

Proof There is a covering map p Tcut —> T/an obtained by mapping to the orbit



Vol. 75 (2000) Geometry for palindromic automorphism groups of free groups 651

space under the <rn-action. The forest collapse that sends F to F is <rn-equivariant,
so it descends to a forest collapse of T/an to F/an. (That the quotient of the forest
upstairs in F is also a forest in T/an can be seen by an easy Euler characteristic
argument.) But F is a 6>i-tree with a known <rn-action on it, and F/an is a
tree (in fact, the underlying tree of the 6>i-tree.) Hence F/an is a tree. Since

P '¦ rcMt —? F/<7n is a covering map with fiber two points, Fcut is as described. D

Let T be a pointed tree with 2n — 1 edges, all vertices valence either 1 or 3,

where * is one of the valence 1 vertices. (Then T has n+ 1 valence 1 vertices and

n — 1 valence 3 vertices.) Let T\ and T<i be two isomorphic copies of T, and let

/ : T\ —> T<i be an isomorphism. Define

r Ï1IIT2
1 T f(v) ~ v, for all valence 1 vertices v of T\.

Define a <rn-action on Ft by

Proposition 3.4. There is a bijective correspondence between trees T as above

(with 2n — 1 edges, etc) and maximal, essential blowups F of reduced an-graphs.
The bisection is given by T 1—s- Ft-

Proof. From claims 3.2 and 3.3, all blowups F have the required form. Finally,
any Ft can easily be reduced to a 9\-tree by collapsing edges, meaning that it is
the blowup of such a graph. D

All maximal simplices in Lan have the same dimension, from [21]. Maximal
simplices in Lan/FlA(Fn) are constructed, by taking chains of forest collapses from
maximal blowups Ft- Alternatively, we can define a subforest ofT to be a collection
S of edges ofT such that there is no path in S from one valence 1 vertex to another.

(If there were such a path, then S U anS would be a cycle in Ft-) In this way,
we can think of maximal simplices as coming from chains of subforests of various
trees T.

Proof of part a) of Theorem 1.1: Since HA(Fn) acts on the contractible space
LIJn with finite stabilizers and finite quotient, the vcd of HA(Fn) is at most the
dimension of a maximal cell from LIJn/IlA(Fn). Such a cell comes from a chain of
forest collapses of a tree T with 2n — 1 edges, n + 1 valence 1 vertices, and n — 1

valence 3 vertices. Hence we can collapse at most n — 1 of the valence 3 vertices
into other vertices while doing forest collapses, resulting in maximal simplices of
dimension n — 1.
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To show that the vcd of HA(Fn) is at least n — 1, we note that the subgroup
generated by (aj||an) for i G {1, 2,... ,n — 1} is isomorphic to Z™^1 Z x x Z.
D

Lemma 3.5. Let F be the underlying graph of a particular marked graph in Lan.
Hence F comes equipped with a an-action. Let C be a simple closed curve in F.
Then Fixan(C) contains exactly two points, and an(C) is the curve —C, or C
with the opposite of its original orientation.

Proof. F can be blown up (not necessarily uniquely) to some maximal essential
graph F Tt- F is the union of two isomorphic copies T\ and T<i of T, where T\
and T<i are attached along their corresponding valence 1 vertices.

As we collapse from F to F, the trees T\ and T% collapse to trees T\ and T^.
However, the attaching points for T\ and T^ are no longer necessarily just the
valence 1 vertices, and could be other vertices as well.

Let o.\ be a taut path in T\ from one attaching point v\ to some other attaching
point V2, where furthermore there are no attaching points in the interior of o.\.
Let «2 o"n(«i) be the corresponding path in T^. Then ai«2 is a simple closed

curve and an(a\ä2) u<2ü\, or the original curve oriented in the other direction.
Hence the curve a.\a.<i satisfies the conclusions of the lemma. Our goal is to show
that any simple closed curve C takes this form.

Let C\ be the portion of C that is in T\ and let C<i be the portion of C that
is in T<i- Since C is a cycle and yet both T\ and T<i are trees, both C\ and C<i are
nonempty. In fact, there must be a path o.\ in C\ from one attaching point v\ to
some other attaching point vy, where there are no other attaching points in the
interior of the path. Since C is a simple closed curve, o.\ must be a taut path. Let
«2 C — a\, some other taut path in F from v\ to vy.

Let p : F —s- T\ be the map given by taking the quotient space under the action
of an. Note that p(«2) is a path from v\ to v<i- Since T\ is a tree and a.\ is the
unique taut path in T\ from v\ to v<2, this gives us that edges(ai) Ç edges(p(«2))-
Hence if e is an edge in a\, then p~1(e) is two edges, e G C\ and <rn(e) G C^. It
follows that all of the oriented edges of the simple closed curve a.\an{a.\) are in
the simple closed curve C'. Hence C a\an{â\). D

Lemma 3.6. Let F be the underlying graph of a particular marked graph in Lan.
Hence F comes equipped with a an-action. Choose an edge e in T. Among all
simple closed curves D which pass through e, choose one curve C for which the
distance from the curve to the basepomt * is minimal. Then Fixan(C) is two

points v\ and vy. One of these two points in the closest point in C to the basepomt
* and one of them is the farthest point in C to the basepomt *.

Proof. Using the notation of the proof of Lemma 3.5, C is the result of following
some path a.\ in T\ and then a.<i an(ai) in T^, where a.\ goes from the attaching
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point v\ to the attaching point vi-
Since a.\ is a path in a pointed tree, there is a unique vertex w in a.\ which is

closest to *. By way of contradiction, suppose that w $ {v\, v^}. Then w is not an
attaching point. Let ß\ be the unique taut path in T\ from * to w. Let 71 be the
unique subpath of ß\ which contains w and exactly one attaching point y. Now
let Si be the path in T\ which starts at y, follows 71 along to w, and then either
follows C from w to v% or — C from w to vi (where we choose whichever possibility
insures that ±e G öi) Then the simple closed curve öian(Ö~i) is closer to * than
C is, which is a contradiction. Hence w is vi or «2, an(i the lemma follows. D

Proposition 3.7. Let T be a graph which occurs as an underlying graph of marked
graphs in Lan. Then there is only one possible an-action on F.

Proof. We see that our task is to show that a unique <rn-action is determined by
the properties about simple closed curves listed in Lemmas 3.5 and 3.6.

Define an action 77 on F as follows. Let e be an oriented edge of F. Among
all simple closed curves D which pass through e, choose one path C for which the
distance from the curve to the basepoint * is minimal. Let vi be a point on C
which is closest to the basepoint. Let n be the edge-path distance in C from vi to
e. Then there is an orientation e G { — 1,1} such that if you traverse eC starting
at vi and go n edges, you get to e. Define ry(e) to be the result of traversing — eC

starting at vi and then going n more edges.

By Lemma 3.5 and 3.6, the action r\ is well defined and if any an acts on F,
then the <rn-action and the ry-action coincide. D

Denote by Qan the quotient space Lan/HA(Fn).

Corollary 3.8. If two marked graphs in Lan have the same underlying graph,
then they correspond to the same vertex in Qan- That is, the moduli space Qan
can be formed by looking only at the poset structure of the underlying graphs of
marked graphs in Lan.

Proof. From Proposition 3.7, any underlying graph of a marked graph in LIJn
has only one possible <rn-action. But from Corollary 10.4 of [21], HA(Fn) acts

transitively on the set of marked <rn-graphs based on the same <rn-graph. The
result follows. D

The simplices of Lan group themselves into cubes, as described in §3 of [15]. In
[13], Hatcher and Vogtmann show that the quotients in Qn of cubes in Xn have the
rational homology of balls. They use this to create a cubical chain complex which
has the same rational homology as Qn. Our goal here is to establish a similar
result for the cubes of maximal dimension in QIJn, where this time we want the
quotients of cubes to have the Z/p-)-cohomology of balls, where p is any odd prime.
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Following [14], we consider a maximal cube in LIJn. It is given by considering
a maximal essential marked graph </> : Rn —> IV and considering some maximal
subforest S of T. Recall that by a subforest of T we mean a subset S of the edges
of T where there is no path in S from one valence 1 vertex of T (or equivalently,
one terminal edge of T) to another. From part a) of Theorem 1.1,5 has n — 1

edges in it. The cube corresponding to the pair (T,S) can thus be thought of
as imbedded in I""1, where each coordinate vector is an edge of the cube, the
graph obtained by collapsing each edge of S U an(S) is at the origin, and Tt is

at (1,1,... ,1). Let Aut{T, S) be the group of all (pointed) automorphisms of the
tree T which take S to S. The group stabnA(F^ (T, S) (an) x Aut(T,S) acts

linearly on the cube by permuting the coordinates of R""1, and fixes the diagonal
from (0,0,... ,0) to (1,1,... 1). (The involution an acts trivially on the cube, of
course, since all of these cubes are coming from Lan C X%n.) Hence, just as in
[15], the quotient of the cube in QOn is a cone with base Sn~^/Aut(T, S), where
Sn~^ is the boundary of the cube.

Lemma 3.9. The finite group Aut(T) (and hence its subgroup Aut(T,S)) is all
2-torsion.

Proof. Let £ G Aut{T). Now £ must take the basepoint to the basepoint, and so it
must take the unique edge attached to the basepoint to itself. For each n, let En
be the edges in T which are at most distance n from *. So Eq is just one edge, and
£ fixes it as already mentioned. Since all nonterminal vertices of T have valence

3, an inductive argument yields that £2" fixes En pointwise. D

The following is an analog of Proposition 3.1 of [15]:

Proposition 3.10. Sn~^/Aut(T,S) has the "Li ycohomology of an [n —2)-sphere

or a ball. The latter possibility happens when there is an element of Aut(T,S)
which induces an odd permutation of the edges of S.

Proof. The finite group Aut(T,S), which is all 2-torsion, acts cellularly on S*"^2,
where the stabilizer of a cell fixes it pointwise. We use the spectral sequence for
equivariant cohomology (cf. [2] VII §7):

where [S] ranges over the set Ar of orbits of r-simplices S in S*"^2. Since Aut{T, S)
is all 2-torsion and finite, so are all of the stab(S). Hence if s > 0, Hs(stab(ô); Z(p))

0. So the above spectral sequence converges to
{p)

But another filtration yields a spectral sequence with

Er2'° Hr(Aut(T,S);Hs(Sn-2;Z{p))) => ^+s(TS)(5"-2;Z(p)) (3.12)
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It follows that E^s 0 unless (r, s) is (0,0) or (0,n - 2). Hence £°'° Z(P)

and £°'n~2 Hn-2(Sn-2; Z{p))Au^T'S\ The latter group of invariants is Z(p) if
the action of Aut(T,S) on Sn~2 preserves orientation and 0 otherwise. The last
assertion in the proposition follows from Corollary 3.2 of [15]. D

Theorem 3.13. The top dimensional cohomology group of Qan vanishes. That
1

Proof. We show that the quotient of every maximal cube (T, S) has a free face,
so that the interior of the quotient of the cube can be collapsed away. If we can
do this, then Qan will have the same Z^)-cohomology as an (n — 2)-dimensional
complex, and we will be done.

In the degenerate case where there is an element of Aut{T,S) which induces
an odd permutation of the edges of S, then the quotient of the cube (T, S) is not
itself a cube. In this case, the diagonal from (0,... ,0) to (1,... 1) is exposed in
the quotient, and any (n — 2)-dimensional simplex in the quotient which lies next
to the diagonal is a free face.

In the nondegenerate case, the quotient of the cube (T,S) is itself a cube,
although its boundary might be self indentified in various ways. Since the subforest
S of T is maximal, S must contain at least one terminal edge e. That is, one of
the two vertices of e is a valence 1 vertex or attaching point. Let F be the graph
obtained from F IV by collapsing the subforest {e,<rn(e)}. The graph F has

a maximal subforest corresponding to collapsing the edges e and <rn(e) from the
forest SL)an(S) of F. Hence we see that collapsing e gives us a face, which we will
denote by (T/e, S/e), of the cube (T, S). It can be shown that this face corresponds
to a (nondegenerate, cubical) face of the quotient of the cube (T, S) because

Claim 3.14. There is an natural injection of Aut(T) (an) X Aut(T/e) into
Aut(T) (crn) X Aut(T). Define the lift <f> of an automorphism <f> € Aut(T/e) by

sending an edge f to </>(/) if f =/= e and letting </>(e) e.

Proof. Denote by v the valence 1 vertex of e G T (the attaching point) and let w
be the other vertex of e. In T/e, w v. We must show that </> sends w to w. This
follows automatically, however, asw ti o-n(w) an(v) is the only valence 4

vertex of F and so any automorphism of the graph must fix it. Let / and g be the
two other edges in T which share the vertex w. Now if v * then </> could possibly
exchange / and g, but this is fine as the lift </> also can. If v ^ *, then one of / or
g must be closer to the basepoint, and so </> must fix both / and g. Regardless, </>

can be defined as in the statement of the claim. D

Warning: Note that if e is not a terminal edge, the above claim is false. Collapsing
an interior edge somtimes allows you to construct automorphisms with 3-torsion,
which obviously cannot be lifted to Aut{T).
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No automorphism </> of (T/e,S/e) can induce an odd permutation of the edges

in S/e, else the lift <f> of </> to T would induce an odd permutation of the edge of
S. Since Aut{T) is all 2-torsion, it follows from the above claim that Aut(T/e) is

also all 2-torsion. Hence the same spectral sequence argument used in Proposition
3.10 yields that the quotient of the cube corresponding to (T/e,S/e) actually is a

Z/p\-cohomology cube.

It remains to be shown that the cubical face corresponding to (T/e,S/e) is

free. First, if another subforest S1 with an edge e' of T gives a cube with a face

isomorphic to (S/e, S/e), then e' must also be a terminal edge of S'. Hence the
isomorphism (T/e,S/e) —> (T/eJ,S'/e') maps the vertex that e collapsed into to
the the vertex that e' collapsed into, and so we can lift the isomorphism to one
from (T,S) -> {T,S').

Second, we must show that blowing up the vertex w in F only yields graphs
isomorphic to F. This follows by considering the ways that the vertex w in F can
be blown up. Say that the edges /, g, crn(f), and an(g) are the ones incident
to w. If the ideal edge orbit an{f, g} is blown up, we get back F exactly, and if
<Jn{f,an(g)} is blown up, we get a graph isomorphic to F. As these are the only
ways to blow up the graph <rn-equivariantly into another essential graph, we are
done. D

Corollary 3.15. Hn-x{Qan; Q) Hn~\JlA{Fn); Q) 0.

Proof. That Hn-l{QIJn;q) 0 follows immediately from Theorem 3.13.
Recall that HA(Fn) acts with finite stabilizers and finite quotient QIJn on the con-
tractible space LIJn. Since the stabilizers are finite, their rational cohomology
vanishes, and the standard equivariant spectral sequence yields that H*(Qan;<Q)
H*(HA(Fny,q).

"
d

Note that part d) of Theorem 1.1 follows from the above Corollary.
As a final remark for this section, we show that Lan is an EJlA(Fn) (cf. [19]);

that is, for finite subgroups G of HA(Fn), the fixed point subcomplex L^n is

contractible. This follows directly from the corresponding property of Aut(Fn).
The following proposition is unneccesary in the spécifie case of Lan, since (proof
omitted) LIJn actually equals X°n. This does not normally happen (for example,
the spaces LpnXlJri mentioned later in Fact 5.4 are not equal to the corresponding
fixed point space of Xn), however, and thus it seems worth noting the more general
fact.

Proposition 3.16. Let S be a finite subgroup of Aut(Fn) and let S be either
CAutiF\(S) or NAutrF\(S). Let Ls be the retract, defined by Krstic and Vogt-

mann and consisting of essential marked graphs, of the fixed point subcomplex X^
of the spine of auter space Xn. Then Ls is an ES space.
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Sketch of Proof. Let H be a finite subgroup of S and let G be the (finite, because
HSH-1 S) subgroup generated by H and S. Then X° {X^)H (X^)s,
and X^ is contractible from [17]. It remains to be shown that X^ (X^)H
deformation retracts to (Ls)H¦

Given a marked graph F representing a vertex of (X%)H, we must show (see

Proposition 3.3 of [21]) that for every edge e in F and every h G H, e is .^-inessential
if and only if he is ^-inessential. This follows automatically from Corollary 4.5
of [21], which characterizes essential edges by looking at the stabilizers (in S) of
paths in F. Since HSH~^ H, the stabilizers in /i-translates of such paths are
still in S and are isomorphic (conjugate by h) to those of the original path. D

4. A realization proposition

Let A be a finite subgroup of HA(Fn) and let A be the (finite) subgroup generated
by A and an. By Zimmerman's [22] realization theorem, we can realize A by an
action on an A-reduced graph F. From the proposition below, F is also (an)-
reduced; that is, F is a #i-tree.

Note that the corresponding statement is not true in Out(Fn) (have Z/p x
(<Tp_l) act on a ö-graph 6p_\) and certainly would not be true in Aut(Fn) if the
<7n-action were replaced by some other Z/2-action.

Proposition 4.1. Let A Ç HA(Fn) be a finite subgroup of the palindromic
automorphism group with an € A. Realize A by an action on an A-reduced marked
graph <f> : Rn —> F. Then <f> : Rn —> F is also a (an)-reduced marked, graph.

Proof. As before, let Fn (a\,... ,an) and identify the petals of the rose Rn
with the generators at. Note that F has no separating edges, else it would not be
A-reduced. In this proof, when we refer to concepts such as the number of times
an edge e of F occurs in some cj>(at), we mean that we should take the unique
taut path in F, starting and ending at *, which is homotopic to the path 4>(a%)

in F, and then count the number of times e occurs in this taut path. By way of
contradiction, suppose F is not (an)-reduced. Let e\ G F be an edge of minimal
distance to the basepoint * such that {e\,crne\} is a forest.
CASE 1: e\ ane\. Since e\ is not a separating edge of F, we can choose a
nontrivial cycle /x, starting and ending at *, which has just one occurence of e\
and none of e±. If for all i 1,... ,n, the cycles 4>(a%) have an even number

of occurences of e^ then we could not write /iasa product of them and their
inverses. So some </>(oj) has an odd number of occurences of ef in it. Say that
the exponent sum of e\ in </>(oj) is k, k odd. Then the exponent sum of e\ in

on${a3) is still k, but the exponent sum of 4>{a~ is —k. This contradicts the fact

that <jnaj a7
CASE 2: e\ ^ ane\. Let a be a shortest length path from * to e\. Say without
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loss of generality that e\ is the oriented edge from v to w and that a goes from
* to v. Let /i ane\. Then ana is a shortest length path from * to f\. Now
v anv, else we could write a fib and get {6, <rnè} as a <rn-invariant forest closer

to * than {ei, /i} is. (If |a| 0, then v * and so an(v) v necessarily.) So we
have both a and ana are paths from * to v Moreover, w ^ anw (else {e\,anei}
is not a forest.) Now Aei A{e\,f\} is not a forest, since F is A-reduced.
Hence we can choose some simple closed curve \i in Ae\ Ç F that contains e\.
There must exist some aef G /x, ae^ (Ë {ei,e^ }, such that aw w. Why?
Otherwise we could deformation retract \i to the set of vertices {âv : âef G /x},
which contradicts the fact that \i is a simple closed curve. Now ae\ ^ /i, as

<rnw ^ w. Hence aei{ae\)~^{aa)~^ is a nontrivial cycle starting and ending at
* which contains exactly one occurence of e\ and none of f\. So there must be

a </>(ap, e G { — 1,1}, which contains an odd number of occurences of ef and an

even number of occurences of/j^ (If we had some even/odd </>(%), then we could

act by an to get odd/even, and this would be a </>(a~ Otherwise, all ^(aj are
all even/even or odd/odd, and so combine together just to get more even/even or
odd/odd loops.) This is a contradiction, however, because 4>(aJe) still has an odd

number of occurences of ef while 4>(anae0) has an even number of occurences of

ef. D

Proof of part b) (i) of Theorem 1.1. From the action of (Z/2)n on the rose Rn
such that the ith generator inverts the ith petal and leaves all others fixed, we
know that the Krull dimension at the prime 2 is at least n. Similarly, there is an

action of (Z/p) W on Rn where the first Z/p rotates the first p petals, the second

TLjp rotates the next p petals, etc. Hence the Krull dimension at the prime p is at

least Ul
Let A be a maximal rank elementary abelian subgroup of HA(Fn). From

Proposition 4.1, we can realize A by an action of A on a <rn-graph F which is both
A-reduced and <rn-reduced. That is, we have an action of A on a pointed ©i-tree
F. Since elements of A must preserve basepoints, the action of A on the tree T/an
does not invert edges. Hence we have inclusions

A » (Z/2)" x AuU(T/an) » (Z/2)" x Sn Z/2 I En.

The result (for 2 or odd primes p) now follows from standard facts about Sn (cf.
Theorem 1.3 in Chapter VI of [1].) D

Proof of part c) of Theorem 1.1. We sketch the proof, which uses standard
methods. Suppose that some A Z/p lies in EHA(Fn). From Proposition 4.1, we
can realize A by an action of A on a <rn-graph F which is both A-reduced and
<rn-reduced. Let </> : Rn —s- F be the corresponding marked graph. Let T T/an,
a pointed tree with an A-action on it. First, suppose that the A-action on T is
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nontrivial. (This will always be the case if p is odd.) Then there are two edges

e\ and e%, both oriented so that their terminal vertices are closer to the basepoint
than their initial vertices, of F such that a generator of A rotates the edge [e\\
into the edge [e^] in T. Some generator an of Fn must be such that 4>{an)
contains an odd number of occurences of e\ in it. Choose an similarly. Then
4>(atj) is a palindromic word in the edges of F with either ëtjan(el:i) or <rn(ëÎ3)eÎ3
in the middle of the palindrome. The generator of A (thought of as an element of
EHA(Fn)) must send an to a palindrome with either an or a~ in the center of
it. This contradicts the fact that all elements of EHA(Fn) send generators at to
palidromes with at in the center of them.

The only remaining case is where p 2 and A acts trivally on T. So A is a

subgroup of the group (Z/2)n of graph automorphisms of F which act by inverting
the ©i's in the ©i-tree F. Hence the generator of A corresponds to an element of
HA(Fn) which, for at least one i, sends at to a palindrome with a~ in its center.
As none of these automorphisms are in EHA(Fn), we again have a contradiction.
D

5. Cohomology of UA(Fn) at odd primes p

Let p be an odd prime (as will always be the case from now on in this paper.)
We wish to calculate the Farrell cohomology of HA(Fn) using Ken Brown's [2]

normalizer spectral sequence, which states that

E['a= n ffs(nJVG(P,);Z(f))^ffr+s(G;Z(p)) (5.1)
(P0C CPr)e\B\r r=0

where G is a group with finite virtual cohomological dimension, A is the poset
of nontrivial elementary abelian p-subgroups of G, B is the poset of conjugacy
classes of nontrivial elementary abelian p-subgroups of G, and \B\r is the set of
r-simplices in the realization \B\.

A first step toward performing such a calculation is calculating \B\. In other
words, we wish to calculate conjugacy classes of elementary abelian subgroups
P C HA(Fn). By Proposition 4.1, we can realize such finite groups P by reduced
actions on #i-trees.

If n > p, define a particular subgroup Pn TLjp of HA(Fn) by letting Pn act on
the rose Rn by rotating its first p leaves and leaving the last n—p leaves fixed. That
is, Pn corresponds to automorphisms which rotate the first p generators a\,... ,ap
and leave the remaining generators fixed.

Corollary 5.2. Ifp < n < 2p — 1, then

H*(UA(Fny,Z{p)) H*(NAut{Fn)(Pn x K));Z(p)).
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Proof. We show that Pn is the only conjugacy class of nontrivial elementary abelian
p-subgroups that is in HA(Fn). By Proposition 4.1, we see that an arbitrary
nontrivial elementary abelian p-subgroup A comes from some action on a #i-tree
with p-symmetry. Since p < n < 2p — 1, the only possibility is that A acts on a

#l-tree F by rotating p of the 6>i-leaves and leaving the other n—p 6>i-edges in the
tree fixed. But it is clear that a product of (Pn x (<rn))-Nielsen transformations
takes the rose Rn to the graph F, and hence we see that A and Pn are conjugate
to each other in HA(Fn).

By the normalizer spectral sequence 5.1, this yields that

H*(HA(Fn);Z{p)) H*(NnA{Fn)(Pn);Z{p)).

But since p is an odd prime, it is easy to see that

NUA(Fn)(Pn) NAut{Fn)(Pn x (an)).

a

Proposition 5.3.

x <<7„» NSp(Pn) x (Fm x {(ap) x

where m n—p, HA(Fm) acts on the Fm in the semidirect product in the natural
way, and ap acts on Fm as am does.

Proof. The N^p(Pn) in the above decomposition comes from automorphisms of
Fn which permute the first p generators and leave the remaining m fixed. The
Fm being acted upon in the semidirect product structure above has ith generator
(al||ap+»)(a2||ap+») • • • (<ip||op+î)- The ap is the involution which inverts the first
p generators of Fn and leaves the remaining m fixed. Finally, the HA(Fm) comes
from automorphisms which fix the first p generators of Fn and act on the last m
generators by identifying the subgroup {ap+\, ap^2, ¦ ¦ ¦ an) with Fm.

Consider the action of Pn x (an) on the rose Rn. Pn rotates the first p petals.
Label the first p petals of the rose as a\,... ,ap as before, but label the last m
petals as b\,... ,bm.

Since \Pn\ p is an odd prime, NAut^F^(Pn x (crn)) Ç NAut^F^{Pn) and in
Lemma 5.1 of [16], we calculated

NAut(Fn)(Pn) NSp(Pn) x ({Fm x Fm) x ((ap) x Aut(Fm))),

where the first Fm in Fm x Fm is the free group on the Pn-Nielsen transformations
{a\,b~ for i G {1,... ,m} and the latter Fm is the free group on the Pn-Nielsen
transformations (a^ ,b~ }, i G {1,... ,m}. Note that (ap) acts on Fm x Fm via

ap(ai,b~ )ap (a^ ,b~ and ap(aï ,b~ )ap {a\,b~ In other words, if
(6, c) G Fm x Fm then ap(b,c)ap (c, b).
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Let G be the subgroup

NT,p(Pn) x (Fm x ({ap) x CAut{Fm)(am)))

of NAut/F\{Pn), where Fm is the free group on the generators (a\, bt) o (a^ b~ }

for i G {1,..., m}, and Caw^faI0"™) is included in Aut(Fm) in the obvious way.
It follows directly that G Ç NAutiF\{Pn x (<rn)). To prove the proposition, we
must show that they are equal.

Take an arbitrary

x e NAut(Fn)(Pn x <<7„» Ç NSp(Pn) x ((Fm x Fm) x ({ap) x Aui(Fm))).

Say x abcde, where a G JVS (Pn), (&, c) G Fm x FTO, d G {ap), and e G Aut{Fm).
Since a,d G NAut(Fn-j(Pn x (an)), a"1^^1 èce G NAut(Fn-j(Pn x (<rn)) also. So

bee G ILAf^n) and (èce)<rn(èce)^1 an. This means that the map (èce)<rn(èce)^1
sends a^ to a~ for i G {1,... ,p} and 64 to 6~ for i € {1,... m}. Now both <rn

and e restrict to maps in Aut{(b\,... bm)) and moreover b and c both restrict to
the identity map in Aut((b\,... bm)). Hence for i G {1,... m}, we have

b~ (bce)an(bce)~ (bt) eane~ (bt),

and we see that eane~^ restricts to am in Aut{Fm). As e G Aut{Fm), this means
e e Cau^f^jI0"™)- Hence e G üJ4(i;ln) also. Since bee G IL^K), this gives
be G nJ4(i7'n). In other words, we have

(è,c) G (Fm x Fm) Ç NSp(Pn) x ((Fm x Fm) x ((ap) x

and

(b,e)eHA(Fn).

It follows that

(6,c) an(b,c)an

So b <rm(c) and c am{b). In summary, we have shown that an arbitrary
element x abcde G NAut^F^(Pn x (an)) has c am(b) and e G Cau^f^jI0"™)-
Thus x G G, as desired. D

The group NAuttF\(Pn x (<rn)) acts on the contractible space ipriX(<Trl) with
finite stabilizers and finite quotient QpnX{a-n) ^JPny.(an)/^Aut(Fn)(Pn x (<rn)).



662 H. H. Glover and C. A. Jensen CMH

Define a p-admtsstble tree T to be a triple (T, o, A) where T is a pointed tree, o

is a vertex of T (which may be the basepoint *), A is a subset of the vertices of T
called the set of attaching points, * G A, and all valence 1 vertices of T are in A.
For a p-admissible tree T, define the corresponding graph Ft as follows: Take two
isomorphic copies T\ and T% of the tree T, and let / : T\ —> T% be an isomorphism.
Then let FfTe be the graph

pT /(w) ~ vi f°r aU attaching points v in A.

Let öp_i be a 0-graph with p edges and two vertices v\ and v%. Let oj be the
o-vertex in T\ and let 02 /(01) be the o-vertex in T%. Finally, let

rT
01 ~ «1,02 ~ «2

If 7ti(Ft) fn, then say T is a p-admissible tree of rank n.
If T is a p-admissible tree of rank n, define a (<rn)-action on the edges of Ft by

x"1, x G é»p_i

Since this action inverts the edges of the 9-graph in Ft, we then need to subdivide
these edges so that the group acts without inversions. Next, define a Pn-action on
Ft by having Pn fix FTre and rotate the edges of 6>p_i cyclically. In this way, Ft
is a (Pn x {an))-graph.

A p-admissible tree is T reduced if the corresponding (Pn x (<rn))-graph Ft is

reduced; that is, if all vertices of T are attaching points. Similarly, a p-admissible
tree T is a maximal if the attaching points of T are exactly its valence 1 vertices,
the valence 2 vertices of T consist of just the point o, and T has no vertices
with valence 4 or more. As before, a subforest of T is a collection of edges S of
T such that there is no path in S from one attaching point to another. Lastly,
isomorphisms of p-admissible trees must be graph isomorphisms which take * to
*, o to o, and A to A.

The following facts about (Pn x (<rn))-graphs are all proven in similar ways to
the analogous facts about <rn-graphs.

Fact 5.4.
(1) There is a hyectwe correspondence between reduced p- admissible trees of rank

n and the underlying graphs of (Pn X (<rn))- reduced marked graphs, given by

T^FT-
(2) There is a byectwe correspondence between maximal p-admissible trees of rank

n and the underlying graphs of maximal essential marked, (Pn X (an))-graphs,
given by T —> Ft-
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(3) The virtual cohomological dimension of NAut(F )(Pn X (c"n)) is m n — p.
(4) Let T be a graph which occurs as the underlying graph of a marked graph in

Lpnx{an)- Then there is only one possible an-action on F.
(5) If two marked graphs in iprlx(o-rl) have underlying graphs which correspond

to the same p-admissible tree, then they correspond to the same vertex in
Qpnx{an)- That is, we can form the moduli space Qpnx{an) by looking only
at the poset structure of the p-admissible trees corresponding to marked graphs

(6) The top dimensional cohomology class of Qpnx{an), with coefficients in Z^,
vanishes. That is, ffn-J>(QPriX((Tri); Z(p)) 0.

(7) ff"-p(Qp„xK)iQ) Hn-P{NAut{Fn)(Pn x (an));Q) 0.

Note that (4) and (5) above are a little bit different from their analogs Proposition

3.7 and Corollary 3.8. Basically, the underlying graphs F always have just
one possible <rn-action, as before, but it is conceivable (for example, if the graph
contains two or more copies of 9p_\ inside it and we must decide which one Pn
rotates) that it might have several possible Pn-actions. That is why we talk about
p-admissible trees instead in (5), since the vertex o in the tree determines where
the p edges that Pn rotates are located.

Fact 5.4 allows us to show

Proposition 5.5. If p < n < 2p — 1, then

n x (an));Z{p))

Z/p t 0 (mod 2(p - 1))
t r(mod2(p-l)),
1 < r < n — p — 1

0 t r (mod2(p-l)),
n — p < r < 2p — 3

Proof. We use the equivariant cohomology spectral sequence for
NAut/F \(Pn x (°~n)) acting on the contractible space LpnX(ffn) with finite stabilizers

and finite quotient QpnX{an)- The equivariant cohomology spectral sequence
for this action is

=> Hr+s{NAut{Fn){Pn x (an)));Z(p))

where [S] ranges over the set A^ of orbits of r-simplices S in LpnX(any
From the decomposition

NAut(Fn)(Pn X (<7n>) N^Pn) X (Fm X ((<7p) X CAut(Fm)(<7m)))

we see that (Fm x ((ap) x CAutiF\(am))) has p-rank 0. Since N^p(Pn) acts

trivially on marked graphs in LpnX(ffn) by permuting the edges of the ö-graph
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attached at o, it follows that for every simplex S we have

CMH

The E^ s-page of the spectral sequence is 0 in the rows where s =/= k 2(p — 1)
and a copy of the cellular cocham complex with Z/p-coefticients of the (n — p)-
dimensional complex QpnX{a-n) m rows k 2(p — 1) It follows that the £VPaëe has
the form

r 0 and s k 2(p - 1)

I <r <n-p and s k 2(p
otherwise

Hence we see that the spectral sequence converges at the E
That i?""l'(Qpnx(ff„),2/p) 0 follows from part 6 of Fact 5 4 and universal

coefficients D

Note that the above proposition immediately proves part b) (u) of Theorem
1 1

Figure 1 Simphces from the first maximal graph

By examining the space QpnX{o-n) m l°w dimensions where m G {0,1,2} and
showing that it is contractible, we have the following corollary, which will give us

part e) of Theorem 1 1
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Corollary 5.6. // m n — p G {0,1,2}, then

Ê*(HA(Fn)}Z{p)) Ê*(NAut{Fn)(Pn x <an)),Z(p)) ir(£p,Z(p))

Proof CASE 1 m 0 ThenQ^x^j is a point
CASE 2 m 1 Then QpnX{an) ls a contractible 1-dimensional complex with 3

vertices and two edges Define the maximal p-admissible tree T of rank n to be the
tree with three vertices *, o, v and two edges e\, e<i where e\ goes from * to o and

&1 goes from o to v The middle vertex of the 1-dnnensional complex QpnX{a-n)
corresponds to the graph IV The other two vertices and two edges QpnX{a-n)
correspond to the two possible ways that IV can be collapsed eqmvariantly

Figure 2 Simphces from the second maximal graph

CASE 3 m=2 Then Qpnx(ijn) ls a 2-dnnensional complex with 13 vertices, 28

edges, and 16 two-simplices There are two maximal graphs mQp^x („j Simphces

coming from the first graph are listed in figure 1 and simphces from the second

graph are listed in figure 2 In figures 1 and 2, the maximal graphs are listed in
the center These maximal graphs can be collapsed in various ways, and these

are listed around the periphery of the figures In the graphs, a solid dot indicates
the basepomt * and the hollow dots represent attaching points o for the ö-graph
Op-l If there is only one hollow dot in a graph, both ends of the ö-graph should
be attached to that one vertex Upon identifying the boundaries of the simphces
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listed in figures 1 and 2, we obtain the complex QpnX{a-n) pictured in figure 3 The
complex is homeomorphic to the fletchmg of a dart, three half disks, all identified
along a common line in their boundary This complex is clearly contractible D

Figure 3 The complete complex Qpnx(<Tn)
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