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Geometry for palindromic automorphism groups of free
groups

Henry H. Glover and Craig A. Jensen

Dedicated to Peter Hilton:
Doc, NOTE, I DISSENT. A FAST NEVER PREVENTS A FATNESS. I DIET ON COD.

Abstract. We examine the palindromic automorphism group IIA(F),) of a free group Fy, a
group first defined by Collins in [5] which is related to hyperelliptic involutions of mapping
class groups, congruence subgroups of SLy(Z), and symmetric automorphism groups of free
groups. Cohomological properties of the group are explored by looking at a contractible space on
which ITA(F;,) acts properly with finite quotient. Our results answer some conjectures of Collins
and provide a few striking results about the cohomology of ITA(F},), such as that its rational
cohomology is zero at the ved.

Mathematics Subject Classification (2000). 20F32, 20J05; 20F28, 55N91.
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1. Introduction

Let Aut(F,) be the automorphism group of a free group F, on n generators
a1,a2,. .. ,an. A reduced word z{'z3? ... x5 is called a palindrome if it is equal
to its reverse x;"x:{‘:ll ...z{*. In [2] Collins defines the palidromic automorphism
group TTA(F,,) as the subgroup of Aut(F},) consisting of all automorphisms « for
which a(a;) is a palindrome for all i. He showed that the group was generated by
three types of automorphisms:

e Maps (a;||a;), ¢ # j, which send a; — aja;a; and fix all other generators ay.

e Maps o,, which send a; — a;l and fix all other generators ay.

e Maps corresponding to elements of the symmetric group ¥,, which permute the

al,. .. ,an among themselves.

The portion of [LA(F),) generated by just the (a;||a;) is called the elementary palin-
dromic automorphism group of F,, and denoted ETIA(F,). Note that I[TIA(F,) =
ETA(F,)x(Z/2 %.,,). Collins showed that a set of defining relators for FTIA(F,,)
is given by relations of the form

(1) (aillar)(asl|ar) = (az|lar)(aillax)
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(2) (adl|ar)(azllar) = (as]lar)(ailax)
3) (aillar)(asllar)(aillaz) = (ailla;)(a;||ar)(asllax)~

He remarked how similar this was to the relations for the pure symmetric
automorphism group PYA(F),) (see Gilbert’s work in [10]):

(1) (ailax)(ajlar) = (aj|ax)(ailax)

(2) (aslar)(aj|ar) = (aj|ai)(as|ax)

(3) (ailar)(ajlar)(aila;) = (aila;)(a;lar)(as|ar)

where (a;|a;), ¢ # j, sends a; — a}laiaj and fixes all other generators ay.

On the basis of this, Collins conjectured that one could find the virtual coho-
mological dimension of TLA(F,,) by employing the methods of [7], as he did for
YA(F,) in [4]. He also speculated that FIIA(F,,) is torsion free, just as PYA(F},)
is. We are able to answer both of these questions in this paper, as well as obtaining
several interesting facts about the cohomology of ITA(F},).

1

Theorem 1.1. Let ITA(F,,) be the palindromic automorphism group of the free
group F,, on n letters and let ETLA(F,,) be the subgroup of elementary palindromic
automorphisms. Then

a) The virtual cohomological dimension of ILA(F,,) isn —1.

b) (i) For the prime 2, the Krull dimension of I:I*(HA(Fn);Z@)) is n. For odd

primes p, the Krull dimension of FI*(HA(Fn); Z(p)) is [%}

(ii) In the range where the Krull dimension of ﬁ*(HA(Fn);Z(p)) is 1, the period
is 2(p — 1).

c) The group ENLA(F,) is torsion free.

d) The cohomology group H" Y(IIA(F,); Q) = 0.

e) Ifpis an odd prime and n = p,p+1,p+ 2, then the Farrell cohomology of the
palindromic automorphism group is the same as that of the symmetric group on p
elements:

H*(TA(F,); Zy)) = H* (53 Zy))-

For analogous results concerning Aut(F),), see [3] and [11]. See [9] for the
definition of the Farrell cohomology I:I*(G; M) of a group G of finite ved with
coefficients in a G-module M and also see [2] for several useful properties of these
cohomology groups.

The remainder of this paper is structured as follows. In section 2, we discuss
ITA(F,,) and note how it relates to some other groups, while in section 3 we intro-
duce the space L,, which ITA(F),,) acts on and prove parts a) and d) of Theorem
1.1. Section 4 is concerned with a realization proposition which allows us to es-
tablish parts b) (i) and c) of the main theorem. Finally, section 5 looks in more
detail at the cohomology of ITA(F,,) at odd primes p and establishes parts b) (ii)
and e) of the main theorem.

The authors would like to thank John Meier for an enlightening conversation
about symmetric automorphisms of free groups, aiding the presentation of this
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paper.

2. Relationships with other groups

Let X, be the spine of auter space (see [7], [13], [14]) and Q,, = X,,/Aut(F,,). Let
o € Aut(Fy,) be the automorphism which sends a; — a; ~ for each 1.

Define the #-graph 6, to be a graph with 2 vertices and m + 1 edges, where
each edge goes from one vertex to the other one. Choose one of the two vertices
of 01 to be the basepoint *, and define the rose R,, to be the result of wedging
together n copies of 61 at the basepoint.

The petals of the rose R, can be identified with the generators a; of F,,, so
that m1(Ry,,*) = F,. There is an action of {o,) = Z/2 on R,, given by inverting
each petal of the rose. This action realizes the subgroup (o) in the sense of [22]
(also cf. [6].) An action of a group G on a graph I' is without inversions if G
does not send any edge e to its inverse €, and an action is reduced if there are no
G-invariant subforests in I'. The action of ¢,, on R,, is both without inversions and
reduced. From now on, when we refer to a group action on a graph, it is assumed
that the edges of the graph are subdivided as necessary to insure that the group
acts without inversions.

Note that the palindromic automorphism group ITA(F,) is just Cayy(p,)(on).
This follows because an easy argument shows that every element of C 4, Fn>(an)
is palindromic, and because the generators of ILA(F,) are all in Cyy(p,)(on). For
example, the generators (a;||a;) are just products of o,-Nielsen transformations
(see [20] where the G-Nielsen transformation (e, f)I' of a G-graph I' has the same
vertex and edge set as ' but where the terminal point of an edge eg, g € G, in the
new graph is the initial point of the edge fg in the original graph; this induces a
map (e, f) from the fundamental groupoid of the first graph to that of the second
where eg is sent to (ef)g and all other edges are sent to themselves.) That is, if
the petal a; of the rose consists of the edges é€;f;, then (a;||a;) is the composition
(es, f3) 0 {ei, €5).

As a note for the curious, it follows that ITA(F},) and Y A(F},) are distinct groups
for n > 2, since a direct argument shows that X A(F},) has no element of order 2
in its center. In addition, FIIA(F,) and PXA(F,) are also obviously distinet (for
n > 3; for n = 1,2 they are the same group with the same presentation,) since
the former abelianizes to an elementary abelian 2-group of rank n(n — 1) while the
latter abelianizes to a free abelian group of rank n(n — 1).

In addition to its formal palindromic properties, the group IIA(F,,) arises na-
turally from looking at hyperelliptic subgroups of mapping class groups (cf. Gries
[12] for corresponding homological properties.) We have a commutative diagram

2, pure 1
Fg — Fg — ry,

1 1 1 (2.1)
Aut(Fry) — Out(Fyy) — GLoy(Z)
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where I'y is the mapping class group of an orientable surface of genus g, F; is
the mapping class group of an orientable surface of genus g with 1 puncture,
and Fg*p“’”e is the mapping class group of an orientable surface of genus g with
two punctures, where each puncture is fixed pointwise. The map from [‘3*1"“’”5 to
Aut(Fy,) is obtained first by taking an intersection basis ay,b1,... ,a4,b, for the
fundamental group of the surface S with two punctures. One of the punctures
should serve as the basepoint for fundamental group considerations. The other is
treated as an actual puncture, so that the fundamental group of the surface minus
this point is a free group Iy, on 2g generators. The map from Fg*l’me to Aut(lFy,)
is now obtained by sending an element of Fg*’we to the automorphism of Fy, that
it induces. The map from I‘; to Out(Fh,) is obtained similarly.

Let ¢ € Fg*pwe be a hyperelliptic involution (see, for example, [8].) Then ¢
has 2¢g + 2 fixed points, two of which are of course the punctures on the surface
S. Choose loops ay,bq,... ,a4,by, based at one of the punctures, which form an
intersection basis for the surface S (say the ones described in [8] in the section on
hyperelliptic Riemann surfaces.) By going along the top row of diagram 2.1 and
then projecting downward, we see that the image of ¢ in GLgy(Z) is —I. Let ¢
be the image of ¢ in Aut(Fy,). Our goal is to show that ¢ is conjugate to og, in
Aut(Fyg).

Lemma 2.2. If ¢ € Aut(F,,) and the image of ¢ in GL,(Z) is —I, then the image
of any conjugate o ‘oo of ¢, a € Aut(F),), is also —1I.

Proof. This follows directly since —I is in the center of GL,, (Z). O

Lemma 2.3. If ¢ € Aut(F,) is an involution whose image in GL,(Z) is —1, then
¢ can be realized on a marked graph whose underlying graph is the rose.

Proof. Realize ¢ on a reduced marked graph whose underlying graph is A. First,
we show that if e is an edge of A which is not fixed by ¢, then we can assume that
one endpoint of e is the basepoint *. Let f = ¢(e). Choose a shortest path « from
e to x. Since stab(e) = (1), stab(e) C stab(h) for every h in the path v. So we
can apply a sequence of Nielsen transformations (see [20]) and slide e along v to
*. Note that since A is reduced, {e, f} now forms either a rose Ro based at *, or
a 01. Proceeding in this manner, we can slide all of the edges of A not fixed by ¢
to the basepoint.

By way of contradiction, suppose that two of these #1-graphs (that have been
moved so that one vertex of each 1 is the basepoint), say {e1, f1} and {es, fa},
share another common vertex in addition to the basepoint . That is, suppose that
there is a vertex v # * and each of ey, f1,ea, fo go from v to *. Say g : R,, — A
is the marked graph, and recall that 71 (R,,) = (a1,... ,a,) = F,. By replacing ¢
by a conjugate if necessary (see Lemma 2.2) we can assume that g sends the petal
a1 of R, to eflfl, the petal as to eilfg, and the petal a3 of R, to @Ilfg. So in
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m1(A) we have

¢-a1=file1=glar"),

¢-ay = fy'es = glag"),
and

¢-az = fi 'ea = glay 'azay ).
Hence the first column of ém(¢) in GL,(Z) is (—1,0,...,0), the second column
is (0,—1,0,...,0), and the third column is (—1,—1,1,0,...,0). This contradicts
the fact that im(¢) = —1.
If the result of sliding to the basepoint * all edges of A not fixed by ¢ yields a

rose R,,, then we are done. Otherwise, suppose by way of contradiction that there

exist edges e,f, and h of A such that
e Both e and f go from some vertex v # * to .

o dle) =T
e h goes from v to v.
e ¢(h)=h.

As before, say g : R, — A is the marked graph. By replacing ¢ by a conjugate
if necessary (see Lemma 2.2) we can assume that g sends the petal aj of R, to
e~ 1f and the petal ag of R, to e 1hf. So in 7((A) we have

¢-ay=fte=glarh)

and
¢-ag=fthe = (e 1) e hf) (e )7t = glag tagar ).

Hence the first column of im(¢) in GL,,(Z) is (—1,0,...,0) and the second column
is (—2,1,0,...,0). This contradicts the fact that im(¢) = —1I. O

Proposition 2.4. If ¢ € Aut(F,) is an involution whose image in GL,(Z) is —1,
then & is conjugate in Aut(F,) to oy,.

Proof. Realize ¢ on a marked graph ¢ : R,, — R,,. By replacing ¢ by a conjugate
if necessary, we can assume g(a;) = a; for all i. The involution ¢ of the graph R,,

must send the petal a1 to some aj[17 since it is a graph automorphism. But since

im(¢) = —1 € GL,(Z), we see that ajil must be a;l. Similarly, we can see that

the graph automorphism ¢ sends, for each i, the petal a; to the petal a[l. This
means our current ¢ is equal to o, (and thus our original ¢, before we replaced it
by a conjugate, was conjugate to o,.) |

The following corollary is immediate:

Corollary 2.5. The image ¢ of 1 in Aut(Fy,) is conjugate to oa,. Hence the
hyperelliptic subgroup Cp2pure (1) is conjugate to a subgroup of CAut(F2g>(0'Qg).
g
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As remarked in [5], the image of ITA(F,,) in GL,,(Z) is the subgroup of GL,(Z)
consisting of invertible matrices where each column has exactly one odd entry
(and the rest are even.) The subgroup is the semidirect product I'y(Z) x ¥, where
fg(Z) is the 2-congruence subgroup defined by the short exact sequence

(1) — T9(Z) — GLA(Z) - GLA(Z/2) — (1)
and 3., is standard inclusion of the symmetric group

%y C GL(Z).

3. A space for IIA(F,) to act on

We define a certain contractible space L, _, related to auter space, which ITA(F,,)
acts on with finite stabilizers and finite quotient. This allows us to obtain some
cohomological results.

A graph I' is a 0-tree of rank n if there exists a pointed tree T' such that I' is
obtained by “doubling” every edge of T' into a #1-graph. That is, the vertex set
of I' is the same as the vertex set of 1" and for every edge e of T' going from v to
w, I' has two edges eq and eg, both of which go from v to w. There is a natural
Z/2-action on such a graph I', which is given by switching the two edges in each
01-graph. Note that the orbit space of I' under this action is just the tree T'.

Claim 3.1. The reduced graphs I' which realize the subgroup (o)) of Aut(F},)
are exactly the 01-trees of rank n, where o, acls on the trees via their natural
Z/2-action.

Proof. We have already mentioned that the rose R,, realizes ¢,,. From Theorem 2
of [20], the other reduced graphs I' which also realize o are those that are Nielsen
equivalent to R,, (up to an equivariant isomorphism.)

If e is an edge in one of the copies of #; in R,, and f is an edge in a different 61
in R,, and both e and f point toward the basepoint, then Nielsen transformation
{e, f) has the result of pulling the #1-graph {e, o,,e} through the #1-graph {f,o,.f},
so that now e terminates at the initial vertex of f, rather than at the basepoint .
In other words, the result of applying one Nielsen transformation to R, is that of
sliding one of the petals of R, up though another petal.

A basic induction argument now yields that the result of applying a series of
Nielsen transformations fo R,, will be some 61-tree I'. O

Recall from [21] that an edge e of a G-graph I' is inessential if it is in every
maximal G-invariant subforest of I'. A G-graph I is inessential if it has at least
one inessential edge and is essential if it is not inessential. Let Xf be the fixed
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point subspace of X,, corresponding to some finite subgroup G of Aut(F,). From
[17] (cf. part III of [18] and [21]), both the centralizer C 4,5, )(G) and the nor-

malizer N 4,,(p,)(G) act on the contractible space X& with finite stabilizers and

finite quotient. Moreover, the space Xg G-equivariantly deformation retracts to
the space Lg, where Lg is constructed from XnG by considering only essential
marked graphs. Hence L is a good space to study if one wishes to calculate the
cohomology of C (g, ) (G) OF N gy (p, ) (G).

Further recall that a G-graph lisa G-equivariant blowup of a G-graph I if some
G-invariant subforest F' of I' can be collapsed away to yield I'. Let ¢ : R,, — I be
some reduced marked graph realizing (o, ). From Claim 3.1, I" is a 01-tree. Blow
up I' o,-equivariantly to some maximal essential blowup r.

Claim 3.2. The fized points/cells of the action of o, on [ are ezactly the valence
2 wvertices of I'.

Proof. Note that vertices in ' have valence 2 or 3 and that [' is obtained from
I’ by blowing up an oriented ideal forest (see [17], [21], [18].) Briefly, ideal edges
(oriented ideal forests) correspond to subsets of edges (chains of subsets of edges)
which are pulled away from existing vertices in order to create new graphs which
collapse down to the original graph.)

No edge is in Fiz,, (') because no edge is in Fiz,_ (') and so blowing up ideal
edges will not create any new edges that are fixed under the action of oy, (see [21]
page 229.)

If a valence 3 vertex is in Fiiz, ('), then at least one edge of I' must be fixed
by oy, which is a contradiction.

All of the valence 2 vertices of I' are in Fiz, (I'). New valence 2 vertices
created as ideal edges are blown up correspond to either:

e Old vertices of I" that used to be valence higher than 2 but have since had edges
stripped (pulled away) from them. These are in Fiz,, (') because all vertices

of I are in Fiz,, (I).

e New valence 2 vertices inserted to insure that o,, acts on ' without inversions.

These are also clearly in Fiz, (f) O
Note that x € Fiz, (I'). Cut r along each of its valence 2 vertices, yielding
a graph ['.,; with the same number of valence 3 vertices and edges as I' had, no

valence 2 vertices, and twice as many valence 1 vertices as [' had valence 2 vertices.

Claim 3.3.

the disjoint union of two trees fl and f‘g, where fg — anfl.

Proof. There is a covering map p : Poe — I' /oy, obtained by mapping to the orbit
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space under the g,,-action. The forest collapse that sends [tolis op-equivariant,
so it descends to a forest collapse of I'/oy, to T'/a,,. (That the quotient of the forest
upstairs in ' is also a forest in f/ oy can be seen by an easy Euler characteristic
argument.) But I' is a #1-tree with a known o,-action on it, and I'/o, is a
tree (in fact, the underlying tree of the fi-tree.) Hence I'/a,, is a tree. Since
P fcut — f/an is a covering map with fiber two points, fcut is as described. O

Let T be a pointed tree with 2n — 1 edges, all vertices valence either 1 or 3,
where x is one of the valence 1 vertices. (Then 7" has n+ 1 valence 1 vertices and
n — 1 valence 3 vertices.) Let T and Ty be two isomorphic copies of T', and let
f:Th — Ty be an isomorphism. Define

T 17y

Ty —
r f(v) ~ v, for all valence 1 vertices v of TY.

Define a o,-action on I'r by

B { fz), el
N @), zeTy

Proposition 3.4. There is a bijective correspondence between trees T as above
(with 2n — 1 edges, etc) and mazimal, essential blowups 1" of reduced oy,-graphs.
The bijection is given by T +— D'p.

Proof. From claims 3.2 and 3.3, all blowups I have the required form. Finally,
any I'p can easily be reduced to a 01-tree by collapsing edges, meaning that it is
the blowup of such a graph. O

All mazimal simplices in L,, have the same dimension, from [21]. Mazimal
simplices in Lo, [ITA(F,,) are constructed by taking chains of forest collapses from
mazimal blowups U'p. Alternatively, we can define a subforest of T' to be a collection
S of edges of T' such that there is no path in S from one valence 1 vertexr to another.
(If there were such a path, then S U o, S would be a cycle in I'p.) In this way,
we can think of mazimal simplices as coming from chains of subforests of various
trees T'.

Proof of part a) of Theorem 1.1: Since ITA(F,,) acts on the contractible space
L,, with finite stabilizers and finite quotient, the ved of ILA(F,,) is at most the
dimension of a maximal cell from L, /IIA(F,,). Such a cell comes from a chain of
forest collapses of a tree T" with 2n — 1 edges, n + 1 valence 1 vertices, and n — 1
valence 3 vertices. Hence we can collapse at most n — 1 of the valence 3 vertices
into other vertices while doing forest collapses, resulting in maximal simplices of
dimension n — 1.
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To show that the ved of ITA(F,) is at least n — 1, we note that the subgroup
generated by (as||an) for i € {1,2,... ,n —1} is isomorphic to Z" ! = Zx ... x Z.
|

Lemma 3.5. Let I be the underlying graph of a particular marked graph in L,
Hence T' comes equipped with a on-action. Let C be a simple closed curve in F
Then Fiz,, (C) contains exactly two points, and c,(C) is the curve —C, or C
with the opposite of its original orientation.

Proof. T' can be blown up (not necessarily uniquely) to some maximal essential
graph I' = I'p. T" is the union of two isomorphic copies T1 and T of T', where T}
and T are attached along their corresponding valence 1 vertices.

As we collapse from I' to F the trees T1 and Th collapse to trees T1 and TQ
However, the attaching points for T} and T are no longer necessarily just the
valence 1 vertices, and could be other vertices as well.

Let a1 be a taut path in Tl from one attaching point v1 to some other attaching
point v, where furthermore there are no attaching points in the interior of «;q.
Let ag = o, (vq) be the corresponding path in TQ. Then ajas is a simple closed
curve and oy, (a1@g) = agaq, or the original curve oriented in the other direction.
Hence the curve aqag satisfies the conclusions of the lemma. Our goal is to show
that any simple closed curve C takes this form.

Let Cq be the portion of C that is in T1 and let Cy be the portion of C' that
is in TQ Since C is a cycle and yet both T1 and TQ are trees, both C1 and Cy are
nonempty. In fact, there must be a path «q in Cq from one attachlng point v to
some other attaching point v, where there are no other attaching points in the
interior of the path. Since C is a simple closed curve, o,y must be a taut path. Let
ag = C — a1, some other taut path in I' from v1 to vg.

Letp: ' — T1 be the map given by taking the quotient space under the action
of a,,. Note that p(asg) is a path from vy to vy. Since Ty is a tree and o is the
unique taut path in 7} from vy to vy, this gives us that edges(a1) C edges(p(az)).
Hence if ¢ is an edge in aq, then p~1(e) is two edges, ¢ € O and oy, (e) € Co. It
follows that all of the oriented edges of the simple closed curve ajo,(@1) are in
the simple closed curve C. Hence C = ajo,(ay). 0

Lemma 3.6. Let I be the underlying graph of a particular marked graph in L, .
Hence T' comes equipped with a oy-action. Choose an edge e in i Among all
simple closed curves D which pass through e, choose one curve C for which the
distance from the curve to the basepoint x is minimal. Then Fiz, (C) is two
points v1 and vo. One of these two points in the closest point in C to the basepoint

x and one of them is the farthest point in C to the basepoint x.

Proof. Using the notation of the proof of Lemma 3.5, C is the result of following
some path «q in T1 and then ag = o, (ayq) in TQ7 Where a1 goes from the attaching
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point v to the attaching point vs.

Since aq is a path in a pointed tree, there is a unique vertex w in «q which is
closest to *. By way of contradiction, suppose that w & {v1,v9}. Then w is not an
attaching point. Let 31 be the unique taut path in T1 from * to w. Let ~v1 be the
unique subpath of 31 which contains w and exactly one attaching point y. Now
let 61 be the path in T1 which starts at y, follows ~1 along to w, and then either
follows C from w to vy or —C' from w to vy (where we choose whichever possibility
insures that +e € &;.) Then the simple closed curve 610,,(d1) is closer to * than
C'is, which is a contradiction. Hence w is v1 or vo, and the lemma follows. O

Proposition 3.7. Let ' be a graph which occurs as an underlying graph of marked
graphs in L, . Then there is only one possible oy, -action on I'.

Proof. We see that our task is to show that a unique o,-action is determined by
the properties about simple closed curves listed in Lemmas 3.5 and 3.6.

Define an action n on [ as follows. Let e be an oriented edge of r. Among
all simple closed curves D which pass through e, choose one path C for which the
distance from the curve to the basepoint x is minimal. Let vy be a point on C
which is closest to the basepoint. Let n be the edge-path distance in C from v to
e. Then there is an orientation € € {—1,1} such that if you traverse eC starting
at v1 and go n edges, you get to e. Define n(e) to be the result of traversing —eC
starting at v and then going n more edges.

By Lemma 3.5 and 3.6, the action 7 is well defined and if any o,, acts on L,
then the o,-action and the n-action coincide. |

Denote by @, the quotient space L, /TLA(F},).

Corollary 3.8. If two marked graphs in L, have the same underlying graph,
then they correspond to the same vertex in Q.. . That is, the moduli space Q.
can be formed by looking only at the poset structure of the underlying graphs of
marked graphs in L, .

Proof. From Proposition 3.7, any underlying graph of a marked graph in L,
has only one possible o,-action. But from Corollary 10.4 of [21], ITA(F},) acts
transitively on the set of marked o,-graphs based on the same o,-graph. The
result follows. O

The simplices of L, group themselves into cubes, as described in §3 of [15]. In
[13], Hatcher and Vogtmann show that the quotients in @,, of cubes in X,, have the
rational homology of balls. They use this to create a cubical chain complex which
has the same rational homology as @,,. Our goal here is to establish a similar
result for the cubes of maximal dimension in @), , where this time we want the
quotients of cubes to have the Z(p)—cohomology of balls, where p is any odd prime.
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Following [14], we consider a maximal cube in L, . It is given by considering
a maximal essential marked graph ¢ : R, — 't and considering some maximal
subforest S of T'. Recall that by a subforest of T" we mean a subset S of the edges
of T' where there is no path in S from one valence 1 vertex of T' (or equivalently,
one terminal edge of T') to another. From part a) of Theorem 1.1, S has n — 1
edges in it. The cube corresponding to the pair (7,5) can thus be thought of
as imbedded in R"1, where each coordinate vector is an edge of the cube, the
graph obtained by collapsing each edge of S U o, (S) is at the origin, and I'p is
at (1,1,...,1). Let Aut(T,S) be the group of all (pointed) automorphisms of the
tree 7' which take S to S. The group stabpy(p, (1, 5) = {on) x Aut(T',5) acts

linearly on the cube by permuting the coordinates of R"*I, and fixes the diagonal
from (0,0,...,0) to (1,1,...,1). (The involution o,, acts trivially on the cube, of
course, since all of these cubes are coming from L, C X7~.) Hence, just as in
[15], the quotient of the cube in Q,, is a cone with base S™~2/Aut(T,S), where
572 ig the boundary of the cube.

Lemma 3.9. The finite group Aut(T) (and hence its subgroup Aut(T,S)) is all
2-torsion.

Proof. Let & € Aut(T'). Now £ must take the basepoint to the basepoint, and so it
must take the unique edge attached to the basepoint to itself. For each n, let E,,
be the edges in T' which are at most distance n from *x. So Fjy is just one edge, and
¢ fixes it as already mentioned. Since all nonterminal vertices of 1" have valence
3, an inductive argument yields that 2" fixes E,, pointwise. O

The following is an analog of Proposition 3.1 of [15]:

Proposition 3.10. 5" 2/Aut(T,S) has the Z,)-cohomology of an (n —2)-sphere
or a ball. The latter possibility happens when there is an element of Aut(T,S)
which induces an odd permutation of the edges of S.

Proof. The finite group Aut(T,S), which is all 2-torsion, acts cellularly on g2
where the stabilizer of a cell fixes it pointwise. We use the spectral sequence for
equivariant cohomology (cf. [2] VII §7):

Bt = ] Hs(stab(é);Z(p)):>H2:ts<T7S)(Sn72§Z(p)) (3.11)
[s]eAr,

where [§] ranges over the set A” of orbits of r-simplices & in S*2. Since Aut(T, S)
is all 2-torsion and finite, so are all of the stab(d). Hence if s > 0, H*(stab(0); Z;))
= 0. So the above spectral sequence converges to

H™ (5" 72/ Aut(T, S); Zyy)).

But another filtration yields a spectral sequence with

Ey® = H™(Aut(T, S); H* (5" % L)) = H;j;ms) (5" % Zgy) (3.12)
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It follows that Fy® = 0 unless (r,s) is (0,0) or (0,n —2). Hence ES’O = Zy)
and Eg’TﬁQ = g 2(87 2 Z(p))AUt(T:S). The latter group of invariants is Z,) if

the action of Aut(T,S) on 5™ 2 preserves orientation and 0 otherwise. The last
assertion in the proposition follows from Corollary 3.2 of [15]. O

Theorem 3.13. The top dimensional cohomology group of Q,, wvanishes. That
Z"S; Hnil(QO'n;Z(p)) = O

Proof. We show that the quotient of every maximal cube (7',5) has a free face,
so that the interior of the quotient of the cube can be collapsed away. If we can
do this, then @, will have the same Z(p)—cohomology as an (n — 2)-dimensional
complex, and we will be done.

In the degenerate case where there is an element of Aut(7,S5) which induces
an odd permutation of the edges of S, then the quotient of the cube (7',5) is not
itself a cube. In this case, the diagonal from (0,...,0) to (1,...,1) is exposed in
the quotient, and any (n — 2)-dimensional simplex in the quotient which lies next
to the diagonal is a free face.

In the nondegenerate case, the quotient of the cube (7,5) is itself a cube,
although its boundary might be self indentified in various ways. Since the subforest
S of T' is maximal, S must contain at least one terminal edge e. That is, one of
the two vertices of e is a valence 1 vertex or attaching point. Let T' be the graph
obtained from I' = I'p by collapsing the subforest {e,o,(e)}. The graph I' has
a maximal subforest corresponding to collapsing the edges e and o, (e) from the
forest SUo,,(S) of I'. Hence we see that collapsing e gives us a face, which we will
denote by (T'/e, S/e), of the cube (T, .S). It can be shown that this face corresponds
to a (nondegenerate, cubical) face of the quotient of the cube (7', S) because

Claim 3.14. There is an natural injection of Aut(T') = (0,,) x Aut(T/e) into
Aut(T) = (0,) x Aut(T). Define the lift ¢ of an automorphism ¢ € Aut(T/e) by
sending an edge [ to ¢(f) if f # e and letting (;3(6) =e.

Proof. Denote by v the valence 1 vertex of e € T' (the attaching point) and let w
be the other vertex of e. In T'/e, w = v. We must show that ¢ sends w to w. This
follows automatically, however, as w = v = 0, (w) = o, (v) is the only valence 4
vertex of I' and so any automorphism of the graph must fix it. Let f and g be the
two other edges in T" which share the vertex w. Now if v = % then ¢ could possibly
exchange f and g, but this is fine as the lift (;3 also can. If v #£ x, then one of f or
g must be closer to the basepoint, and so ¢ must fix both f and g. Regardless, ¢
can be defined as in the statement of the claim. |

Warning: Note that if e is not a terminal edge, the above claim is false. Collapsing
an interior edge somtimes allows you to construct automorphisms with 3-torsion,
which obviously cannot be lifted to Aut(T').
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No automorphism ¢ of (1'/e,S/e) can induce an odd permutation of the edges
in S/e, else the lift d; of ¢ to T" would induce an odd permutation of the edge of
S. Since Aut(T) is all 2-torsion, it follows from the above claim that Aut(7'/e) is
also all 2-torsion. Hence the same spectral sequence argument used in Proposition
3.10 yields that the quotient of the cube corresponding to (T'/e, S/¢) actually is a
Zp)-cohomology cube.

It remains to be shown that the cubical face corresponding to (1'/e,S/e) is
free. First, if another subforest S’ with an edge ¢’ of T' gives a cube with a face
isomorphic to (S/e,S/e), then ¢/ must also be a terminal edge of S’. Hence the
isomorphism (71'/e,S/e) — (T'/e’,5’/e') maps the vertex that e collapsed into to
the the vertex that e’ collapsed into, and so we can lift the isomorphism to one
from (T,8) — (T,5").

Second, we must show that blowing up the vertex w in I' only yields graphs
isomorphic to I'. This follows by considering the ways that the vertex w in [ can
be blown up. Say that the edges f, g, 0,(f), and o0,(g) are the ones incident
to w. If the ideal edge orbit o,{f, g} is blown up, we get back I' exactly, and if
on{f,on(g)} is blown up, we get a graph isomorphic to I'. As these are the only
ways to blow up the graph o,-equivariantly into another essential graph, we are
done. O

Corollary 3.15. H" 1(Q,,;Q) = H* YIIA(F},); Q) = 0.

Proof. That H* 1(Q,,;Q) = 0 follows immediately from Theorem 3.13. Re-
call that TTA(F),) acts with finite stabilizers and finite quotient Q,,, on the con-
tractible space L, . Since the stabilizers are finite, their rational cohomology van-
ishes, and the standard equivariant spectral sequence yields that H*(Q,, ;Q) =

H*(ITA(F,); Q). d

Note that part d) of Theorem 1.1 follows from the above Corollary.

As a final remark for this section, we show that L, is an EITA(FE,) (cf. [19]);
that is, for finite subgroups G of ITA(F,), the fixed point subcomplex Lfﬂ is
contractible. This follows directly from the corresponding property of Aut(F,).
The following proposition is unneccesary in the specific case of L, , since (proof
omitted) L, actually equals X7~. This does not normally happen (for example,
the spaces Lp, «,, mentioned later in Fact 5.4 are not equal to the corresponding
fixed point space of X,,), however, and thus it seems worth noting the more general
fact.

Proposition 3.16. Let S be a finite subgroup of Aut(F,,) and let S be either
Caut(p)(S) or Nayy(p,)(S). Let Ls be the retract, defined by Krstic and Vogt-
mann and consisting of essential marked graphs, of the fized point subcompler X2
of the spine of auter space X,,. Then Lg is an ES space.



Vol. 75 (2000) Geometry for palindromic automorphism groups of free groups 657

Sketch of Proof. Let H be a finite subgroup of S and let G be the (finite, because
HSH-1 = ) subgroup generated by H and S. Then X& = (X7 = (X5,
and X% is contractible from [17]. It remains to be shown that X¢ = (X5
deformation retracts to (Lg).

Given a marked graph T representing a vertex of (X9)H, we must show (see
Proposition 3.3 of [21]) that for every edge e in I" and every h € H, e is S-inessential
if and only if he is S-inessential. This follows automatically from Corollary 4.5
of [21], which characterizes essential edges by looking at the stabilizers (in S) of
paths in I'. Since HSH 1= H, the stabilizers in h-translates of such paths are
still in S and are isomorphic (conjugate by h) to those of the original path. O

4. A realization proposition

Let A be a finite subgroup of ILA(F),) and let A be the (finite) subgroup generated
by A and o,,. By Zimmerman’s [22] realization theorem, we can realize A by an
action on an A-reduced graph I'. From the proposition below, I' is also {(o,)-
reduced; that is, I' is a 6-tree.

Note that the corresponding statement is not true in Out(F,) (have Z/p x
(op—1) act on a @-graph 6, 1) and certainly would not be true in Aut(F,) if the
op-action were replaced by some other Z/2-action.

Proposition 4.1. Let A C TTA(F,) be a finite subgroup of the palindromic au-
tomorphism group with o, € A. Realize A by an action on an A-reduced marked
graph ¢ : Ry, — I'. Then ¢ : R, — T is also a (oy)-reduced marked graph.

Proof. As before, let F,, = {(a1,...,a,) and identify the petals of the rose R,
with the generators a;. Note that I has no separating edges, else it would not be
A-reduced. In this proof, when we refer to concepts such as the number of times
an edge e of I' occurs in some ¢(a;), we mean that we should take the unique
taut path in I', starting and ending at %, which is homotopic to the path ¢(a;)
in I',; and then count the number of times e occurs in this taut path. By way of
contradiction, suppose I' is not (o, )-reduced. Let e; € I" be an edge of minimal
distance to the basepoint * such that {eq,0,e1} is a forest.

CASE 1: e1 = oneq. Since eq is not a separating edge of I', we can choose a
nontrivial cycle p, starting and ending at *, which has just one occurence of e
and none of eIl. If for all ¢ = 1,...,n, the cycles ¢(a;) have an even number
of occurences of elﬂ, then we could not write px as a product of them and their
inverses. So some ¢(a;) has an odd number of occurences of eiil in it. Say that
the exponent sum of ey in ¢(a;) is k, k odd. Then the exponent sum of e; in
on¢(ay) is still k, but the exponent sum of ¢(aj_1) is —k. This contradicts the fact
that opa; = a}l.

CASE 2: e1 # opeq. Let o be a shortest length path from * to e1. Say without



658 H. H. Glover and C. A. Jensen CMH

loss of generality that ey is the oriented edge from v to w and that « goes from
x to v. Let fi = oner. Then o,a is a shortest length path from * to f1. Now
v = opv, else we could write o = (b and get {b,,,b} as a o,-invariant forest closer
to * than {e1, f1} is. (If || = 0, then v = * and so o, (v) = v necessarily.) So we
have both « and o, are paths from * to v Moreover, w # o,w (else {e1,0ne1}
is not a forest.) Now Ae; = A{e1, f1} is not a forest, since I' is A-reduced.
Hence we can choose some simple closed curve p in Ae; C I' that contains eq.
There must exist some aefl € u, aelil & {61761_1}, such that aw = w. Why?
Otherwise we could deformation retract p to the set of vertices {av : &efﬂ € p},
which contradicts the fact that p is a simple closed curve. Now aey # f1, as
onw # w. Hence aey(aer) Haa)~! is a nontrivial cycle starting and ending at
* which contains exactly one occurence of e; and none of fi. So there must be
a ¢(a5), € € {—1,1}, which contains an odd number of occurences of eli1 and an
even number of occurences of flil. (If we had some even/odd ¢(a;), then we could
act by o, to get odd/even, and this would be a qS(a;l). Otherwise, all ¢(a;) are
all even/even or odd/odd, and so combine together just to get more even/even or
odd/odd loops.) This is a contradiction, however, because ¢(a; ) still has an odd

number of occurences of efl while ¢(0y,a5) has an even number of occurences of
elﬂ‘ d

Proof of part b) (i) of Theorem 1.1. From the action of (Z/2)™ on the rose R,
such that the ¢th generator inverts the ith petal and leaves all others fixed, we
know that the Krull dimension at the prime 2 is at least n. Similarly, there is an
action of (Z/p)[%] on R,, where the first Z/p rotates the first p petals, the second
Z/p rotates the next p petals, etc. Hence the Krull dimension at the prime p is at
least [%} .

Let A be a maximal rank elementary abelian subgroup of ITA(F,,). From
Proposition 4.1, we can realize A by an action of A on a g,,-graph I" which is both
A-reduced and o,-reduced. That is, we have an action of A on a pointed ©{-tree
I'. Since elements of A must preserve basepoints, the action of A on the tree I'/o,,
does not invert edges. Hence we have inclusions

A (Z)2)" % Auty(T]on) — (Z/2)" % By = Z/21 T

The result (for 2 or odd primes p) now follows from standard facts about ¥, (cf.
Theorem 1.3 in Chapter VI of [1].) O

Proof of part ¢) of Theorem 1.1. We sketch the proof, which uses standard me-
thods. Suppose that some A = Z/p lies in EILA(F,,). From Proposition 4.1, we
can realize A by an action of A on a o,-graph I' which is both A-reduced and
on-reduced. Let ¢ : R,, — I be the corresponding marked graph. Let T'=T'/o,,,
a pointed tree with an A-action on it. First, suppose that the A-action on T is
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nontrivial. (This will always be the case if p is odd.) Then there are two edges
e1 and e, both oriented so that their terminal vertices are closer to the basepoint
than their initial vertices, of I' such that a generator of A rotates the edge [eq]
into the edge [eg] in 1. Some generator a;; of F, must be such that ¢(a; )
contains an odd number of occurences of e¢1 in it. Choose a;, similarly. Then
¢(a;;) is a palindromic word in the edges of I' with either &;,0,(e;,) or on (&, )e;,
in the middle of the palindrome. The generator of A (thought of as an element of
FEUA(F,)) must send a;, to a palindrome with either a;, or ai_1 in the center of
it. This contradicts the fact that all elements of FIIA(F,,) send generators a; to
palidromes with a; in the center of them.

The only remaining case is where p = 2 and A acts trivally on T. So A is a
subgroup of the group (Z/2)™ of graph automorphisms of I' which act by inverting
the ©1’s in the ©;-tree I'. Hence the generator of A corresponds to an element of
ITA(F,) which, for at least one 7, sends a; to a palindrome with a; Lin its center.
As none of these automorphisms are in FIIA(F,,), we again have a contradiction.
|

5. Cohomology of TTA(F,) at odd primes p

Let p be an odd prime (as will always be the case from now on in this paper.)
We wish to calculate the Farrell cohomology of TLA(F,,) using Ken Brown’s [2]
normalizer spectral sequence, which states that

= I B Ne(P)iZy) = HH(GZg) (51

(PyC---CP.)E|B|, i=0

where GG is a group with finite virtual cohomological dimension, A is the poset
of nontrivial elementary abelian p-subgroups of G, B is the poset of conjugacy
classes of nontrivial elementary abelian p-subgroups of G, and |B|, is the set of
r-simplices in the realization |B|.

A first step toward performing such a calculation is calculating |B|. In other
words, we wish to calculate conjugacy classes of elementary abelian subgroups
P C ITA(F,). By Proposition 4.1, we can realize such finite groups P by reduced
actions on 01-trees.

If n > p, define a particular subgroup P,, = Z/p of ILA(F,,) by letting P,, act on
the rose R,, by rotating its first p leaves and leaving the last n—p leaves fixed. That
is, P, corresponds to automorphisms which rotate the first p generators ay, ... ,a,
and leave the remaining generators fixed.

Corollary 5.2. If p <n<2p—1, then

H*(TLA(F); Ziyy) 2 H* (N g,y (P X (0n))i Zg))-
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Proof. We show that P, is the only conjugacy class of nontrivial elementary abelian
p-subgroups that is in ILA(F,). By Proposition 4.1, we see that an arbitrary
nontrivial elementary abelian p-subgroup A comes from some action on a #1-tree
with p-symmetry. Since p < n < 2p — 1, the only possibility is that A acts on a
f1-tree I' by rotating p of the #;-leaves and leaving the other n — p 61-edges in the
tree fixed. But it is clear that a product of (P, X {0,))-Nielsen transformations
takes the rose R, to the graph I, and hence we see that A and P, are conjugate
to each other in ITA(F,).
By the normalizer spectral sequence 5.1, this yields that

H*(TIA(F,); Zp)) = H*(Niace,) (Pn); Zip))-
But since p is an odd prime, it is easy to see that

NHA(FH)(Pn) = NAut(Fn)(Pn X (on)).

Proposition 5.3.
N aus(r,) (Pn X (o)) = Ny, (Pn) X (B X ((0) X TLA(F)))

where m = n—p, LA(F,,) acts on the F,,, in the semidirect product in the natural
way, and op acts on Fy, as 0., does.

Proof. The Ny, (Py) in the above decomposition comes from automorphisms of
F,, which permute the first p generators and leave the remaining m fixed. The
F,, being acted upon in the semidirect product structure above has ith generator
(a1]lap+i)(az)|apss) - - . (ap|lapys). The o, is the involution which inverts the first
p generators of F,, and leaves the remaining m fixed. Finally, the I[LA(F),,) comes
from automorphisms which fix the first p generators of F),, and act on the last m
generators by identifying the subgroup (ap41, apt2,. .. , an) With F,.

Consider the action of P, X {¢,,) on the rose R,,. P, rotates the first p petals.
Label the first p petals of the rose as ay,... ,a, as before, but label the last m
petals as by,... ,bn.

Since |P,| = p is an odd prime, Npye(p,)(Pn X {0n)) © Nagi(p,)(Pn) and in
Lemma 5.1 of [16], we calculated

N gus(r,) (Pr) = Ny, (Pr) X (Fn X Fin) 3 ({op) X Aut(Fp))),

where the first I, in F), X F}, is the free group on the P,-Nielsen transformations
(al,bfl) for i € {1,... ,m} and the latter F,, is the free group on the P,,-Nielsen

i
transformations (afl,bfl), t € {1,...,m}. Note that (o,) acts on F,, X Fy, via

oplay,b; Yo, = (afl,b;1> and ap<af1,b;1)ap = (al,bfl). In other words, if
(b,c) € Fy, X Fyy, then o,(b,c)o, = (¢, b).
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Let G be the subgroup
N, (Pn) X (Fm X ({0p) X Cgun(r,) (0m)))

of Z\fAut<Fn)(Pn)7 where I, is the free group on the generators (ay,b;) o (afl7 b;l)
for i € {1,...,m}, and Cpy(p,, ) (0m) is included in Aut(F),) in the obvious way.
It follows directly that G C N (g, )(Pn X (on)). To prove the proposition, we
must show that they are equal.

Take an arbitrary

€ € Npur(r,) (Pn X () © Ny, (Bo) X (B X Fin) % ({0p) X Aut(Fpp))).

Say = = abede, where a € Ny (P), (b,¢) € Fin X Iy, d € (0p), and e € Aut(Fyy,).
Since a,d € N gy, )(Pr X (on)), aledt = bee € N gut(p,)(Pn X (o)) also. So
bee € TIA(F,) and (bee)oy, (bee)~! = o,,. This means that the map (bee)oy, (bee) ™!
sends a; to a;l fori e {1,...,p} and b; to b;l for i € {1,... ,m}. Now both o,
and e restrict to maps in Aut((b1,...,b,)) and moreover b and ¢ both restrict to
the identity map in Aut({by,... ,bn)). Hence for i € {1,... ,m}, we have

bl = (bee)ay (bee) L (b;) = eone 1 (b;),

k2

and we see that ea,e ! restricts to o,, in Aut(Fy,). As e € Aut(F,,), this means
e € Cuu(p,)(om). Hence e € IA(F,) also. Since bce € IIA(F},), this gives
be € ITA(F,,). In other words, we have

(byc) € (Fim X Fin) € Ny (Pr) X (B X Fi) % ({0p) X Aut(Frm)))
and
(b,c) € HA(F,).
It follows that
(b,c) = ap(b,c)oy,
= 0 0p(b,¢)0p0m
=om(c,b)oy,

= (om(c),om(b)).

So b = op(c) and ¢ = o, (b). In summary, we have shown that an arbitrary
element = abede € N p(p, ) (Pn X (o)) has ¢ = 0, (b) and e € Cyyy(p,, ) (0m).-
Thus z € G, as desired.

The group N 4y(p,) (P X {on)) acts on the contractible space Lp, x(s,) With
finite stabilizers and finite quotient Q p, x (o, = Lpnx<gn>/NAut(Fn>(Pn X {op)).
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Define a p-admissible tree T to be a triple (T, 0, A) where T' is a pointed tree, o
is a vertex of T' (which may be the basepoint %), A is a subset of the vertices of T
called the set of attaching points, * € A, and all valence 1 vertices of T" are in A.
For a p-admissible tree T, define the corresponding graph U'r as follows: Take two
isomorphic copies T and T5 of the tree T', and let f : Ty — T5 be an isomorphism.
Then let T2 be the graph

T I Ty
f(v) ~ v, for all attaching points v in A.

I‘W,}J)j’@ —
Let 0,_1 be a 6-graph with p edges and two vertices v1 and vy. Let oy be the
o-vertex in T} and let o9 = f(01) be the o-vertex in T5. Finally, let

7110,

01 ~ V1,09 ~ V)

I'r =

If 7 (I'p) =2 F),, then say T is a p-admissible tree of rank n.
If T is a p-admissible tree of rank n, define a {o,,)-action on the edges of 'y by

flz), =zel
oz =13 fNz), zeT
:1/,'_17 €, 1
Since this action inverts the edges of the #-graph in I'r, we then need to subdivide
these edges so that the group acts without inversions. Next, define a P,-action on
I'7 by having P, fix I/’ and rotate the edges of 6,1 cyclically. In this way, I'r
is a (P, X {o,))-graph.

A p-admissible tree is T' reduced if the corresponding (P, X {0,,))-graph I'p is
reduced; that is, if all vertices of T are attaching points. Similarly, a p-admissible
tree 1" is a mazimal if the attaching points of 1" are exactly its valence 1 vertices,
the valence 2 vertices of T' consist of just the point o, and T has no vertices
with valence 4 or more. As before, a subforest of T is a collection of edges S of
T such that there is no path in S from one attaching point to another. Lastly,
isomorphisms of p-admissible trees must be graph isomorphisms which take * to
%, 0to o, and A to A.

The following facts about (P, X {(0y,))-graphs are all proven in similar ways to
the analogous facts about o,,-graphs.

Fact 5.4.

(1) There is a bijective correspondence between reduced p- admissible trees of rank
n and the underlying graphs of (P, X {(on))- reduced marked graphs, given by
T —TI'p.

(2) There is a bijective correspondence between mazimal p-admissible trees of rank
n and the underlying graphs of mazimal essential marked (P, X {o,))-graphs,
giwen by T'— ['p.
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(3) The virtual cohomological dimension of N pyy(p,)(Pr X (0n)) is m =n —p.

(4) Let T' be a graph which occurs as the underlying graph of a marked graph in
Lp,x(o,y- Then there is only one possible o, -action on I'.

(5) If two marked graphs in Lp, .y have underlying graphs which correspond
to the same p-admissible tree, then they correspond to the same wverter in
QP x(c,)- That is, we can form the moduli space Qp, (s, by looking only
at the poset structure of the p-admissible trees corresponding to marked graphs
m Lpnx<gn>.

(6) The top dimensional cohomology class of Qp, x(s,y, with coefficients in Z(p),
vanishes. That is, H”fp(Qanww;Z(p)) =0.

(7) H" P(Q@pPx(0,); Q) = H" (N pye(r,) (Pn X {00)); Q) = 0.

Note that (4) and (5) above are a little bit different from their analogs Propo-
sition 3.7 and Corollary 3.8. Basically, the underlying graphs I' always have just
one possible o,-action, as before, but it is conceivable (for example, if the graph
contains two or more copies of #,_; inside it and we must decide which one P,
rotates) that it might have several possible P,,-actions. That is why we talk about
p-admissible trees instead in (5), since the vertex o in the tree determines where
the p edges that P, rotates are located.

Fact 5.4 allows us to show

Proposition 5.5. Ifp <n <2p—1, then

Z/p t=0 (mod 2(p — 1))
X H"(Qp,x(0,);Z/p) t=1 (mod 2(p —1)),
Ht(NAut(Fn)(PnX <0n>)§Z(p))g 1<r<n—p-1

0 t=r (mod2(p — 1)),

n—p<r<2p—3

Proof. We use the equivariant cohomology spectral sequence for

NAut(Fn)(Pn X {on)) acting on the contractible space Lp_ () With finite stabili-
zers and finite quotient Qp, (,.y. The equivariant cohomology spectral sequence
for this action is

By = isjeag 2 (staby 4 (Pucton) 0 i)
= H™* (N g, (Po % (00))); Zy))

where [0] ranges over the set Al of orbits of r-simplices ¢ in L Pox{(on)-
From the decomposition

NAut(Fn)(pn X {on)) = Ny, (Pn) X (Fm % ({op) ¥ CAut(Fm)(Um)))

we see that (F, X ((0p) X Caye(p,,)(0m))) has prank 0. Since Ny (P,) acts
trivially on marked graphs in Lp (., by permuting the edges of the f-graph
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attached at o, it follows that for every simplex § we have

H* (staby, o (Puxton) (0 L)) = HY (N5, (Po); Zp)) = HY (B3 Z)-

The E}°-page of the spectral sequence is 0 in the rows where s # k - 2(p — 1)
and a copy of the cellular cochain complex with Z/p-coefficients of the (n — p)-
dimensional complex @ p, x(c,,) in rows k- 2(p—1). It follows that the Ea-page has
the form:

Z/p r=0and s=k-2(p—1)
Ey" =< H (Qp,yx(on); Z/p) 1<r<n—pands=Fk-2(p—1)
0 otherwise

Hence we see that the spectral sequence converges at the Fo-page.
That H" P(Qp, x(s,.y; Z/p) = 0 follows from part 6 of Fact 5.4 and universal
coefficients. O

Note that the above proposition immediately proves part b) (ii) of Theorem

¢ )

:
:

. D

D =

« )

Figure 1. Simplices from the first maximal graph

By examining the space Qp, x(s,) in low dimensions where m € {0,1,2} and
showing that it is contractible, we have the following corollary, which will give us
part e) of Theorem 1.1:
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Corollary 5.6. Ifm =n—pe {0,1,2}, then

A A

H*(A(Fn); Zy)) = H* (N pun(m,) (Pr X (00))i Z) 2 H* (53 Zy)).

Proof. CASE 1: m =0. Then Qp, (s, 15 a point.

CASE 2: m = 1. Then Qp, «(s,) is a contractible 1-dimensional complex with 3
vertices and two edges. Define the maximal p-admissible tree T" of rank n to be the
tree with three vertices , o, v and two edges €1, eo where e goes from * to o and
eg goes from o to v. The middle vertex of the 1-dimensional complex Q@ p, x (s,
corresponds to the graph I'r. The other two vertices and two edges Qp, x(s,.)
correspond to the two possible ways that I'r can be collapsed equivariantly.

C =10

N G ~

Figure 2. Simplices from the second maximal graph

CASE 3: m=2. Then Qp, «(s,) is a 2-dimensional complex with 13 vertices, 28
edges, and 16 two-simplices. There are two maximal graphs in Q p, x(,,). Simplices
coming from the first graph are listed in figure 1 and simplices from the second
graph are listed in figure 2. In figures 1 and 2, the maximal graphs are listed in
the center. These maximal graphs can be collapsed in various ways, and these
are listed around the periphery of the figures. In the graphs, a solid dot indicates
the basepoint * and the hollow dots represent attaching points o for the #-graph
0p_1. If there is only one hollow dot in a graph, both ends of the §-graph should
be attached to that one vertex. Upon identifying the boundaries of the simplices
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listed in figures 1 and 2, we obtain the complex @ p, x (s,,) pictured in figure 3. The
complex is homeomorphic to the fletching of a dart, three half disks, all identified
along a common line in their boundary. This complex is clearly contractible. [

Figure 3. The complete complex Qpnx<dn)
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