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Gromov hyperbolicity and the Kobayashi metric on
strictly pseudoconvex domains

Zoltan M. Balogh* and Mario Bonk**

Abstract. We give an estimate for the distance function related to the Kobayashi metric on
a bounded strictly pseudoconvex domain with C2-smooth boundary. Our formula relates the
distance function on the domain with the Carnot-Carathéodory metric on the boundary. The
estimate is precise up to a bounded additive term. As a corollary we conclude that the domain
equipped with this distance function is hyperbolic in the sense of Gromov.

Mathematics Subject Classification (2000). Primary 32H15, Secondary 32F15.
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1. Introduction: Notation and statement of results

The Kobayashi metric is an important invariant metric that has been used for
the study of holomorphic maps and function spaces in several complex variables.
In general there is no exact formula for this metric but its boundary behavior
has been extensively studied by several authors. For the latest results for strictly
pseudoconvex domains we refer to [M1], [M2], [M3], [Fu]. A general survey on
biholomorphically invariant metrics can be found in [JP]. These results are quite
complete, however they have a local character as they provide sharp estimates of
the differential metric near the boundary. Much less is known about the boundary
behavior of the distance function—the integrated version of the metric. Partial
results in this sense are included in the works of [Ab], [Al], [FR]. We refer to [K]
for a recent account of the subject. The content of these results are estimates,
given for the distance of two points in certain special situations depending on
the relative position of the points. The lack of global estimates of the distance
function for two arbitrary points lies in the difficulty of determining the ”almost
geodesics” connecting two points in general relative position. In the present paper
we overcome this difficulty by the principles of the theory of Gromov hyperbolic
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spaces. Our results are of global nature: we give a formula that describes the
large scale structure of a strictly pseudoconvex domain equipped with the distance
function related to the Kobayashi metric. As a consequence we obtain that the
domain is hyperbolic in the sense of Gromov.

Let us start by fixing the notation we shall use throughout this paper. Suppose
Q C C" n > 2 is a bounded, strictly pseudoconvex domain with C2-smooth
boundary 9. For a point z € C" let §(z) = dist(z, 9) be the Euclidean distance
of the point to the boundary of 2, and consider the signed distance function

p: C*" =R,
—o(z) for zeQ,
plz) = i
o(z) for zeC™\Q.

Then p is C2-smooth in an open neighborhood N (9Q) := {z € C" : §(z) < €}
of 9, and we have Q = {z € C" : p(z) < 0}. The tangent space 1,00 for
p € 0Q is given by T,0Q = {Z € C™ : Re(dp(p),Z) = 0}, and its maximal
complex or “horizontal” subspace is H,0Q = {Z € C" : <5p(p),Z> = 0}, where
p(p) = (6%&1(]3)7 e, 6—6?%(]9)), and (Z,W) =" | Z,W, is the standard Hermi-
tian product of two vectors Z = (Z1,...,Z,) and W = (Wq,...,W,,) in C™.

By definition, the strict pseudoconvexity of 2 means that the Levi form L,(p; )
defined by

L,(p; Z) = ()Z,Z, for Z=(Z1,...,7%,)€C"”

v,p=1

is positive definite on H,0€0 for p € 0. In particular, this implies the con-
tact property of the horizontal bundle Ho$). Consequently one can define a
metric dg—the horizontal, or Carnot-Carathéodory metric on 09 (cf. [G2]) —
as follows. Call a piecewise Cl-smooth curve a: [0,1] — 99 horizontal, if for
t € [0,1] for which &(t) exists we have &(t) € H,)0Q. It follows from the
strict pseudoconvexity of € that 9 is connected. Moreover, any two points
p,q € 0L can be joined by a horizontal curve « as follows from the contact
property of HOQ (see Section 3 for details). Define the Levi length of a curve

by L,-length(c) := fol Ly(aft); c'v(t))l/Q dt, and for p,q € 99 let

du(p,q) = inf{L,-length(c) : : [0,1] — 9Q is a horizontal curve
with a(0) = p,a(l) = ¢}.

At each point p € 9 we consider the splitting C* = H,00Q@ N, 082 where N,,00)
is the complex one-dimensional subspace of C™ orthogonal to H,09Q. Accordingly,
a vector Z € C" can uniquely be written as Z = Zy + Zy, where Zy € H,0Q
and Zy € Np0€). In our notation we suppress the dependence on p.

For a horizontal curve a: [0,1] — 9Q we have that &x = 0 (in the points of

differentiability) and so length(a) = fol |z (t)| dt. The strict pseudoconvexity of
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Q implies that there exists a constant C > 1 such that
(1/O)Z| < L,(p; 2)Y? < C|Z| for pedQ, Z e Ho0. (1.1)

So if we replace the Levi length of a curve by its Euclidean length in the definition
of the Carnot-Carathéodory metric, then we get a bilipschitzly equivalent metric.

For each x € Q choose a point 7(z) € 0Q with |z — n(z)| = §(x). This gives us
amap 7: Q — 9. Since Q has a C?-smooth boundary, the point 7(z) € 9 with
|z — 7(z)| = §(x) is uniquely determined if z is sufficiently close to the boundary.
We introduce the function g: Q X 2 — R by

du(m(z), 7(y)) + h{z) V h(y)
Vh(z)h(y)

g(z,y) = 2log 5 (1.2)

where the “height” h is h(z) == &(z)1/? for x € Q, aV b .= max{a, b}, and dy is
the Carnot-Carathéodory metric on 9.

There is a certain ambiguity in the definition of g due to the fact that a map =
with the required properties is not uniquely determined on the whole domain €,
but only on a sufficiently small neighborhood of 92. Different choices of = lead to
functions in (1.2) that agree up to a bounded additive term. This will not affect
the results below.

The formula (1.2) has its origins in the general framework of Gromov hyperbolic
spaces (cf. Section 5). There are various similar expressions that serve the same
purpose as g in Theorem 1.1 below. The expression g has the advantage that it is
a pseudometric on the domain € and even a metric if we restrict it to a sufficiently
small neighborhood of 9€2.

A Finsler metric on € is a continuous map F': Q X C" — R4 = [0,00) such
that F(z;tZ) = |t|F(x; Z) for all z € Q, t € C, Z € C". The distance function
dp associated with F' is defined by

dp(z,y) = inf{ F-length(y) : v: [0,1] — Q is a piecewise C'smooth curve
with v(0) = 2,%(1) =y},

where

1
Plangthis) = /0 Fv(e);4(8)) dt.

Our main result shows how a certain local estimate for a Finsler metric leads
to global estimates for the associated distance function.

Theorem 1.1. Let Q@ C C", n > 2, be a bounded, strictly pseudoconver domain
with C2-smooth boundary. Suppose F' is a Finsler meiric on Q with the following
property. There exist constants eg > 0, s > 0, C; > 0, Cy > 1 such that for all
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xz € Neo (0Q) NQ and all Z € C™ we have

(- €15 (a) (it + (/e 2ATEEI) < i z)

2 .
< (14 C16°%(z)) (—'ZN| + CQ—LP(W(SQ)’ ZH))

462(x)
If dp is the distance function associated with F' and g is defined as in (1.2), then
there exists a constant C > 0 such that for all x,y € Q

s (1.3)

g(z,y) — C < dp(z,y) < g(z,y) + C.

In (1.3) (and in (1.4) below) the splitting Z = Zn + Zp is understood to be
taken at p = mw(x).

Let D be the unit disc in C. If f: D — Q is a holomorphic map we denote by
Df(z) its differential mapping at the point z € D. The Kobayashi metric on € is
a differential metric defined for x € Q and Z € C™ by

K(z; Z) = inf{|v| : v € C and there exists a holomorphic map
f:D—Qwith f(0) =2z and Df(0)v = Z}.

The Kobayashi distance dg is the distance function associated with the Kobayashi
metric K.

In order to apply Theorem 1.1 to the Kobayashi metric we need an estimate
as in (1.3). This type of estimate is given in the following proposition. This result
cannot explicitly be found in the literature, but it can be obtained from slightly
modifying the argument of in [M3] (cf. Section 4).

Proposition 1.2. LetQ C C™, n > 2, be a bounded, strictly pseudoconvexr domain
with C%-smooth boundary. If K is the Kobayashi metric on (), then for every e > 0,
there exists eg > 0 and C' > 0 such that for all x € Ne,(0Q) NQ and all Z € C"
we have

2 w(x); 12
(1 —C§Y%(a)) Qf?—fﬂx) + (1 —G)W) <K 2)
(1.4)
12w L,(x(2); Zr)\
< (14062 () (45% +(1 MT)

It is important to notice that the magnitude of the vectors in the (complex)
normal direction is quadratically bigger than the magnitude of horizontal vectors.
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(This is illustrated by the scaling factors 1/62 versus 1/4.) From this respect, it is
essential that (1.4) gives a more precise estimate in the normal direction than in the
horizontal direction. This is the advantage of Proposition 1.2 in comparison to the
results in [M1], [M2], [M3]. Let us also note that due to a different normalization
of the defining function, our Levi form L, differs by a factor 2 from the Levi form
used in these papers.

Together with the previous theorem Proposition 1.2 gives the following corol-
lary.

Corollary 1.3. Let Q@ C C™, n > 2, be a bounded, strictly pseudoconver domain
with C2-smooth boundary. If di is the Kobayashi distance on Q, then there exists
a constant C > 0 such that for all x,y € Q

g(z,y) — C < di(z,y) < glz,y) + C.

The statement and proof of the Theorem 1.1 have been motivated by the theory
of Gromov hyperbolic spaces [BS], [GH], [G1]. In return, Corollary 1.3 implies the
Gromov hyperbolicity of strictly pseudoconvex domains when equipped with the
Kobayashi distance. This is formulated as follows.

Theorem 1.4. Let Q@ C C", n > 2, be a bounded, strictly pseudoconver domain
with C%-smooth boundary. If di is the Kobayashi distance on Q, then the met-
ric space (€, dy) is hyperbolic in the sense of Gromov. The boundary 0cQ) of
(Q,dy) as a Gromov hyperbolic space can be identified with the Fuclidean bound-
ary 0Q. The Carnot-Carathéodory metric dg on 0 lies in (and thus determines)
the canonical class of snowflake equivalent metrics on 0g€).

In the sequel (Section 5) we shall recall the notions and facts from the theory
of Gromov hyperbolic spaces that are necessary for the proof of this theorem.

Theorem 1.4 implies that one can apply the general facts from the theory of
Gromov hyperbolic spaces to strictly pseudoconvex domains and their maps. It
follows that maps with certain nice properties on the domain can be extended
to the boundary and vice versa. This gives a general framework for the classical
regularity theory (cf. [Fef], [FR]) of extensions for biholomorphisms and proper
holomorphic maps. In this spirit, we can deduce from Corollary 1.3 the well-known
result that a proper holomorphic map between strictly pseudoconvex domains
extends continuously to the closure of the domains. Actually, this map restricted
to the boundaries will be Lipschitz in the Carnot-Carathéodory metrics (cf. Section
6 for precise statements).

The paper is organized as follows. Section 2 contains preparations for the proof
of Theorem 1.1. In Section 3 we will discuss the Carnot-Carathéodory metric and
prove a lemma that shows how to obtain this metric in a limiting sense from
a class of Riemannian metrics. The proof of Theorem 1.1 is given in Section 4
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where we also indicate how to prove Proposition 1.2. In Section 5 we recall some
background on Gromov hyperbolic spaces and give the proof of Theorem 1.4. We
also show here that product-type domains are not Gromov hyperbolic. In the
last section we present applications of Corollary 1.3 and Theorem 1.4 concerning
boundary extension of mappings between strictly pseudoconvex domains. Finally,
we relate our results to previously known estimates and discuss further possible
developments.

The results of this paper for the Kobayashi metric have been announced in a
slightly weaker form in [BB].

2. Preliminaries: Preparations for the proof of Theorem 1.1

Our first statement holds for domains in R™, n > 2. We denote by B(z,r) the
open Euclidean ball with radius 7 > 0 centered at = and by B(z,r) its closure. We
denote the standard Euclidean scalar product of two vectors a,b € R™ by (a-b).
Moreover, [a,b] will be the closed segment in R™ with endpoints a,b € R", and
we will use the obvious notation for the open and half-open segments as well.

Lemma 2.1. Suppose that Q2 C R"™, n > 2, is a bounded domain with C2-smooth
boundary. Let 6(z) = dist(z, 0Q) for x € R™. Then there exists eg > 0 such that
(a) for every point x € N, ,(0Q) there exists a unique point w(x) € IQ with
jo — ()] = o(a),
(b) the signed distance to the boundary p: R™ — R is C%-smooth on N.,(99),
(c) for the fibers of the map w: Ney(092) — IQ we have

7 (p) = Sp = (p — con(p),p + eon(p)),

where n(p) is the outer unit normal vector of I at p € IQ,
(d) the gradient of p satisfies

grad p(z) = n(w(z)) for all x € N, (09),
e) the projection map 7: N, (9Q) — 9 is Cl-smooth.
(e) 0

Proof. (a) The proof of this statement is due to Federer [Fed].

(b) This was proved in [KP]. The proof is based on (a).

(c) Let p € 9Q and consider the ball B(z, |z — p|), where z lies on the segment
Sy = (p—eon(p),p+ eon(p)). This ball is tangent to J€, and it is easy to see that
for « € S}, close to p we have B(z, |z —p|)N0Q = {p}. We show that this is true for
all z € Sp. Otherwise, there would be a first zg € S), (as we move along S, in one of
the directions away from p) for which B(zq, |zg—p|)NIQ # {p}. Then there exists
a point p’ € 8, p’ # p, such that {p,p’} C B(xg, |zg —p|)NOQ C 8B(x, |zo —p|).
In particular, |[p — zg| = [p’ — zo0| = d(zg) contradicting (a). This shows that
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Sp C 7= Y(p). Conversely, if z € 7~ 1(p), x # p, then [x,p] C 7~ 1(p) and it is easy
to see that z — p is normal to 9. Since |z — p| < € it follows that z € S,. In
conclusion we have

No(00) =n100) = | » 1) = | s
ped) pedN

(d) Let us first notice that |p(z) — p(y)| < |z — y| for z,y € N, (0Q). This
implies that | grad p(z)| <1 for z € N, (9%).

Choose a point p € 9Q and let z = p + tgn(p) for some fixed ¢ € (—ep, €p).
Consider the points z; = p + (to + t)n(p) for ¢ > 0 small enough such that
x; € Ny (0Q). Then x4, € 7 1(p) by (c) and therefore

plae) = plz) = [ler —p| — | —pl| = .

Using Taylor’s expansion we have

t = p(z:) — p(z) = (grad p(z) - n(p))t + o(t).

Since | grad p(z)| < 1 this implies that grad p(z) = n(p).
(e) Let € N, (09), and p = w(z). Then (c) implies that z = p + p(z)n(p).
On the other hand, n(p) = grad p(z) by (d) and thus

m(z) = p = = — p(z) grad p(). (2.1)
From this expression for = and (b) it follows that 7 is a C 1—map. |

In what follows we shall consider bounded domains Q@ C C", n > 2, with
C2%-smooth boundary. If we identify C* with R®* so that (Z1,...,%,) € C"
corresponds to (Re Z1,Im 7y, ..., Re Z,,,Im Z,,) € R2n7 then we can use the results
of the previous lemma for these domains. Note that under the above identification
n = 20p corresponds to grad p. So n(p) is the outer unit normal to K for p € Q.

Recall that for any p € 9Q vectors Z € C™ can be written as Z = Zy + Zn
in a unique way such that Zy € H,0Q and Zy € N,0. In the following lemma
we shall relate curves v: [0,1] — N, (992) N Q and their projections oo = 7 0,
where €p > 0 is a sufficiently small constant. For the tangent vectors 4(¢) and &(t)
of these curves we will consider the splitting into horizontal and normal parts at
a(t) = mo~(t) and write this as 4(t) = Yg(t) + A~ (t) and &(t) = e (t) + an(t).

Lemma 2.2. Let Q C C™, n > 2, be a bounded domain with C%-smooth boundary.
Then there erist constants eg > 0 and C > 0 with the following property. If
71 [0,1] = Neo(0Q) NQ is a Cl-smooth curve and oo = 7 o its projection to the
boundary, then the following estimates hold for t € [0,1]

(2.2) |hu(t) — am (@) < C5(v() A (B)],
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(2.3) |u(t) — an(t)] < C5(v(1))|a(t)],
(24) |an ()] < v )|+ Co(v(E)]YE),
2.5) |

) v @)] < lan ()] + Cdola(t)| if o(v(t)) = do.

Proof. Choose ¢y > 0 sufficiently small so that we can apply the statements
in Lemma 2.1. In addition, we may assume that all derivatives of the defining
function p up to second order are uniformly bounded on N, (9€2). By Lemma 2.1
(e), the curve « is C'l-smooth, and so ¢ is defined. From (2.1) we get the following
relation

aft) = y(t) = —p(y()n(y(1)) = —p(ry())n(a(t), (2.6)
where n(z) = 29p(z). Note that n(z) = n(x(z)) and n(z)g = 0 at «(z) for
z € Ny (092) (ef. Lemma 2.1 (¢) and (d)).

Differentiating the equalities in (2.6) we obtain

at) — 4(t) = p(y(®) [M1(t)7 () + Ma)3 ()] + Re (a(t),7(t))n(v(t)),  (2.7)

a(t) —4(t) = p(y(t) [M3(t)at) + Ma(t)a()] + Re(a(t),5(t))n(a(t)), (2.8)

where Mq,...,My: [0,1] — M, (C) are complex (n X n)-matrix valued functions,
and a: [0,1] — C" is a complex vector valued function. The components of these
functions can be expressed by the first and second derivatives of p evaluated at
points in N, (9€). Thus these components are uniformly bounded independently
of 4. Taking the projection onto the horizontal subspace (at a(t)) in (2.7), relation
(2.2) follows. Similarly, (2.3) follows from (2.8). To prove (2.4) observe first that
a(t) C OQ for t € [0,1] gives Re (&(t),n(a(t))) = 0. Thus

|an ()] = [Im(a(t), n(a(t)))]- (2.9)

Taking the hermitian product with n(v(¢)) in (2.7) and using (2.9), we get (2.4).
To show (2.5) we differentiate (2.6) under the condition p(y(¢)) = —dg. This gives

&(t) = (t) = —do [Ms(t)éu(t) + Ma(t)a(t)],

which implies (2.5) by taking again the normal projection. O

Let us mention that if 6(y(¢)) = dp and « is a horizontal curve, i.e., &y =0,
then (2.5) takes the form
Iy ()] < Cdolax(t)]. (2.10)

An essential ingredient in the proof of Theorem 1.1 is that the Carnot-Cara
théodory metric on 9€) can be approximated by a class of Riemannian metrics.
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This is stated as the Approximation Lemma (Lemma 3.2) in the next section. The
following lemma will facilitate the use of the Approximation Lemma in the proof
of Theorem 1.1.

Lemma 2.3. Let Q@ C C", n > 2, be a bounded strictly pseudoconvex domain
with C2-smooth boundary. Then there exists cg > 0 and C' > 0 with the following
property. Ifv: [0,1] — Neo(9Q)NQ is Cl-smooth and o = mwory, then fort € [0,1]
we have

Lo(r(y®)i @) - Bn @1 o [Eolalian)  |an(O)?

5((®)) IRTRIO)E 3(v()) 3(v(1))?

(2.11)

Proof. In the course of the proof we will see how to choose the number ¢y > 0,
but we may assume that it is small enough so that we can use lemmas 2.1 and 2.2.
From |Z|? > %|W|2 —|Z —W|? for Z,W € C" and inequalities (2.2) and (2.4) we
obtain

Ka@)® > $lan @) — C1o(v(0)* (), (2.12)
and

K@) 2 lan (@) — Cad(v(1)* (). (2.13)
Here and in the following C'{,Cs, ... are positive constants independent of v and

t. Let us denote the left hand side of (2.11) by A. Then the relations (1.1), (2.12),
and (2.13) imply

|eee (2) |éen ()2

?
3(v(®)  8(v(1))?

If ¢g > 0 is small enough we will always have 4/2 > Cy|4(t)[> by (1.1). Thus

e @F | lan()?
Az%( 56@) |50 >

(o) 6m(0) | lan ()P
205< 56@) *mos))?)' -

A/QZCg( +

> — il

3. The Carnot-Carathéodory metric

In this section we shall deal with the horizontal or Carnot-Carathéodory metric
dy on 09 defined in the introduction. A recent account on the subject can be
found in [Be] and [G2].
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In the present setting of strictly pseudoconvex boundaries the definition of this
metric requires additional explanation. Let us briefly indicate why two points
can be connected by a horizontal curve. We notice first that 09 is connected.
Indeed, the strict pseudoconvexity of © implies that H”~1(Q) = {0} which in
turn implies that 0 is connected if n > 2. Furthermore, it also follows from the
strict pseudoconvexity of Q that HOS is a contact bundle. Therefore, vector fields
in HOQ generate the whole tangent bundle 7'0Q. A theorem due to Chow (cf.
[Be, p. 15]) shows that any two points in d can be connected by a Cl-smooth
horizontal curve. Thus dp is well-defined and bounded. In our setting the size of
balls can be described quite explicitly by the following proposition.

Proposition 3.1. (Box-Ball estimate) Suppose & C C", n > 2, is a bounded
strictly pseudoconver domain with C2-smooth boundary. Then there exists eg > 0
and C > 1 such that for all 0 < e < ¢y and p € I

BOX(p7 €/C) g BH (p7 6) g BOX(p7 06)7

where Br(p,e) = {q € 02 : du(p,q) < €} and Box(p,e) ={p+Z € 00 : |Zx| <
€, |Zn| < 62}. Here the decomposition Z = Zy + Zn is taken at p.

We will not give the proof of this proposition, because its content is well-
known. Indeed, much more general statements are true (cf. [NSW], [Be], [G2]).
For the case of the Heisenberg group a more direct proof is given in Sect. 3 and
Sect. 4 of [Ko|. Since boundaries of strictly pseudoconvex domains can be locally
approximated by the Heisenberg group in a quantitative sense (Sect. 14 of [F'S]),
our present statement can be derived from this.

It follows from Proposition 3.1 that there exist constants C'1,Cy > 0 such that

Cilp —q) < du(p,q) < Calp — |Y?* for p,qe Q. (3.1)

In particular, the topology on 9 induced by the Carnot-Carathéodory metric
agrees with the topology induced by the Euclidean metric.

The essential ingredient used in the proof of Theorem 1.1 is that the Carnot-
Carathéodory metric can be approximated by a class of Riemannian metrics G
on Q. To be specific, fix &k > 0, and for p € 9Q, Z € T,0Q let

GL(p; Z) = L,(p; Zw) + w*|Zn |2

The distance function d, associated with this Riemannian metric approximates
the Carnot-Carathéodory metric dy in the following quantitative sense.

Lemma 3.2. (Approximation Lemma) There is a constant C > 0 such that for
all k > 0 the following holds. If p,q € OQ satisfy di(p,q) > 1/k, then

1
rol (p,q) < du(p,q) < Cdu(p,q).
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Similar statements can be found in [G2]. However, we will give a complete
proof based on Proposition 3.1, since the Approximation Lemma is crucial in the
proof of Theorem 1.1.

Proof. Let k > 0 be given and consider the Riemannian metric G as defined above.
Let p,q € 9. For any piecewise C'l-smooth horizontal curve o in 9§ connecting
p and ¢ we have &y = 0 a.e. and therefore G,.g(oz(t);c‘u(t))2 = L,(a(t); &(t)) for
a.e. t. It follows that G.-length(a) = L,-length(«) for horizontal curves a.. For
the value of d,(p,q) we minimize the G4-length over all, not just the horizontal
curves joining p and g. Hence

de(p,q) < du(p,q). (3.2)

In order to obtain a lower bound for d,;(p, ¢) we will prove that there exist constants
ko > 0 and C > 0 such that we have the implication

dp(a,b) > 1/k = dg(a,b) > C/rk  whenever a,be 0Q, k> Kg. (3.3)

Let us suppose that (3.3) holds and let p, g € 9Q with dg(p,q) > 1/k be given.

If & > ko, let a: [0,1] — 8Q be a piecewise Cl-smooth curve with «(0) = p

and a(1) = ¢. There exist N € N and 0 =ty < t; < --- <ty = 1 such that for
z; = aft;) € 00 we have

1/k <dg(zj_1,2;) <2/, j=1,...,N.

Then (3.3) applied to z;_1 and z; leads to

N
G-length(a ZG -length(e|[t;_1,;] Z (@—153)
g=1 =1
a c
>C’N//<c>—z;dH T 1,25) > EdH(p q).
J

Taking the infimum over all admissible curves « we obtain

4elp,4) > S (). (3.40)

If0 < &k < K, let k1 = dy-diam(9Q)~1 > 0. Note that 1/x < di(p,q)
dp-diam(9Q) = 1/kq and so K > k1. Since G, > (n/mO)QGHO we have d,
(k/Ko)dy,. Hence (3.3) and the definition of k1 give

IV IA

d(p, q) > (k1/K0)dwo(p, q) > Clr1/88) > C(k1/k0)2dr(p, q). (3.4b)
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The inequalities (3.4a) and (3.4b) are the lower estimates we want.

It remains to prove implication (3.3). In the following C1,Csy,... will be con-
stants only depending on €2, but not on & in particular. By the strict pseudocon-
vexity of Q (cf. (1.1)) there exists constants Cq,Ca > 0 such that

Cl1Z)? < Ly(p; Z) < Co|Z)* for pedQ, Z e Hd.

Let ko = max{+/2C7,1/€ep} where ¢y is the constant in Proposition 3.1.

Suppose k > g and let a,b € 9Q with dg(a,b) > 1/k be given. Since 1/k <
€, Proposition 3.1 implies that for some 0 < C3 < 1 we have Box(a,Cs/x) C
Bp(a,1/k), and so

b & Box(a,Cs/k). (3.5)

Since 0 is C’Q—smooth7 the normal vector n = 29p is C’l—smooth7 and hence
Lipschitz on 09, i.e., there exists Cj > 0 such that

n(2) — n(y)| < Calaz —y| for z,y € O0. (3.6)
Now let a: [0,1] — 98 be any piecewise C'l-smooth curve connecting a and b, and
let A = length(e). Since &(t) € T, ;)02 we have Re (&(t), n(a(t))) = 0 for ae.
t € [0,1]. Therefore, (3.6) implies
‘ Re <d(t),'n(a)>‘ < CyAla(t)], for ae. t € [0,1]. (3.7)
Integrating (3.7) we obtain
|Re (b—a,n(a))| < C4A%. (3.8)
Furthermore, using |Z[> > %|W|2 —|Z —W/? for Z,W e C and (3.6) we get

2

|((t), n(e(®))]* = | Im (&(t), n(a(1)))]

> L Im (a(t), n(a))|* — CFA2]6(t)|? for ace. t € [0,1].

. 2
(1) o)

Now we consider two cases according to whether A > Cy/k or not, where Cy =
. 1/201 Cs
mm{ Cy 2@’03}'
Recall that k > kg > /2C7. If A > Cys/k, then

1/2

1
Gy-length(a) = /O (Lp(alt); am(t) + HQIQN(t)‘Q) dt

1/2 (3.10)

1
> [ (@lantof + 2lanof) " a

> /Cj length(a) = \/C1A > (y/C1C5) /k.
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If A < C5/r, then because of Cy < +/2C1/Cy we have that Cp — HTZCEAQ >0,
and so by (3.9)
1 2 2 1/2
G «-length(a) > / (Ct|om (®)] + w*an (0)]7) " dt
0

1/2

1 K/Q
2/0 (cl\a(t)12+7\a,v(t)\2) dt (3.11)

ko[ K
25/0 ‘Im<a(t),n(a)>‘dt2E‘Im<b—a,n(a)>|.

Using (3.8) and Cy < % we get
| Im (b — a7n(a)>‘ > Kb - a7n(a)>‘ — ‘ Re (b — a7n(a)>|

2 |(b—a)n| = C4A® 2 |(b—a)v| - -5,

where (b — a)y is taken at a, i.e., stands for the projection of (b — a) onto N,0%Q.
Relations (3.11) and (3.12) give

2

(b —a)n| - % (3.13)

o >
G -length(a) > ™

ol &

On the other hand, Cs < C3 implies
|b — a| < length(a) = A < C3/k.

In view of (3.5) this shows that we must have |(b — a)y| > C3/x%. Consequently,

by (3.13)
2

3C.
G x-length(a) > 8—3 (3.14)
K

Relations (3.10) and (3.14) show that G-length(a) > C/k for a uniform C > 0.
Taking the infimum over o we get (3.3). O

4. Proof of Theorem 1.1 and Proposition 1.2

Let us fix a small constant g > 0. Define K = {z € Q : é(z) > ¢} and
N ={z € Q:dz) < e} = N,(02) N Q. Then K is compact, N is open,
NNK =0,and NUK = Q. We assume that ¢ is so small that N N Q lies in a
sufficiently small neighborhood of the boundary for which we can use the results
of lemmas 2.1-2.3. Moreover, we assume that for € NNQ and Z € C” our given
differential metric I’ satisfies (1.3) for some constants s > 0, C7 > 0 and Cy > 1
and that 1 — C16%(x) > 1/2.
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Recall that dj is the horizontal metric on 9, h(x) = &(x)!/? is the height of
a point = € Q, and for p € 9Q the vector n(p) = 20p(p) is the outer normal to 9
at p. In what follows we will denote by C' positive constants only depending on
€o and the various other constants that are associated with 2 and F'. The actual
value of C does not matter and may change even within the same line. Given our
assumptions and our notation, we prove a lemma that we will use repeatedly in
the following.

Lemma 4.1. Suppose v: [0,1] — NNQ is a piecewise Cl-smooth curve with
endpoints u = v(0) and v = ~(1). Then
h(v)
1 - C.
Og(hw))‘

Ifv:[0,1] = NNQ, t — u+t(v —u), is a straight line segment contained in

some fiber 7 1(p), p € 99, then
h(v)
log(h(u)) ‘ + G

Here and in the following we write A= B+ C if |[A - B| < C.

F-length(~) >

F-length(v) =

Proof. By Lemma 2.1 we have for those tg € [0,1] for which 4(¢g) exists
2 - LI |4 _ [Re(33(x(t0)), 4(t0))]
00| “ma a0, = i

_[Re{nlrla(to)) 3(to))| _ Vi (o)
2h(v(t0)) = 2h(~(t0))

By (1.3) this implies that

1
F-length(v)z/o (1 — C1h(~(2))? )21721{((1%)%

1
> [ Ja(los(hir(0) - G2y (0)>)
0

1

= ‘ {log(h(v(t)) - %hﬁ(t))gs}

h(v)
> - C
> o (5753)|
If v C NNz 1(p) is a straight line segment, it follows from Lemma 2.1 that 4(¢) =
+|u —vin(p) and n(w(y(t))) = n(p) for t € [0,1]. Moreover, [¥n(t)| = |u —v|, and

0
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4u(t) = 0. Using this and the upper estimate for I' we obtain by a computation

similar to the previous one
h(v)
os(57) | +©

Proof of Theorem 1.1. We need to show that there exists a constant C' > 0 such
that

F-length(vy) <

g(z,y) — C < dp(z,y) < glz,y) + C for z,yeQ. (4.1)

In order to prove (4.1) we shall consider various cases depending on the relative
position of = and y. Some of the cases lead to well-known estimates (see e.g.
Chapter X of [JP]); the estimate that comes closest to our result is Proposition
2.5 in [FR]. We shall nevertheless go through the proof in the easier cases as well,
since we need the intermediate steps to handle the more difficult ones. For the
upper bounds we need to guess the curves that are “almost geodesic”, i.e., give
the value of the distance function up to additive constants, and integrate along
such curves. Lower bounds are harder to obtain—we have to show that the curves
guessed before are really the ones essentially minimizing the length in our metric.

Now let z,y € Q be given. Denote by p = w(z) and g = 7(y) the projections
of these points to the boundary.

Case 1: z,y € K.
In this case 0 < dp(z,y) < C and 0 < g(z,y) < C, so (4.1) is trivially true.

Case2: ze Nyye K,orze K,ye N.
We may assume z € N, y € K. In this case h(z) V h(y) = h(y) > /ég. Hence

g(z,y) = log(1/h(z)) £ C. (4.2)

To get an upper bound for dp(z,y) let ' = p — egn(p). By Lemma 2.1, we
have 2’ € K, n(z') = p and z € (2, p). Consider the segment y(t) = z+t(z' — x),
t € [0,1]. Then Lemma 4.1 shows that

dp(z,z") = log(1/h(z)) £ C.

Since dp(z,y) < dp(z,2’) + dp(2',y), and as 2',y € K we have dp(z',y) < C,
this gives
dp(z,y) < log(1/h(z)) + C.

Together with (4.2) we get the right half of (4.1).

To obtain a lower bound for dp(x,y) let v be an arbitrary piecewise C L smooth
curve in Q joining « and y. As we travel along v starting at z, there is a first point
y' on the curve with 3’ € K. Then h(y’) = /€. Let § be the subcurve of v with
endpoints  and y’. Then 3 C N and Lemma 4.1 shows

F-length(v) > F-length(3) > log (1/h(z)) — C.
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Taking the infimum over all possible curves v in this inequality, we see that
dr(x,y) > log(1/h(x)) - C.
By (4.2) the left half of (4.1) follows.
Case 3: 2,y € N, h(@) V h(y) > du(p,q).
We may assume h(y) > h(z). Then

glz,y) = log <%> +C. (4.3)

As in the second part of the previous case Lemma 4.1 shows that

dr(z,y) > log (%) =

To get an upper bound for dp(z,y) let ' be the unique point in 7~ (p) N N with
the same height as y, i.e., ' = p — d(y)n(p). Applying Lemma 4.1 to the line
segment [z, z’] it follows that

dp(z,2') < log(?}é ?) +C=log (%) el (4.4)

It remains to find an upper bound for dr(z’,y). By definition of dg(p,q) there
exists a piecewise C'l-smooth horizontal curve a: [0,1] — 9Q with a(0) = p,

a(l) = ¢, and L,-length(c) < 2dp(p,q). Let us “lift” « to level 6(y) by defining
v:[0,1] — Q to be

V(1) = aft) = d(y)n(a(t), t € [0,1].

Note that + is piecewise C'l-smooth, v(0) = z/, v(1) = y, and §(y(t)) = &(y) for
t € [0,1]. Using (1.1) and (1.3) we can estimate for a.e. ¢ € [0, 1]

o s )

Next we apply the result of Lemma 2.2. Namely, we use (1.1), (2.3), (2.10), and
the fact that « is a horizontal curve to obtain for a.e. ¢

By integration this gives

dp(z',y) < F-length(y) < %Lp—length(a) < c%r 9
Yy
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Recall that dg(p,q) < h(y), and so dp(z’,y) < C follows. Using (4.4) we obtain
’ / h(y)
dp(z,y) < dp(z,2') +dp(z’,y) < log ) +C
concluding the proof in this case.
Case 4: z,y € N, h(z)V h(y) < du(p,q).
We have di(poa)
H\P,q
glz,y) = 2log<—) +C. (4.5)
h(z)h(y)

Introduce hg := \/ég A dr(p, q) where a Ab = min{a, b}, and let 2’ = p — h%n(p)7
y =q— h%n(q). Note that Cdg(p,q) < ho < dg(p,q). As in Case 2 and Case 3
it follows that

dp(z,2') < 1og<2((i)) 1 C=log (%) +C,

)
dr(y,y’) < 10g<2(é/))> +C=log (%> e

Furthermore, as in Case 3 it can be seen that dp(z,y’) < C. Therefore,

dp(z,y) < 210g<%) + C.

From hg < dg(p,q) and (4.5) the second inequality in (4.1) follows.

Before we go any further let us mention that we have in fact guessed an “almost”
geodesic connecting x and y. This is constructed as the union v, » Uvyar o Uy .
Here v, , is a “vertical” segment going up from z to 2/, i.e., to height level hg which
is determined by dg(p, ¢). Similarly, the curve ~, , is a vertical segment joining y
and y’. The curve Yar .y 18 & “lift” to level hg of a horizontal curve which is almost a
geodesic. The more difficult task is to get a lower bound for dp(z,y) in the present
case. This amounts to showing that our guess above is indeed correct. We have
to consider an arbitrary piecewise C'l-smooth curve v: [0,1] — Q with v(0) = «,
~v(1) = y and prove the right lower bound for its F-length. Given such a curve
define H := max,c~ h(z). There exists tg € [0, 1] such that H = h(~y(t0)). Consider
the two subcurves v1 = ][0, %p] and v2 = 7|[tg, 1]. There are two possibilities.

If H > hg we obtain from Lemma 4.1 as in Case 2 that

F-length(y1) > log<%> -

F-length(v2) > 1og<%> —-C
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Consequently, since hg > Cdg(p, q),
d
F-length(~) > 2 log<M) - C. (4.6)
h(z)h(y)
The other possibility is when H < hg. We then have vy U~yg = v C N. Let
a = 7 o~ be the projection of v to the boundary. Since h(z) < H, there exists

ke N,k >1,such that 27*H < h(z) < 2= (k=1 [J Consider the curve ~1 and
define 0 = sp < s1 < -+ < 55 < {p as follows. Let sgp = 0 and s; = min{s €
[0,t0] : h(~(s)) = 2= "D H} for j = 1,...,k. Put z; = y(s;) and p; = n(x;) for
j=0,...,k. Note that 1 < h(z;)/h(z;—1) <2for j=1,... k.

We shall consider two alternatives. In the first case we assume that there exists
an index [ € {1,...,k} such that

dg(pi—1.p1) > %27<k7l)dH(P7q)~
Define the constant £ > 0 such that
1= %[27(]“4)611{(197 q)] < dulpi—1,m).
Then for t € [s;_1, s;] we have
hy(t) <27 DH <2 *Day(p q) < 8/k.
Since 1 — C16(x)®* > 1/2 for x € N, we obtain from (1.3) and Lemma 2.3
o (1)2] /2
h(~(t))?
ok

> C— /:1 (Lo(a(t); am(t) + £Ean(®)]?)

F-length(v|[s;_1, s1]) > C’/Sl m [Lp(a(t); apr (b)) + dt

1/2 dt

2kfl
> C——di(pi_1,p1)-
2 C—du(pi—1,1)

Here d is the metric from the Approximation Lemma. An application of this
lemma gives

d
Frlength(y[si_1,51) > 022D (47)
Let ¢1 := s < tp. As a consequence of Lemma 4.1 and (4.7) we have
F-length(+][0,t1]) = F-length(y[[0, s:1]) + F-length(y[[s;—1, s1])
+ F-length(vy|[si, sk])

> log(h}(j(il;l) ) +CdH(§’ a 10g<};((z];)) ) —c

)
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The second alternative is that
da(pj_1,p5) < £27 % Ddy(p, q)
for all  =1,..., k. This implies
k
du(p,m(v(t1))) < du(pj—1,p;) < 1du(p,q)-
j=1

On the other hand, by Lemma 4.1 again we get as before that

F-length(v][0,1]) > log (%) -

Summarizing this discussion we obtain the following two possibilities

F-length(~|[0,1]) > log(%) + C’% -C, (A1)
Folength(~][0, 11]) > log<%> ¢, and dyg(p, n((t1))) < 3dn(pg),  (A2)

where t1 € [0,%p].
Applying similar considerations to the curve 9 instead of 1 we find ¢5 € [tg, 1]
such that one of the following alternatives holds

F-length(v|[t2,1]) > log <%) -+ Cw -C, (B1)

or

Flength(~|[ts, 1]) > 1og<%> —C, and du(g, (v(t2)) < Ydu(p.q).  (B2)

Let us suppose that (A2) and (B2) hold simultaneously. Then
d(m(y(t1)), 7(v(t2))) > dr(p,q) — dp(p, (v (t1))) — dr(q, 7(v(t2))) > $du(p, q).

Again we can apply the Approximation Lemma (analogous to the case [ = k above)
to conclude that

H

Frlength(~|[t1, ta]) > C
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Consequently,
F-length(~y) = F-length(~|[0,¢1]) + F-length(v|[t1,t2]) + F-length(v|[t2,1])

" H du(p,q)
=2 g<\/h(x>h<y>> T .

This inequality (with an appropriate change of the constants C'if necessary) is also
true if (A1) and (B1) or (A1) and (B2), or (A2) and (B1) hold simultaneously. In
other words, (4.8) is true in any case. Elementary calculus shows that the right
hand side expression of (4.8) considered as a function of H has a minimum if H
is equal to Cdg(p,q). This gives the lower bound

- C.

F-length(v) > 2 1og<%> —C. (4.9)

If we take the infimum over all admissible curves v, then (4.6), (4.9) and (4.5)
show that dp(z,y) > g(z,y) — C.

We have exhausted all the possibilities for z and y, so (4.1) holds and the proof
is complete. O

As we pointed out in the introduction, Proposition 1.2 can be obtained by a
slight modification of the argument in [M3]. Therefore, we will note repeat all the
details, but just indicate the necessary adjustments.

Sketch of the proof of Proposition 1.2. We start from the following localization
statement that relates the Kobayashi metric Kq on Q with the Kobayashi metric
KorB(r(z),r) o0 the intersection of € with a ball centered at a boundary point:
There exist constants e > 0, » > 0, and C' > 0 such that for all z € Q with
d(z) < €1 and all Z € C™ we have

e Ko p (@) (@ Z) < Ka(@, 2) < Konp(r(a).») (@ Z). (4.10)

This follows from [FR] as indicated on p. 333 of [M3]. By (4.10) it is enough to
estimate the Kobayashi metric of the local domain © N B(n(z),r). To do this
we apply a biholomorphism ¥: Q N B(n(z),r) — C™ with ¥(z) = 0 as given by
formula (2.10) on p. 334 of [M3]. The next essential step in the argument of [M3]
is to show that the image W(Q N B(w(z),r)) is trapped between the two balls

B(0,e=¢8"*@)y C w(Q N B(n(x),r)) C B0, *@), (4.11)
for some uniform constant C' = C(€). The proof of (4.11) uses that the boundary

is C%-smooth and there seems to be no way to get this estimate with just the
C2-smooth boundary assumption. The appropriate modification is to show that
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the image ¥(Q N B(w(x),r)) is squeezed between two complex ellipsoids. More
precisely let us assume that H ()00 = {0} x C"~ 1. Assuming the C%-smoothness
of 9 one can show that

E_C¥(QnB(r(z),r)) C Fy, (4.12)
where F. are two complex ellipsoids given by

_sl/2 _
By ={yeCm:e @y 2 p e (lya)® + ... + |yal?) < 1}

and
E = {y ceCn - 6051/2(z)|y1|2+65(|y2|2+ o+ |yn|2) < 1}

The estimate (1.4) now follows from (4.12) by similar arguments as on pp. 335-336
of [M3]. O

5. Gromov hyperbolicity

In this section we will discuss some background on Gromov hyperbolic spaces (cf.
[BS], [GH], [G1]) and prove Theorem 1.4. Most of the results we need are discussed
in [BS].

A metric space X is called geodesic if any two points z,y € X can be joined
by a geodesic segment. Any such geodesic segment, i.e., the image of a compact
interval I C R under an isometry into X will be denoted by [z, y]. The geodesic
space is called §-hyperbolic if every geodesic triangle is d-thin, i.e., for any geodesic
triangle [z,y] U [y,2] U [z, 2] in X and any point w € [z,y] we have

dist(w, [y, 2] U [z, 2]) < 4.

A definition which works in general metric spaces is as follows. For a metric
space X denote the distance between two points u and » in X by |u — v|, and
define the Gromov product of two points z,y € X with respect to the basepoint
we X as (T,Y)w = %{|ZL‘ —w|+ |y —w| — |z —y|}. Then X is called é-hyperbolic
for 6 > 0 if

(,9)w > (2,2)w N (2,9) — 0 forall z,y,z,we X. (5.1)

For geodesic metric spaces X the definitions are quantitatively equivalent, i.e., if X
is 0-hyperbolic according to the first definition, then X is ¢’-hyperbolic according
to the second definition with 6’ = ¢’(d), and vice versa. We refer to Chapter 2 of
[GH] for a detailed discussion of this equivalence.

The first definition is perhaps more frequently used in the literature, however
we shall work with the second definition as it is better suited for our purposes.
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The concept of Gromov hyperbolicity can now be formulated. A metric space X
is called Gromov hyperbolic if it is §-hyperbolic for some 6 > 0.

A set A in a metric space X is called k-cobounded for k > 0 if every point
z € X has distance at most k& from A. If A is k-cobounded for some & > 0, then
we say that is cobounded. Similarly, we will suppress mentioning the parameters
of the notions defined below if the values of the parameters do not matter.

Definition 5.1. Let f: X — Y be a map (not necessarily continuous) between
metric spaces X and Y and let k > 0, A > 1 be constants. Suppose that f(X) is
k-cobounded in Y. If in addition for all z,y € X

z—y| -k <|f(@) - f)l < e -yl +k, (5.2)
then f is a k-rough isometry; if
Alz =yl =k < |f(z) = f(y)l <Az —y| + k,
then f is a (X, k)-rough similarity; if
L/ Nz =yl =k <|f(@) = f)] < Az —y| + k,
then f is a (A, k)-rough quasiisometry.

Definition 5.2. Let f: X — Y be a bijection between metric spaces, and A > 1,
a > 0 be constants. If for all z,y € X

(/N —yl < [f(2) = FY)] < Ale —yl,
then f is A-bilipschitz; if
(L/A)|z —y* <|f (@) — f)] < Az —yl%,

then f is an (o, A)-snowflake map.
If for all distinct points z,y,z € X

F@) — 1(2)] o = 2|
@) — f()] = ™ <|x —y|> :

then f is an (o, A)-power quasisymmetry. Here we have used the notation

) — M foro<t <1,
Kals XY fort>1.

For a Gromov hyperbolic space X one can define a boundary set 9¢ X as follows.
Fix a basepoint w € X. A sequence (z;) in X is said to converge at infinity if
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lim; j oo (23, 25)w = 0. Two sequences (z;) and (y;) converging at infinity are
called equivalent if lim; ,oc(2;,y;)w = 00. These notions do not depend on the
choice of the basepoint. The boundary dg X is now defined as the set of equivalence
classes of sequences converging at infinity. For a,b € 95X and w € X we define

(a7b)w = sup hm lnf(xwyz)w € (0700]7
i—00

where the supremum is taken over all sequences (x;) and (y;) representing the
boundary points a and b, respectively. The boundary dsX carries a canonical
class of metrics. For any metric d in this class there exists ¢ > 0 and w € X such
that

d(a,b) < exp(—e(a,b)y,) for a,be daX. (5.3)

Here we write f =< g for two functions if there exists a constant C' > 1 such that
(1/C)f < g < Cf. Any two metrics di and dg in the canonical class are snowflake
equivalent, i.e., the identity map id: (¢ X,d1) — (9¢X,da) is a snowflake map.
One can define a topology on X Udq X that defines a compactification of the space
X. This topology restricted to dg X agrees with the topology defined by the class
of canonical metrics on the boundary.

The relevance of the maps defined in Definitions 5.1 and 5.2 in the context of
Gromov hyperbolic spaces is due to the following proposition (cf. [BS], Sec. 6).

Proposition 5.3. Suppose f: X — Y is a rough quasiisometry between Gromov
hyperbolic spaces X and Y. Then f induces a power quasisymmetry f C0aX —
Y. If f is a rough similarity, then f is a snowflake map. If [ is a rough
isometry and the boundaries 0cX and OgY are equipped with metrics satisfying
an inequality as in (5.3) with the same number ¢ > 0, then f is bilipschitz.

Note that for the validity of the first two statements it does not matter which
metrics on dxG and dgY we choose as long as they belong to the canonical class
of metrics on the boundary. The induced map f is defined by assigning to each
sequence (x;) in X converging at infinity the image sequence (f(z;)). It can be
shown that f is well-defined as a map from dg X to dgY.

The content of Proposition 5.3 can be summarized saying that a map f: X —
Y between Gromov hyperbolic spaces induces a map f 10X — 0gY on their
boundaries so that we have the following correspondence of maps:

rough isometry — bilipschitz map
rough similarity — snowflake map
rough quasiisometry —— power quasisymmetry

The construction of the boundary can be reversed in the following way. Suppose
(Z,d) is a bounded metric space containing more that one point, and let D(Z) > 0
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be the diameter of Z. Define Con(Z) = Z x (0,D(Z)], and for (z,s), (y,t) €
Con(Z) let

d(:t7y)+s\/t} (5.4)

R 2log{ —

Then it can be shown (cf. [BS], Sec. 7) that r is a metric on Con(Z) such that
(Con(Z),r) is Gromov hyperbolic. If Z is complete, then the boundary dg Con(Z)
can be identified with Z such that the metric d is in the canonical class of snowflake
equivalent metrics on dg Con(Z). The expression in (5.4) has motivated our for-
mula (1.2) of g.

We can now turn to the

Proof of Theorem 1.4. The proof that (€2, dx ) is Gromov hyperbolic is very similar
to the proof of Theorem 7.2 in [BS]. For the convenience of the reader we repeat
the details.

Suppose we are given numbers r;; > 0 such that r;; = r; and 7 < 7 + 7715
for 4,5,k € {1,2,3,4}. Then r19r3q < 4((r13r24) V (r14723)). To see this, we may
assume that r13 is the smallest of the quantities g appearing on the right hand
side of this inequality. Then r19 < r13 +r32 < 2ro3 and r3g < r31 + 714 < 2r14.
The inequality follows.

Now let ;, 4 € {1,2,3,4}, be four arbitrary points in €, and denote by p; =
7(z;) their projections to the boundary and by h; = 8(z;)'/? their heights. Set
dij = dH(pi7pj) and Tij = Clij + h; V hj. Then

(d1,2+h1V ho)(d3 4 + hg V ha)
< A((d1,3+ h1V h3)(daa+ ha V ha)) V ((dig + hi V hy)(da3 + ha V h3)).

By Corollary 1.3 this translates to
di(z1,22)+dk (x3,24) < (di (21, 23)Hdr (22, 24))V (dK (21, 24) HdK (22, 23) ) +C,

where C' is a constant independent of the points. This inequality is equivalent to
the Gromov hyperbolicity of the space (9, dk).

It follows from the definition and Corollary 1.3 that a sequence (z;) in (€, dk)
converges at infinity if and only if the sequence (w(x;)) converges and h(z;) —
0 as i — oo. This happens if and only if (z;) converges with respect to the
Euclidean metric to a point in 9Q. Moreover, two sequences converging at infinity
are equivalent if and only if their limit points on 0d€2 are the same. Each point in
Of) arises as a limit point of a sequence converging at infinity.

Assigning to each equivalence class of sequences in  converging at infinity
the unique limit point of each sequence in the class, we can identify the Gromov
boundary 92 with the Euclidean boundary as sets.

Some straightforward calculation based on the definition of the Gromov product
for boundary points and Corollary 1.3 shows that for any choice of a basepoint
w € Q) we have

dp(a,b) < exp(—(a,b)y) for a,be Q. (5.5)
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This shows that the Carnot-Carathéodory metric dy is in the canonical class of
snowflake equivalent metrics on 9 = 992. O

We give an example for a class of pseudoconvex domains that are not Gromov
hyperbolic with the Kobayashi metric. Our examples are of product-type Q =
Q1 x Q9 CC™M x C"2,

Proposition 5.6. Let Q1 C C™1, Q9 C C"2, ny,ng > 2, be bounded strictly
pseudoconver domains with C2-smooth boundary. Then the product domain Q) :=
Q1 X Q9 C C"11"2 cquipped with the Kobayashi distance is not Gromov hyperbolic.

Proof. Denote by d, di and do the Kobayashi distance on €2, €21 and Q9, respec-
tively. The proof is based on the following product formula (cf. [JP], p. 107)

d((z1,91), (z2,y2)) = max{dy(z1,22),d2(y1,y2)}. (5.6)

Let us assume that (2,d) is a Gromov hyperbolic space. In particular (5.1)
holds for some § > 0. Let us introduce k£ = 3 + 26 and choose two points
z1,z9 € Q7 such that di(z1,z9) = 2k. Select a third point z3 € Q1 such that

k< dy(z1,z3) <di(z3,z9) < k+1. (5.7)

Fix y1 € Q9, and consider the three points z = (z1,y1), ¥y = (x9,y1), w =
(z3,y1) € Q. Using (5.6) and (5.7) we can see that the Gromov product (z,y)y,
satisfies (2,y)w < 1. Choose a fourth point z € Q of the form z = (x3,y2), where
y2 € Q9 is such that da(y1,y2) = 2k. Using (5.6) again we see that

d(z,w) = d(z,z) = d(z,y) = 2k.

Hence for the corresponding Gromov products we obtain that

. (5.8)

3

o | o

1 k 1
== > —_ = — >
(3,0)u = 5(w,w) 2 5 and ()0 = 3dly,w) 2

By the definition of k and since (z,y),, < 1, relations (5.8) are in contradiction to
(5.1) proving the proposition. O

6. Applications and final remarks

As we pointed out in the introduction, the theory of Gromov hyperbolic spaces
gives a general framework for the theory of boundary extensions for biholomor-
phisms and proper holomorphic maps. We have seen in Proposition 5.3 that isome-
tries between Gromov hyperbolic spaces, and more general, rough quasiisometries
induce homeomorphisms on the boundaries of these spaces.
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According to Theorem 1.4 we can apply these general facts to the situation
when our metric spaces are strictly pseodoconvex domains equipped with the
Kobayashi distance. Hence we get the following result.

Corollary 6.1. Let Q1,89 C C", n > 2, be bounded strictly pseudoconver do-
mains with C%-smooth boundary. Let f: Q1 — Qg be a continuous mapping that
is a rough quasiisometry with respect to the Kobayashi distances on the domains.
Then f has a continuous extension Ff: Q1 — Qo such that the induced boundary
map f = f|agl 1 O — 09 is a power quasisymmelry with respect to the Carnot-
Carathéodory metrics. Moreover, if f is a rough similarity, then f is a snowflake
map; if [ is a rough isometry, then f is bilipschitz.

In order to get the last statement one has to observe that by (5.5) a formula
of type (5.3) is valid for the Carnot-Carathéodory metrics on the boundary of the
regions with the same ¢, namely e = 1.

Since biholomorphisms are isometries of the Kobayashi metric, they induce
maps on the boundary that are bilipschitz maps in the Carnot-Carathéodory met-
rics. Corollary 6.1 is therefore a version of the celebrated boundary extension
phenomenon of biholomorphisms [Fef] in the sense of coarse geometry. For the
case of proper mappings we have the following statement.

Corollary 6.2. Let Q1,89 C C", n > 2, be bounded strictly pseudoconver do-
mains with C2-smooth boundary, and let f: Q1 — Qg be a proper holomorphic
map. Then f extends continuously to a map f: Q — Qg with f(0Q1) C 0Qs.
The induced map f = f|@le 00 — 0Qq is a Lipschitz map if we equip the
boundaries of the domains with the Carnot-Carathéodory metrics.

It is well-known that the extension f: ; — €9 is Holder continuous with
exponent 1/2. This follows easily from Corollary 6.2 and the relation (3.1) between
the Carnot-Carathéodory and Euclidean metric on 9€2. Various other regularity
results can be found in literature (cf. [Col, [Kh], [ Le], [Pi], [PK]), however it seems
not to have been observed before that f: 91 — 09 is Lipschitz if the boundaries
carry the Carnot-Carathéodory metrics.

Proof. Let f:Qp; — Qg be a proper holomorphic mapping. For i € {1,2} let
0;(z) = dist(z,0Q;), z € C™, let K; be the Kobayashi metric on £; and d; the
distance function associated with K;, and let de be the Carnot-Carathéodory
metric on 9€2;. Then we have for all z € Q1 and Z € C™

Ko(f(z); Df(2)Z) < Ky (3 Z).

Here D f(z) is the tangential map of f at z. This implies that for all z,y € Q1 we
have

dQ(f(x)7f(y)) Sdl(ﬂ?,y) (61)
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Since f is proper there exists a constant C| > 1 such that for all z € Q1 we
have

(1/C1)é1(z) < d2(f (x)) < C11(z). (6.2)
From Corollary 1.3, and inequalities (6.1) and (6.2) we conclude that there exists
a constant Cy > 0 such that for all z,y € €1

dir(r(f(2)), 7(f(1))) < Oa(dp(m(w), w(y)) +o1(x) "/ v 81(y)/?). (6.3)

From (6.2) and (6.3) it follows that whenever a sequence in Q1 converges to some
point in 921, then the image sequence under f converges to a point 9Qs. Moreover,
the image sequences of two sequences in {21 converging to the same boundary point
in Q4 converge to the same boundary point in 9Q9y. It follows that f has a unique
extension (also called f) to £ which is continuous which respect to the Euclidean
metric. Moreover, f(9€1) C 099 and from (6.3) we get for a,b € 98

dyy(f(a), 1(b)) < Cady(a,b).
This shows that the boundary map is Lipschitz if the boundaries of the domains
are equipped with the Carnot-Carathéodory metrics. |

Let us mention that Corollary 6.2 would also follow from the stronger results
as announced in [Kh]. Nevertheless, our proof is rather elementary and illustrates
well the efficiency of Corollary 1.3. Even though we do not get the best regularity
possible in the immediate applications, our approach has the advantage that it
works for much more general mappings (cf. Corollary 6.1).

Remarks: 1. Results as in Corollary 1.3 and Theorem 1.4 hold for the (inner-)
Carathéodory distance and the Bergman distance as well, at least if we have some
higher regularity of the boundary (this was announced in [BB]). In order to apply
Theorem 1.1 we need analogs of Proposition 1.2 for the Carathéodory metric and
the Bergman metric. If the boundary is sufficiently smooth, estimates like this
occur explicitly in the literature (cf. [Cal, [Dil], [Di2], [Fu], [M1]). In the case of
a C%-smooth boundary the estimates corresponding to (1.4) are likely to be true,
but it is not so straightforward to adapt arguments given in the literature. We
hope to come back to this issue in a later paper. In [BB] we contended ourselves
with a result slightly weaker than Corollary 1.3.

2. We would like to point out briefly how earlier estimates for the Kobayashi
distance (cf. [Ab], [FR], [JP], [K]) follow as special cases of our Corollary 1.3.

When z belongs to some fixed compact set K C €, then

1 1
di(z,y) = =log — + C(K).
In the case when z,y € € are sufficiently close to two distinct points on 952,
then our formula (1.2) yields

1 1 1 1
d ==log—+ =-log— =+ C
x(2,y) 5 log 5 +5log 5 A
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which is another well-known result.
Let us also recall from [FR] an upper estimate for the Kobayashi distance of
two point sufficiently close to a given boundary point

1 |z —y] 1 |z -y
di(z,y) < §log (1 + e ) + §log <1 + ) > +C, (6.4)

which also follows from (1.2) taking into account the upper bound for the Carnot-
Carathéodory metric in (3.1).

In fact (6.4) is the result that comes closest to ours but it is just an upper
estimate. Our point is that the use of the Carnot-Carathéodory metric leads to
precise two-sided estimates.

3. Naturally, one could wonder about possible extensions of our results. We
think that the failure of Gromov hyperbolicity in Proposition 5.4 is due to the
loss of strict pseudoconvexity rather than the loss of smoothness of the boundary.
It seems likely that a smoothing procedure of the boundary of certain product
domains should lead to pseudoconvex domains with smooth boundary that are
not Gromov hyperbolic. In the positive direction, we think that to some extent we
can give up strict pseudoconvexity as we conjecture that some of our results carry
over to the class of domains of finite type, although possibly with considerable
technical complications. In particular, it is likely that one has to use the full
power of [NSW] to study the horizontal metric in this case (cf. Section 3). The
recent results of [BSY], [KY], [Ca], [DO], [DH] encourage the investigation in this
direction. It should also be possible to relax the smoothness condition. This is
indicated by the fact that there is a large class of domains in R™ with non-smooth
boundary that are Gromov hyperbolic with the quasihyperbolic metric (cf. [BHK]).
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