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Annular Dehn fillings

Cameron McA. Gordon! and Ying-Qing Wu?

Abstract. We show that if a simple 3-manifold M has two Dehn fillings at distance A > 4,
each of which contains an essential annulus, then A is one of three specific 2-component link
exteriors in S3. One of these has such a pair of annular fillings with A = 5, and the other two
have pairs with A = 4.
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§¢1. Introduction

Let M be a (compact, connected, orientable) 3-manifold with a torus boundary
component Tp. If r is a slope (the isotopy class of an essential unoriented simple
loop) on Ty, then as usual we denote by M(r) the 3-manifold obtained from M
by r-Dehn filling, that is, attaching a solid torus .J to M along Tj in such a way
that r bounds a meridian disk in J.

We shall say that a compact, connected, orientable 3-manifold M is simple if it
contains no essential surface of non-negative Euler characteristic, i.e., sphere, disk,
annulus or torus. If M has non-empty boundary and is not the 3-ball, then M is
simple if and only if M with its boundary tori removed has a complete hyperbolic
structure of finite volume with totally geodesic boundary [Thl, Th2|. If M is
closed, then the geometrization conjecture asserts that M is simple if and only if
M is either hyperbolic or belongs to a certain small class of Seifert fiber spaces
[Th1, Th2].

If M is hyperbolic, then Dehn fillings on M are hyperbolic if we exclude finitely
many slopes from each torus boundary component [Thl, Th2]. By doubling M
along its non-torus boundary components, we see that if M is simple then M (r) is
simple for all but finitely many slopes r on any given torus boundary component 7p,
and a good deal of attention has been directed towards obtaining a more precise
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quantification of this statement. Denote by A(ry,rg) the distance, or minimal
geometric intersection number, between two slopes r{,79 on a torus. Define a
3-manifold to be of type S, D, A or T if it contains an essential sphere, disk,
annulus or torus, respectively. For X; € {S, D, A, T}, i = 1,2, define A(X1, X2)
to be the maximum of A(rq,rg), where 71 and rg are Dehn filling slopes of some
simple manifold M such that M(r;) is of type X;. These numbers A(Xy, Xo) are
now known in all ten cases; see [GW2] for more details.

Except when (X1,X9)=(A,A), (A1) or (T\1), it is also known that A(X1,X2)
is realized by infinitely many simple manifolds M; see [EW]. On the other hand,
A(T,T) = 8, and there are exactly two simple manifolds M admitting toroidal
fillings M (r1), M(re) with A = A(rq,r9) = 8, exactly one with A = 7, exactly
one with A = 6, and infinitely many with A = 5 [Go]. Similarly, A(A,T) =5
[Go, GW1], and there is exactly one simple manifold M having an annular filling
M(rq) and a toroidal filling M(rg) with A = 5, exactly two with A = 4, and
infinitely many with A =3 [GWI1]. In the present paper we complete the picture
by dealing with the case (A4, A). In this case, A(A, A) = 5 [Go, GW1], and there
are infinitely many simple manifolds M admitting annular fillings M (r1), M (r2)
with A = 3 [GW1]. Here we show that there is exactly one such manifold M
with A = 5, and exactly two with A = 4. More precisely, we have the following
theorem.

Theorem 1.1. Suppose M is a compact, connected, orientable, irreducible, O-
irreducible, anannular 3-manifold which admits two annular Dehn fillings M (ry),
M(ro) with A = A(ry,7r2) > 4. Then one of the following holds.

(1) M is the exterior of the Whitehead link, and A = 4.

(2) M is the exterior of the 2-bridge link associated to the rational number
3/10, and A = 4.

(8) M is the exterior of the (—2,3,8) pretzel link, and A = 5.

The three manifolds listed in the theorem are the exteriors of the links in S
shown in Figure 1.1.

Figure 1.1

That each of these link exteriors does have a pair of annular fillings with A = 4,
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4 and 5 respectively is proved in [GW1]. The fillings in question are also toroidal
[GW1], so in fact these are exactly the same manifolds which admit an annular
and a toroidal filling with A > 4 [GW1, Theorem 1.1]. Using [GW1, Theorem
1.1], Qiu has independently proved Theorem 1.1 in the special case where M is
the exterior of a knot in a solid torus [Q].

According to the proof of [GW1, Theorem 7.5], the annular fillings on the
three manifolds listed in Theorem 1.1 are non Seifert fibered graph manifolds. If
M admits some Seifert fibered surgery, then OM consists of tori, in which case
M is hyperbolic if and only if it is simple. Hence the following corollary is an
immediate consequence of Theorem 1.1.

Corollary 1.2. Suppose M is a compact orientable hyperbolic 3-manifold with at
least two torus boundary components, and suppose M (r1), M (r2) are Seifert fibered
manifolds. Then Ary,ry) < 3.

The condition that M has at least two boundary components cannot be re-
moved. For example, if M is the figure 8 knot complement, then M (3) and M (—3)
are Seifert fibered, and A(—3,3) = 6. It is not known whether the bound 3 in the
corollary is the best possible.

The proof of Theorem 1.1 proceeds as follows. For @ = 1,2, let A, be an
essential annulus in M (r, ), meeting the Dehn filling solid torus .J, in n, meridian
disks, with n, minimal over all choices of A,. This gives rise to a punctured
annulus F, = A, N M in M, such that the boundary components of F,, which
lie on Ty have slope ro, @ = 1,2. The arcs of intersection of Fy and Fy then
define labeled graphs G, in A, with n, vertices, a = 1,2. We assume that
A = A(r1,72) =4 or 5, and show by a detailed analysis that there are only three
such pairs of graphs, corresponding to the three examples listed in the theorem.

The paper is organized as follows. In Section 2 we give some definitions and
establish some basic properties of the graphs G,,. In Section 3 we show that any
graph in an annulus with no trivial loops or parallel edges must satisfy one of
four possibilities; if the reduced graph éa is of the fourth type we say that G, is
special. Section 4 is devoted to showing that if one of the graphs Gy, G2 is special
then they both are, and (up to relabeling) ny = 1, ng = 2. Section 5 considers the
generic case, nq,n9 > 2. This is shown to be impossible, by eliminating in turn
the first three possibilities of Section 3 for the reduced graphs @a. Section 6 shows
that the case n1 = 2, ng > 2 is also impossible. In Section 7 we show that if Gy
and G9 are special, so n1 = 1 and no = 2, then there is exactly one possible pair
G1,Ge, with A = 4, corresponding to case (1) of Theorem 1.1. Finally in Section
8, we show that if G, G2 are not special and n{,n9 < 2, then there are exactly
two possible pairs G, Gg, one with A = 4, ny = no = 2, and one with A = 5,
ny = ng = 2, corresponding to cases (2) and (3) of Theorem 1.1.

We would like to thank the referee for his/her careful reading and helpful
comments.
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§2. Preliminary Lemmas

Throughout this paper, we will always assume that M is a compact, connected,
irreducible, d-irreducible, anannular 3-manifold, with a torus boundary component
To. We use «, 3 to denote the numbers 1 or 2, with the convention that if they both
appear, then {a, 8} = {1,2}. Let rq, rg be slopes on T such that M(ry), M(rg) are
annular, and let A, be an essential annulus in M(r,) such that n,, the number of
components of intersection of A, with the Dehn filling solid torus .J,, is minimal
among all essential annuli in M(r,), « = 1,2. Denote by F, the punctured
annulus A, N M. Denote by A = A(ry,rg) the minimal geometric intersection
number between r; and rg. By [Go, Theorem 1.3] we have A < 5. Throughout
this paper, we will always assume A = 4 or 5, unless otherwise stated.

Minimizing the number of components of F| N Fy by an isotopy, we may assume
that F1 N Fy consists of arcs and circles which are essential on both F,. Let
g, ... ,uy, be the disks that are the components of A, N.J,, labeled successively
when traveling along J,. Similarly let vy,... vy, be the disks in Ag N .Js. Let
G, be the graph on A, with the u;’s as (fat) vertices, and the arc components of
Fi N Fy with at least one endpoint on 7Ty as edges. Note that we do not regard
an edge endpoint on the boundary of the annulus as a vertex, so we are abusing
terminology somewhat in that our graphs may have edge endpoints that do not
lie on vertices. The minimality of the number of components in Fy N Fy and the
minimality of n, imply that G, has no trivial loops, and that each disk face of
G, in A, has interior disjoint from F.

An edge e of a graph G on an annulus A is a boundary edge if it has one
endpoint on the boundary of A, otherwise it is an interior edge. A vertex v of G
is a boundary vertez if it is incident to a boundary edge, otherwise it is an interior
verter. Similarly, a face of G is a boundary face if it contains a boundary edge.

If e is an edge of GG, with an endpoint = on a fat vertex u;, then z is labeled j
if z is in du; NOv;. When going around the boundary of a vertex in G, the labels
of the edge endpoints appear as 1,2,... ,ng repeated A times.

An edge e at a vertex u; of G, is called a j-edge at wu; if it has an endpoint at
u; labeled j. Dually, a j-edge at u; is also an ¢-edge at v; in Gg. We say that e is
an (4, k)-edge if it has labels ¢ and k at its two endpoints.

Each vertex of G, is given a sign according to whether .J,, passes A, from the
positive side or negative side at this vertex. Two vertices of G, are parallel if they
have the same sign, otherwise they are antiparallel. Note that if A, is a separating
surface in M(ry), then n, is even, and wu;,u; are parallel if and only if 4, j have
the same parity. An interior edge of G, is a positive edge if it connects parallel
vertices. Otherwise it is a negative edge. We use val(v,G) to denote the valency
of a vertex v in a graph G.

By considering each family of parallel edges of G, as a single edge E, we get
the reduced graph G, on A,. It has the same vertices as G,. Denote by |E| the
number of edges in GG, represented by F.
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A cycle in G, consisting of positive edges is a Scharlemann cycle if it bounds a
disk with interior disjoint from the graph, and all the edges in the cycle have the
same pair of labels (¢,7+ 1) at their two endpoints. (i +1 =1 if ¢ = ng.) The pair
(7,24 1) is called the label pair of the Scharlemann cycle. In particular, a pair of
adjacent parallel positive edges with the same label pair is a Scharlemann cycle.
The boundary of the disk D bounded by a Scharlemann cycle consists of edges of
the Scharlemann cycle and some arcs on the annulus C; on Ty between dv; and
Oviy1. When ng = 2, the two annuli Cy and Cy are still distinct, allowing one to
differentiate between a (1, 2)-Scharlemann cycle and a (2, 1)-Scharlemann cycle. A
pair of edges {e1,ea} is an ertended Scharlemann cycle if there is a Scharlemann
cycle {e}, e5} such that e; is parallel and adjacent to €.

A subgraph G’ of a graph G on a surface I' is essential if it is not contained
in a disk in .

Lemma 2.1. (1) (The Parity Rule) An edge e is a positive edge in Gy if and only
if it is a megative edge in Go.

(2) A pair of edges cannot be parallel on both G1 and Gs.

(3) If Go has a set of ng parallel negative edges, then on G they form mutually
disjoint essential cycles of equal length.

(4) If Go has a Scharlemann cycle, then Ag is separating, and ng is even.
Moreover, the edges of the Scharlemann cycle and the vertices at their endpoints
form an essential subgraph of Gg.

(5) Go contains no extended Scharlemann cycle.

Proof. See [GW1, Lemma 2.2], except for (2) in the case that the pair of edges
e1,eo are boundary edges. If e1,e9 are boundary edges parallel on both G1,G9,
then they cut off bands B, By on the punctured annuli I, F5, which can be
glued together to get an annulus in the manifold A/, which intersects the Dehn
filling torus Ty in an essential circle. This contradicts the assumption that M is
O-irreducible and anannular. O

Let E be an edge of @a representing ngs parallel negative edges on G, connect-
ing u; to u;. Then E defines a permutation ¢ : {1,... ,ng} — {1,...,ng}, such
that an edge e in E has label k at v; if and only if it has label ¢(k) at u;. Call ¢
the permutation associated to E. Because of the ambiguity in the order of u;,u;,
the permutation is only well defined up to inverse. An F-orbit is an orbit of .
Such an orbit determines a cycle in G5 consisting of the edges of I/ with endpoint
labels in this orbit, called the cycle of this orbit. Note that all the vertices in a
cycle are parallel. Topologically each such cycle is a circle. Lemma 2.1(3) says
that these circles are mutually disjoint, mutually parallel, essential circles on the
annulus Ag.

Lemma 2.2. (1) Any two Scharlemann cycles on G have the same label pair.
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(2) If E is a positive edge in G, then |E| < ng/2+ 1. Moreover, if |E| =
ng/2+ 1, then the corresponding edges of Go contain a Scharlemann cycle.
(3) Any family of parallel interior edges in Gy, contains at most ng edges.

Proof. See [GW1, Lemma 2.5]. O

Lemma 2.3. (1) If some vertez of Gy, has more than ng negative edge endpoints,
then Gg contains a Scharlemann cycle.
(2) No vertex of G, has more than 2ng negative edge endpoints.

Proof. For any label i of Gg, let Gg(z) be the subgraph of G consisting of all

vertices of G and all positive i-edges of Gg. The edges of G;(z) correspond to
the negative edges of GG, incident to the vertex wu,;. Let the number of such edges
be k. Then if f denotes the sum of the Euler characteristics of the faces of G;,r (1),
we have

O:X(A@):nﬁ—k+f.

Therefore, if k > ng, G;(z) has a disk face D. Then there is a Scharlemann cycle
of Gz in D by [HM, Proposition 5.1]. This proves (1).

To prove (2), assume k > 2ng. Then by the above we have f =k —ng > ng,
S0 G;(z) has more than ng disk faces, and by [HM, Proposition 5.1] each such
face contains a Scharlemann cycle of Gj3. Hence G5 contains s > ng Scharlemann
cycles, all on the same label pair, say (1,2), by Lemma 2.2(1). Define a graph
H in Ag as follows; see [GL, Proof of Theorem 2.3]. The vertices of H consist of
the vertices of G, together with a vertex vp in the interior of each disk face of
G bounded by a Scharlemann cycle. The edges of H are defined by joining each
vertex vp, within D, to the vertices of Gz in dD. Thus H has ng+ s vertices and
at least 2s edges. An Euler characteristic argument then shows that H has a disk
face . This disk F contains a 1-cycle of G (see [CGLS, p. 279] for definition),
and hence a Scharlemann cycle [CGLS, Lemma 2.6.2]. But this contradicts the
fact that F is a face of H, because by definition H would have a vertex in the disk
bounded by this Scharlemann cycle. |

Let P,Q be two edge endpoints on the boundary of a vertex » in G,. Let
Py=P,P1,...,P. 1,P, = Q be the edge endpoints encountered when traveling
along du in the direction induced by the orientation of u. Then the distance from P
to @ (at the vertex u) is defined as p, (P, Q) = k. Notice that since the valency of u
is Ang, we have p,(Q, P) = Ang—pu (P, Q). If e, e2 is a pair of edges, each having
a single endpoint P; on the vertex u in G, then define py(e1,es) = py(P1, P2).

A pair of edges e, e connecting two vertices u,v in G, is an equidistant pair
if pu(e1,e2) = pulea,e1). In particular, one can check that if e1,e9 are a pair
of parallel edges connecting a pair of parallel vertices in G, then eq,eq is an
equidistant pair in G,.
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Lemma 2.4. (The Equidistance Lemma.) Let e1, e be a pair of edges connecting
the same vertices on G1 and the same vertices on Go. Then eq, e is an equidistant
pair in G if and only if it is an equidistant pair in Go.

Proof. See [GW1, Lemma 2.8]. O

Given two slopes r1,79 on the torus Tp, let [ be a curve intersecting r1 at
a single point. Choosing [ and the orientations of the curves properly, we may
assume that homologically r9 = gr1 + Al, where 1 < ¢ < A/2. The number q is
called the jumping number of ri,r9. Note that if A =4 theng=1,andif A=5
then ¢ =1 or 2.

Lemma 2.5. (1) If the jumping number q = 1, in particular if A = 4, then a pair
of j-edges at a vertex u; in G, are adjacent among all the j-edges if and only if
on Gg they are also adjacent at v; among all i-edges.

(2) If ¢ = 2, then a pair of j-edges at a vertex u; in Gy, are adjacent among all
j-edges if and only if on G, they are not adjacent among all the i-edges at v;.

Proof. This is essentially [GW1, Lemma 2.10]. It was shown that if Py,..., Pa
are the consecutive j-edge endpoints at w;, then on dv; they appear in the order
Py, Pog, ..., Pag, hence the result follows. O

A graph G on an annulus A is special if every vertex has at least two nonparallel
boundary edges. Note that G is special if and only if the corresponding reduced
graph G is special.

Lemma 2.6. (1) If G is special then every verter has exactly two boundary edges
in @, going to distinct boundary components of A.

(2) If Go, has 2ng parallel boundary edges, then Gg is special. Go cannot have
more than 2ng parallel boundary edges.

(8) If some edge E of c?a represents ng negate edges, and if G, has some
positive edges, then G, has at most ng parallel boundary edges, and each vertezx of
é@ has at most one boundary edge.

Proof. (1) Otherwise there would be a pair of edges of G at some vertex v going
to the same boundary component of A. By looking at an outermost such pair one
can see that some vertex u of G has a single boundary edge in G contradicting
the definition of a special graph.

(2) If G, has 2ng parallel boundary edges, then for any label 7 it has two
parallel i-edges. Since no two edges are parallel on both graphs, these two edges
are non-parallel on Gpg, hence Gg is special. If G, has more than 2ng parallel
boundary edges, then there is a label ¢ such that GG, has three parallel boundary
t-edges. Since by (1) the vertex v; in éﬂ has only two boundary edges, two of
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these edges would be parallel on both graphs, contradicting Lemma 2.1(2).

(3) Since G, has some positive edges, the vertices of Gg cannot all be parallel,
so there are at least two F-orbits, which form parallel essential cycles on Gpg.
Hence all boundary edges at a vertex of G must be parallel to each other. If G,
has more than ng parallel boundary edges then two of them would be parallel on
both graphs, contradicting Lemma 2.1(2). O

Lemma 2.7. Suppose all vertices of @a are boundary vertices, and suppose there
are two boundary edges FE1,FEy of @a incident to the same verter v and going to
the same boundary component of A,. Then G, has a vertez v/ of valency at most
3 which is incident to a single boundary edge, and Gg is special.

Proof. Let D be the disk on A, cut off by F1 U F». Since Eq, Fo are nonparallel,
D contains a vertex vy # v, hence by adding an edge if necessary we may assume
that there is an edge incident to v other than Fy, Eo. Let D be the double of D
along Fq U Ey, and let G be the double of CAia N D. Then each vertex of G has
a boundary edge. By [CGLS, Lemma 2.6.5] G has a vertex v’ of valency at most
3 and incident to at most one boundary edge. Since v has valency at least 4 in
G, v # v. Hence val(v/',G,) = val(v/,G) < 3. By Lemma 2.2(3) each interior
edge of éa represents at most ng edges. Since A > 4, this implies that the unique
boundary edge at v’ represents at least 2ng edges. By Lemma 2.6(2) in this case
G is special. |

§3. Reduced graphs on annuli

By a reduced graph on a surface we mean one with no trivial loops or parallel
edges; in other words, no faces of the graph are monogons or bigons.

Definition 3.1. Let G be a reduced graph on an annulus A. Then G is said to
be triangular if

(i) every vertex has at most one boundary edge;

(ii) every interior vertex has valency 6;

(iii) every boundary vertex has valency 5;

(iv) every face of G is a disk with three edges.

We remark that the only properties of a triangular graph that we will use are
(1), (iii), and the fact that the graph has at least one boundary vertex (which
follows from (iv)).

Proposition 3.1. Let G be a reduced graph in an annulus A. Then either
(1) G contains an interior verter of valency at most 5; or
(2) G contains a boundary vertex of valency at most 4 with exactly one boundary
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edge; or
(3) G is triangular; or
(4) G is special.

Proof. Let G be a graph obtained from G by adding extra edges so as to make
each face of GG1 a disk with three edges. In particular, in G, each boundary face
has three edges, and if some vertex v has two boundary edges eq, e, then v has
an edge on each side of e U eg, so it has valency at least 4.

Let G9 be the union of G| and AA, with the obvious graph structure. Thus
the points of G1 NAA are now considered vertices, and the segments of 9A cut by
these vertices are considered edges of Go. Note that val(v,Go) = 3 for all vertices
v on JA, and each boundary face now has four edges. Let GG3 be obtained from
G9 by adding a diagonal edge in each boundary face of G, all sloping in the same
direction; in other words, no two edges added have a common vertex on 0A. We
have val(v,G3) = 4 if v € JA. One can see that if we remove all edges and vertices
on 0A then we get a graph that is obtained from G by adding an extra copy of
each boundary edge. Hence if val(v,G1) = p and v has ¢ boundary edges in G,
then val(v,G3) = p+q. In particular, if v has two boundary edges in G, then its
valency in G is at least 4 + 2 = 6. Each face of GG3 is now a triangle.

The double of A along 9A is a torus T, and the corresponding double of G
is a reduced graph G3 on T' with triangular faces. By an Euler characteristic
argument, one can show that the number of edges in Gi3 is three times the number
of vertices of G3. Thus either (i) some vertex v of G3 has valency at most 5, or (ii)
all vertices of ¢ C~¥3 have valency 6. All vertices on @A have valency 4 in G3, hence
valency 6 in (i3, and we have shown that if v has two boundary edges in G1 then
it has valency at least 6 in G3; therefore (i) implies that either v is an interior
vertex of G with valency at most 5, or it is a boundary vertex of G with valency
at most 5 — ¢ < 4 and incident to at most one boundary edge, so the graph is of
type (1) or (2) in the proposition. Hence we may assume that all vertices of Gg
in the interior of A have valency 6.

If no vertex of G1 has two boundary edges then each boundary vertex of G1 has
valency 6 —g = 6 — 1 = 5. Since each interior vertex of (G1 has valency 6, it follows
that G is triangular. Since G is a subgraph of G1 with the same vertices, either
G = (1 and hence G is of type (3), or G has a vertex v with val(v, G) < val(v, Gy),
in which case G is of type (1) or (2).

Now assume some vertex v of G has two boundary edges e, es going to dif-
ferent boundary components. Then the valency of v in G is at most 6 — 2 = 4.
Since each face of G1 has three edges, there is exactly one interior edge ¢’ on each
side of e; Ues. Let v’ be the other endpoint of €. Since each face has three edges,
v’ must also have two boundary edges going to different boundary components of
A. Repeating this process, we see that 1 is a special graph such that each vertex
has valency 4. Since G is a subgraph of Gy, either it is special, hence of type (4),
or it has a vertex of valency at most 3 and incident to at most one boundary edge,



Vol. 75 (2000) Annular Dehn fillings 439

in which case it is of type (1) or (2).

Finally, assume G4 has a vertex v which has two boundary edges going to the
same boundary component. Then they cut off a disk D from the annulus, which
we may assume to be outermost. However, arguing as in the previous paragraph,
we see that the vertex on the other end of an edge ¢’ in D incident to v must
have two boundary edges, which is a contradiction. Therefore this case does not
happen. O

§4. Special graphs

Recall that a graph G on an annulus A is special if every vertex has two nonparallel
boundary edges. By Lemma 2.6(1) this implies that every vertex of G has exactly
two boundary edges in @, going to different boundary components of A.

To simplify notation, denote ng by n.

Lemma 4.1. If G, is a special graph, then Gg is also special.

Proof. First notice that since each vertex u; of GG, is incident to at most two
families of interior edges and each such family contains at most n edges (Lemma
2.2(3)), there are at most two interior j-edges at u; for any j. Hence there are
at least A — 2 boundary j-edges at wu;. Since this is true for all 7,7, we see that
each vertex v; of Gg has at least 2n, (3nq if A = 5) boundary edges. Since each
parallel family contains at most 2n, edges (Lemma 2.6(2)), the lemma follows
immediately when A = 5.

Now assume A = 4, and assume G is not special. Then it has a vertex v;
such that all boundary edges are parallel. By Lemma 2.6(2) and the above, v; has
exactly 2n, boundary edges, all parallel to each other. In particular, there are
only two boundary 1-edges eg, €] at v;. Dually this means that eq, €] are the only
boundary ¢-edges at uj. Since they are parallel on g, they cannot be parallel on
Gy, so they belong to different families of boundary edges. Since these two edges
are adjacent among all 1-edges at v;, by Lemma 2.5(1) they must also be adjacent
among all ¢-edges at uy. This implies that the two interior i-edges at u; are on
the same side of e1 U €], so they belong to the same edge E in éa because there
is only one interior edge of (A;a on each side of e; U¢). Since by Lemma 2.2(3)
contains at most n edges, this is impossible. |

In the remainder of this section we will assume that both G1 and G9 are special.
The sign of a vertex u in GG, induces an orientation on odu, called its preferred
orientation. Thus the preferred orientations of the du’s are all in the same direction
on Ty. Let eq,eq be a pair of adjacent boundary edges at some vertex u of G,,.
When traveling on du along the preferred orientation, the labels at the endpoints
of e1,e9 appear as i,7+ 1 for some 7 (i+1 =1 if ¢ = n). They cut off a band B on
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the surface I, called an i-band at u (of G,). Note that the label 7 is determined
by the pair eq,eq even if n = 2. The edge labeled ¢ at u is called the initial edge
of B, the other the terminal edge. Two i-bands of G, are of different types if their
initial edges are nonparallel on G 3; otherwise they are of the same type.

If eq,...,er are all the edges of a parallel family F at a vertex u, appearing in
this order when traveling along the preferred orientation of du, then ey is called
the ending edge of I/, and the label of e; at u is called the ending label of E. Note
that if a boundary i-edge e is not an ending edge, then it is the initial edge of an
i-band.

Lemma 4.2. There is a label i such that all i-bands of G, are of the same type.

Proof. Assuming otherwise, then there are two i-bands B}7 B? of different types
for each ¢. Since the graph Gj is special, there are only two families of parallel
boundary edges for each vertex v; in G, so each family contains the initial edge
of some Bij . Therefore, the terminal edge of each Bij is parallel to the initial edge
of some Bf+1v so there is a band Df on Fg connecting these two edges. Note that

Df degenerates to a single edge if these two edges coincide.

Consider the 2-complex Q = U(Bij U Df) Then QNTH = U(eg U df) is a graph
G on Ty, where ¢/ = B/ Ty and & = D N Ty. We have Q = G x I. Shrinking
each dg to a point, and orienting eg so that its endpoint is on dz , We get an oriented
graph G’ in which each vertex df is the tail of some edge ef - Hence G’ contains
an embedded oriented cycle. The corresponding cycle C' in G is then an embedded
loop in Tj. Let v be a parallel copy of some boundary component of Fs on Tp,
intersecting some eg in C transversely at a single point. The definition of Bij and
the orientation of ez implies that C intersects v always in the same direction; hence
C is an essential curve. Thus A = C x I C Q is an annulus properly embedded in
M intersecting T in the essential curve C', which contradicts the assumption that
M is O-irreducible and anannular. O

Lemma 4.3. Fach family of boundary edges in G, contains at least n edges.

Proof. Let Fy,...,E4 be the four edges of @a at uq, with F1, 5 the boundary
edges. If |E1| < n then there is a label ¢ which does not appear at the endpoints of
edges in F1. If A = 5 then we would have |E3| = 5n — |E1| — |Fa| — |Fy| > 2n+ 1,
contradicting Lemma 2.6(2). Hence A = 4. Since |F3| < 2n, E3 contains at most
two i-edges, so each of Fs, Fy contains one i-edge. Let e1,ea be the i-edges of
Fo, Ey at uq, and let e3, eq be the i-edges of F3. Since es,eq are adjacent i-edges
at uy, by Lemma 2.5(1) they are adjacent l-edges at v;. On G the two edges
e3,eq belong to different families of boundary edges at v;, because they cannot be
parallel on both graphs. Therefore the two edges eq, es belong to the same family
of interior edges. Since they both have label 1 at v;, this would imply that the
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interior family containing them has at least n, + 1 edges, contradicting Lemma
2.2(3). O

Lemma 4.4. The jumping number ¢ = 1.

Proof. This is automatically true if A = 4. Hence assume A = 5. First assume
that there is a vertex u; of G, which has two interior i-edges e1,es for some
¢. Since each interior family contains at most n edges, eq,e9 are nonparallel on
G,. By Lemma 4.3 each boundary family contains an i-edge, hence eq,e9 are non
adjacent among the i-edges at u;. Dually on Gy these are j-edges at the vertex
v;. For the same reason, they are non adjacent among all j-edges at v;. Therefore
by Lemma 2.5 the jumping number ¢ = 1.

Now assume that u; has at most one interior ¢-edge for all 7. Then it has at
most n interior edge endpoints. On the other hand, since each boundary family
contains at most 2n edges and the valency of u; is An = 5n, we see that it cannot
have less than n interior edge endpoints; therefore it has exactly n interior edge
endpoints, and each boundary family contains exactly 2n edges. If u; has two
interior families, so each family contains less than n edges, then the two boundary
families have different ending labels. In this case for each label ¢ there are three
i-bands, which cannot all be of the same type because each boundary family of v;
has at most two j-edges. This contradicts Lemma 4.2. Therefore u; has only one
family of interior edges, which contains n edges. For the same reason, each vertex
of G has only one family of interior edges, containing n, edges. By the parity
rule one of these families is negative, and by Lemma 2.1(3) they form cycles on the
other graph, so each vertex of that graph would then have two families of interior
edges, contradicting the above conclusion. O

Lemma 4.5. Suppose all i-bands at a verter u; of G, are of the same type. Then
(1) there are n parallel interior edges at uj, and
(2) each family of n parallel interior edges at uj has i as its ending label.

Proof. Let Ey, ..., E4 be the edges at u; of @1, appearing in this order around Ou;
along its preferred orientation, with Fq, F3 the boundary edges. Let eq,...,eq be
four i-edges at u;, appearing successively along the preferred orientation of du;.

First assume that all e; are boundary edges. Then we may assume that e, eg €
F1, and es,eq € F3. Thus eq, e3 are not ending edges, so they are initial edges of
some i-bands By, Bs. Since the jumping number ¢ = 1 (Lemma 4.4), and since
e1,e3 are non adjacent among i-edges at u;, by Lemma 2.5 they are non adjacent
among j-edges at v; in G, hence they are non parallel boundary edges on Gj.
Therefore Bq, Bs are of different type.

Now assume that Fy contains an i-edge es, say. Since each of Fq, F3 contains
at least n edges, we must have e1 € F| and eg € F3. Assume that either eg is not
the ending edge of Fs or |Ea| < n. Then eq is not an ending edge of E1, and there



442 C. McA. Gordon and Y.-Q. Wu CMH

is an ¢-band By with e as the initial edge. If e is not an ending edge either, then
there is an i-band Bs with e3 as initial edge. For the same reason as above, By, B3
are of different type, and we are done. So assume that e3 is the ending edge of
E3. Now we must have |F4| < n as otherwise F4 would have n edges and have
the 7-edge e4 as its ending edge, contradicting the assumption. Hence ey4 is in Fy,
and so there is an i-band with e4 as an initial edge. Since eq,e4 are parallel on
G, they are nonparallel on G, so again By, By are of different type. This proves
(1). To prove (2), notice that if [Flo| = n but eg is not the ending edge, then e, e3
are not ending edges of F1, F3, so from the above the two ¢-bands By, By are of
different type. O

Lemma 4.6. Suppose n > 2. Then each positive edge of @a represents at most
n/2 edges.

Proof. When n > 2, the special graph éﬁ has at most one edge connecting any
two vertices. If G, has n/2+ 1 parallel positive edges, then it has a Scharlemann
cycle eq U eg with label pair (1,2), say. So the two edges eq, es would be parallel
on Gy, contradicting Lemma 2.1(4). O

Proposition 4.7. If G, is special then up to relabeling we have n1 = 1, ng = 2,
and G1 has exactly two interior edges.

Proof. First assume n, > 2 for a = 1,2. By Lemma 4.2 for each graph G, there
is a label ¢ such that all i-bands of G, are of the same type. Let u; be a vertex
of G,. By Lemma 4.5(1), it has a set of n parallel interior edges E with ¢ as its
ending label at u;. Let uj be the vertex on the other endpoint of F, then by
Lemma 4.5(2), F also has ending label ¢ at uy. If F is negative, then the ending
edge e of IV at u; is the same as that at uy, so e would have the same label ¢ on its
two endpoints, and hence is a loop on G. Since n > 2 and G is special, this is
absurd. If F is positive, then the two ending edges would give rise to two negative
edges at v; in G, which must be nonparallel because they cannot be parallel on
both graphs. Thus both families of interior edges at v; are negative. Replacing
u; by v; in the above argument, we get a contradiction because now E must be
negative. Therefore up to relabeling we must have n1 = 1.

By Lemma 4.5(1) the only vertex uj of Gy has ng parallel interior edges, which
by the parity rule must be negative edges on Gg, hence ny > 2. If no > 2, then by
Lemma 4.6 G has at most ng/2 interior edges, which is a contradiction. Hence
the result follows. O
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§5. The generic case

In this section except for Lemma 5.1, we assume n,,ng > 2. By Proposition 4.7,
G, and G are not special. Again denote ng by n.

Lemma 5.1. Suppose ny > 2, n > 2, and suppose éa has a negative edge I with
|E| = n, and a positive edge E' with |E'| = n/2+ 1. Let (1,2) be the label pair of
the Scharlemann cycle in E'. Then

(1) Gg has at most n/2 boundary vertices;

(2) when n =4, the two vertices v3,va of Gg cannot both be boundary vertices;
and

(8) when n =4, Gy cannot have both a (1,4)-edge and a (2, 3)-edge.

Proof. Let k be the number of F-orbits. Since E’ contains more than n/2 edges,
hence contains a Scharlemann cycle, the annulus Ag is separating, so Gz has the
same number of positive and negative vertices. Each E-orbit contains the same
number (n/k) of vertices, all of the same sign, so the number of orbits containing
positive vertices is the same as the number of those containing negative ones, and
hence k must be even. Recall that each E-orbit forms an essential cycle on Gpg,
so only the vertices on the two cycles adjacent to the two boundary components
of Ag could be boundary vertices. Hence the number of boundary vertices is at
most 2(n/k), and since k is even, (1) follows unless k = 2.

Assume k = 2. Let C'1,C be the two cycles of E-orbits on Gz, and let eq, eg be
the edges of the Scharlemann cycle in E/. By Lemma 2.1(4) ej Ueg is an essential
cycle on G'3. The two vertices v, v9 of e] Ueg are on different Cy, Cy because they
are antiparallel, so the cycle e; Ueg lies between C1 and Cy, separating the vertex
vg on the first orbit from the vertex v,, on the second. On the other hand, since £’
contains more than two edges, there is an edge adjacent to the Scharlemann cycle
which is a (3,n)-edge, so on G there would be an edge connecting v3 to v,. This
is a contradiction, showing that k = 2 is impossible. In particular, this proves (1).

Now assume n = 4. Since we have shown that k is even and k # 2, we must
have k = 4. In this case each vertex v; of G5 has an essential loop C; coming from
the n parallel negative edges in G,,. These loops and their vertices form essential
circles on Az which are parallel to each other. As above, there is an edge in £’
which connects vs to vg. Hence the circles Cy and Cy are adjacent to each other,
so v3,v4 cannot both be boundary vertices. This proves (2). Since the edges in
the Scharlemann cycle connect vy to v, Cp is adjacent to Cy. Thus either Cs
separates vq from v{,v9, so there is no edge connecting vy4 to v, or Cy separates
vg from vy, vy, so there is no edge connecting vs to vg. This proves (3). O

Lemma 5.2. Suppose F1,...,Ex are the edges of C/l\a at a vertex u of valency 5.
If By, By, E3 are positive, and Ey is an interior edge, then |Es| > n; in particular,
Fs is a boundary edge.
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Proof. Assume |E5| < n. By Lemma 2.2(2) we have |E;| <n/2+1 for i <3, and
by Lemma 2.2(3) |E4| < n. Since n > 2, we must have A = 4, and

7
4n:An:|E1|+~~-|-|E5|§3(g+1)+2n:§n+3,

which implies that n < 6. Moreover, n must be even, otherwise by Lemmas 2.2(2)
and 2.1(4) we would have |E;| < n/2 for i = 1,2, 3, hence 4n < 3(n/2) + 2n, which
is absurd.

If n = 6, then all the above inequalities are equalities. In particular, A = 4,
|Ey| = |E5| = 6, and |F;| = 4 for i = 1,2,3, so each of Fy, s, F3 contains a
Scharlemann cycle, and by Lemma 2.2(1) they all have the same label pair, say
(1,2). But since |E4| = |Es| = n, these labels also appear in 4 and E5. Thus the
label 1 appears 5 times, contradicting the fact that A = 4.

Now assume n = 4. If each of Fq, Fy, F3 contains a Scharlemann cycle with
label pair (1,2), say, (in particular, if |F;| = 3 for ¢ = 1,2, 3), then again the labels
{1,2} appear three times among the endpoints of F; U Fy U E3 at u. Also, since
E4 U E5 has at least 16 — 3 x 3 = 7 edge endpoints at u, one of the labels {1,2}
appears at least twice among the endpoints of E4UEx5 at u, so it appears 5 times at
u, contradicting the fact that A = 4. Hence we may assume that |E{| = |Fs| = 3,
|E3| = 2, FE3 contains no Scharlemann cycle, and |F4| = |E5| = 4. Since the two
edges of F3 have labels 3,4 at u, they must have label sets {1,4} and {2,3}. Since
|Ey4| = 4, the edges in Fy are negative. This contradicts Lemma 5.1(3), completing
the proof of the lemma. O

Lemma 5.3. (A?a has no interior vertex of valency at most 5.

Proof. Let E,...,Exs be the edges of @a incident to u. Since all these edges
are interior edges, by Lemma 5.2 they can have at most two positive edges, say
Eq, Fy. By Lemma 2.3(2), u has at most 2n negative edges in G, hence £ U E»
represents at least 2n positive edges. By Lemma 2.2(2) we have 2n < 2(n/2 + 1),
which contradicts the assumption that n > 3. O

Lemma 5.4. éa cannot have a boundary vertex u of valency at most 4 with a
single boundary edge.

Proof. Let Ey be the boundary edge, and F1, Fa, F3 the interior edges of @a at
u. By Lemma 2.6(2) and Proposition 4.7 we have |Ep| < 2n. By Lemma 2.3(2),
u can have at most 2n negative edges in G, so one of the interior edges, say Fj,
must be positive, and by Lemma 2.2(2) |E1| < n/2+ 1 < n. Since each of Fy, F3
represents at most n edges, we have |Ep| > n.

We claim that either G, or Gg contains a Scharlemann cycle. If u has more
than n negative edges, then by Lemma 2.3(1) G contains a Scharlemann cycle.
So assume v has at most n negative edges. Since u has less than 2n boundary
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edges, it must have more than n positive edges. If at most two of the Fq, Fo, F3
are positive, then one of them represents more than n/2 positive edges; if all the
three interior edges at u are positive, then since they represent more than 2n edges,
again one of them represents more than n/2 edges. In either case these parallel
edges contain a Scharlemann cycle. This completes the proof of the claim.

Now |Ep| > n implies that some vertex of G has two nonparallel boundary
edges. In particular, @ﬁ cannot be triangular. It follows from Lemma 5.3 and
Proposition 3.1 that @ﬂ must also have a boundary vertex v of valency at most 4
with a single boundary edge. Since one of G, and Gg has a Scharlemann cycle, by
considering v instead of u if necessary, we may assume without loss of generality
that G, contains a Scharlemann cycle with label pair (1,2).

We claim that |Fg| < n+ 2. Otherwise each vertex of Gg has a boundary
edge, and some vertex v; other than vi,vo has two such edges eq,e9. Since the
edges of the Scharlemann cycle form an essential subgraph of G (Lemma 2.1(4)),
separating the two boundary components of Ag, the edges ey, e9 must go to the
same boundary component. Applying Lemma 2.7, we see that G, is special, a
contradiction.

Since |Ep| > n and u has some positive edges, by Lemma 2.6(3) the graph G,
cannot have n parallel negative edges. Thus if k of the FEy, Fy, F3 are positive,
then

4n§(n+2)+k(g+1)+(3—k)(n—1):(4—§)n+(2k—1)

which implies that n < 4. But since G,, contains a Scharlemann cycle, n is even.
This contradicts the assumption that n > 2. O

Lemma 5.5. If both @17 62 are triangular, then each boundary vertex has exactly
two positive and two negative edges in G .

Proof. Let Ejp,..., B4 be the edges of éa at a boundary vertex v, with Ey the
boundary edge. Since G is also triangular, g represents at most n edges. There-
fore by Lemma 5.2 at most two of the F; are positive. On the other hand, by
Lemma 2.3(2) v has at most 2n negative edges, hence at least n positive edges.
Since each F; represents at most n/2 + 1 < n positive edges, v must have two
positive edges in @a. O

Lemma 5.6. Suppose both @17 ég are triangular. Then all vertices of G1,G9 are
boundary vertices.

Proof. Let Ey, ..., E4 be the edges of G, at a boundary vertex v, with Ey the
boundary edge. By Lemma 5.5 we may assume that Fi, Fy are negative edges,
and Fs, F4 are positive edges.

Suppose G5 has some interior vertices. Then |Eg| < n. Since v has at most 2n
negative edges, it has more than n positive edges, so F3 U F4 contains a Scharle-
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mann cycle with label pair (1,2), say, and n is even. Also, one of Fq, Fy must
represent n parallel edges, for otherwise FyU Eq U Ey would contain at most 3n—3
edges, so one of Es, F4 would contain at least n/2+ 2 edges, contradicting Lemma
2.2(2). Now we can apply Lemma 5.1(1) and conclude that Gg has at most n/2
boundary vertices. Thus |Ep| < n/2. We have the inequality

n n 7
in < |Eg|+ ...+ |B5| < §+2n+2(5+1) < §n+2.
Since n is even, this implies n =4, |Ep| = 2, |E1| = Fa| =4, and |E3| = |Ey| = 3.
Now each of Fs, F4 contains a Scharlemann cycle on label pair (1,2), so these
labels appear 4 times among the interior edge endpoints at v. Thus the labels of
Ep must be 3,4. This contradicts Lemma 5.1(2). O

Lemma 5.7. @1762 cannot both be triangular.

Proof. Assume @1762 are triangular. Then by Lemma 5.6 all vertices of G, G
are boundary vertices, and by Lemma 5.5 each vertex v of GG, has exactly two
positive edges and two negative edges in éa. Since a positive edge in G, is a
negative edge in Gg, it follows that either (i) some vertex v of one of the graphs,
say (i1, has more positive edge endpoints than negative ones, or (ii) all vertices of
(1 and G2 have the same number of positive and negative edge endpoints.

In case (i), (writing n = n9), v has at most 2(n/2+ 1) = n + 2 positive edges,
at most n+ 1 negative edges, and at most n boundary edges. From the inequality

In<(n+2)+(n+1)+n

we see that n < 3. But if n = 3 then v has at most 2(n/2) = n positive edges, at
most n — 1 negative edges, and at most n boundary edges, which would lead to
the contradiction that 4n < n+ (n —1) + n.

In case (ii), any vertex v of G, has at most n+2 positive edges, the same number
of negative edges, and at most n boundary edges; so from 4n < (n+2)+(n+2)+n
we see that n = 4, |E| = 3 for all positive interior edges of éa, and |E| = 4 for
all boundary edges of GG,. Each label appears three times among the interior edge
endpoints at any vertex v of GG, but since each of the two families of positive edges
at v contains a Scharlemann cycle, which must all have the same label pair (1,2),
it follows that these labels appear only once among the negative edge endpoints
at v, so the label 3 appears twice among the negative edge endpoints at v. Since
this is true for all vertices v in G, it means that the vertex v3 on Gy has 2n,
positive edge endpoints, and n., negative ones, a contradiction. O

Proposition 5.8. One of the graphs G, has at most two vertices.

Proof. Assume nqi,n9 > 3. By Proposition 4.7, G,, is not special, by Lemma 5.3
G, does not have an interior vertex of valency at most 5, and by Lemma 5.4 it
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cannot have a boundary vertex of valency at most 4 with a single boundary edge.
Thus by Proposition 3.1 both %l 13 G2 are triangular, which contradicts Lemma 5.7.
|

§6. Nonspecial graphs with n; =2 and ng > 2

Throughout this section we will assume that G, Go are not special graphs. We
will show that the case ny = 2 and ng = n > 2 does not happen. Together with
Propositions 4.7 and 5.8, this shows that n, must be at most 2 for both o = 1
and 2.

Lemma 6.1. Ifny =2 then @1 is a subgraph of that shown in Figure 6.1.

Proof. Since @1 is not a special graph, one of the vertices u1,uo has at most one
boundary edge. If either uy or ug does not have a loop, then one can find a vertex
u of valency at most 3 in GG1, with at most one boundary edge. Since each interior
edge represents at most n edges, u would have at least 2n boundary edges, which

would imply that Gg is a special graph, a contradiction. Hence each vertex u; has
a loop. It is now easy to see that G{ must be a subgraph of that in Figure 6.1. I

Figure 6.1

Label the edges of él as in Figure 6.1. Denote by m the number of non-loop
interior edges of G, i.e. m = |E3| + |Ey].

Lemma 6.2. Suppose n1 =2, and n > 2.
(1) Either m = 2n, or m = 2n — 2 and Fy contains a Scharlemann cycle.
(2) The two vertices of G1 are antiparallel.

Proof. (1) If no label appears twice among the endpoints of edges in Fy, then from
the labeling on duj one can see that either m > 2n or |E1| > 2n. But the second
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possibility does not occur because then by Lemma 2.6(2) the graph G would be
special. Hence in this case we have m > 2n. Since each of Fs, F4 represents at
most n edges, we conclude that m = 2n.

Now assume that some label appears twice among the endpoints of edges in
E5. Then Fs contains a Scharlemann cycle eq, ea, with label pair (1,2), say. Since
n > 2, 9 contains no extended Scharlemann cycle (Lemma 2.1(5)), so one of
these two edges, say e1, must be an outermost edge among those in Fy. Thus the
endpoints of ey are either adjacent to those in E3U FEj or to those in Fy. In the
first case, the label sequence of Fs U Fy at uq is 3,4, ...,n, 80 m = n — 2 mod n.
If m = 2n — 2 then we are done. If m # 2n — 2, then since |F3|, |Fy| < n, we
must have m = n — 2. Thus |E| = An—m — 2|Es| > 2n, which by Lemma 2.6(2)
would imply that G9 is special, a contradiction. Therefore e; must be adjacent
to 1. As above, we have either |Ej| = 2n — 2, or |[E1| =n —2 and m > 2n. In
the second case we have m = 2n because |E3|, |Fy4] < n. It remains to show that
|E1] = 2n — 2 is impossible.

Assume |F1| = 2n — 2. Notice that this happens only if Fo contains a Scharle-
mann cycle. Moreover, if (1,2) is the label pair of the Scharlemann cycle then all
labels other than 1,2 would appear twice among endpoints of edges in F{. Thus
on (9 each vertex other than vq,ve would have two boundary 1-edges. But since
the edges in the Scharlemann cycle and the vertices v{,vo form an essential sub-
graph of Go, these two parallel 1-edges must go to the same boundary component
of Ag. By looking at an outermost vertex one can see that there is a vertex v,
with ¢ # 1,2, at which the two boundary 1-edges are parallel, so they are parallel
on both graphs, contradicting Lemma 2.1(2).

(2) If wy,ug are parallel then 2n — 2 < |E3| + |Ey]| < 2(n/2+ 1), implying that
n =4 and |E3| = |F4| = 3. In this case both E3, E4 contain Scharlemann cycles,
and by Lemma 2.2(1) they must have the same label pair (1,2) as the one in Ejs.
But since each of the labels 1,2 appears only once among the endpoints at uwy of
edges in F3 U Fy, this is impossible. O

Lemma 6.3. Suppose ny = 2, and n > 2. Then G cannol have 2n negative
edges.

Proof. We must have |Es| > 0, otherwise |E1| > 2n, so G5 would be special,
contradicting our assumption. Assume that G| has 2n negative edges. Then
|Es| = |E4| = n, and by Lemma 2.6(3) we have |E1| < n, hence |F3| > n/2. On
the other hand, by Lemma 2.2(2) |F2| < n/2+ 1. Hence Ey contains either n/2
or n/2+ 1 edges. We want to show that |Fa| # n/2 4+ 1. Assuming otherwise,
then since E3 contains n parallel negative edges, by Lemma 5.1 the graph Gy
has at most n/2 parallel boundary edges. On the other hand, we have |E{| =
An —m — 2|Fs| > n — 2, and since Fy contains a Scharlemann cycle with label
pair (1,2), say, n is even. Therefore we must have n = 4. Now in this case the
labels of the edges in Fy are 3,4, contradicting Lemma 5.1(2).
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(@) (b)

Figure 6.2

We have shown that |Es| = n/2, and |E1| = n. For the same reason, we have
|Es| = n/2 and |Eg| = n. Without loss of generality we may assume that wuy is
a positive vertex, uo is negative, and the edges of F{ have label sequence 1,...,n
at u1. See Figure 6.2. Let t = n/2. Since |Fa| = n/2, the label sequence of the
endpoints at uq of the edges of 3 ist+1,...,n,1,...,t. There is a number k such
that the label sequence at the other end of Fg ist+k,t+k+1,...,t +k—1. The
number k # 1, otherwise these edges would be loops in Gg, so n > 2 would imply
that some vertex of Go does not have a boundary edge, contradicting the fact
that |F1| = n. Now from Figure 6.2 we can see that the label sequence of Eg is
k,...,n,1,...,k—1, hence the two edges e3, e4 in Fg labeled n and 1 respectively, are
adjacent (because k #£ 1). Let e1, e2 be the edges of E labeled 1 and n respectively.
By Lemma 2.6(3), each vertex of G2 has at most one family of parallel boundary
edges, so eg is parallel to e3, and eq parallel to e1 in Go. Let B(ey,ea) be the band
on I between e and eg, and let B(es, eq) be that between ez and e4. Similarly, let
Bleg,e3) and B(eyq,e1) be the bands on Iy between eg,es and ey, €1, respectively.
Now we can form an annulus A = B(ej,es) U B(ea,e3) U Bles,eq) U Bleg,e1) in
the manifold M. Since the boundary curve C of A on Ty intersects the circle duvo
transversely at a single point (on the arc B(e1,eg) Nduy), it is an essential curve.
This contradicts the fact that the manifold M is d-irreducible and anannular. O

Lemma 6.4. Suppose ny = 2, and n > 2. Then Gy cannot have ezactly 2n — 2
negative edges.

Proof. 1f G has 2n—2 negative edges, then (up to symmetry) either |E3| = |Fy| =
n — 1, or |F3] = n and |F4] = n — 2. Looking at the labeling, one can see that
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the two loops of Fy near F3U Ey4 form a Scharlemann cycle, with label pair (1,2),
say. If |F3| = n then by Lemma 2.6(3) we have |F1| < n, hence |Fa| > n/2+ 1.
Now by Lemma 5.1(1) the graph G9 has at most n/2 boundary vertices, which
contradicts the fact that |Ey| = n. Therefore we must have |E3| = |F4] =n — 1.
For the same reason, the two loops in Ex near Fs U E4 form a Scharlemann
cycle, which by Lemma 2.2(1) must have the same label pair (1,2). Now we can
see that F3 has label sequence 3,4,...,n,1, at u1, and has label sequence 2,3, ...,n
at ug. However, in this case F3 has only one orbit, containing all the labels, so all
the vertices of GGo are parallel to each other, hence all edges of (G1 are negative.
But since GG1 contains some loops, this is a contradiction. O

Proposition 6.5. If M(r1),M(re) are annular, and A > 4, then n, < 2 for
a=1,2.

Proof. By Proposition 4.7 this is true if one of the G, is special. By Proposition
5.8 one of the graphs, say (G1, has at most two vertices. Since the two possibilities
in Lemma 6.2(1) have been ruled out by Lemmas 6.3 and 6.4, the case ny < 2 and
ng > 2 cannot happen. O

§7. Special graphs with n; =1 and ny =2

Proposition 7.1. If G is special, then A = 4, up to relabeling n1 = 1, no = 2,
and the manifold M is the exterior of the Whitehead link.

Proof. By Lemma 4.1, both graphs must be special. By Proposition 4.7, up to
relabeling we must have ny = 1, no = 2, and G has exactly two interior edges
e1,e9.

Assume A = 5. By Lemma 4.4 the jumping number ¢ = 1. There is a pair of
adjacent boundary 1-edges e, eg at v in G, which by Lemma 2.5(1) should also
be adjacent at 1 in G1 among all 1-edges; but since the two families of boundary
edges at uq are separated by two interior edges, €1, eo must be in the same family,
so they are parallel on both graphs, a contradiction. Therefore we must have
A=4.

Now the Whitehead link exterior W does admit two annular Dehn fillings
W(r1), W(re) with A(r1,re) = 4, ny = 1, and ng = 2, see [GW1, Theorem 7.5].
It remains to show that the manifold satisfying these conditions is unique.

Each vertex of G9 has two boundary edges, which are nonparallel because G4 is
special. Thus the graph G5 must be as shown in Figure 7.1(b). Similarly, since G
is special it has two families of parallel boundary edges. The loops have different
labels at their two endpoints, so each family of boundary edges of G{ contains an
even number of edges. Hence G'{ must be as shown in Figure 7.1(a).

Label the six edges of G1 as in the figure. Orient e3,eq so that on G they
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(@) (b)

Figure 7.1

have label 1 at their tails. Up to symmetry we may assume that the edge e¢1 on Go
is as shown in Figure 7.1(b). The label 1 endpoints of edges e, es, e5,eq4 appear
successively on duy, hence by Lemma 2.5(1) they also appear in this order on dvy
in Gl9, so these edges must be as shown in the figure. Similarly by looking at the
label 2 endpoints of e, eq, €5, €3 one can determine the edges e4 and eg. Therefore
up to symmetry the graphs G, are exactly as shown in the figure. We need to
show that these graphs uniquely determine the manifold M.

Recall that F,, denotes the punctured annulus A, N M. Let X = N(Fy UTp),
and let Y = N(Fy U 5 UTp), where the regular neighborhoods are taken in M.
The frontier of X in M, i.e. XNM — X, is a surface F', which is a four punctured
sphere. Note that Y is obtained from X by adding regular neighborhoods of
the faces of Go. Each of the four faces of Gg is a disk D; with dD; = ¢; U,
where ¢} is an arc on M, and ¢; an arc on Fy UTp. Let & be the arc D; N F.
Then the frontier of Y = X U (UN(D;)) in M is a properly embedded surface F”,
homeomorphic to the surface obtained by cutting I’ along the arcs ¢;. Thus Y
and X are homeomorphic, but they are embedded in M differently. Note that Y
is uniquely determined by the graphs G1 and Gs.

It is easy to see that all the ¢; are essential arcs on F. Since each boundary
component of F' meets U¢; twice, after cutting along all these ¢;, the remnant,
and hence I, consists of either two disks, or two disks and an annulus. In fact,
by examining the graphs, one can see that I indeed consists of two disks and
an annulus. Since M is irreducible and &-irreducible, the disk components of F’
are boundary parallel. If the annular component A of F’ is incompressible in M
then A is also boundary parallel because M is anannular and irreducible, so M
would be homeomorphic to Y, which in turn is homeomorphic to X. Let C be
an essential curve on T disjoint from 0F;. Then C x I in Ty x I would be an
essential annulus in X, contradicting the fact that A is anannular. Therefore A
must be compressible. Let D be a compressing disk of A in M. Then D lies in
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either Y or M — IntY. We show that the first case is impossible.

First notice that the surface Fy cuts X into a manifold ' x I, in which both F
and the two copies of I| are incompressible. By an innermost circle argument one
can show that F is incompressible in X. Under the homeomorphism ¥ = X, A
can be considered as a subsurface of I, hence A is also incompressible unless the
core of A is a trivial curve on I'. On the other hand, notice that A is a component
of Y — IntF”, where F” =Y N (0M — Tp) is a neighborhood of 041 U 9Aq
on OM, which is connected. Since 9A C F”, it follows that the core of A is
nonseparating on dY’, hence it is nontrivial on F. This completes the proof that
A is incompressible in Y.

Hence the compressing disk D of A lies in M — IntY. Let M’ be the union
of Y and a regular neighborhood of D. Then the frontier of M’ in M is a set of
disks, which must be boundary parallel because M is irreducible and d-irreducible.
Therefore M’ is homeomorphic to M. It follows that M is obtained from Y by
adding a 2-handle along the core of A, and hence is uniquely determined by the
graphs GG1 and Ga. O

¢8. Nomnspecial graphs with n, <2

First note that if n, =1 and G, is not special, then the unique vertex of G, has
valency at most 3 in G, and hence by Lemma 2.2(3) G,, has at least 2ns parallel
boundary edges. By Lemma 2.6(2) this implies that G, and therefore (by Lemma
4.1) G, is special, a contradiction. Hence if G1, Gy are not special and nq,ng < 2,
we must have n; = ng = 2.

Lemma 8.1. Suppose thalt ny = na = 2 and G, Gy are not special. Then for
a = 1,2, the two vertices of G, are antiparallel, G, is a subgraph of the graph G
in Figure 6.1, and one of the following holds.

(i) A = 4, each interior edge of G, represents two edges of G, and G, has
no boundary edges.

(ii) A = 5, each edge of G represents two edges of G, and the jumping
number g = 2.

Proof. By Lemma 6.1, G, is a subgraph of the graph G shown in Figure 6.1.
Each vertex v of G, must have a loop, otherwise some vertex would have valency
3in @a with a single boundary edge, so by Lemma 2.6(2) Gz would be special,
contradicting the assumption. Since a loop in G, is a non-loop negative edge of
Gg, it follows that each graph G5 has some negative edges, hence the two vertices
of G5 must be antiparallel, 8 = 1,2. By Lemma 2.2(3) each interior edge of éa
represents at most two edges of G,. Similarly, each boundary edge of @a also
represents at most two edges of G, by Lemma 2.1(2).

First assume A = 4. Notice that a vertex of G, has either no boundary edge or
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two boundary edges, for if it has exactly one boundary edge then the loops based at
that vertex would have the same label at their two endpoints, which contradicts the
parity rule. Since two boundary edges at a vertex of GG, correspond to boundary
edges at different vertices of G/g, it follows that either both vertices of G, have
two boundary edges, or they both have no boundary edges. The second possibility
gives rise to conclusion (i) in the lemma.

Assume that each vertex of G, has two boundary edges. Then there are a total
of 6 interior edges in each graph. Note that an interior edge is a loop on G, if and
only if it is a non-loop on G5 because of the parity rule, hence one of the graphs,
say G1, has at least three loops. Without loss of generality we may assume that
there are two loops ey, ea based at the vertex 1. Consider their label 1 endpoints.
Because there are two boundary edges at w1, these two endpoints are non adjacent
among all label 1 endpoints at u1. Now look at the graph Ga. By Lemma 2.5(1)
e1,e9 are non adjacent l-edges at v1 among all 1-edges. However, since they are
non-loops in G, they are contained in the two adjacent families F3, Fy in Figure
6.1. Since F3U F4 contains a total of at most four edges, e, e are adjacent among
all 1-edges at v1. This contradiction completes the proof of the lemma for the case
A=4.

Now assume A = 5. Since each vertex of G has valency 5, and since each edge
of (A?a represents at most two edges of G, A = 5 implies that each edge of @a
represents exactly two edges. By the same argument as above one can show that
the jumping number ¢ cannot be 1, so we are in case (ii). O

Lemma 8.2. There is a unique irreducible, O-irreducible, anannular manifold M
which admits two annular Dehn fillings M (r1), M (rg) with A(ry,re) = 5.

Proof. By Lemma 8.1, the graphs must be as shown in Figure 8.1. We first show
that the edge correspondence and the labelings of the vertices are unique up to
symmetry.

Reflecting the annuli vertically and changing their orientations if necessary,
we may assume that the vertices wui,vq are positive, and the labeling of edge
endpoints at du, dvq are as shown. Any non-loop edge has the same label on its
two endpoints, because it is a loop edge on the other graph. Thus the labeling on
Ouo, Jvg is determined by that on duq, dvy, respectively. Orient the edges so that
a non-loop edge goes from wuy to ug (resp. v1 to vg). Then dually the orientation
of a loop edge must go from label 1 to label 2. Label the edges of G as in Figure
8.1(a).

If Pq,..., Ps are the points of w1 M vy, appearing in this order on duq along
its orientation, then since the jumping number ¢ = 2, they appear in the order
Py, P3, Ps, Py, Py on dup either along or against the orientation of dvq. In other
words, along the orientation of dvq they either appear in this order, or in the order
Py, Py, Py, Ps, P3. In the second case, write (Q1, Qo, ..., Q5) = (P1, Pi, P2, Ps, P3);
then (Py,...,P5) = (Q1,Q3,Q5,Q2,Q4). Hence by interchanging the roles of G
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and Gy if necessary, we may assume that the points appear as (Py, Ps, Py, Pa, Py)
on Ovy along the orientation of dvy.

Now we can see that the labeling of the edges on G5 is completely determined
by that of G1: The l-edges at u{ appear in the order a,c,e,k,d in the positive
direction, so at vy they appear in the order a,e,d,c, k, where a is the unique
boundary edge at vq labeled 1. The order of the 2-edges at wy is b,d, f,[,¢, so
dually the 1-edges at vg are in the order b, f, ¢, d, . Similarly by looking at u9 one
can determine the labeling of the remaining edges in Ga. See Figure 8.1(b).

(@) (b)

Figure 8.1

It remains to show that the manifold A is uniquely determined by these graphs.
As in the proof of Proposition 7.1, consider the submanifold X = N(A; U .Jy) of
M(ry). Since Jq intersects A1 in two meridian disks of opposite sign, the frontier
F of X consists of two components Fj, I, each being a twice punctured torus,
called the black surface and the white surface respectively. A face of G9 is black
or white according to whether it intersects the black surface or the white surface.
Note that each face of G9 intersects F' in a circle or an arc, so it is either black or
white, but not both.

Let D1 be a face of G9 bounded by a pair of parallel loops, and let Dy be
the triangular interior face of Go adjacent to Di. Since they have an edge in
common, they are of different colors, so we may assume that Dy is black and Dy is
white. The boundary of D1 intersects a meridian of .J; twice in the same direction,
hence 9D is a nonseparating curve on Fy. After adding a neighborhood of Dy
to X, the black frontier is homeomorphic to the surface obtained by 2-surgery
on Fy along dD1, hence is an annulus A. Since its boundary components are
essential curves on OM, and since M is O-irreducible, A is incompressible in
M, and hence is boundary parallel in M. Similarly, since the boundary of Do
intersects a meridian of Ji three times, 9D is a nonseparating curve on I, so
after adding N(Ds3) the white frontier becomes an annulus A,,, which for the same
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reason must be boundary parallel in M. It follows that M is homeomorphic to
N(FyUTygU Dy U Dsg), where F] is the punctured annulus A; N M. The boundary
curves of D; are determined by the graphs, which have been determined (up to
symmetry) as above. Hence the manifold M is uniquely determined. |

Lemma 8.3. There is a unique irreducible, O-irreducible, anannular manifold
M which admits two annular Dehn fillings M(r1), M(ro) with A(r1,7m9) = 4 and
ny =mng = 2.

Proof. The proof is similar to that of Lemma 8.2. In this case the jumping number
is 1, and one can show that up to symmetry the graphs must be as shown in Figure
8.2. The proof that M is determined by the graphs is the same as in the proof of
Lemma 8.2. O

(a) (b)
Figure 8.2

We now prove Theorem 1.1, which we restate here for the reader’s convenience.

Theorem 1.1. Suppose M is a compact, connected, orientable, irreducible, O-
irreducible, anannular 3-manifold which admits two annular Dehn fillings M (ry),
M(ro) with A = A(r1,7m9) > 4. Then one of the following holds.

(1) M is the exterior of the Whitehead link, and A = 4.

(2) M is the exterior of the 2-bridge link associated to the rational number
3/10, and A = 4.

(8) M is the exterior of the (—2,3,8) pretzel link, and A = 5.

Proof. By Proposition 6.5, we must have n, < 2 for « = 1,2. If G, is special, then
by Proposition 7.1 the manifold M is the exterior of the Whitehead link. If G, is
nonspecial, then by Lemma 8.1 the graphs G, must be as in Figure 8.1 or 8.2, and
by Lemmas 8.2 and 8.3, in each case the manifold M is uniquely determined by the
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hence there are at most three manifolds M which may admit two annular

Dehn fillings of distance at least 4 apart. On the other hand, it has been shown in
[GW1, Theorem 7.5 that each of these manifolds admits two such fillings. Hence

the result follows. (|
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