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Periodic ends, growth rates, Holder dynamics for
automorphisms of free groups

Gilbert Levitt and Martin Lustig

Abstract. Let F, be the free group of rank n, and dF;, its boundary (or space of ends).
For any o« € Aut F3,, the homeomorphism d« induced by « on 8F,, has at least two periodic
points of period < 2n. Periods of periodic points of da are bounded above by a number M,

depending only on n, with log M,, ~ y/nlogn as n — +o0.

Using the canonical Holder structure on 8F,,, we associate an algebraic number A\ > 1
to any attracting fixed point X of da; if A > 1, then for any Y close to X the sequence
da? (Y) approaches X at about the same speed as e~ P This leads to a set of Hélder exponents
Ap(®) C (1, +00) associated to any & € Out F,,. This set coincides with the set of nontrivial
exponential growth rates of conjugacy classes of F,, under iteration of ®.

Mathematics Subject Classification (2000). 20E05, 20F65.
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Introduction and statement of results

Let ¢ be a homeomorphism of a closed surface ¥, with x () < 0. In [14], Nielsen
studied ¢ by lifting it to the universal covering D of >} and considering the induced
homeomorphism f on the circle at infinity S. In more algebraic terms, the mapping
class of ¢ corresponds to an outer automorphism ¢ of 713, various lifts of ¢ to
D correspond to various automorphisms a of 713 representing ®, and f: S — 5
corresponds to the homeomorphism da induced by « on the boundary of the group
T2,

Let F, be the free group of rank n. We will study automorphisms « of F,,,
and outer automorphisms ® € Out F,,, through the homeomorphisms d« induced
on the boundary 9F,,. The space dF),,, homeomorphic to a Cantor set if n > 2,
may be viewed as the (Gromov) boundary of F),, or its space of ends, or the set
of right-infinite reduced words in the generators and their inverses.

In the case of a surface group, Nielsen proved among many other things that
f=0a:S — S always has at least two periodic points. Furthermore, the period
of these points may be bounded in terms of |x(X)].
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Our first main result has a similar flavor.

Theorem 1. Let o € Aut F},.

(1) The homeomorphism O« : OF,, — OF, has at least two periodic points of
period < 2n. If it has only one orbit of periodic points, then this orbit has
order two.

(2) Suppose X € OF, is periodic of period q under da. Then q < M,,, where
M,, depends only on n and log M,, ~ /nlogn as n — oo.

The bound 2n and the bound on ¢ are sharp. The quantity +/n logn is asymp-
totic to the logarithm of the maximum order of torsion elements in Aut F),, see
[11]. As a special case of assertion 2, there is a bound depending only on n for
periods of elements g € F,, under the action of . One may also establish a uni-
form bound for periods of conjugacy classes under the action of & € Out F),. It
is proved in [9] that, for “most” o € Aut F,,, the homeomorphism do has exactly
two fixed points, and no other periodic point.

Like many results of the present paper, the proof of Theorem 1 uses R-trees
and techniques introduced in [5]. The proof of assertion 2 uses the main result of
[5], and Bestvina-Handel’s bound [1] for the rank of the fixed subgroup (the “Scott
conjecture” ).

Let us now consider local properties of fixed points of d«, using the canonical
Holder structure on 9F,, (see [3, 7]). Let X be a fixed point of da: not belonging to
the limit set of the fixed subgroup Fixa C F,. It is either attracting or repelling
[5]. In the attracting case, we show that, for Y € 9F, close enough to X, the
sequence daP(Y') converges to X super-exponentially in the sense that

lim llog d(0aP(Y), X) = —o0,
p—too p
where d is any distance on OF,, defining the Hoélder structure. We say that X is
superattracting (see the beginning of Section 4 for a detailed discussion).

Theorem 2. Let o € Aut F,,. Let X € OF,, be a superattracting fixed point of Ocr.
There exists an algebraic number A = Ao, X) > 1 such that

lim llog<—log d(ﬁa”(Y),X)) = log A
p

p—too
forY € OF, close to X (and d a distance on JF,, as above).

Thus, when A > 1, the sequence da(Y') converges to X at about the same
speed as fP(x) approaches 0, where f is the map = — 2> : [0,1) — [0, 1).

Example. Consider « : Iy — I given by a(a) = aba, a(b) = ab. The number
associated to X = lim,_, o o (a) = ababaaba . .. is the Perron-Frobenius eigen-

value of the matrix <% 1> On the other hand, for the polynomially growing
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a : F3 — I3 given by a(a) = a, a(b) = ba, a(c) = cba, the number associated to
the superattracting point X = lim,_, 4 of(c) = chababa® . .. equals 1.

We now associate a canonical set of Holder exponents Ap(P) C (1,+00) to any
® € Out F,,. View ® as a collection of automorphisms o € Aut F,,. We say that
w1 > 1 belongs to Ap(®) if there exist 8 € P4, with ¢ > 1, and a superattracting
fixed point X of 98 with A\(3, X) = u4. The set Ap(P) is a conjugacy invariant of
P.

Example. If ® is induced by a homeomorphism ¢ of a compact surface > with
m Y ~ F,,, then Ay, (P) consists of (roots of) the expansion factors of the pseudo-
Anosov pieces of . They are algebraic units.

If & € Aut F3 is given by a(a) = ab™1, a(b) = bac™ !, a(c) = ca™3 (see [6,
Example I1.7]), then Ay (®) consists of the real root A of 2% — 322 + 22 — 3. Note
that X is not an algebraic unit, and therefore cannot be read off the graph of groups
constructed by Sela in Theorem 4.1 of [15].

Theorem 3. Given ® € Out I}, the set of Holder exponents Ap(P) equals the
set A(P) of nontrivial exponential growth rates of conjugacy classes of Iy, under
iteration of ®.

The (exponential) growth rate of a conjugacy class v is A(y) = limy_, o0 [®P(7)|1/?
(see Proposition 3.3). It is nontrivial if A(y) > 1. It will be shown in [10] that A(P)
has at most [3—”4*—2] elements and consists of certain Perron-Frobenius eigenvalues
of the transition matrix associated to a relative train track representative of ®.
This paper is organized as follows. In Section 1 we prove the existence of peri-
odic points for da.. The proof of Theorem 1 is completed in Section 2 (Theorems
2.1 and 2.3). In Section 3 we briefly discuss growth rates. We start Section 4 by
a general discussion of superattractivity, valid for an arbitrary hyperbolic group.

We then prove Theorem 2.

1. Existence of periodic points

Let F,, be a free group. We consider its boundary 9F,,, equipped with the natural
action of I, by left-translations. It is a Cantor set if n > 2 (it consists of two
points if n = 1). In section 4, we will view dF,, as a set of right-infinite reduced
words. A finitely generated subgroup J C F), is quasiconvex [16]. In particular,
we can identify the boundary (or limit set) 0. with a subset of OF,.

An automorphism « € Aut F,, is a quasi-isometry of F,,. It induces a homeo-
morphism da : IF,, — AF,,, and a homeomorphism @ = o U da on the compact
space Fp, = I, U OF,.

The fixed subgroup Fixa = {g € F,, | a(g) = g} has finite rank (Gersten, see
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e.g. [2]). Its boundary d(Fix«) is a subspace of 9F,, upon which da acts as the
identity. Note that for any integer ¢ the subgroup Fixa? is a-invariant (i.e. it is
mapped to itself by «).

Following Nielsen [14], we say that a fixed point X of da is singular if X €
d(Fix o), regular otherwise.

It is shown in [5, Proposition 1.1] that a regular fixed point X of d« is either
attracting or repelling. Attracting means that a?(Y) converges to X for every Y
in a neighborhood of X in I}, UJF, (as p — +00), repelling means attracting for
a1 (see a detailed discussion in Section 4).

We say that X € OF, is periodic if there exists ¢ > 1 with da?(X) = X.
The smallest such ¢ is the period of X and the set {X,da(X),...,004 1(X)}isa
periodic orbit of order q. We define X to be regular, attracting... if it is as a fixed
point of da?. We give a similar definition for a periodic orbit, noting that all its
elements have the same type.

Theorem 1.1. Let o € Aut F,,. The homeomorphism da : OF, — OF,, has at
least two periodic points. More precisely, either o has at least two periodic orbits,
or the unique periodic orbit has order 2 and is the boundary of an a-invariant
infinite cyclic subgroup.

Example 1.2. We construct a da with only one periodic orbit. First define
B: Iy — I by a— a, b— aba. Then 98 has two singular fixed points a¥>° =
lim, o0 a™P. It is easily checked that these are the only periodic points of 9.
The automorphism g is the square of « : a +— a“17b — a~1b=1. The map Jda
permutes ¢® and @~ °°.

The proof of Theorem 1.1 (to be found below) uses an a-invariant R-tree 7T'.
The main properties of T' are summarized as follows.

Theorem 1.3. ([5]) For every automorphism « of F,, there exists an R-tree T
and a number X > 1 such that:

(1) F, acts onT' non-trivially, minimally, with trivial arc stabilizers.

(2) There erists a homothety H: T — T with stretching factor A such that

a(g)H = Hg
for all g € F,, (viewing elements of Iy, as isometries of T'). If A =1, then
T is simplicial.
(3) There exists an F, -equivariant injection j : 0T — OF,, satisfying oo j =
joH. O

Furthermore:

Theorem 1.4. ([6]) Given Q € T, its stabilizer Stab Q has rank < n—1, and the
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action of Stab @ on wo(T'\ {Q}) has at most 2n orbits. The number of F,, -orbits
of branch points is at most 2n — 2. O

A homothety is a map H such that d(Hz, Hy) = Ad(z,y) for some X > 0 (the
stretching factor). We denote JT the set of equivalence classes of infinite rays
p:(0,400) — T, and again H : 9T — IT the induced map. See [5, Sections
2 and 3| for other definitions and a proof of Theorem 1.3. Theorem 1.4 follows
from Theorem I11.2 of [6]. Given o and 7', the number A and the homothety H
satisfying a(g)H = Hg are unique.

A homothety H with A > 1 has a unique fixed point @, which may be in T
or only in its metric completion T. We define an eigenray of H as in [5], as an
isometric map p : (0,00) — T such that p(Az) = Hp(z). We note:

Proposition 1.5. If HR = R, the stabilizer Stab R is a-invariant. If p is an
eigenray, then j(p) is a fized point of do. Now suppose A > 1, and let Q be the
fixed point of H. If Q € T\ T, then there exists a unique eigenray. If Q € T, then
any component of T'\ {Q} that is fixed by H contains a unique eigenray. m]

Proof of Theorem 1.1. First assume that the fixed subgroup Fix a? is nontrivial
for some ¢ > 1. If it is cyclic, its two boundary points are either fixed points of da
or a periodic orbit of order 2. If Fixa? has rank > 2, we get uncountably many
periodic orbits. From now on we assume that Fix a4 is trivial for every ¢, and we
construct an attracting periodic orbit of da. The same argument, applied to cfl,
will yield a second orbit.

Let 1" be as in Theorem 1.3. If H fixes some @) € T" with Stab @ nontrivial,
recall that Stab () is a-invariant. Since it has rank less that n and dStab Q) embeds
into 0F,,, we will be able to use induction on n (of course n = 1 is trivial). Also
note that, if p is an eigenray of H (with A > 1), then the fixed point j(p) of da is
attracting (see the proof of Assertion 2 of Proposition 4.4 in [5]).

Recall that we want to find an attracting periodic orbit of da. First assume
A > 1. Let @ €T be the fixed point of H. If @ € T\ T, there is an eigenray p and
j(p) is an attracting fixed point of da.. Suppose @ € T. If Stab @ is nontrivial, we
use induction on n. Otherwise T'\ {Q} has at most 2n components by Theorem
1.4, and some power of H has an eigenray. This gives an attracting periodic orbit
as before.

Now we assume A = 1. In this case T" is simplicial and H is an isometry.

First suppose H fixes some Q. We may assume Stab @ is trivial (otherwise,
we do induction). Then some H* fixes an edge e¢. Replacing o by o, we assume
k = 1. Collapse to a point every edge not in the orbit of e (under the action of F,,).
We get a new tree 7" with an isometry H' satisfying the conclusions of Theorem
1.3. The map H' fixes some point with nontrivial stabilizer (since all vertices now
have nontrivial stabilizer) and we use induction.

The last possibility if that H is a hyperbolic isometry of T'. In this case H has
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a translation axis A and fixes two ends of T'. Orienting A by the action of H, we
consider the positive end AT of A and the associated fixed point X+ = j(AT) of
da. We complete the proof by showing that X is not repelling (and therefore is
attracting since we assume Fix af trivial for all ¢). Choose any point @ € A, and
g € F,, acting on T' as a hyperbolic isometry whose axis has compact intersection
with A. Writing o (¢)Q = HPgH P we see that the projection of o?(g)Q@ onto
A goes to AT as p — co. By Section 3 of [5] this implies lim,_,oc a?(g) = X,
Thus X1 cannot be repelling. O

2. Bounding periods

Theorem 2.1. Let o € Aut F,,. Suppose X € OF, is periodic of period q under
Oa. Then q < M, where M, depends only on n and log M, ~ /nlogn as

n— 00.

The quantity v/nTogn is Landau’s asymptotic estimate for log g(n), where g(n)
is the maximum order of elements in the symmetric group S, [8]. It is shown in
[11] that the same estimate holds for the maximum order of torsion elements in
GL(n,Z) and Aut F,,.

We first prove the following special case of Theorem 2.1:

Lemma 2.2. If g € F,, is periodic of period q under o € Aut F,,, then ¢ < A,
where A, is the maximum order of torsion elements in Aut F,,.

Proof. The subgroup Fixa? is a-invariant, and the restriction of « has order
exactly ¢ in Aut (Fixa?). Since the rank of Fixa? is < n by [1], and Aut I
naturally embeds into Aut Fy for k < ¢, the group Aut I}, contains an element of
order q. O

Remark. Before the Scott conjecture was proved, Stallings showed [17] that, for
a given «, there is a bound for periods of elements g € F),.

Proof of Theorem 2.1. Lemma 2.2 shows that singular periodic points of da: have
period < A,,. Now suppose X is regular, say attracting.

The points X, da(X),...,0a7 1(X) are attracting fixed points of dad. By
Theorem 1 of [5], the action of Fixa? on the set of attracting fixed points of da?
has at most 2n orbits. Thus there exist » < 2n and u € Fix a? such that

da”(X) =ulX.

By Lemma 2.2 we have

for some s < A,,.



Vol. 75 (2000) Periodic ends, growth rates, Holder dynamics 421
The above equations yield da™(X) = aX with
a= a<571)r(u) ool (w)u.

If a =1 we get ¢ <rs <2nA,. Otherwise we note that a € Fixa?®, and from
X = 0a?%(X) = a?X we conclude that X is singular, a contradiction.
We have thus shown ¢ < M,, = 2nA,,. Since log A,, ~ /nlogn by [11], we

have log M,, ~ v/nlogn. O

Remark. The bound ¢ < 2nA,, is not quite sharp. But if o € Aut I, has order

A,, then generic points of dF,, have period A, under d«. Therefore the estimate
log M,, ~ /nlogn cannot be improved.

Theorem 2.3. For any o € Aut F,,, the map O« : OF,, — OF,, has at least two
periodic points of period < 2n.

For the automorphism defined by a; — a;41 (1 <i<n—1), ap — al_l7 every
point of JF,, has period 2n.

Proof. There are two cases. If o has no periodic element g # 1, then da has at
most 2n periodic points of a given type (attracting or repelling) by Theorem 1 of
[5]. The other case is taken care of by the following result. ]

Proposition 2.4. Let o € Aut F,,. If there is a nontrivial a-periodic element
g € E,, then there is one of period < 2n.

Proof. Let g be the smallest period of nontrivial periodic elements. Arguing as in
the proof of Lemma 2.2, we may assume that « has order ¢q. Such an o may be
realized as an automorphism of a graph ([4], [18]): there exist a finite graph A, an
automorphism f of A fixing a vertex », and an isomorphism F,, — m1(A,v) such
that the following diagram commutes:

F, _* . E,

I I

m(A, ) —L— mi(A, ).

We choose A with minimal number of vertices. We claim that the action of
Z/qZ = < f > on the set of germs of edges at v is free. This will show ¢ < 2n
since v has valence at most 2n.

Assume the action is not free. Then some f" (1 < r < g — 1) fixes an edge
containing v. Let Ag be the component of the fixed point set of f” containing v.
It is a tree since otherwise a would have a nontrivial periodic element of period
< r. We may therefore collapse Ag to a point, contradicting the choice of A. O
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3. Growth rates

In this section we fix & € Out F},, and sometimes also an automorphism « € ®.
We write |g| for the word length of g € F),, and |y| for the length of a conjugacy
class v (equal to the length of a cyclically reduced word representing ).

Let M be the transition matrix of a relative train track map representing ® (see
[1]). The largest positive eigenvalue (spectral radius) of the matrix M is denoted
A(D), or A(a). It is an algebraic integer of degree bounded by 3n — 3.

For g € F,, the length of a?(g) is bounded from above by a constant times
[M||2 |g|. If A(®) = 1, the growth of af(g) is polynomial and ® is called polyno-
mially growing. For future reference we note:

Remark 3.1. Given v > A(«), there exists C' > 0 such that |a?(g)| < CvP|g| for
allge F,, and p > 1.

Now let ¢ : F,, — R be the length function of an action of F}, on an R-tree 7.
It is bounded from above by a constant times word length. In particular, if 7" is

an a-invariant R-tree as in Theorem 1.3, we have (up to multiplicative constants)
APL(g) = (P (g)) < |aP(g)| < |IM||P|g| and therefore A < A(a). Conversely:

Proposition 3.2. There erists an a-invariant R-tree T' as in Theorem 1.3 with

A= Aa).

Proof. This is proved by the same arguments as in [5, section 2], but instead of
using only the top stratum of the train track (which may lead to A < Ala)) we
use the whole relative train track and an eigenvector v of M associated to A\(a).
One shows that the resulting action on an R-tree T' is nontrivial and has trivial
arc stabilizers as in [5]. Minimality of the action may be achieved by restricting to
the minimal invariant subtree. It is often more convenient, though, to work with
the metric completion T of T so as to ensure that H has a fixed point @ when
AMa) > 1. O

Now let J be a finitely generated malnormal subgroup of F, (recall that .J is
malnormal if gJg~ ' N J # {1} == g€ J). We say that J is $-periodic if there
exist ¢ > 1 and 8 € &7 with 5(J) = J. Note that, by malnormality, the class of 3
in Out J is uniquely determined.

For example, suppose that T"is an R-tree as in Theorem 1.3 and J = Stab Q for
some branch point Q. Then J is malnormal (because arc stabilizers are trivial).
By Theorem 1.4, it has rank < n. We claim that it is ®-periodic. Indeed, by
Theorem 1.4 there exist m € F,, and ¢ > 1 such that mH¢? fixes ). Denoting
tm(g) = mgm 1, the automorphism 8 = i,, 0 a? € $ maps J to itself.

1
a.

If J is finitely generated, malnormal, ®-periodic, we define A; = )\(6‘])
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Proposition 3.3. Let & € Out F),.
(1) Bach conjugacy class ~ in Fy, has a growth rate \(v) = limy,_, oo |7 (y)| /2.
(2) Given A > 1, the following are equivalent:
o )\ = \(v) for some conjugacy class .
o A\ = )\ for some malnormal ®-periodic subgroup J C F,, of rank < n.

The existence of the limit in assertion 1 is folklore (compare [1, Remark 1.8]).
Simple examples show that one cannot restrict to free factors in assertion 2.

Proof. The proof is by induction on n. Let T" be an a-invariant R-tree with
A = A(P) (see Proposition 3.2). We distinguish two cases, by evaluating the
length function on ~.

If é() > 0, we write |DPP(y)| > £(PP(y)) = APL(y) (up to a constant) and we
conclude that v has growth rate A(y) = A = A(®) (recall that the exponential
growth of ®P(v) is bounded from above by A(®)). Note that there exist classes
with £(v) > 0, hence there exist classes with growth rate A(®).

If £(v) = 0, an element g € F,, representing ~ fixes some branch point Q € T,
and we argue by induction by considering v as a conjugacy class in J = Stab Q).
We have pointed out earlier that J is malnormal, ®-periodic, of rank < n. If
B =i, 0 af leaves J invariant, note that, by quasiconvexity of .J, the growth rate
of v under s is the same as the growth rate of v, viewed as a conjugacy class in
F,,, under $9.

These arguments show that every + has a growth rate, which is of the form A
with J as in the proposition. Conversely, given J, let ¢; be the length function
of a 3| ;-invariant tree with A = )x(,@u). Conjugacy classes with £;(v) > 0 have
growth rate Ay under . O

Definition. We call A(®) the top growth rate of ®. The set of growth rates
A(P) C (1,00) consists of the growth rates A(vy) which are bigger than 1.

Note that A(P) consists of algebraic integers of degree < 3n — 3, and that A(P)
is the largest element of A(®) U {1}. See [10] for more results about A(P).

4. Holder dynamics

Superattractivity

The discussion in this subsection (including Proposition 4.1) is valid for automor-
phisms of arbitrary (word) hyperbolic groups, but for simplicity we restrict to the
case of F,, (the generalization is almost immediate using [13]).

Fixing a free basis of F,,, we may view 9F,, as the set of right-infinite reduced
words. Let X € OF, be a fixed point of the homeomorphism d« induced by
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o € Aut I, on 0F,,. We say that X is singular if it belongs to the limit set of the
fixed subgroup Fix a, regular otherwise (recall that Fix a has finite rank).

As explained in [5], there is a basic trichotomy: either X is singular, or X is
attracting, or X is repelling (i.e. attracting for a~1). Attractivity has a strong
meaning here (see section 1 of [5]): given A, there exists m such that for ¥V €
F, U0F,

exY 2m = cx(0a(Y)) —cexY > A, (1)

where cxY is the length of the maximal common initial segment between the
reduced words X and Y (i.e. the Gromov scalar product < X,Y > with basepoint
at the identity in the Cayley graph).

In particular, we have lim,_, 1o @ (Y) = X uniformly on a neighborhood of X
in I, UaF, if X is attracting (whereas if X is singular there are fixed points of
a in F,, arbitrarily close to X). For the automorphism 3 studied in Example 1.2,
the (singular) fixed points a™>® of 93 are partly repelling and partly attracting:
for any k € Z we have lim,_, {~ 9BP(a*bY) = a® if Y is a right-infinite reduced
word not starting with b=, but lim,_, o, 87 (a*b~ 1Y) = a=>° if Y does not start
with b.

Also note that an isolated fixed point of da is singular if and only if it belongs to
the limit set of an a-invariant cyclic subgroup (for the “only if” direction, simply
observe that o leaves invariant the stabilizer of X for the action of F),, on 9F),).
In particular, the natural action of Fix « on the set of regular fixed points of da
is free. This action has finitely many orbits [2], indeed it follows from [5] that the
number of orbits is at most 4n. It is not clear to us whether there is a bound
depending only on G when G is an arbitrary hyperbolic group.

Now recall that the boundary of F,, (of any hyperbolic group, in fact) has a
canonical Holder structure (see [3], [7]). It may be viewed as a collection D of
distance functions on 9F,, that are pairwise bi-Holder equivalent: Given d,d’ € D,

1
there exist C > 0 and § € (0, 1] such that 6d715 < d < CdP. This Holder structure

is preserved by d« for every a € Aut I,,. If J C F, has finite rank, the inclusion
0J — OF,, is bi-Holder.
We represent the Holder structure by the visual metrics d.(X,Y) = exp(—cexY).
Let X € OF), be a fixed point of da, and d = d. a visual metric. If X is regular,
attracting, it follows from (1) that

. d(0a(Y),X)
X Tavag o

If X is repelling or singular, however, the above quotient is bounded away from 0
on a neighborhood of X (if X is singular, c¢x(da(Y)) — ¢xY is bounded near X
because Fix « is quasiconvex and a is a quasi-isometry).

Thus (2) is a metric characterization of attracting regular fixed points, similar
to the characterization of a superattracting fixed point ¢ of a holomorphic map
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f:C — Cby f'(c) = 0. For this reason, we call an attracting regular point
superattracting (and a repelling regular point superrepelling).

Of course the map da is a homeomorphism, and superattracting fixed points
may exist only because d« is bi-Holder but in general not bi-Lipschitz. For in-
stance, if ¢ is any lift to the Poincaré disc of a pseudo-Anosov diffeomorphism of a
closed hyperbolic surface, then the homeomorphism induced by ¢ on the circle at
infinity is never bi-Lipschitz (see Remark (22.14) in [12]).

Characterization (2) above does not depend on the chosen visual metric d, but
it is not valid for arbitrary metrics in D. The following characterization will apply
to every d € D.

Proposition 4.1. Let o € Aut F,,. A fized point X of O« is superattracting if
and only if
1
lim —logd(0a?(Y),X)= —o0
lim_ = log d(oe? (Y), X)

for' Y € OF, close to X, where d is any metric on OF,, defining the Holder struc-
ture.

This equation means that daP(Y') converges to X super-exponentially as p —
oo. Unlike (2), it is true for every metric in D if it is true for one.

Proof. We may assume that d is a visual metric. Suppose X is superattracting.
We have to prove limy_,o %cX(BaP(Y)) = +4o0 for Y close to X. Given A > 0, let
m be asin (1). If limp_,o, 0P (Y) = X, there exists ng such that cx(9a?(Y)) > m
for p > ng. For p large, we then have

cx(9a(Y)) 2 Alp — no) +m,

and the result follows.
Conversely, if X is singular, then cx(9da(Z)) — cx Z is bounded in a neighbor-
hood of X, and therefore %log d(0aP(Y), X) is bounded from below as p — oo.
O

Speed of convergence

We consider o € Aut F,,, and the associated ® € Out F,,. Recall that A(®) C
(1,00) is the set of nontrivial growth rates. It may also be viewed as a set of Ay
(see Proposition 3.3).

Theorem 4.2. Let o € Aut F,,. Let X € 9F, be a superattracting fized point of
Oc. There exists A = N, X) € A(P) U {1} such that

lim llog<—10g d(aozp(Y),X)) = log A (3)
p—too p
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for'Y € OF, close to X (and any metric d on OF,, defining the Holder structure).
Conversely, given p € A(P), there exist ¢ > 1, an automorphism [ € 9, and
a superattracting fized point X of O with (8, X) = p4.

It follows that the set Ap(®P) of Holder exponents defined in the introduction
equals A(®). Note that replacing d by a metric bi-Holder equivalent to d does not
affect the validity of (3).

Proof of Theorem 4.2. We fix a basis of F,, and we consider the corresponding
Cayley tree I'.
Let X be a superattracting fixed point of da.. We need to prove

1
lim - lo 0P (Y)) = log A
i 08 ex (e (¥ ) = log
We will bound the left-hand side, first from above and then from below.

Lemma 4.3. Suppose X € 9J, with J C F,, a finitely generated a-invariant
malnormal subgroup. Then

1
limsup — log ex (9a?(Y)) < log Ay
p—-+oo
for allY € OF,,.
Recall that Ay is the top growth rate of « ;.
Proof. Let x;, be the projection of daf(Y") onto the geodesic from 1 € F,, to X in
I'. By quasiconvexity of J, we can find j, € J within a fixed distance of x;,. We
1
need to prove limsup — log|jp| < logA;. We will work with word length |j,|s in
p—+too P
J, which is comparable to |j,|.

Define w, € J by j, = a(jp—1)wp. Since o is a quasi-isometry, there is a
uniform bound for |w,|, hence also for |w,|; because J is quasiconvex. Now write
dp = P (jo)aP ! (w1) -+ awy 1 )wp.

For v > \; we have
lipls < CVPljols + CvPHuwils + -+ Crlwyp_1]s + |wpls,
with C given by Remark 3.1. Thus |j,|; = O(vP) for all ¥ > As, and the lemma

is proved. O

Corollary 4.4. Theorem 4.2 holds if o is polynomially growing (i.e. A(a) = 1),
with Mo, X) = 1. O
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Fix a subgroup J as in Lemma 4.3, and consider an R-tree T' with an action of
J satisfying the conditions of Theorem 1.3 with respect to ;7. Using Proposition
3.2, we assume that the stretching factor of the homothety H equals Ay. Suppose
furthermore Ay > 1.

Lemma 4.5. Suppose X = j(p), where p is an eigenray of H : T — T (in
particular, X € 0J). Then

1
liminf — log ex (9af(Y)) > log Ay
p—+too P

for' Y € OF, close enough to X.

Proof With the notations of Section 1, let Q € T be the fixed point of H (i.e. the
origin of p). Choose jj as in the proof of Lemma 4.3 and define d,, as d(Q), j,Q)
(where d denotes the distance in T'). Note that

d(Q,a(jp)Q) = d(Q,(ip) HQ) = d(Q, HjpQ) = A1d(Q, Q).

On the other hand, recall that the distance in J from «(j,) to jp4+1 is bounded
independently of p (and of Y'). Thus we obtain an inequality of the form

dpy1 > Aydy — A,

with A independent of p and Y.
If Y is close enough to X in dF,,, then jg is close to X in JUQA.J, and therefore
dp is large (by bounded backtracking, see section 3 of [5]). This implies

1
liminf = logd, > log A;.
D Loy 2= log

Finally, we observe that d, = d(Q, JpQ@) is bounded above by a constant times
l7p|s, hence by a constant times |j,|. a

Now we complete the proof of Theorem 4.2. If A(a) = 1, then we are done by
Corollary 4.4. Assume A(a) > 1, and consider a tree 1" as in Proposition 3.2, with
stretching factor A(a). If X = j(p) as in Lemma 4.5, we are done, with A = A(a).
If not, then by Proposition 4.3 of [5] we have X € dStab @, where ) € T' is the
fixed point of H (recall that points of T \ 1" have trivial stabilizer).

The subgroup Stab @) is a-invariant, malnormal, and has rank < n (see section
3). Repeat the argument, working with a|stab - After a finite number of steps we
find that X € @.J (with .J invariant, malnormal, of rank < n), and either Ay = 1
or X = j(p). It follows from Lemmas 4.3 and 4.5 that Theorem 4.2 holds, with
Ale, X) = AJ.
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Conversely, consider p € A(®). First suppose i = A(e). Consider an R-tree
T as in Theorem 1.3, with A = A(a). By Theorem 1.4 and Proposition 1.5, there
exist m € F,, and g > 1 such that mH? has an eigenray p. Let 8 = i,, o o, with
im(g) = mgm~1. Then X = j(p) is a fixed point of 93, and A\(3,X) = \(8) = u?.

For arbitrary p = A;y € A(®), let o/ € ®" leave J invariant. The previous
argument yields 3 € $7¢ and a fixed point X of 93 in 0.J such that A\(3);, X) = "9,
Since the inclusion 0.J — 9F, is bi-Hélder, A\(3, X) = A(8);, X) has the required
form. O
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