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Universal octonary diagonal forms over some real
quadratic fields

Byeong Moon Kim

Abstract. In this paper, we will prove there are infinitely many integers n such that n? — 1 is
square-free and Q(\/ n? — 1) admits universal octonary diagonal quadratic forms.
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1. Introduction

A universal integral form over totally real number field K is a positive definite
quadratic form over the ring of integers of K which represents all the totally
positive integers of K. For example, the sum of four squares is universal integral
over Q. In 1917, Ramanujan [8] found there are exactly 54 universal positive
diagonal integral quadratic forms over @. More concretely, he showed there are
54 diagonal quaternary quadratic forms f(z,y, z,w) = az? + by2 + ¢22 + dw? such
that a,b,c,d € Z1 and the equation f = n is solvable for all n € Z*. In 1947, M.
Willerding [10] proved there are exactly 178 classic universal integral forms. More
concretely, she showed there are 178 quaternary quadratic forms f(z,y, z,w) up to
equivalence such that f is positive definite integral quadratic form, the coefficients
of cross terms of f are always even and the equation f = n is solvable for all
n € ZT. On the other hand, the study of positive universal quadratic integral
forms over totally real number fields was initiated by F. Gotzky [3]. In 1928,
he proved that the sum of four squares is universal over Q(v/5). H. Maass [6]
improved this result. In 1941, he proved the sum of three squares is positive
universal over Q(v/5). Four years later, Siegel [9] proved Q(+/5) is the only totally
real number field, other than Q , over which every (totally) positive integer is a
sum of squares. In other words, he showed if a totally real number field K is
different from Q and (@(\/5), there is a totally positive algebraic integer a of K
which cannot be represented by the sum of any number of squares. For example,
if K =Q(v2), @ =2++/2.In 1996, W. K. Chan, M.-H. Kim and S. Raghavan [1]
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classified all (totally) positive universal integral ternary lattices over real quadratic
fields. Only Q(v/2), @(v/3) and Q(+/5) admit universal integral ternary lattices
and total number of universal integral ternary lattices over real quadratic fields
is 11. Recently, the author [5] proved there are only finitely many real quadratic
fields which admit universal integral septenary diagonal forms. The content of
this paper is to prove if n2 — 1 is square-free, there are universal octonary diagonal
forms over Q(v/n? — 1). So we can prove there are infinitely many real quadratic
fields which admit universal integral octonary diagonal forms. Obviously 8 is the
minimal rank with this property.

2. Main Theorem
Throughout this chapter, we let m = n2—1bea positive square free integer,
K = Q(y/m) and Ok be the ring of algebraic integers of K. Note that e = n++/m

is the fundamental unit of Ok and is totally positive.

Theorem 1. The octonary diagonal form :L‘% + x% + :E% | :EZ + ex% + eﬂc% + ex% + exg
1s universal over O .

This Theorem is a consequence of following Lemmas.

Lemma 1. Let 1 < b < 2n. a = a+ by/m is totally positive algebraic integer in
K if and only if nb < a.

Proof. As nb+ by/m = b(n+ /m) is totally positive, the necessity is trivial. For
the sufficiency, it suffices to prove nb — 1 — (by/m) < 0. This follows from

(nb—1)2 — (by/m)? = n?b% —2nb+1 — b2(n? — 1)

—b-n)?-n?+1<(n-12-n’+1<0.

Lemma 2. If a € (9}, a belongs to

S = {a06k+a16k+1+...+al€k+l| k,l€Z, ag,a,...,a; € N}.

Proof. Suppose o = a + by/m ¢ S. We may assume that b > 0 and tryg(a) <
tr/o(3) for all elements 3 ¢ S. Then, by Lemma 1, we have b > 2n. Since

bn—1+bym=e>+ (b—2n)c €S,



412 B. M. Kim CMH

we also have ¢ < bn — 1. Then,

ae 1 = (a+by/m)(n — vm) = an — bm + (bn — a)v/m.

So
trx/o(ae 1) = 2(an — bm) < 2(n(bn — 1) — b(n® — 1))
=2(b—n) <2a = trg/ga).
So ae !l € §. Thus a € S. Contradiction. O

Lemma 3. Forl > 2, = —1+4bretboe?+...+b_ 16! whereby > 2n—1 and
by, ..., b1 >2n—2.

Proof. We use induction on [. As €2 = 2ne — 1, the assertion holds for | = 2. If
this Lemma is true for | = s > 2,

STl = et = e(—1+bre+ boe? + ...+ bg_lesfl)

S €2 + (b1 — 1)62 + 6262 + ...+ be_q€°
=14+ 2n—1e+ (bg — 1) +bye® + ...+ by_1€°.
This proves the Lemma. O

Lemma 4. If a € (9}, o = pe + gt for some p,q e N and k € Z.

Proof. By Lemma 2, o = age® + ... + appie® T with ag,... ,ap4 > 0.
If { Z 2 and A1 § ag,

a= akek + ..+ akﬂ,lekﬂ_l + akﬂek(—l +bre+ ...+ bl,lel_l)

— (ak — ak+l)€k e o (ak+1 + ak+lbl)6k+1 T sn s (ak+l_1 = ak+lbl_1)€k+lil.

If [ Z 2 and A1 2 A,

a=ape+ ... +ak+l,16k+l71 + (aps —ap)e" T fape" (=1 bre+ ...+ bl,lelfl)
= (ak + ak+lb1)ek+1 F e (ak + ak+lbl,1)€k+l_1 + (akﬂ — ak)ek'H.

Repeating the same process, we can obtain the desired expression of a. O

Proof of Theorem 1. If o € (DIJQ7 by Lemma 4, o = ac® + beht1 for some a,beN
and k € Z. If k is even, by Lagrange’s four square theorem, ae® is represented by
x% +x% +x§ +xz and beft1 is represented by ex% -+ ex% +ex% +ex§. So f represents
«. Similarly f represents « for odd k. Thus f is universal integral over K. O
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Lemma 5. There are infinitely many square free integers of the form n? 1.

Proof. 1If n is even, n? — 1 is square free if and only if both n 4+ 1 and n — 1 are
square free. It is known that [4] the number of positive square free integers which
do not exceed z is % + O(y/z). So the number of positive integer n such that
n < z and both n+ 1 and n — 1 are square free is larger than

4 z — 2
(25 + OVE) + (53 + O(VE) — 7 =~ 1 O(VE).

2
Since 12—;”— > 0, there are infinitely many n such that n < z and n? — 1 is square

free. O

Theorem 2. There are infinitely many real quadratic fields that admit octonary
universal forms.

Proof. This is an immediate consequence of Theorem 1 and Lemma 5. O
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