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On a problem of Nazarova and Roiter

Bangming Deng

Abstract. In the present paper we introduce the notion of representations of a bush which
is a generalization of matrix problems (self-reproducing systems) introduced by Nazarova and
Roiter. We show that the problem of classifying representations of clannish algebras come down
to such generalized matrix problems. Based on the classification of Crawley—Boevey, we provide
a description of indecomposable representations of bushes over any field. The proof is based on
a categorical formulation of the matrix reduction of Nazarova and Roiter.

Mathematics Subject Classification (2000). 16G10, 16G20, 18A25.
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Introduction

In the present article, we consider a generalization of matrix problems (self-
reproducing systems) introduced by Nazarova and Roiter [8]. Their motivation
was to solve a problem posed by Gelfand [6]: classify the indecomposable repre-
sentations of the quiver

a a

A
'

subjected to the relation ajby = agbs.

In [2] Crawley—Boevey reconsiders the problem and introduces a new class of
matrix problems called “clans”. The approach used in [2] is the functorial filtration
method. It seems to us that both the notion of a clan and the functorial method
are not well adapted to the problem treated by Crawley—Boevey.
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Our aim here is to replace clans by a generalization of self-reproducing systems
and to use the method presented in [8] instead of the functorial one. Our method
also works for fields of cardinality 2, a case which Crawley—Boevey was unable to
handle with his method. Our classification however is based on that of Crawley—
Boevey. For the proof of our classification theorem we use a categorical formulation
of the matrix reduction of Nazarova and Roiter (see [3]).

After the completion of a preliminary version of the present paper, Prof. Serge-
jchuk pointed out to me that the matrix problems considered here have been
studied by Bondarenko [1].

Throughout the paper, k denotes an arbitrary field.
The terminology used throughout the paper is taken from [5].

1. Tangles and Bushes

1.1. Let A be an aggregate over a field k& with spectroid S. A tangle over A
is a pair (M—,M1) formed by sequences M~ = (M, -+, M, ) and Mt =
(MJF7 -+, MT) of pointwise finite left A-modules. Given such a tangle, we de-
note by rep(M—,M™T) the aggregate whose objects are the representations of
(M~,M™), i.e. the sequences (X; f1,- -+, fn) where X € A and f; € Homy, (M, (X),
MH(X)), i =1,---,n. A morphism from (X; f1,--, fu) to (X5, , f}) is
given by a morphism p € A(X,X’) such that f/M; (u) = M, (u)f; for i =

1, ,n.

1.2. Our aim is to classify the indecomposables of rep(M —, M T) for particular
tangles (M —, M) which we describe now.

By definition, a rod is a finite ordered set R such that each z € R admits at
most one y € R satisfying y % « (i.e. incomparable with x).

Examples. The ordered sets with the following Hasse—quivers are rods:

R Ry Ry

-
-

e N
el >l

./\. l
~ e N

XX

,
\.
\WAVA

AVAV,

e w—eo
.
.
.
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A tangle (M—, M) is called rodded if the following conditions are satisfied:
(R1) For each i, the lattices of submodules of M;” and M," are rods;
(R2) For each s € S,

> (dimg M; () + dimg M (s)) < 2;
i=1

(R3) If the submodules of M} generated by elements a € M7 (s) and b € MZ(t)
are incomparable for some 7, some s,t € S and some ¢ € {—,+}, then

> dim M (s) = 1= dimy M'(t);

i im

(R4) For any s,t € S, the canonical map

0(s,t) : Rs(s,t) — ﬁ’R;(sﬂf) X R (s,1)
i=1

is surjective.
Here Rs denotes the radical of S and R;(s,t) the set of all f € Homy (M7 (s),
MEg(t)) satisfying f(N(s)) C RN(t) for each submodule N of M?.

1.3. Given a tangle (M —,M*) over A, we denote by T the intersection of the
annihilators of all M, and M;L . The tangle is called faithful if T = 0. In the case
of a faithful rodded tangle, the maps 6(s,t) are bijective. Our purpose is to give
a concrete construction of faithful rodded tangles.

Let S be a pair formed by two sequences of disjoint rods S~ = (S7,---,S,,)
and ST = (S, ,S,]). We then equip the union |S| = U, (S; US;}H) with the
smallest order relation containing the order relations of the rods S; and S;". If
there is no risk of confusion, we simply write S instead of |S|. By kS we denote the
spectroid whose objects are the elements of S, whose morphism—spaces kS(z,y)
are one—dimensional with basis (y|z) if y > z, or else are 0. The composition is
such that (z|y) o (y|z) = (z|z) [5]. Each interval I of S gives rise to a module kjy
over kS such that kj(z) =0 if z ¢ I and k;(y) =k, ki(zly) = 13 if y,2 € [ and
y<z[5]. Weset L; =krif I =S; and L} = k; if I = S;t.

Let further ~ be an equivalence relation on S such that:

(E1) Each equivalence class contains at most two elements;
(E2) In case z, y € 5¢ and z ¥ y, the equivalence class of z consists of = only.

The S together with the equivalence relation is called a bush.

Let S denote the spectroid whose objects are the equivalence classes of S, whose
spaces of radical morphisms are Rs(a,b) = @zeca,ycp,y>ak(y|z), whose composition
is such that (z|y') o (y|z) is (z]z) if ¥y’ = y and 0 otherwise. Let further A :=
®S denote the additive hull of S, whose objects are sequences (X, --,X;) of
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objects of &, whose morphisms (X1, --,X;) — (Y1, -+, Y:) are identified with
the “matrices” p = [py:] € ®;;S(X;,Y;). The composition of morphisms obeys the
rules of matrix multiplication. Then each module L over kS provides a module
L over A such that L(a) = @eqL(z) for each a € S; the action of L(ylt) on
m € L(z) C L(a) coincides with that of L(y|a) if 2 = t or else is 0. In case L = L;
(resp. L), we set L= M, (resp. M,"), thus obtaining a tangle (M —, M) over
A. This tangle is faithful and rodded.

In the sequel, the representations of (M, M 1) will be simply called represen-
tations of S.

Proposition. For each faithful rodded tangle (N—,N1) over an aggregate B with
spectroid T, there is a bush S as above and an equivalence ® : A — B such that

NEd =2 Mf for alli € {1,--- ,n} and e € {—,+}.

Proof. Let the points of 57 be given by the submodules X of N7 with simple top
X/RX,ie{l,---,n}, e € {—,+}. Weequip S with an order relation such that
X <Y isequivalent to X D Y. By (R1), 57 is a rod.

Set S = (S, S8, 8 ) and equip S with an equivalence relation
such that X ~Y «<— X/RX = Y/RY. By (R2) and (R3), this relation satisfies
(E1) and (E2), i.e. S is a bush.

For each X € S (the spectroid associated with the bush ), we denote by
tx € 7 the point supporting X/RX, and we choose a generator ex € Nf(tx) of
X. Then Nf(tx) = @X’NX,X'GkaeX'~

The map X —— tx gives rise to a functor ¢ : & — 7 such that ¢(YV|X) =
O(tx,ty) 1 (f), where f € Homg(NZ(tx), No(ty)) maps ex to ey and annihi-
lates ex: whenever X’ £ X. The functor ¢ is an isomorphism and induces an
equivalence ® : A — B. The k-linear maps

X)) NO(X)= P kexr — P KX = MI(X)
X'~X,X'€SE X'~X,X'€SE

Z)\X/GX/ — Z)\X/X/
X’ X’

define an isomorphism between Nf® and M7, i € {1,---,n}, e € {—,+}.

1.4. Example 1. In [8] Nazarova and Roiter examine the particular case of one
pair of rods. The classification of representations in [7], [4], and [9] can be reduced
to that of bushes.

Example 2. Representations of A,. We illustrate the general construction with
the following example:
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Set Sy = {a~},8] = {at},- Sy = {F 1,8 = {f*} and equip § =
W, (S; usH) = {a,at,---,f, ft} with the equivalence relation a= ~ f~,

at ~ b= bt ~ct, e ~d,dt ~ e, el ~ ft. Then repf% is equivalent to
rep(M—,M™), where (M ~,M™) is the rodded tangle associated with the bush S
(see 1.3).

Example 3. Clannish algebras2]: Let Q be a quiver and Sp a set of loops in
. The arrows in Sp are called “special” and the others “ordinary”. Let further
R=ZU{e? —¢: e e Sp} be a set of “relations” of @, where Z consists of
compositions pr of ordinary arrows u, v. The algebra A = k[Q]/R, where k[Q]
denotes the algebra of the quiver Q, is called clannish if the following conditions
hold:

(C1) At most two arrows start at each vertex, at most two stop;

(C2) For each ordinary arrow a, there is at most one arrow b with ba ¢ Z and at
most one ¢ with ac ¢ Z;

(C3) Without real loss of generality, we further suppose that R is minimal with
respect to (C2).

Examples. The algebras with the following data are clannish:

a) b) ¢)
. a g h
o= JN\ AL
e . L4 Y y
b Y EQA o@d
L] p L]
Sp = {e} Sp=10 Sp = {e}
7 = {ba} 7 = {all zy,yz} Z = {ba,cb, fe,d?, hg}

With each clannish algebra k[Q]/R we will associate a tangle.
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For the sake of simplicity, we identify the set @, of vertices with {1,2,--- ,n}.
We further set = = (x,—), t = (x, +) whenever z is a vertex or an ordinary
arrow. To each i € Q,,, we then attach a set A; consisting of i~ and i1, of special
loops at 4, and of all 2~ (resp. =) where z is an ordinary arrow starting (resp.
stopping) at . Finally, we construct two disjoint rods S, , S;L such that:
a)i—eS;,it €St and A4, =5, USH,

b) Each Sf has one of the following forms:

1) {i€ x e}, where e is a special loop at ¢,

2) {a~ < i®}, where a is an ordinary arrow starting at 4,

3) {i® < bt} where b is an ordinary arrow stopping at 7,

4) {a= < i® < bT}, where a (resp. b) is an ordinary arrow starting (resp.
stopping) at ¢ and ab € Z.

Of course, if A; # {i~,i1}, there are exactly two possible choices for S, and
S;L . For instance, in case

1o~ b
0 \ a Z={ab}

we obtain S5 = {a= <37 < bt} S5 = {3F < T}, or reversely, S5 = {37 <
¢}, S§L ={a~ <3t <bT}.

We equip S = U (S;” U S;“) with an equivalence relation such that a= ~ at
for each ordinary arrow a.

We denote by (M ~, M) the tangle associated with S and by rep,(M—, M)
the full subcategory of rep(M—, MT) fromed by representations (X; fi,--- , fn)
such that all f; are bijective.

Proposition. rep(Q, R) is equivalent to rep,(M—, MT).

Proof. For each arrow a ¢ Sp with a= € Sf and at € 5;77 and each X € A, we
denote by &% the canonical isomorphism

ME(X)/RM;(X) — RM MJ(X),

where Y =1 (resp. 2) if S consists of 2 (resp. 3) elements.

For each e € Sp with e € S7, we denote by J; and L] the simple submodules
of M supported by ¢* and e respectively.

With each object (X; f1,---,fn) in repy(M—, MT) we attach an object V=
(V(i),V(a)) in rep(Q, R) as follows:
DV(3E)=M"(X),i=1,--,n.
2) For each arrow a : i — j, in order to define V(a) : M;"(X) — M;F(X) we
consider two cases.
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Case 1. o ¢ Sp, o= € 5S¢, aT € S5 Ife =n =+, V(a) is the composition

MFx) B o) /RMGHx) R Mo 2 M x);

K2

if e =+ and n = —, V(a) is the composition

M) B xR S RN M () B v (x) L Mt x);
if e = — and = +, V(a) is the composition

im

M) Ty () By 0/ RM; () S5 R M () S5 (),
if e =n=—, V(a) is the composition
DA rmp— . -
M (X) =— M;(X) —M; (X)/RM; (X)

EX hT - im i
SR M (X) — M (X) =5 MjH(X).
(By pr we denote the canonical projection, by im the canonical immersion.)
Case 2. o € Sp and o € S¢ for some 7 € {1,--- ,n}, e € {—,+}. Ife =+,
V(a) is identified with

01 MH(X) = JH(X) @ L (X) — JH(X) @ L (X) = M;H(X);

Lf(x)
if e = —, V() is the composition

5 M7 (X) I (X) ® L7 (X)

0ol —
20 el

’L

MH(X)

K2

e ~(X) = M (X) 25 Mb(x).

i i

Thus we obtain a functor

F :rep,(M~, M) — rep(Q, R)
(X5 1,5 fo) — V= (V(@),V(a))

which maps a morphism g : (X; f1,- -+, fn) — (X’; f{,- -, f},) to the morphism
F(p) = (MQL(M))z‘EQw

Since (M~, M) is rodded and faithful, the functor F is fully faithful.

Let V = (V (i), V() € rep(Q, R). For each arrow « from ¢ to j, we set K =
ker V(a), I = ImV (@) and denote by V(e) the isomorphism V (i)/ ker V(o) —
ImV () induced by V(«).

In case S7 = {i*}, we set P7 = V;* = V(i) and denote by ®7 the identity 1Ly,;).
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In case Sf = {if x e}, we set Pf = K7, VF = K? & I, and denote by ®F the
canonical isomorphism K @ If — V(7), (z,y) — xz + y.

In case Sf = {a~ < i}, we set Pf = K?, V7 = I$ @ K, and choose a
section t; of the canonical projection V(i) — V(4)/ K/, we then denote by ®7 the
composition

. “ “ (V(a))fl@]lxg . u o ltaim]
Ve =1} ® K; — V(@)K @ K§ — V().

In case Sf = {i® < bt}, weset Pf =V (i)/IP, VF =V (i)/I} @ I?, and choose a
section s; of the canonical projection V (i) — V (i)/I?, we then denote by ®¢ the
isomorphism [s; im] : V7 = V(3)/I? @ I? — V(3).

In case Sf = {a~ <i® < b'}, weset Pf = K2/I?, VE = I e Kg/I? @ I?, and
choose a section u; of the canonical projection K¢ — K@/I? and a section v; of
the canonical projection V(i) — V' (i)/ K}, we then denote by ®; the composition

Za))*_lga]ma]l v

\'4
VE—Io K PoIb (i)/K¢ @ K¢/IP & I?

1ol Il gy e g k2 P vy,

Finally, we set

X= P acBo(@eclo(PFoP)cA

a€EQ.\Sp ecSp £EST
and denote by f; the composition

can. d- dH)-1 W,
M) v 2y L v 2 ),

7
where a denotes the equivalence class of a.

Thus we obtain an object (X; f1, -, fn) in rep,(M—, M ™). By ¥; we denote
the canonical isomorphism V;* — M;"(X). Then (¥;(®}) 1)co, defines an
isomorphism from V = (V (i), V(a)) to F(X; f1,---, fn). Therefore, F' hits each
isoclass in rep(Q, R).

1.5. Remark. With each tangle (M, M) over A we can associate as follows a
tangle (M —, M 1) over a new aggregate A.

Let S denote the spectroid obtained from the spectroid S of A by adding
objects s; and ¢; for ¢ € {1,--- ,n}, whose spaces of radical morphisms Rgz(z,y)
are Rs(z,y) if =, y € S, Homy(k, M, (y)) ify € S, = = s;, Homy (M, (2),k)
ifz €S, y=1t;, and 0 otherwise. The composition g o f of f € Rg(z,y) and
g€ Rs(y,2)isgf ifz, y, 2€ S, M (9)f ify, 2 €S, = = s;, gM; (f) if
z, y €S, z=1t;, and 0 in all the remaining cases.
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Let A denote the ‘additive hull of S and M, (resp. M;L ) the module over A
such that the value M, (z) (resp. M, (z)) at z € Sis k if z = s; (vesp. = = t;),
is M, (z) (resp. M;t(x)) if = € S, and 0 otherwise. If f € Rg(z,y), the mor-

phism M, (f) € Homy (M, (x), M; (y)) (vesp. M;"(f) € Homy(M;"(z), M;' (y)))
is M, (f) (resp. M;r(f)) ifz, ye S,is fifx =s; (resp. y =t;), and 0 otherwise.

By the construction, the tangle (M —, M) is rodded if so is (M —, M ™).

Let ¥ : 4 — A be the natural functor which maps X € A onto the “largest
summand” ¥(X) belonging to A. Then M, provides a submodule M, ¥ of M, ,
M;“ provides a subquotient M;F\If of Z\Z[;L, i€ {l, - ,n}, and ¥ gives rise to a
functor

F :repy(M—,M‘) — rep(M—,M™)
(X;f17“‘ 7.fn) — (\II(X))fh 7fn)7

where f; is the composition

M (W(X)) = Mw(X) 0 i (%) Lo nr ) BE Mre ) = M (x).

K2

Proposition. The functor F' is quasisurjective, and the indecomposables annihi-
lated by F are those isomorphic to (s; ®;;0,---,0,1,0,---,0),s=1,--- ,n.

Proof. Let (X; f1,---,fn) be an object in rep(M—, MT). Consider the sequence

Ki = ker f; B M—(X) 2% aMr(x) 25 Cokerf, =: C.

Choose a retraction p; of the canonical immersion and a section p; of the canonical
projection above, then

5 £ conon—swne

is bijective. -
Set X = (@7 15,0 C;) ® X @ (87 4t; ® K;) € A, and denote by f; the

composition
|:Mi fi }
Pl g

%

_ __can. n
o

M (X)

I3

Ci ® M (X) (X)o K,

l M(X).

Then (X7f17 7fn) € repb(M77M4:) %nd F(X}]F17 7f—’r£) = (7X7f17 7fn)
It is not difficult to see that each (X; f1,-- -, fn) € rep, (M —, M) is isomorphic

to the direct sum of objects of the form (s; @ ¢;;0,---,0,1,0,---,0) and of the
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formY = (@7 15, ®5;) @Y & (@7 1t; ® T3); 91, -+ ,Gn), where S;, T; € modk,
Y € A, and g; has the form

o] isea ) — i e,

where a;, b; and g; are k—linear maps.

Let (X; f1,-++, fn) and (X'; f{, 7fn) be objects in repb(M M™), and p €
A(P(X), ¥ (X)) a morphism from F(X; fi, -+, fa) to F(X'; f{,++, f})

Since F' annihilates (s; @ ¢;;0,---,0,1,0,---,0), we may assume that X and
X’ have respectively the forms (@7 ;s; ® S;) ® X @ (&7 _1t; ® T;) and (®7_15; ®
S)) @ X' @ (07 t: ® T]), where S;, T;, Sj, T] € modk and X, X' € A, and that
fi and f] are of the forms:

=% B sie o0 — M e,

- 4
7= [63 ﬂ SL@ My (X)) — M (X) e T,
where a;, b;, fi, aj, bj and f] are k-linear maps, i € {1,--- ,n}.

Thus F(Xaf17 7fn) - (X f17 7fn) and F(X/ f17 t 7f'r/7,) = (X’mfi? ’
Ia)-

Consider the following commutative diagram

T s,
by,
/ bi l \
5 j
Ker f; — M;(X) - M*X) Coker f;
l M () l M;*(u)
IC~ f;f ﬂ,ir
Ker f — M; (X') - M (X )y—— Coker f;
\ l T o =
bl 13 ni,a;
S’

where &; and | denote the canonical immersions, ; and 7, the canonical projec-
tions.

The bijectivity of f; and f] implies that b;x;, b}, iy and 7ia; are bijective.
Set u; = (mhal) ‘7! MY (u)a; and v = b M, (u)rs(brs) 1. Tt is easy to see that
there exist a w; : S; — M, (X') and a z; : MZ+(X) — Ti’ such that z;a; = 0,
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Vw; = 0, M;" (u)a; = alu; + flw;, and b M, (p) = 2ifi + vib;, ie. the following
square commutes.

a fi

0 b

S; ® M;(X) M X) DT,
u; 0 M;(/") 0
w, M () a f Z v,
0 b
SO M;(X') MX) DT
Set
ur 0 b
0 0
Up, B
p=|wr - wn p X = (@215 ®5;) @ X & (@1t @ Ti)
z1 v O
" .
L 2 0 v,

— @ yseS)eX e @ eT))=X"

Then F(i) = u, that is, F' is full.
This finishes the proof of the proposition.

2. The classification

2.1. Terminology. Let S = (S|, - ,5,; S,...,8F:~) be a bush.

In the sequel, we write z Ay if z and y belong to the same rod and are incom-
parable, and we write z|y if (z,y) € U™ ((S;” x S;") U (S;" x S;7)). We further
set

ify~zandy #z
if the equivalence class of « contains only z

e
1,/\

{
{

and z* = (z

if z is comparable with all points of its rod

Y
0
y ifyAzx
z
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We call catenation of S a sequence w = wiwsy - --w; of points of S such that
w] w1 for all ¢ < t. The reverse catenation is the sequence w* = wyf - - - wiwj.
Two catenations w = wyiws -+ w, and w’ = wjw) - w; are called equivalent if
s =t and w, = w; or w{\ for all 1 < i < s. For each catenation w, we then
denote by [w] the equivalence class of w. Then the set of equivalence classes of all
catenations of S is equipped with an order relation such that

[v] = o1+ vs] < [wy - wi] = [w]
if w=12v'w, [v]= ], w] =wsy1 €5
<= or  ifv=wv, W]=w], v =vq1 €85t
or ifv=wuav, w=1vyw', [u] =[], z <y.

The equivalence classes of catenations which start in a fixed rod are pairwise
comparable.

2.2. From now onwards, we suppose that S is complete, i.e. that x # z* for all
z € S. [This is no real restriction. Otherwise, we replace S by a completed bush
5° obtained from S by adding new rods S;, = {z°}, S}t = 0 and by agreeing
that = ~ x° for each point = of S such that = = 2 = 2. The new bush S° is
complete, and repsS is equivalent to repS©.]

If S is complete, we attach a representation (X fu1, -, fun) of S to each
catenation w = wiwsy - - - w;. First we set

Xw=wi®ws - & wy,

where w; = {w;, wi} € S (=the spectroid attached to S in 1.3) if w; # w;” and
w; = {w;} ® {w}} € A (=the additive hull of S) if w; # w)*. Thus each term z of
the sequence wiwjwowsy - - -wyw; contributes a one—dimensional summand kz to
the space M£(X,,) associated with the rod S containing z. Accordingly, M, (X,)
and M;"(X,,) have the form:

%) M (Xy) = @pkw, © Orkwf

*

Mz'Jr(Xw) = ®mkwy, ® Dok,

where p, ¢, [ and m are subjected to the conditions wy, w; € §; and wy, wy, €
S;r . The structure maps are defined as sums

fwi — wair : M;(Xw) I M;F(Xw)

where each r > 1 satisfying w, € S;” U S;L provides a contribution

- wir 7 Pawir
fwir = hwirgwir M, (Xw) g_) k= Mj—(Xw)

(3
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To define the factors gy, and hy;,, we distinguish two cases:

1) Case wr_1 €S, wy € S;L. Construction of guir: If w,_1 = wﬁ\fl, we set
Guwir(w®_ 1) =1 and let gy vanish on the remaining basis vectors.

If w, 1 # w;\fl, the map gy, is the composition

M (X)) P ko, @kt WYk

1

provided [w¥ -+ w}] < [wy - -+ w;]. Otherwise, it is the composition

11
My (X)) P b, @ kwt Pk

2
(By pr we denote the projection Which annihilates the basis vectors # w, 1, w*_.)
Construction of hyir: If w, = w, we define hy (1) = w,.. Il w, # W, Ay is
the composition

1L kaw, @ kw* B MH(X,)

provided [w} ;- w]] < [wyy1 - -w]. Otherwise, it is the composition

T
U b @ ke I AH(X,).

(By im we denote the canonical immersion.)

2) Case w}_ S , wy € 8, . Construction of gys: If w, = = wh, We set
Guir(w,) =1 and let Gwir vanish on the remaining basis vectors. If w, # w., the
map guir is the composition

« [10]

M»_(Xw)—ﬂfw D kwy — k

K2
provided [w¥_ - w}] > [wyq1 - wy). Otherwise [0 1] is replaced by [1 1].
Constructwn of hir: If w,_1 = w) ¢, we define hyi (1) = w* . fw,_g #
hywir is the composition

A
Wy_1»

01 i

[ ] — kw,_{ & kw4 E>Z\/I;F(Xw)

provided [w? o w}] > [wy - w]. Otherwise, [0 1]7 is replaced by [1 1]7.

2.3. Example. The clannish algebra k[Q]/(ba,e? — ¢), where @ denotes the

quiver

e " o . Sp={e}, Z = {ba}
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gives rise to the (non—completed) bush

L
sy Sfl Sgl

As a typical example, we choose the catenation w = y™~b~ebaex of the com-
pleted bush. The maps f,; then behave as follows:

y S,

/_61\ /_ez\

yr o y—abr b b, bre—a a* X x~
) <
The matrices of the representation of the non—completed bush associated with

w — or, more precisely, the matrices of the linear maps f,,1 and f,,2 — are displayed

as follows:
A

e e Yy a
1 0]00

b iy o] 1 o0 z

e 1o 1] o0 1 0
y " lo
a0 1] 0 0

Similarly, the maps f,; of the representation associated with the catenation
v = z~ebaca™~b™e Nz are

A
/_el —2 /—63\
47T X by bie—a 4 a4, —w b b, x5 2y
- ~ 7 - T T
Ly - L

2.4. In the first example considered above, the catenation w is asymmetric, i.e.
[w] # [w*]. The matrices of the representation associated with w* are

e en y a

o o
— =
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By “permissible” row and column transformations, these matrices can obvious-
ly be converted into the matrices associated with w. The representations associated
with w and w* are therefore isomorphic.

In general, we choose a set (21 of asymmetric catenations which contains one
representative of each class [w] [[[w*] of asymmetric catenations. For each w €
1, we denote by R(w) the corresponding representation of S. Representations
isomorphic to such an R(w) will be called asymmetric strings.

In the second example of 2.3, the catenation v is symmetric, i.e. [v] = [v*].
In this case, the representation associated with v is clearly the direct sum of two
representations R(v,0) and R(v,1).

Of course, this is a general fact (This fact will be shown in Section 4). For each
symmetric catenation v, the associated representation in 2.2 decomposes into the
direct sum of two representations R(v,0) and R(v,1). These representations are
indexed by Qg x {0, 1}, where Q9 denotes the set of symmetric catenations which
contains one representative of each class [w] of symmetric catenations. Represen-
tations of S isomorphic to some R(v,1), (v,7) € Q9 x {0, 1}, will be called dimidiate
strings.

2.5. Besides finite catenations, we consider periodic catenations. These are se-
quences v = (u;);cz which satisfy u}|u;41 for all ¢ € Z and admit a natural
number 7 > 1 such that w;4, = u; or u;\ for all 7. The smallest 7 satisfying these
conditions is the period of u. Each periodic catenation w is consorted with a reverse
u* such that (v*); = (u—;)* and with translates u{p} such that u{p}; = upy;. It
is called symmetric if [u*] = [u{p}] for some p and asymmetric if not.

To each asymmetric period catenation u we shall attach a family of represen-
tations of S which are indexed by the powers

Q:Pl:XMl_alel71—GQXml72_"'_am[7 1>1

of the irreducible unitary polynomials P in one determinate X with coefficients in
k. The index set formed by the powers @ = P! with P # X is denoted by P. To
each () € P we attach the invertible matrix

0 0 ... 0 am
1 0 .. 0 a1
AQ = | i
0 0 .0 ag
0o o0 ... 1 al
The representation (Y,%; 5?1, €9 ) associated with an asymmetric periodic
catenation v of period 7 and a polynomial @ € P of degree d is obtained as follows.
First we consider the representation (Xy; fu1, - ; fwn) attached to the catenation

W= WIWQ -+ - WrWr 41 -+ WorWor 41« - W3g

= U gUogp] U QUOUL * Ug (U * U1
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With the notations of 2.2 we then set
YR =urrileunte - eoun’=mw'eu’e - i,
and thus obtain
M (Y2) = (Dphuy, ® ©rkut) 5 b
Mj(YuQ) = (Omky,, © @qkﬂq) R k4

where I, m, p and ¢ belong to {0,1,---,7 — 1} and satisfy u,, u/ € S; and
Ugy Upy € S;r. The structure maps are defined as sums

51?1 = )‘1?1 + Mffi - Mi_ (YuQ) —= Mi+(YuQ)7
where )\Q is the composition

M7 (Y2) I pr-(X,,) @ k¢ 20N M (X)) @ bt B M (YR)

(By im we denote the canonical immersion, and by pr the canonical projection.),
and where /Li is the composition

(@)

1914

MY R) I n- () @y k4 SR g gt Pt Bl kY g ke

i
R
if ug € S;t;

MF(VQ) PE M (X)) qop bt MO g gt Bt SAQT e o g

M (v2)

if up € S; ; and zero if ug ¢ S;” U S;H.

As a typical example, we consider the case where S is as in 2.3, and

uoul - - - up_1 = aebaea~b™eb.

Q

The structure maps g, are then visualized by the following diagram

(ka)?  (ke)'—w (kb)) (kay)?  ke)'—s (kap)! (kD5 (key)'—w (kDy)?

S

(kap)® ke GBDT (ka (kep)?  (kap)? (b (ke b

/

A
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The corresponding matrices are

€ 6A
1, 0 0 1, 0 0 Yy a
0 0 14 0 0 0 2 |
blo o 15 0 0 14 0 1, 0
"1, 0 0] 0o o0 o b 0 0 Ig
o~ 10 0 0 0 1y O A 0o o0
0 1Ig O 0 1g O

In view of the required classification, we now choose a set 23 of asymmetric
periodic catenations which contains one representative of each class [, ([u{p}]
[Tlw{p}*]). For each (u,Q) € Q3 X P, we denote the representation constructed
above by R(u,Q). A representation of S isomorphic to such an R(u,Q) will be
called an asymmetric band.

2.6. We finally turn to the case of a symmetric periodic catenation w. It is easy
to prove that uguq - - - u,_1 then has the form

By s Bt = 0 5 gl .8 By e s @ P e s sty
where [af -+ aj] = [by - b1], [ct---cf] = [ds - -di], e £ €”, and f # f". Setting
W= WIWY - WrWe g ]+ W Wh g 1+ Wiy
U U] U AUOUL * U U+ U1 -
as in 2.5. We shall associate a representation (ZX; 7%, -+ 7k ) with each matrix

_ |4 B (mAm")x (14+1")
K= {(J D} ck

belonging to Q. By Q we denote the set of the following matrices (¢ > 0):

(1,0 | 1,7
[

]14+1 nq

i 0 7 M1 1,07
o [ | |, v {nqﬂ | nqﬂ} [nqﬂ | Jqﬂ}
_ﬂqO nq_ _]1q ]qurl_ Jq+1 | ]1q+1 ]1q+1 | ﬂqul

3) |:A(Q) nq+1:|
Tgt1 Tgt1 7

0
|1, | et g1 | ﬂq+1} [JqH | ﬂqH}

T+ | Jot1 Tgt1 | Tyt
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where
01 0 - 00

0O 0 1 - 0
0O 0 0 - 0 0
Jopr=1_ | >
000 -0 1
000 - -00

(e}

and where @ = P” is a power of an irreducible unitary polynomial P # X, X —1
(see 2.5).
For this sake, we consider the following summands of X,

E=aiono -oaof), F={"tobo bha,
F=deose --o&so{fl, F={edo -daed,

and set ZK = Bl ¢ B @ F™ @ F'™.
The structure maps 7% : M, (ZX) — M;"(ZK) are defined as sums

K K K K K K
Ni = Thuk + MiE + i F + Nuir + Vi

where the first four summands are induced by fu; : M, (Xy) — Mj(Xw). For
instance, 7751 g is the composition

M7 (25) B vyt 2 My () s vt x,)t B (e 2 Mz,

K2 u
The last summand v is also a composition, namely,

I M (X)) @ M7 (X))

M; (25 2 v (B @ My (B ;

3 u
1 iy m m’
Gos 1P us w420 4+2 LIPS Py K K™ @ B P mt2r2BR 00 11

’

M (Xu)™ @ M (Xu)™ u

L My @ M (Fy 2B at (2K
ifa; € 5;;

im / pr /
MH(Z) = M (B) @ M (B <+ M (Xw)' & M (Xu)'

i i m m’
Pos mt 1P 2042 Ko g K’ e o Gang nt-2r 2P s 21

M (X,)™ @ My (X,)™ &2 My (F'y™ & My (F)™ 22 My (Z5)

%

D C
: =+ I
if ap € S;", where K = {B a1

K' = K otherwise. The v/ is zero if a; ¢ S; US;".

} if K is one of matrices listed in 1), and
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As an example, we consider the bush of 2.3 and the case
_ ~p~ A
UQUY - Up_] = aea b~ eb.

The structure maps are then visualized by the following diagram:

A
(kep)! ——— (kap)! (kay))} ——— (D" (23— AL
c B

. . , D p . ;
(ke)! ———> (kap)’ (kay)" ———— (kbp" L — O

and the corresponding matrices are

e e Y a
0 n | 0 0
T A B
1, 0 | 0o 0 .
o~ | ¢ b
o o |1 o

In view of our classification, we finally choose a set {24 of symmetric periodic
catenations which contains one representative of each class [, [u{p}]. For each
(u, K) € Q4 xQ the preceding construction then provides a representation R(u, K).
A representation of S isomorphic to such an R(u, K) will be called a dimidiate
band.

2.7. Main Theorem. Fach indecomposable representation of a (completed) bush
S is a string (asymmetric or dimidiate) or a band (asymmetric or dimidiate). The
represetations R(4), where

0eQ O x{0,1} IO xPIIOy x O,
are indecomposable and pairwise non—isomorphic.

The proof of the main theorem is based on the reduction in section 3 and will
be given in section 4.

2.8. Remark. (a) Let w = wjws ---w; be an asymmetric catenation. then the
reverse catenation w* = wy ---wjw} is also asymmetric. By the construction of

—
*

R(w) and R(w*), we may identify X, with X, by identifying w; with wi 1y
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for 1 <4 < t. In fact, one sees easily that such an identification induces an
isomorphism between R(w) and R(w™*).
(b) Let w = wqws - - - w; be a symmetric catenation. Then w is of the form

w = a1ay - - - asebgs - - - babq,
where [a¥ - ajaj] = [bs - - - baby] and e # €. Set
v=atay- - asea, ---ajaj.

Then v is a symmetric catenation and equivalent to w. By the construction in
2.2, one easily sees that (Xy; fu1,- -+, fon) is decompose into a direct sum of two
representations.

(c¢) Let w = (u;);ez be an asymmetric periodic catenations of period 7. Let
v = (v;)z be such that vgz4; = u; for all k € Z and 0 < i <7 — 1. Then v is also
an asymmetric periodic catenation of period 7 which is eqiuvalent to u. By the
construction in 2.5, there holds that R(u, Q) 2 R(v,Q) for each @ € P. Moreover,
by changing basis vectors, one can easily prove that R(v,Q) = R(v{p},Q) for
all p € Z. Thus u and v{p} (p € Z) provide the same family of isoclasses of
representations of 5.

Further, the reverse catenation v* of v is asymmetric. By the construction in
2.5, for each

Q:Pl:X””—alelfl—aQXmlf2—~~~—aml, 1>1

in P, we set Q'(X) = (—1)#)(””@(%) € P, then there holds that R(v,Q) =
R(v*,Q’) since A(Q') = A(Q)~1. Conversely, R(v*,Q) =2 R(v,Q’). Thus v and
v* provide the same family of isoclasses of representations of S.

(d) Let uw = (u;)scz be a symmetric periodic catenations of period 7. As in (c),
let v = (v;);cz be such that vgry; = u; forall k € Z and 0 <i <7 —1. Thenv
is also a symmetric periodic catenation of period = which is eqiuvalent to w. By
changing basis vectors, there holds that R(u, K) = R(v{p}, K) for each K € Q
and each p € Z. Hence u and v{p} (p € Z) provide the same family of isoclasses
of representations of S.

3. A reduction of representations of bushes

In this section, we shall formulate the algorithm in [3] with respect to tangles
formed by sequences of modules. We shall see in next section that such an algo-
rithm will lead us to an efficient reduction of representations of bushes. All the
proofs are analogous to those in [3]. We omit them.

3.1. Let S= (S, - ,8,;8, --S};~) baabush as in 1.3 and (M~, M) the
tangle associated with S. For each representation (X; f1,- -+, fn) of (M—, M), we
denote by f the sequence (f1,- -, f) and simply write (X; f) for (X; f1,-- -, fn).
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Let 1 < ¢ < n. We start with submodules K= C L~ of M, and sub-
modules Kt C Lt of Mf We are interested in the representations (X; f) =
(X;ft, fir- fn) of (M—, M) which satisfy f;(K— (X)) € Kt(X) and
FL-(X)) € LH(X).

From now on, for each X € A, we fix subspaces U, (X), Uy (X) of M, (X)
and subspaces Ufr(X), U2+(X) of M;"(X) such that

L™(X)=K (X)o U (X), MO(X)=L" (X))o Uy (X),

K2

LT(X) =Uf(X)e KT(X), M (X)=Uf(X)® LT(X).

K3

Then for each representation (X; f) of (M—,M™), the f; can be written as the
form:

fin fiz [fis
fi=|fiu fis fis| M;(X)=K (X)o U (X)a U, (X)
fir fis fio
— U (X))o UH(X)® KT(X) = MiH(X).
To the tangle (M —,M™T) we now attach a new tangle as follows. First, we
denote by B the full subcategory of rep(M—, M) formed by representations

(X;p), where p : U (X) — U1+(X) is a k—linar map and p denote the sequence
(0,---,0,p0,0,---,0) with pg of the form:

.

Further, for each (X; p) € B, we define

o OO
(=l o i =)

] :M; (X) =K~ (X)® U (X) & Uy (X)

o ©

—US (X))o UH(X) e KT(X) = M (X).

(X — N +iy 2 At vy
N; (X;p) = Kerp = K (X) ® Kerp® Uy (X),
and NV (X;p) := Cokerp = U (X) @ Cokerp® K1 (X).

For a morphism u : (X;p) — (X’;p/), we denote by N; (p) and N;r(u) the
k-linear maps induced respectively by M;(u) and M;L(u) for 1 <4 <n. Then we
obtain two sequences of modules N~ = (N;,---, N, ) and N* = (N}',.-- | N.))
over B, that is, a tangle (N—, N1) over B. Moreover, the modules N, and N;“
admit respectively submodules J~ and J1 such that

J(X,p) =K (X)®Kerp, JT(X,p)=K"(X).
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Finally, we denote by M the full subcategory of rep(M —, M) formed by repre-
sentations (X; f) satisfying f;(K (X)) € KT(X) and f;(L~ (X)) C LT(X), and
by N the full subcategory of rep(N~, NT) formed by representations ((X, ); h) =
((X;p);h1,- - hy) satisfying hy(J (X, p)) € JT(X, p). Our purpose is to build up
a relation between categories M and N.

3.2. From now on, we suppose that K~ = R M, and L~ = R%2 M, for some
i1 > g, and that K+ = RAM;" and LT = R72M," for some j; > ja.

In order to establish a reduction from objects of M to those of A/, for each
(X;p) in B, we choose a supplement 7" (X; 5) of Kerp in U (X) and a supplement

TH(X;p) of Imp in UjF(X). Then po can be written in the form:

o

o = M (X)=K (X)®Kerpa T (X;p) @ Uy (X)

K3

(@ o i i = |
(e o B qm
o O

oI OO

—Uf(X)o Impa TT(X;p) o KT(X) = M;H(X),

where p: T~ (X;5) — Imp is induced by p.
Further, for each object (X; f) in M, the f; is of the form:

fia fis [fis
—Uf (X))o UH(X)® KT(X) = M;H(X).

0 0 fa
fom [o i figl My (X) = K~ (X) o Up (X)® Uy (X)

In such a way, (X; f) gives rise to an object (X; f;2) in B. By further decom-
posing U (X) and UfL(X)7 we infer that f; has the form:

0 0 0 fa
=l o | MO =K ()@ Kefya T(X: fia) 0 Uy (X)
fa fls fl& fis
— U (X)® Imfy & TH(X; fig) ® K (X) =M} (X).

Since the tangle (M~—,M™) is rodded, (X;f) is isomorphic to the object
(X5 ) = (X5 f1o s fiet, s firrs- o, fu) with f] of the form:

0 0 0 fa

0 0 fia O _ _ _ ~ _

o o0 0 A M (X)=K (X)®Kerfo T (X; fi2) ® Uy (X)
fu fls 0 fis

—UH(X)® Imfo ® TT(X; fio) ® KT(X)=M;"(X),
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where flo = fig — ;gfgjl i3+ Finally, we denote by 7, ;) an isomorphism from
(X5 f) to (X; ). -
Thus each object (X; f) then gives rise to an object ((X; fi2),f) in N with

A

F=(fts o ficts fir Fit1s -+ fn), Where f; is of the form

0 0 fit B
fi4 ]2/5 fl/
—>U2+(X) @ Cokerfo ® KH(X) = N;L(X§f;2)~

(Here P(X;£0) denotes the restriction of~the canonical projection T(Xifi) * U 1+ (X)
— Coker fo = U (X)/Imfs to TH(X; fi2).)

3.3. Remark. Up to isomorphisms, the representation ((X; fi2), f) induced by
(X; f) is independent on the choice of supplements 7'~ (X; f;2) and TH(X; fi2).

3.4. In view of Remark 3.3, for each (X p) in B, we may fix a supplement T~ (X; p)
of Kerp in Uy (X) and a supplement 7+ (X; 5) of Imp in U;"(X). By the discussion
in 3.2, each object (X; f) in M then gives rise uniquely to an object ((X; fi2); f)
in V.

Let (X; f) and (Y g) be objects in M and p a morphism from (X; f) to (Y;g).
With g we now associate a morphism from ((X; fi); f) to ((Y;gi2); 9).

Again by 3.2, one has that g =: n(Y;g)u(n(X;f))_l is a morphism from (X; f/)
=(X;f1, L fL ) to (YVs9)= (Y591, .90, ,gn), where f! and g/ are
of the forms:

0 0 0 fa
/ 0 0 f@? 0 —= - - , -
fie|g o % 3 M (X) =K (X))@ Kerfa® T~ (X; fi2) @ U3 (X)
fia fls O 26
—UH(X) & Imfa & TH(X; fio) @ KH(X)= M;"(X)
and

0 0 0 gn
0 0 i 0 _ . _
d=10 o O o |ME)=E(Y)oKegoT (Yiga)® s, (V)
9i3
gia 95 0 g

—S§(Y)@Imga® TH(V;gin) @ KT(Y) = M;"(Y).
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Further, the maps M, (ji) and M, (1) can be written as the following forms:

ail aiz2 a1z aiq

—ov_ | O aze a3 aga | .-
M@ =1 agy agz asy LA
0 0 0  ayqq

=K (X)@Kerfo T (X; fi2) ® Uy (X)
— K~ (Y)® Kerga @ T (Y;gi2) ® S5 (Y)=M,; (Y)

K3
and

bi1 0 0 0
- b b b 0
brey [ b21 boa bog o
M (i) bai bss bas O M;F(X)
byr bao baz by
— U (X) @ Imfa @ TT(X; fio) ® KH(X)

— S5 (V)@ Imgy & TH(Y; gi2) @ KT(Y) = MH(Y).

Then there holds that

ro 0 0 g al] aly aiz  aig
0 0 go O ay a3  a
0 0 0 g azy  az3  as4

rbyg O 0 0 0 0 fi
bat bog bog O 0 fia O
b3t bga b3z O 0 fls
Lbgr bag b4z baad Lfia fls O flg

0
0
Loig 9is 0 ggd LO 0 0 au
0
0
0

since [t is a morphism.
It then follows that ags = 0 and bgg = 0. Since (M, M) is rodded, there is
a morphism p/ € R4(X,Y) such that

(M (), M} () = (0,0) for all j #4,

00 0 O 0 0 0 0

_ 00 0 O 0O 0 0 0
/ A Py

00 0 O 0 bgp 0 O

We then set i = i —p/ : X — Y. It is easy to show that fi is a morphism from
(X; fi2) to (Y; gi2). By (1) there also holds that

aN; () = Nt ()],
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that is, fr is a morphism from ((X; f;2);f) to ((Y;gi2),4).
As a conclusion, we obtain two correspondences (X; f) — ((X; fi2); f) and
o — {1 which induce a functor

oM —N/I

such that ®(X; f) = ((X; fi2); f) and ®(p) = i + I, where I denotes the ideal of
N generated by v — of for p: (X; f) — (Y;g9) and v : (Y;g9) — (Z; k) in M.

Proposition. (1) The ideal I lies in the radical of N.
(2) The functor ® is an epivalence, i.e. P is full, hits each isoclass, and detects
isomorphisms.

3.5. For the practical application, in certain situations it imports us to translate
the reduction into the language of matrix problems. We illustrate the translation
with an example: Let S be the (non—complete) bush in 2.3, i.e. S is formed by
the following pairs of rods:

The associated tangle consists of two pairs of modules (M, Mfr) and (M, , M2+)
Let (X f1, f2) be a representation of . If X is fixed, the chosen bases of M; (X)
and of Mf(X ) provide us a matrix problem given by a pair of partitioned matrices

€ 6/\
b A | As £ | B
e | dg | 2 bi [ Bl B2 }
a~ | Ag Ag 3 4

together with the following admissible transformations

(a) arbitrary row transformations within stripes z and z and abitrary column
transformations within stripes e, e” and y;

(b) row transformations within stripe a™ coupled with the conjugate column
transformations within stripe a, row transformations within stripe b coupled with
the same row transformations within stripe b~ (Note that the number of rows in
stripe a™ equals to the number of columns in stripe a and that the number of rows
in stripe b equals to the number of rows in stripe b™);

(c) additions of multiples of rows between different stripes are allowed from b
to z and a™, from z to a™, and from z to b, additions of multiples of columns
between different stripes are only allowed from y to a.
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Thanks to the algorithm, we first reduce [A1|A2] to the following form:

0101001010
010100111 0
011100101 0
o1t oo loi1 o1 1

By performing admissible transformations, we reduce Az, A4, Ay and Ag to
the following forms (the row partition of stripe b induces a partition of stripe b™):

e e
a
0 1010 0 101 07 B
b | 0O 1O 10 0 1 01 0 2
7077I7117I79777077|797|7707
O 1 0 1 1 O 1 01 1
T 1431 1 01 0 Agr | O 1 Ay b
a” LAsy 1 O 1 O Agt | 0 1 Agal

Thus we are reduced to the matrix problems described by the following matri-
ces:

y a
e e e z iﬁ ‘
by| 0 ] 0 0+ by BLE/
x | Ay | Ag A42+ by |Bxn | Be \
a~ | Asi | Ag | Ag by | By | By \
— by 334_1214 /

Without spoiling the reduced form of [A1]|A2], we can perform the following
transformations to the matrices above:

(a’) arbitrary row transformations within stripes =, z, by, b}, and b), and
abitrary column transformations within stripes eq, 66\, and y;

(b’) row transformations within stripe a™ (resp. bg) coupled with the conjugate
column transformations within stripe a (resp. €’),

(¢’) additions of multiples of rows and columns between different stripes are
illustrated by the arrows in the figure above.

Thus the reduced matrices can be viewed as a matrix representation of a new
bush T' given by the following pair of rods:
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° bO e Z
e’ l l
/.\ o X o a o by
:2 .e’\ b o/ o b
0 ~ 0 . ~ N 1 \ 2
Tl Tl e a~ Tz o) Tz . é

together with the equivalence relation such that a ~ a™, by ~ by and e’ ~ b.
This matrix problem coincides with that obtained from the algorithm. For further
reduction, one can reduce matrix [As1]|A41], and so on.

4. The proof of the main theorem

4.1. In this section, we shall keep all the notations in the preceding Sections.
Let S be a bush and (X; fq,---,fn) a representation of S. By definition, the
dimension of (X; f1,-+ , fn) I8

n

> (dimy M, (X) + dimy M (X)),
i=1
where M, and M;r are the modules associated with S (see 1.3).
Let us now return and stick to complete bushes. We start from a complete bush

By abuse of notations in Section 2 , we call a representation (X; f1, -, f,) of S
an asymmetric string if it is isomorphic to R(w) for some asymmetric catenation w,
a dimidiate string if it is isomorphic to a non—trivial summand of (Xy; fu1, -, fon)

for some symmetric catenation v, and an asymmetric (resp. a dimidiate) band if it
is isomorphic to R(u, Q) (resp. R(u, K)) for some asymmetric (resp. symmetric)
periodic catenation u and some @ € P (resp. K € Q).

Let (X;f) = (X; f1, -+, fn) be an indecomposable representation of S with
dimension d. Our objective is to prove by induction on d that (X; f1, -+, fn) is a
string or a band.

If d =1, it is clear that (X; f1,--- , fn) is a dimidiate string. We now suppose
that d > 1 and that every indecomposable representation of an arbitrary complete
bush T" with dimension < d is a string or a band.

If all f; vanish, X is indecomposable in A and (X; f1,--- , fa) = (X;0,---,0)
is an asymmetric string (since d > 1). Otherwise, let 1 < ¢ < n be such that
fi # 0. Then there are m—, mT € N such that

i) fi(R™ M (X)) CR™THME(X),

i) fi(R™ M; (X)) CR™ M (X),

iii) the induced map

Fi i R™ M7 (X)/R™ M (X) — R™MH(X)/R™HME(X)

K3
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is not zero, where R denotes the radical of A.

We then set K~ = R™ T'M7, L= = R™ M,
Lt =rm" Mt

By Proposition 3.4, we may reduce (X f) to a representation ((X; f,2); f) of a
new tangle (N—, NT) over the aggregate B such that ((X; fi2); f) is indecompos-
able and has dimension strictly less than d.

Since the lattices of submodules of M, and M;r are rods, both the supports of
L=/K~ and of LT /K™ contain one or two elements in S. We examine the various
cases seperately.

Kt = Rt and

? ?

4.2. Case L. supp(L=/K~) = {2}, supp(LY /K1) = {4} and & # § for some
z eSS, andyES’j.

By way of example, we may suppose that z™ € S , y~ € S for some jj #
1, jo # . All the other situations can be treated similarly.

In order to apply the algorithm described in 3.2-3.4, we choose the supplements
Ur,uy,U 1+ and UQJr in the following canonical way: For each a € S, we set

_ 0 if a#£z B
Ul (a) - { kx if a==x U2 (a) - @“G%UEP*,U<0&]€U
and 5 if atg
it aty
Ui’—(a') - { k'y if @ = g U;—(a’) = ®UEQ,EEP+,U<ka

where z and g denote the equivalence classes of z and y in S, respectively. Finally,

“
for each X = @qcsa™@ € A, we set

U7 (X) = M (1) H(@aesU; (a) )

K2

and i=1,2.
U (X) = M} ()" (@aesU; (@)@

The representations (a;0) = (a;0,---,0), a € S, and (z ® y;n), furnish a
complete list of indecomposables in the aggregate B, where 1 denotes the sequence
(0,---,0,m; =1,0,---,0). Then there holds that

[ M(Y) i (Yg) = (a;0)
Np(¥i9) = { ke~ if (Vig)=(@@g.n)

L (MLY) i (Vig) = (0)
N5 1) = { ky™ if (Yig)=(@@®y,n)

We denote by S the spectroid of B formed by representations (a;0) = (a;0, - - - ,0),
a€ S and (@ y;n).
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By T'= (1T, ST TyE oo Tok ~) we denote the bush formed by rods
T, =5, 0 {z}, 1, =51 {y1}, and 17 = 57 for ({,€) # (j1,—), (42,—). The
union U2 (T; U T:r) is equipped with the smallest order relation which contains
that of S induced by 5% and is such that 2™ > zy, ¥~ < y1 and z 2 1 (resp.
z 2z yp) iff 2 2 2™ (resp. z 2 y~). Finally we equip T with the equivalence
relation induced by S and extended by z1 ~ y1. The spectroid associated with T'
(see 1.3) is denoted by 7.

An easy observation shows that the correspondence
(%0)—2, z2€8, (@@ynr—I1=141

gives rise to an isomorphism from S to 7. Therefore, by identifying S with 7, the
reduced form ((X; f;2)7 f) of (X; f) can be considered as a representation of the
new bush 7T'.

By induction hypothesis, ((X; f;2); f ) is a string or a band which is associated
with a catenation v (finite or periodic) of T'.

We denote by w the catenation of S obtained from v by replacing each term
z1 by ™y and y1 by y™z.

We first consider the case where v is an asymmetric catenation. Then w is
also an asymmetric catenation and R(w) = (Xu; fwi, -, fun) is an asymmetric
string. By the construction of R(w), one sees that each part ™y or y~z in w
provides a summand (Z & ;1) of (Xuw; fwi2). Thus (Xu; fui2) and X, considered
as objects in B are isomorphic. By identifying (X,; ]?wig) with X, the action of
fuwi coincides with that of f,;, so the representation ((X,; fuwi2); fuw) is isomorphic
to R(v). By Proposition 3.4, we infer that (X; f) = R(w), that is, (X, f) is an
asymmetric string (The decisive point is the following: If a term w, of w arises

from some term vy # vy, then [w}_jw} o] < [wyy1w,q2---] is equivalent to
[vi_1vg_2- ] < gr1vgr2--- 1)

If v is a symmetric catenation, so is w. One then obtains that (X; f) is isomor-
phic to a non—trivial summand of (X; fu1, s fwn) since (X; fgg); f) is isomor-
phic to a non—trivial summand of (X,; fu1,-- -, fon), that is, (X; f) is a dimidiate
string.

In the case where v is a periodic catenation, one can similarly prove that
(X;f) = R(w,Q) (resp. R(w, K)) according as (X; fin); f) = R(v,Q) (resp.
R(v, K)) for some Q) € P (resp. K € P), that is, an asymmetric (resp. a dimidiate)
band.

4.3. Case IL supp(L~/K~) = supp(LT/K™T) = {z} for some x € S, with
z~ € S;r ’

In this case, one can easily see that the representations (a;0), a € S and
()4 m(t)), t > 1, furnish a complete list of indecomposables in B which are not
annihilated by [J, where J denotes the intersection of annihilators of all N, " and

N;—, and where 7(t) denotes the sequence (0,---,0,7(t);,0,---,0) with n(¢); of
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the form:
01 0 0
0 1 0
n)e= |1 1 e M(@)) = (k) — (k™) = M ((2)")
o0 0 --- 1
o0 0 --- 0

(Note that the supplements S;, S, , Sfr and SQL are chosen in a cononical way
similar to the case 1.)

Since (X; f) is finite dimensional, there exists an L > 0 such that the in-
duced representations (X; fgg) does not contain a summand isomorphic to some
((z),n(t)) for t > L.

Let S denote the spectroid formed by (a;0), a € S, and ((z)%;n(t)), 1 <t < L+
1, and 7 the spectroid associated with the bush T' = 1T'(L) = (1 ,--- ,1;;; J 2l
T.F; ~), where the order relation on the union of the sets 7, = S; IT{xy,--- 21},
T = g T {7, 2y}, and TF = S7, (l,e) # (4,—), (¢,4), are defined as in
case | (in particular, z < z1 < --- <z, 27 <--- <27 < z”). The equivalence
relation equipped with T is induced by that of S and extended by z; ~ 27 for
j=1,---,L.

Then the correspondence

(2,0)— 2, 2€8, (@)5n0) — Fp_q1, 1<t<L+1

defines an isomorphism from S to 7.

If (X; f;2) contains a non—zero summand annihilated by 7, (X; f) is isomorphic
to (z,Q) for some @ € P because of the indecomposability of (X; f), thus is an
asymmetric band.

If (X; f;g) does not contain a non—zero summand annihilated by 7, the reduced
form ((X; f;2)7 f) of (X f) can be considered as a representation of the bush 7'

By induction hypothesis, ((X; f;g); f) is a string or a band associated with
a catenation v of T'. We denote by w the catenation of S obtained from v by
replacing each term z; (7 > 1) by z-- -z and each term z" by 2™ .- 2™,

1 G+

By a similar argument in case I, there holds that (X; f) is a string or a band

according as ((X; fgg); f) is a string or a band.

4.4. Case IIL. supp(L=/K~) = {{z},{2"}} and supp(LT/KT) = {g} for some
z, 2" €S, with x % 2" and somey € S;".

By way of example, we suppose that y™ lies in S, for some 7 # i. In this
case, the representations (¢;0), a € S, ({2} @ y;n(1)), ({z"} & ¥;7(2)) and
({z} @ {="} ® 7;n(3)), furnish a complete list of indecomposables in B, where
7n(1) = n(2) denotes the sequence (0,---,0,1,0,---,0), and 5(3) the sequence
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=(0,---,0,[11],0,---,0). By S we denote the spectroid formed by these repre-
sentations.

Let 7 be the spectroid associated with the bush T' = (1, --- ,17; Tfr, s T
~), where the union of the sets T, = S;” I {z}, T, = 5, Il {y],y5,y3}, and
TF =57 ((Le) # (4,—), (4,—)) is equipped with the order relation defined as in
case I (in particular, z > 2}, 2" > 2/, y5 > y] > v, y5 > y4 > y™). Finally,
we equip T' with the equivalence relation induced by that of S and extended by
)~ s

Then the correspondence

(30)—2, z€S, {zy @ g;n(1)) — {¥1},
{=" Yo g;n(2) — {v3}, ({z}@{z"}@7n(3)) — 7| =73

induces an isomorphism from S and 7. Hence (X; fgg); f) can be viewed as a
representation of the new bush T

By induction hypothesis, ((X; f;2); f) is a string or a band associated with
a catenation v of T. We denote by w the catenation of S obtained from v by
substituting zy for each term , y~a” for y4, y™~zy for ¥}, and y~a"y for yh.

First we suppose that v = vivg - - v, is an asymmetric catenation, thus w =
wiwy - - -wy 1s also an asymmetric catenation. We consider the following parts in
w.

a) wywy 41 = xy (obtained from a term v, = #} in v). By construction of R(w),
the maps gwir and fu;,+1 associated with w (2.2) behave as follows:

1
/ kV_Vr g kV_VH_l
k 1
klvy; k‘/—vﬁ;ﬂ
Note that [wy_;...w]] > [wyq1...w] since v;_; = w) 4 >z (This follows from

the fact that ((X; f;2); f) satisfies f;(J~(X; fi2)) € JH(X; fi2)) (see 3.1)). Thus
every part zy in w provides a summand ({z} ® {2} @ 7;7(3)) in (Xuw; fwi2)-
Such a summand contributes a one—dimensional subspace k(z —z”) in Kerf,;0 C
N (Xw; fwig) and a one-dimensional subspace ky™ in N; (Xy; Fuwi2)-

Similarly, each part y™~z” also provides a summand ({z} & {z"} & );7(3)) in
(Xw; fwi2) which contributes a one—dimensional subspace both in N, (Xu; fuwi2)
and in N;(Xw; fwig).

b) wyw,41wy42 = y~zy (obtained from v, = x)). By construction of R(w),
the maps fuir41 and fyr42 behave as follows:
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/m, W
k k
1 / 1/'
fa; o s,

*

provided [vy y...v7] > [vgq1...vs] (thus [wi ... wi] > [wyyo... w)).
In this case, the part y™~zy provides a summand ({z} ® {z"} @ (7)%; 1), where
7 is of the form

H ﬂ . M~ ({2} {2’10 @)?) = kz@ka" — kydky — MT({z}e{z" 10 (5)2).

Such a summand contributes a two—dimensional subspace (ky™)? of N (Xuw; Fuwi2)-
It is easy to see that the morphism

1 0 0 O
p= 8 (1) ? 8 Helo {z"} o (5) — {z} @ {="}® (9)°
00 -1 1

is an isomorphism from ({z} ® {z"} @ (7)%; ) to {z}@ g;n(1))® {2} & 7;n(2)).

In case [vy q... 0] < [vgt1...vs] (thus [w) ... wi] < [wy42...w), the maps

Swir+1 and fi;r 42 behave as follows:

/ kLVr kv—vr+1 kLvr+2
1
k k
1 1/V
1
kwy S hwy,, ks,

In this situation, the part y~zy provides a summand ({z} ® {z"} ® (7)2); %),
where 7’ is of the form

{é ” M ({s}@ (2"} (5)?) = haoka" — kyoky = M ({z}e {a"}o(5)").

This summand also contributes a two-dimensional subspace (ky™)2of N. 5 (Xw; fuwi2)-
It is easy to see that the morphism

1 0 0 O
W= 8 (1) (1) _01 (({z}e {z"} e (1)) — ({a} @ ("} & (5)?)
0 0 0 1
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is an isomorphism from ({z} @ {2} @ (7)%; %) to ({z} @ g;n(1)) @ ({2} @ 7;1(2)).

Therefore, every part y™~zy in w provides a summand in (X,; fwig) which is
isomorphic to ({z} @ g;7(1)) ® ({="} ® g;n(2)).

Similarly, every part y™~2"y in w also provides a summand isomorphic to ({z}&®
g;n(1)) & ({="} @ 7;n(2)).

¢) Each term w, (obtained from some term v, in v) in w provides a summand
(0,;0) in (Xy; fuwi2) if w, #w), and a summand ({w”} @& {w)};0) if w, # w).

Form the observations in a)-¢), it follows that (X fui) and X, viewed as
objects in B are isomorphic. ~

Furthermore, by suitably choosing basis vectors of N j(Xw; Juwiz) for 1 <j<n
and ¢ = —, +, one can show that ((X,; fwig); fw) is isomorphic to (Xu; fu1, 4 fon)-
This implies that (X; f) is isomorphic to R(w) = (Xuw; fwl, s fwn), that is,
(X; f) is an asymmetric string.

Similarly, one gets that (X; f) is a dimidiate string if so is ((X; f;2); f) and
that (X: f) = R(w,Q) (resp. R(w, K)) according as ((X; fi2); f) = R(v, Q) (resp.
R(v, K)) for some @) € P (resp. K € P).

4.5. Case IV. supp(L~/K~) = {z} and supp(LY/KT) = {{y}, {y"}} for some
z €S, and some y,y" € S;L with y 3 y”. This is an anologue to Case IIL

4.6. Case V. supp(L~ /K ) = {{z},{a"}} and supp(LT /K1) = {{y},{y"}} for
some x, 2" € S, and y,y" € S;¥ with x x 2" and y = y".

In this case, one can show that the representatons (a;0), a € S, and R(F) :=
({z})r@ ({=" )20 {yHr @ ({y"})'2; n(E)), furnish a complete list of indecom-
posables in B which are not annihilated by 7, where n(E) denotes the sequences

(0,---,0,F,0,---,0) and E ranges over the following matrices (m > 1)(see Sect.
11 in [GKR]):

Py 1=
P, 1=

0 L s1 =389 =1ty =m
P2m L, 0 ( )7
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L L s1=89=1%1=m
Py = — DR ,
0 1,,
= i, .. 5
to=m-—1
Iom-1= ( b

ﬂm710 Oﬂmfl Slzsgztlzm

[0l y | Tyt O]

01, |1,

Ty — (sgztl—tgzm)
"0 |1, sp=m+1 7
" L |1 O s1=1t1=ta=m

IQm: ( o 1 )7

Ly |01, 52 =m+
Lo,
1
+ J "
Tl m (s1=s3 =11 =ty =m)
Ly, L,

By the finite-dimensionality of (X f), there exists an L > 0 such that the
induced representation (X; f;2) does not contain a summand isomorphic to some
R(E) for E = P;, P>, I;, I} or T} with t > L. We then denote by S the spectroid
formed by (a;0), a € S, and R(E) for E = P,, P>, I;, I} and T} wiht 1 <t < L.

By 7" we denote the spectroid associated with the bush 1'=T(L) = (1 ,...
ToT¢, .. T ~), where thesets T, =S, I{z_1,- - ,2_p, z1,27, - ,zp, 2} },
Tz‘+ - Si+H {yfh o Y-L, ylvy/l\7 co vylnyﬁ} and Tlg - Slg ((l7€) 7& (ia _)7 (i7 +))
are equipped with order relations defined as in case I. In particular, we require
that the induced order relations on {z_1, -+ ,z_p, 2", z1,27, -+ ,2r, 27} and
{y—t, ,u—1, v, ¥, 1,97, -+ ,yr,yr } admit respectively the following Hasse-
quivers:
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X| —» X H)—» ... —» X

y » V1 - » VL
X X X yﬁL " ” y72 " y71
[ -y - i - 3

We then equip 1" with the equivalence relation induced by S and extended by
T g~ Y m,m=1,...,L.
Then the correspondence

(2,0)— 2z, z€5, R(I) — {4}, R(It/\) — {xf}7
1<t<L
R(Ttl) Ty =Y, R(P;) — {y:}, R(P)) — {yf'}

defines an isomorphism from S to 7.

If (X;fi2) contains a non-zero summand annihilated by 7, ((X;fgg);f) is
isomorphic to R(zy, K) for some K € Q, thus is a dimidiate band.

If (X; f;2) does not contain a non-zero summand annihilated by 7, ((X; f;2); f )
can be considered as a representation of the bush T'. In the following we simply
identify S and 7.

By induction hypothesis, the representation ((X; fgg); f ) is a string or a band
associated with a catenation v of T'. We denote by w the catenation of S obtained
from v by replacing each term z,, by zy" - - -y zyzy - - - yz"

m m
(resp. xy™---xzy" zyz" - -yz") if m is odd (resp. even),

m m
z) by 2y -y y N ay” - yz (vesp. 2y -2y ¢z -y z) if mis odd (re-

m m m m
sp. even), ym by y2” -2 yxy z - xy” (resp. y2" -y zyxy” - ay”) if mis

m m m m
odd (resp. even)y) by y"z - - - zy” 2 N ya" - 2y (resp. yz -y zy N 2ty - 2ly)

m m m m
if m is odd (resp. even), z_,, by zy” ---2y”, and y_,, by yz™ - - yz~.
N e’ N e’
2m 2m

First we suppose that v = vjvg---v, is finite and asymmetric, and set w =
wiwy - - -w. We consider the following parts in w:
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Q) WpwWp gl Wygom1 = xy" - zy”" (obtained from a term z_,, in v). By
construction of R(w), the map f,; associated with w acts as follows on basis

vectors w, =z, wy; = le\a ““““ YW 92 = Ly Q:+2m_2 =z
_>X1 —> XZ X, e %1\1
X / >< / / |
<
— Xh— Yy x5 — YV,
since [w} ... wi| > [wjyo...w], for j=r—1,... ,r+2m—2.

The matrix describing the action of f,; on the basis vectors z,, 2,1 <i <m
in the figure above is

11 - 0 0 (1 0 - 0 07

)
—
)
)
[o==)
—_
)
o=

0 0 1 110 0 10
0 0 0 1 (0 O 0 1 _ 7l
1 0 0 0 |1 O 0 0 m
0 1 0 0 (0 1 0 0
0 0 1 000 - 10

L0 0 - 0 1 (0 0 - 0 1l
Thus every part zy” - --zy” in w provides a summand in (X,; fwig) which is
N e’

2m
isomorphic to R(TL), and such a summand contributes a one-dimensional sub-
space both in N, (Xu; fui2) and in N;"(Xw; Suwiz)-
Similarly, every part y™z - - -y"x (obtained from some term y_,, in v) provides
N—_———

2m
a summand isomorphic to R(T'L), too.

b) wyw, 41+ Wpyom = xy” - yz”™ (obtained from a term vy = ).
Case 1. m = 2p — 1. By construction of R(w), the map f,; associated with w

acts as follows on basis vectors w, =z, wf =27, -+ Wy o = g@p, WEiom =
Zop:
/Jﬁl =Y X e Bp1 Vyp1 e
A=y X Xy Yy, e Xy Vg e Xy,
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provided [v7 - vf] > [vg41 - -vs] (Hence [wy o - wi] > [wrpopp1 - we]).

We start with the following change of basis vectors.

NN ININANRS

A sae
XXy, = YyVop 1 XXy, > DA AR Rl 2 o

Thus, the part wyw, 41 - - wyy 2y = zy” -y zyay - - ya” porvides a summand

of (Xu; fuwiz) which is isomorphic to R(Y) & R(Y"), where ¥ and Y are the
following matrices:

(o]
—_
(=]
<
(=]
—_
()
=

— oo o -
OO = -
S O =
oo o -
—_olo o -
O OO = -
o ol= o

r
o
)
—_
)
o
)
—_
[en)
L

ri 1 0 0 1 0 07
0 1 0 0 1 0 0
0 1 1 0 0 1 0
YAN=1 0 0 1 0 00
1 0 0 0 1 0 0
0 0 1 0 0 1
LO O 0 1 0 0 0 14
Set
_[o exp Rp_1 DPXP
U, = _ H, €k
where
ro 0 0 0
-1 0 - 0 0
R,=]10 -2 . 0 0| € kP>P
L O 0 —-p+1 0
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and H), denotes the last row of the matrix exp E,. Then there holds that

Up 0 - exp I, 0
[0 eprP,J p1 =Y [ 0 U,

and

expR,_1 ] 0 A  un |exp R, | 0
{ Op | eXpRJ Ip1 =Y [ 0 | expR,

that is, the morphism

expR, & U, @ U, @ expR, 1 {z}P @ {a"}P @ {y}P & {y"}P~1
— {2} @ {2 o {y)P @ {y" !

defines an ismorphism from R(Y') to R(Ia,—1), and the morphism

expR, ® exp R, ® expR,_1 @ exp R, {z}’ & {2"}F @ (v 1oy
—{z}P o 2" oy e (")

defines an ismorphism from R(Y ") to R(Ié\p_l).
Therefore, every part zy” - -y zyzy---yz” in w porvides a summand of

m m

(X fi2) which is isomorphic to Rlop-1)® R(Ié\}kl) and which contributes a two—
dimensional subspace in N, (Xu; fwig)‘
The case [v]_j -+ v{] < [vgq1- - vs] can be treated similarly.

Case 2. m = 2p. By construction of R(w), the map f,; acts as follows on basis

- o gl gl —s .
vectors w, =z, Wy =Xy, Wt om = Tyt 15 Weyom = Lpt1:
=y x>y —p+1 }Zp+1 'YIZ\P * Xopu

provided [vy_q -+ v7] > [vg41 -+ vs].
We start with the following change of basis vectors.

A A
I tXopn — WY, EFEy, e VYR X, - X Yo «— Xpy
A A >< / PARETA >< >< / / X >< A ><
M — VTYyy BN, el YtV Xpg Yol e—a— Koy Y, e Xppu
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Thus, in this case, the part w,w, 1 wy42p = ay” - zy Ny - yz” provides

m m
a summand of (X,,; fuio) Which is isomorphic to R(Z) ® R(Z"), where Z and Z"
are the following matrices:

rl 1 0 0 O 1 0 0 07

0 1 0 0 0 0 1 0 0

0 0 1 10 (U 10

7 - 0 0 0 1 1 (U 0 1
|10 0 0 O 1 0 0 0
0 1 0 0 0 0 1 0 0
00 1 00 (U 10

LO 0 010 0 0 0 1.

rl 1 0 0 1 0 0 0 07

0 1 0 0 0 1 0 0 0

0 0 11 0 0 1 00

gn 0 0 0 1 0 0 0 1 1
10 0 0 1 0 0 0 0

0 1 0 0 0 1 0 0 0

0 0 1 0 0 0 1 00

LO 0 01 0 0 0 1 0J

then there hold that

exp R, | 0 V= 7 expRpi1 | 0
0 | expR,| ~* 0 | expR,
U, 0 A _ A | EXP R, 0
0 expR, | % 0 Vot

where U, and R, are defined as before and V11 has the form

V

= {O EXPRP} c ket x(p+1)

—Hptl

This implies that the morphism

exp Rpy1 @ exp R, @ exp R, @ exp R, {z} T & (o™} & {y}P & {y"}*
—{zPtl e 'Y e ) e W)
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defines an ismorphism from R(Z) to R(l2p), and the morphism
expR, ® Vo1 @ Uy @ exp R, {z}F & {e" P e y1r e (Y}
—{z}’ @ {«"}H @y} @ {y")
defines an ismorphism from R(Z") to R(13,).

Hence each part zy” - - -2y zyz” - - -yz” in w porvides a summand of (X fmg)

which is isomorphic to R(lg,) ® R([é\p) and which contributes a two—dimensional
subspace in N, (Xy; fuwia).

The case [v; -+ v]] < [vg41 - - vs] Is similar.

b') wyw, g1 - wpgom = 'y -y z (obtained from a term v, = z2,). As in

b), one has that every part zy- -y provides a summand in (Xy; fus2) which
N—_—— —

2m-+1
is isomorphic to R(I,) ® R(I%).

¢) By a similar argument in b), one can show that both the parts yz” - - - zy"
| S ——

2m—+1
(obtained from a term vy = yy,) and y"z - - - 2"y (obtained from a term V) = Ym)

2m—+1
provides a summand in (X, ; fus2) which is isomorphic to R(P,,) @ R(PL).

d) Each term w, (obtained from some term v, in v) in w provides a summand
(0,5 0) in (Xy; fuwiz) if w, #w, and a summand ({w”} @ {w’};0) if w, # w).

From the observations in a)-d), one gets that (Xy; fus2) and X, viewed as
objects in B are isomorphic.

Furthermore, by checking each summand described in a)—d) and suitably choos-
ing basis vectors of Njg(Xw;fwig) for 1 < j7 < n and ¢ = —,+, one obtains that
(Xw; fwi2); fw) is isomorphic to (Xy; fu1,- -, fon). Thus (X; f) is isomorphic to
R(w), that is, an asymmetric string.

Similarly, one can show the following:

(1) If v is a symmetric catenation, there holds that (X; f) is isomorphic to a
non—trivial summand of (Xuw; fuw1, -, fun), that is, a dimidiate string.

(2) If v is an asymmetric periodic catenation of period 7 and ((X; fi2); f) o
R(v, Q) for some @ € P, there holds that (X; f) = R(w,Q), where Q denotes the
polynomial Q(X) = (—1)*9€2Q((—1)*X), and ¢ is the number of terms z,, =/ ,
Ym, and z in v = vpvy - vy _1 with m an odd number.

(3) If v is symmetric periodic and ((X; fi2); f) = R(v,K) for some K € Q,
there holds that (X; f) = R(u, K).

4.7. As a conclusion of 4.2-4.6, we have the following

Proposition. Fach indecomposable representation of the bush S is a string or a
band.



408 B. Deng CMH

4.8. Throughout the reduction above, by substituting (X; f1,--- , f,) for repre-
sentations associated with catenations, one can prove inductively the following
propositions.

Proposition 1. (1) The representation R(w) associated with each asymmetric
catenation w is indecomposable, and the representation (Xy; fu1, -+, fon) asso-
ciated with each symmetric catenation v is a direct sum of two non—isomorphic
indecomposables.
(2) For each asymmetric (resp. a symmetric) periodic catenation and each @ €
P (resp. K € Q), the representation R(u,Q) (resp. R(u, K)) is indecomposable.
(3) The representaions R(4), where

0eN U0 x{0,1} Q3 xPILIOy x Q,
are pairwise non—isomorphic.

Proposition 2. The equivalent catenations (finite or periodic) of S define the
same family of isoclasses of indecomposables.

Proof. Let w = wiwsy - --w; and w' = wjw} - - - w), be equivalent catenations. We
denote by d(w,w’) the number of indices ¢ (1 < ¢ < t) such that w] # w,;. If
d(w,w’) = 0, the proposition holds. If d(w,w’) > 1, there exists a sequence of
equivalent catenations Wi = w, Wa, -+, W, = w’ such that d(W;, W1 1) = 1 for
1 <i<d-1. So we may suppose that d(w,w’) = 1. Applying the reduction
in 4.2-4.6, the representations (Xu; fut, -, fun) and (Xuws; ful, -, fun) are
respectively reduced to representations (Xy; fu1, -+, fon) and (Xo; forts -, forn)
of a new bush 7', where v and v’ are equivalent catenations of T such that d(v,v’) <
1. By induction, we may suppose that v and v’ define the same family of isoclasses
of indecomposables of T'. By Proposition 3.4, this implies that w and w’ defines
the same family of isoclasses of indecomposables of S.
By a similar argument, the proposition holds for periodic catenations.

4.9. Remark. By Proposition 2 in 4.8 and Remark 2.8, one obtains the following
statements.

(a) For each asymmetric catenation w, catenations in the class [w] [ [[w*] define
isomorphic representations.

(b) For each symmetric catenation w, catenations in the class [w] define iso-
morphic representations.

(¢) For each asymmetric periodic catenation u, catenations in the class
[pez([u{p}t] [I[u{p}*]) provide the same family of isoclasses of indecomposables.

(d) For each symmetric catenation w, catenations in the class [[ ., [u{p}] pro-
vide the same family of isoclasses of indecomposables.

The main theorem then follows from Propositions in 4.7, 4.8, and Remark 4.9.



Vol. 75 (2000) On a problem of Nazarova and Roiter 409

Acknowledgements

The present paper is a revised version of my dissertation. The author is grateful
to Professor P. Gabriel for his encouragement and his many valuable suggestions
in the preparation of this paper. We would like to thank Professor Sergejchuk for
pointing out to me the work of Bondarenko.

References

(1]
2]

[3

[4

5
(6]
[7]
(8]
9]

V. M.Bondarenko, Representations of bundles of semichained sets and their applications,
St. Peterburg Math. J. 5 (3) (1992), 973-996.

W. W. Crawley—Boevey, Functorial filtrations II: clans and the Gelfand problem, J. London
Math. Soc. 40 (2) (1989), 9-30.

B. Deng, An algorithm and self-reproducing systems, Comm. Algebra 26 (1998), 3419-
3434.

P. Gabriel, A historical recording. Finite—dimensional representations of the algebra A —
k[[a, b]]/(ab) after Gelfand—Ponomarev, A literal translation of notes in German reproducing
a lecture at a seminar organised in Bonn during the winter term 1973/74. 16 pages, April
1991.

P. Gabriel, B. Keller, L. A. Roiter, Representations of finite—dimensional algebras, Encycl.
Math. Sc. 73 (1992), 1-176.

I. M. Gelfand, The cohomology of infinite dimensional Lie algebras, some questions of
integral geometry, Actes du Congres International des Mathematician, Nice 1970.

I. M. Gelfand, V. A. Ponomarev, Indecomposable representations of Lorentz group, Russian
Math. Survey 23 (1968), 1-58.

L. A. Nazarova, A. V. Roiter, A problem of I.M. Gelfand, Funkisional’nyi Analiz i Ego
Prilozheniya 7 (1973), 54-69.

C. M. Ringel, The indecomposable representations of the dihedral 2—groups, Math. Ann.
214 (1975), 19-34.

Bangming Deng
Department of Mathematics
Beijing Normal University
100875 Beijing

P.R.China

e-mail: dengbm@bnu.edu.cn

(Received: April 10, 1997 )



	On a problem of Nazarova and Roiter

