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On a problem of Nazarova and Roiter

Bangmmg Deng

Abstract. In the present paper we introduce the notion of representations of a bush which
is a generalization of matrix problems (self—reproducing systems) introduced by Nazarova and
Roiter We show that the problem of classifying representations of clannish algebras come down
to such generalized matrix problems Based on the classification of Crawley—Boevey, we provide
a description of indecomposable representations of bushes over any field The proof is based on
a categorical formulation of the matrix reduction of Nazarova and Roiter

Mathematics Subject Classification (2000). 16G10, 16G20, 18A25
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Introduction

In the present article, we consider a generalization of matrix problems (self-
reproducing systems) introduced by Nazarova and Roiter [8] Their motivation
was to solve a problem posed by Gelfand [6] classify the indecomposable
representations of the quiver

«1

•

a2

h

subjected to the relation a\b\
In [2] Crawley-Boevey reconsiders the problem and introduces a new class of

matrix problems called "clans" The approach used in [2] is the functonal filtration
method It seems to us that both the notion of a clan and the functonal method
are not well adapted to the problem treated by Crawley-Boevey

Supported partially by the National Natural Science Foundation of China (Grant No 19971009)



Vol. 75 (2000) On a problem of Nazarova and Roiter 369

Our aim here is to replace clans by a generalization of self-reproducing systems
and to use the method presented in [8] instead of the functorial one. Our method
also works for fields of cardinality 2, a case which Crawley-Boevey was unable to
handle with his method. Our classification however is based on that of Crawley-
Boevey. For the proof of our classification theorem we use a categorical formulation
of the matrix reduction of Nazarova and Roiter (see [3]).

After the completion of a preliminary version of the present paper, Prof. Serge-
jchuk pointed out to me that the matrix problems considered here have been
studied by Bondarenko [1].

Throughout the paper, k denotes an arbitrary field.
The terminology used throughout the paper is taken from [5].

1. Tangles and Bushes

1.1. Let A be an aggregate over a field k with spectroid S. A tangle over A
is a pair (M~,M+) formed by sequences M~ {M{, • • • ,M~) and M+
(M-[*~, • • • ,M+) of pointwise finite left ^4-modules. Given such a tangle, we
denote by rep(M~,M+) the aggregate whose objects are the representations of
(M~,M+), i.e. the sequences (X;/i, •••,/„) where XG A and fle'Romk(M~(X),
M+(X)), i !,-¦¦ ,n. A morphism from (X;/i,--- ,/„) to (X';f[,--- ,f'n) is

given by a morphism /x G A(X,X') such that //M~(/x) M+(/z)/j for i

1.2. Our aim is to classify the indécomposables of rep(M~,M+) for particular
tangles (M~, M+) which we describe now.

By définition, a rod is a finite ordered set R such that each x G R admits at
most one y G R satisfying y ï£ x (i.e. incomparable with x).

Examples. The ordered sets with the following Hasse-quivers are rods:

R, IXIixi
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A tangle (M~, M+) is called rodded if the following conditions are satisfied:

(Rl) For each i, the lattices of submodules of M~ and M^~ are rods;
(R2) For each s G S,

n

5^(dimfcM-(s) + dimfcM+(s)) < 2;

%=\

(R3) If the submodules of Mf generated by elements a G M£(s) and b G Mf(t)
are incomparable for some i, some s,t G <S and some e G { —, +}, then

(R4) For any s,t G «S, the canonical map

%=\

is surjective.
Here 72-5 denotes the radical of S and TZf(s,t) the set of all / G Hoirie (Mf (s),

Mf(t)) satisfying f(N(s)) C 7£AT(t) for each submodule N of Mf.

1.3. Given a tangle (M~ M+) over .A, we denote by I the intersection of the
annihilators of all M~ and M^~. The tangle is called faithful if T 0. In the case
of a faithful rodded tangle, the maps 0(s,t) are bijective. Our purpose is to give
a concrete construction of faithful rodded tangles.

Let S be a pair formed by two sequences of disjoint rods S~ (S'f, • • • ,S~)
and S+ (S^, • • • S+). We then equip the union |5| U"=1(S7 U S+) with the
smallest order relation containing the order relations of the rods S~ and S^~. If
there is no risk of confusion, we simply write S instead of \S\. By kS we denote the
spectroid whose objects are the elements of S, whose morphism-spaces kS{x, y)
are one-dimensional with basis (y\x) if y > x, or else are 0. The composition is

such that (z\y) o (y\x) (z\x) [5]. Each interval I of S gives rise to a module kj
over kS such that kj(x) 0 if x <£ I and ki(y) k, ki(z\y) 1^ if y, z G / and

y < z [5]. We set L~ ki if / S~ and L+ ki if / S+.
Let further ~ be an equivalence relation on S such that:

(El) Each equivalence class contains at most two elements;
(E2) In case x, y G Sf and x ÏS y, the equivalence class of x consists of x only.

The S together with the equivalence relation is called a hush.

Let S denote the spectroid whose objects are the equivalence classes ofS, whose

spaces of radical morphisms are lZs(a, b) ®xea,yeb,y>xk(y\x), whose composition
is such that (z\yr) o (y\x) is (z\x) if y' y and 0 otherwise. Let further A :=
©<S denote the additive hull of <S, whose objects are sequences (X\,--- ,X{) of
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objects of <S, whose morphisms {X\, ¦ ¦ ¦ ,X{) —> (Y\, ¦ ¦ ¦ ,Ym) are identified with
the "matrices" \i [j-i0%] G ®lt0S{Xl,Y0). The composition of morphisms obeys the
rules of matrix multiplication. Then each module L over kS provides a module
L over A such that L(a) (BxeaL(x) for each a G <S; the action of L(y\t) on
m G L(x) C L(a) coincides with that of L(y\x) if x t or else is 0. In case L L~
(resp. L^~), we set L M~ (resp. M^), thus obtaining a tangle (M~,M+) over
A. This tangle is faithful and rodded.

In the sequel, the representations of (M~, M+) will be simply called representations

of S*.

Proposition, _Fbr each faithful rodded tangle {N~, N~^~) over an aggregate B with
spectroid T, there is a bush S as above and an equivalence $ : A —> B such that
N,f$ Ml for allie {1, • • • n} and e G {-, +}.

Proof. Let the points of Sf be given by the submodules X of A^e with simple top
X/1ZX, i G {1, • • • ,n}, e G { —, +}. We equip Sf with an order relation such that
X < Y is equivalent to X D Y. By (Rl), 5f is a rod.

Set S (S'f, • • • S~; S^, • • • S^) and equip S* with an equivalence relation
such that X - Y <^=> X/^X Y/UY. By (R2) and (R3), this relation satisfies

(El) and (E2), i.e. S is a bush.
For each X G S (the spectroid associated with the bush S), we denote by

tx G T the point supporting X/1ZX, and we choose a generator ex G Nt£(tx) of
X. Then Nf(tx) ®x'^x,x'es^kex,.

The map X i—> tx gives rise to a functor <f> : S ^ T such that </>(y|X)
9{tx,tY)~l{f), where / G Homfc(A^e(£x), Nf{tY)) maps ex to ey and annihilates

ex' whenever X' ^ X. The functor </> is an isomorphism and induces an
equivalence $ : A —> ß. The A;-linear maps

X' X'

define an isomorphism between A^e$ and Mt£, i G {1, • • • n}, e G { —, +}.

1.4. Example 1. In [8] Nazarova and Roiter examine the particular case of one
pair of rods. The classification of representations in [7], [4], and [9] can be reduced
to that of bushes.

Example 2. Representations of An. We illustrate the general construction with
the following example:
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Set Sf {a-},Sf {a+},--- ,S6 {f~},S£ {/+} and equip S

U^=1(S'~ U S^~) {a~, a+, • • • ,/~,/+} with the equivalence relation a~ ~ /~,
a+ ~ 6~, 6+ ~ c+, c~ ~ d~, d+ ~ e~, e+ ~ /+. Then repAß is equivalent to
rep(M~,M+), where (M~,M+) is the rodded tangle associated with the bush S
(see 1.3).

Example 3. Clannish algehras[2\. Let Q be a quiver and Sp a set of loops in
Q. The arrows in Sp are called "special" and the others "ordinary". Let further
R Z U {e2 — e : e G Sp} be a set of "relations" of Q, where Z consists of
compositions \iv of ordinary arrows /x, v. The algebra A k[Q]/R, where k[Q]
denotes the algebra of the quiver Q, is called clannish if the following conditions
hold:

(Cl) At most two arrows start at each vertex, at most two stop;
(C2) For each ordinary arrow a, there is at most one arrow b with ba <£ Z and at
most one c with ac <£ Z;
(C3) Without real loss of generality, we further suppose that R is minimal with
respect to (C2).

Examples. The algebras with the following data are clannish:

a) b) c)

Sp {e}
Z {ba} Z {all xy,yx}

With each clannish algebra k[Q]/R we will associate a tangle.

Sp {e}
Z {ba,cb,fc,(f,hg}
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For the sake of simplicity, we identify the set Qv of vertices with {1, 2, • • • n}.
We further set x~ (x, — x+ (x,+) whenever x is a vertex or an ordinary
arrow. To each i £ Qv, we then attach a set A^ consisting of i~ and i+, of special
loops at i, and of all x~ (resp. x+) where x is an ordinary arrow starting (resp.
stopping) at i. Finally, we construct two disjoint rods S~, S^~ such that:
a) i~ £ S~, i+ £ S+ and At S~ U S+,
b) Each S£ has one of the following forms:

1) {i£ SC e}, where e is a special loop at i,
2) {a~ < i£}, where a is an ordinary arrow starting at i,
3) {i£ < 6+}, where b is an ordinary arrow stopping at i,
4) {a~ < i£ < 6+}, where a (resp. 6) is an ordinary arrow starting (resp.

stopping) at i and ab G Z.
Of course, if A^ ^ {i~,i+}, there are exactly two possible choices for S~ and

S^~. For instance, in case

1«

Q

we obtain S3 {a~ < 3" < 6+}, 5^~ {3+ < c+}, or reversely, 53 {3
c+}, 5+ {a- < 3+ < 6+}.

We equip S U"=1(S'Î U S*^) with an equivalence relation such that a ~ a+
for each ordinary arrow a.

We denote by (M~, M+) the tangle associated with S and by rep6(M~, M+)
the full subcategory of rep(M~, M+) fromed by representations (X; /i, • • • /n)
such that all /4 are bijective.

Proposition. rep(Q,R) is equivalent to repb(M~,M+).

Proof. For each arrow a <£ Sp with a~ G S^ and a+ G S^, and each X G A, we
denote by ^ the canonical isomorphism

M£{X)/UM£{X) -> n^Afi/iX),

where fij 1 (resp. 2) if S^ consists of 2 (resp. 3) elements.
For each e £ Sp with e G S£, we denote by J£ and L^ the simple submodules

of M£ supported by i£ and e respectively.
With each object (X;f\,--- ,/„) in rep6(M~,M+) we attach an object V=

(V(i),V(a)) in rep(g,ß) as follows:
1) V(i) M+(X), i !,-¦¦ ,n.
2) For each arrow a : i —> j, in order to define V(a) : M^(X) —> MJ~(X) we
consider two cases.
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Case 1. a £ Sp, a~ G Sf, a+ G SJ. If e r\ +, V(a) is the composition

M+(X) ^ M+{X)/UM+{X) -^ UhtM+{ ^
if £ + and r\ —, V(a) is the composition

M+(X) m> M+{X)/UM+{X) i^. nh7M-(X) ^
if e — and 77 +, V(a) is the composition

M+(X) ^ M-(X) ^> Mt-(X)/11M-(X) -^ Uh

if £ ry —, V(a) is the composition

-^1lh^M-(X) ^ M~(X) -^
(By pr we denote the canonical projection, by im the canonical immersion.)

Case 2. a £ Sp and a G Sf for some i G {1, • • • n}, e G {-, +}. If e +,
y(a) is identified with

0 e iL+{x) : m+(x) j+(x) e l+(x) -^ j+(x) e

if e —, V(a) is the composition

^ M-(X) =J-(X) 0 L7

Thus we obtain a functor

F : rep6(M", M+ -^ rep(g, Ä)

(X;fl,---,fn)^V (V(i),V(a))

which maps a morphism /x : (X; /1, • • • /„) —> (X'; /{,••• /^) to the morphism

Q
Since (M~,M+) is rodded and faithful, the functor F is fully faithful.
Let V (V(i), V(a)) G rep(Q, R). For each arrow a from i to j, we set K"

kery(a), /" ImV(a) and denote by V(a) the isomorphism V(i)/\eiV(o) —>
ImV(a) induced by V(a).

In case 5f {i£}, we set Pf Vle V(i) and denote by $^ the identity I^m
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In case S£ {i£ 3S e}, we set Pf iff, V;e iff © /f, and denote by 3>£ the
canonical isomorphism iff © /f —> V(i), (x, y) i—> x + y.

In case S£ {a" < ie}, we set Pf K?, V£ Ia3 © K?, and choose a
section tt of the canonical projection V(i) —> V(i)/K®, we then denote by §£ the
composition

Vf /; ©iff -^ * V

In case S£ {i£ < 6+}, we set P,£ V{i)/I?, V,£ V{i)/I? © l\, and choose a
section st of the canonical projection V(i) —> V(i)/I%, we then denote by $^ the
isomorphism [st im] : V£ V(i)/I% © l\ —> V(i).

In case S£ {a~ <i£ < b+}, we set P£ K?/I%, V£ Ia3 © K?/I* © l\, and

choose a section ut of the canonical projection Kf —> K^/I^ and a section Uj of
the canonical projection V(i) —> V(i)/K®, we then denote by <fr£ the composition

Ve Ia © Ka/Ib © Ib I V(i)/Ka © Ka/Ib ©

Finally, we set

X
a£Qa\Sp

and denote by ft the composition

can
M-{X) V- -± V^) '^ V+ M+{X),

where a denotes the equivalence class of a.
Thus we obtain an object (X; /i, • • • fn) in rep6(M^, M+). By ^% we denote

the canonical isomorphism V^~ —> M^{X). Then (^'î((I>^)^1)îeQij defines an
isomorphism from V (V(i), V(a)) to F(X; /i, • • • /n). Therefore, F hits each
isoclass in rep(Q, R).

1.5. Rem£trk. With each tangle (M~ ,M+) over ^4 we can associate as follows a

tangle (M~, M+) over a new aggregate ^4.

Let S denote the spectroid obtained from the spectroid S of A by adding
objects st and tt for i G {1, • • • ,n}, whose spaces of radical morphisms lZg(x,y)
are TZs(x,y) if x, y G <S, Homfc(Ä;,M~(y)) if y G S, x st, Homfc(M+(x), k)
if x G «S, y tj, and 0 otherwise. The composition g o f of / G lZ§{x,y) and

3 € 7^(y,z) is ff/ if x, y, z e S, M~(g)f if y, z G 5, x s,, <?M+(/) if
x, y & S, z tt, and 0 in all the remaining cases.
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Let A denote the additive hull of S and M~ (resp. M^) the module over A
such that the value M~(x) (resp. M+(x)) at x G S is k if x st (resp. x tt),
is M~(x) (resp. M+(x)) if x G <S, and 0 otherwise. If / G 1Zg{x,y), the mor-
phism M-(/) G Homfc(M-(x),M-(y)) (resp. M+(/) G Homfc(M+(x),M+(y)))
is M~{f) (resp. M^{f)) if x, y G «S, is / if x s^ (resp. y tj, and 0 otherwise.

By the construction, the tangle {M~,M+) is rodded if so is (M~,M+).
Let ty : A —> A be the natural functor which maps X £ A onto the "largest

summand" 'I'(X) belonging to A. Then M~ provides a submodule M~^ of M~,
M^~ provides a subquotient Mî~*~\fr of Mt+, i G {1, • • • ,n}, and ^ gives rise to a
functor

where /4 is the composition

Proposition. 77ie functor F is quasisurjective, and the indécomposables annihilated

by F are those isomorphic to (st © tt; 0, • • • ,0,1,0, • • • 0), i 1, • • • ,n.

Proof. Let (X; /i, • • • /„) be an object in rep(M~, M+). Consider the sequence

Kt := ker/, ™> M"(X) -^ M+(X) ^> Coker/, =: C,.

Choose a retraction pt of the canonical immersion and a section \i% of the canonical
projection above, then

ft '

: C, © M-(X) —> M+(X) ©

is bijective.
Set X (0"=1Sj (g) Cj) © X © (©"=1tt <8> ^) G A, and denote by /» the

composition

_ _ can U ü? can _ _
M-{X) Ct@M-(X)

L -^ J M+(X)®Kt M+(X).

Then (X; /!,-••, /„) G rep6(M-, M+J and F(X; h, •••,/„) (X; /!,-••, /„).
It is not difficult to see that each (X; /i, • • • /„) G rep6(M~, M+) is isomorphic

to the direct sum of objects of the form (st ®tt;0,--- ,0,1,0, • • • ,0) and of the
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form Y (e"=1st (£> St)®Y ® (©"=1^ <8> Tt); g\, ¦ ¦ ¦ ,gn), where Su T% G modfc,
Y £ A, and gt has the form

0 L

where at, bt and gt are fc-linear maps.
Let (X;/i,--- ,/„) and (X';/{,--- ,/^) be objects in rep6(M~,M+), and /x G

^(*(X),*(X')) a morphism from F (X ;/i,--- ,/„) to F(X'; /{,••• ,/^)
Since F annihilates (st © t4;0, • • • ,0,1,0, • • • ,0), we may assume that X and

X' have respectively the forms (©"=1s4 <8> 54) © X © (®"=1t» <8> Tj) and (©"=1s4 <8>

S*,') © X' © {®™=lU <g) T/), where S1,, Tt, S'%, T[ G modA; and X, X' G A and that
ft and // are of the forms:

/.= 0 b,

© M

© Tt,

© t;,

where at, bt, ft, a', b[ and j[ are fc-linear maps, i G {1, • • • ,n}.

^

Thus F(X; /i, •••,/„) (X; /!,-••, /„) and F(X'; /{,•••, /^) (X'; /{, •

Consider the following commutative diagram

T, s-

Kerf

Kerf'

*- Coker./;

Cokerf

where nt and k[ denote the canonical immersions, -k% and tt' the canonical projections.

The bijectivity of /j and ^' implies that btnt, b'^, Trtat and Tr'a' are bijective.
Set u% (7r'a')^17r'Mj+(/i)aî and Uj è'M^(/i)Kî(6îKî)^1. It is easy to see that
there exist a w% : S% —> M~(X') and a ^ : M+(X) —> T/ such that z%a% 0,
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b[wl 0, M^(n)at a!tut + j[u)l, and b[M% (/x) zlfl + vtbt, i.e. the following
square commutes.

s, e m~(X)

< f!
0 b\

Mt+(X) e tx

r
Set

Un

Wn M

zn

0

vi 0

0 Vr,.

¦¦X (®"=1st <g) s\) e x e (er=i*. ® t.)

r=ist «si s*,') e x' e (er=i*. ® t/) x'.

Then F(/i) /x, that is, F is full.
This finishes the proof of the proposition.

2. The classification

2.1. Terminology. Let S (Sf, • • • ,5"; S^, • • • ,S+; -) be a bush.
In the sequel, we write x Ay if x and y belong to the same rod and are

incomparable, and we write x\y if (x,y) G LT=1((S7 x 5+) U (5+ x 5~)). We further
set

y if y ~ x and y ^ x

x if the equivalence class of x contains only x

xA y if y A x

x if x is comparable with all points of its rod
and x* (x~)A.
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We call catenation of S a, sequence w w\w<i ¦ ¦ ¦ wt of points of S such that
u>*|u>j_|_i for all i < t. The reverse catenation is the sequence w* w* ¦ ¦ ¦ w^w^.
Two catenations w w\W2 ¦ ¦ ¦ ws and w' w'^w^ ¦ ¦ -w't are called equivalent if
s t and w[ wt or w£ for all 1 < i < s. For each catenation w, we then
denote by [w] the equivalence class of w. Then the set of equivalence classes of all
catenations of S is equipped with an order relation such that

[v] [vf- vs] < [wi • • • wt] [w]

if w v'w1, [v'\ [v], w'i ws+i G S~

or if v w'v1, [w'\ [w], v'i vt^\ G S+

or if v uxv', w u'yw1, [u] [u1], x < y.

The equivalence classes of catenations which start in a fixed rod are pairwise
comparable.

2.2. From now onwards, we suppose that S is complete, i.e. that x =/= x* for all
x G S. [This is no real restriction. Otherwise, we replace S by a completed bush
S° obtained from S by adding new rods S~x {x°}, S^x 0 and by agreeing
that i ~ i° for each point x of S such that x xA x~. The new bush S° is

complete, and repS* is equivalent to repS*0.]

If S is complete, we attach a representation (Xw;fw\, ¦ ¦ ¦ ,/«,„) of S to each

catenation w w\W2 ¦ ¦ -wt. First we set

Xw wï® W2 © • • • (Bwt,

where wl {w%, w*} G S (=the spectroid attached to S in 1.3) if w% ^ w~ and

wl {wt} © {w*} G A (=the additive hull of S) if w% ^ w£. Thus each term x of
the sequence wiwJw2W2 • • -wtw* contributes a one-dimensional summand kx_ to
the space Mf{Xw) associated with the rod Sf containing x. Accordingly, M~{XW)
and M^(XW) have the form:

J M~(XW) ®pkwp © ®ikw*{

\ M+{XW) ®mkw^ © (Bqkuiq

where p, q, I and m are subjected to the conditions wp, w* G S~ and wq, w^ G

S^~. The structure maps are defined as sums

where each r > 1 satisfying wr G S~ U S^~ provides a contribution

fwtr hmr9mr : M-{XW) 3^kh^ M+{XW).
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To define the factors gwir and hwir, we distinguish two cases:
1) Case w*_i € S~, wr € St Construction of gwlr: If «V—1 wr-l> we set

gwir(u£_i) 1 and let gw%r vanish on the remaining basis vectors.
If «v_i ^ wr-l^ ^ne maP 9wir is the composition

r_ v pr [0 1],
M, (A^j s- kwr_i © kwr_1 s- fe

provided [w*_2 ' ' ' wi\ ^ [wr ' ' ' wt\- Otherwise, it is the composition

M~(XW) —> kwr_i © kw*_i —> k

(By pr we denote the projection which annihilates the basis vectors ^ wr_i, w*_^.)
Construction of hwlr: \iwr w£, we define hwlr(\) wr. If wr ^ u^), /iu,îr is

the composition

provided [w*_^ • • • wj] < [wr+i • • -wt\. Otherwise, it is the composition

k —^ kwr © kw*r ^ M+(XW).

(By im we denote the canonical immersion.)
2) Case w*_-^ € St wr € S~. Construction of gwlr: If wr w£, we set

gwi,r{w.r) 1 an(i let gWir vanish on the remaining basis vectors. If wr ^ w£, the

map gwlr is the composition

M~ (Xw —> kwr © kw* —> k

provided [w*_^ • • • wj] > [wr+i • • -wt\. Otherwise, [0 1] is replaced by [1 1].

Construction of hwlr: If wr_i w^_^, we define hwlr(l) w.*_i- If wr-\ ^
wr-l> hWir is the composition

[01]T im i
/ L I 7 sry 7 * ^^^^ 1\/f-\-f V \k —> kiu_r_i © kiu_r_i —> M^r(Xw)

provided [w*_2 ' ' ' wi\ > [wr ' ' ' wt\- Otherwise, [0 1]T is replaced by [1 1]T.

2.3. Example. The clannish algebra k[Q]/(ba, e2 — e), where Q denotes the
quiver

1 a 2

• • Sp {e} Z= {ba}
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gives rise to the (non-completed) bush
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As a typical example, we choose the catenation w y^b^ebaex of the
completed bush. The maps fwl then behave as follows:

a a' x~

The matrices of the representation of the non-completed bush associated with
w - or, more precisely, the matrices of the linear maps fw\ and fw% - are displayed
as follows:

y a

"1

1

0

0

e

0

0

1

1

e

0

1

0

0

0"

0

1

0

1

0

0

1_

Similarly, the maps fvl of the representation associated with the catenation
v x x are

Ll/-\ H/-i

1A. In the first example considered above, the catenation w is asymmetrtc, i.e.

[w] =/= [w*]. The matrices of the representation associated with w* are

"0

0

1

1

e

1

1

0

0

e

0

0

1

0

1"

0

0

0

y a

0

1

1

0_
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By "permissible" row and column transformations, these matrices can obviously
be converted into the matrices associated with w. The representations associated

with w and w* are therefore isomorphic.
In general, we choose a set Q\ of asymmetric catenations which contains one

representative of each class [w] ]J[w*] of asymmetric catenations. For each w G

Ql, we denote by R(w) the corresponding representation of S. Representations
isomorphic to such an R(w) will be called asymmetric strings.

In the second example of 2.3, the catenation v is symmetric, i.e. [v] [v*].
In this case, the representation associated with v is clearly the direct sum of two
representations R(v,0) and R(v,l).

Of course, this is a general fact (This fact will be shown in Section 4). For each

symmetric catenation v, the associated representation in 2.2 decomposes into the
direct sum of two representations R(v,0) and R(v, 1). These representations are
indexed by fly x {0,1}, where fly denotes the set of symmetric catenations which
contains one representative of each class [w] of symmetric catenations. Representations

of S isomorphic to some R(v, i), (v, i) G Ü2 x {0,1}, will be called dimidiate
strings.

2.5. Besides finite catenations, we consider periodic catenations. These are
sequences u (ut)tez which satisfy u*\ut^\ for all i G Z and admit a natural
number tt > 1 such that u,^ ut or u^ for all i. The smallest tt satisfying these
conditions is the period of u. Each periodic catenation u is consorted with a reverse
u* such that (u*)t («-»)* and with translates u{p} such that u{p}t up^%. It
is called symmetric if [u*\ [u{p}\ for some p and asymmetric if not.

To each asymmetric period catenation u we shall attach a family of representations

of S which are indexed by the powers

pi ym! ym!-l ymi-2 7 ^> 1
— l — y\ — ll\y\ — Ct2^V — • • • — Ujml i " ^

of the irreducible unitary polynomials P in one determinate X with coefficients in
k. The index set formed by the powers Q Pl with P ^ X is denoted by V. To
each Q G V we attach the invertible matrix

A{Q)

0

1

0

0

0

0

0
'

0

0

0

•. o
1

ai

The representation (Ŷ ; associated with an asymmetric periodic
catenation u of period it and a polynomial Q G V of degree d is obtained as follows.
First we consider the representation (Xw; fw\, • • • /«,„) attached to the catenation

w

-U_lUQUl -M27T-1-
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With the notations of 2.2 we then set

and thus obtain

A/f' (\r *i \ — (CX^ bti* ffi ffi loi \ <S?\i h
-t-"-*-i \ -*-

11 I \ vP7Ti '*' "'m ^-^ ^-^ Q n I ^ K '*'

where /, m, p and q belong to {0,1, • • • ,tt — 1} and satisfy up, u* G S~ and

uq, v*m G S^~. The structure maps are defined as sums

where A„t is the composition

M-(YUQ) ^ M-(XW) ®fc kd U^d M+{XW) ®fc kd ^
(By im we denote the canonical immersion, and by pr the canonical projection.),
and where \I^% is the composition

Mt~(Yf) ^ M-{XW) ®fc kd ^±1SMQ) k ®

if mo € S^;

if mo G S~ ; and zero if mo ^ S1" U S*^.
As a typical example, we consider the case where S is as in 2.3, and

MoMi • • •M7r_i aebaeAa"b"eb.

The structure maps g^t are then visualized by the following diagram

(ka2)d (ke£)d—^ {kçQd Qd£)d (ke_3)d—^ (kb3)d
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The corresponding matrices are

b

x

In view of the required classification, we now choose a set Q3 of asymmetric
periodic catenations which contains one representative of each class LJpez([w{p}]
JJ[m{p}*]). For each (u,Q) G Q3 x V, we denote the representation constructed
above by R(u,Q). A representation of S isomorphic to such an R(u,Q) will be
called an asymmetric hand.

2.6. We finally turn to the case of a symmetric periodic catenation u. It is easy
to prove that uqu\ ¦ ¦ ¦ w^-i then has the form

"Id
0

0

Id
0

0

e

0

0

0

0

0

Id

0

Id
Id
0

0

0

Id
0

0

0

0

0

e

0

0

0

0

Id
Id

0 "

0

Id
0

0

0

V

0

0

A(Q" -l

a

Id
0

0

0

Id
0

where [a* ¦ ¦ ¦ a\\ [br

Wtt-1 a\- ¦ ¦ arebr ¦ ¦ ¦ b\c\ ¦ ¦ ¦ csfds ¦ ¦ ¦ d\

¦ &i], [c* • • • c\\ [ds ¦ ¦ ¦ di\, e ^ eA, and / ^ fA. Setting

w w\W2 ¦ ¦ ¦ wwww+i ¦ ¦ ¦

M_7rM_7r+l • • -U-

as in 2.5. We shall associate a representation

•M7r_lM7r • • -M27r-1-

7ju'i Vui! ¦ ¦ ¦ Vun) with each matrix

K A
C

B
D

G fcv

belonging to Q. By Q we denote the set of the following matrices (q > 0):

1)

"
0

.Ig

Ig-H

lg

1-1

0_
>

'lg
_lg-

0

hl

lg"
0

lg-

J,9+1

lg-

[lg
1-1

0

0 "

lg.

"lg
0

-lg

lg

lg-

0"

hl

3)

[lg+1

l-lg+1
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0 0 0 0 1

L0 0 0 • 0 0J

and where Q PT is a power of an irreducible unitary polynomial P ^ X, X — 1

(see 2.5).
For this sake, we consider the following summands of Xw

¦®ar®{e}, E' {eA} 0 br 0
F' {fA}®dr®

E

and set Z* El 0 E'1' 0 Fm' 0 F/m.
The structure maps 77^ : M~{Z^-) —> M^{Z^-) are defined as sums

where the first four summands are induced by /„, : M~{XW) —> M^{XW). For

instance, r^lE is the composition

-(ZK) ^ M-{E)1 ™> M-(Xwy S-h M+(XW)1 ^
The last summand 1/^ is also a composition, namely,

Mr(^f) ^> M-(E)1 0 M,-(E')'' ^ )' 0 M-(Xwf

if a1eSl ;

M+{Xw)m 0 M+(X^)m' ^> M+(F')m 0

0 M M+(XW)1 0

¦ 0 M-{Xw)m> ^HL M-(F')m 0 M-{F)m>

if a\ G <S^ where if'
K' K otherwise. The v^x is zero if a\ ^ S~ U S*^.

C
if if is one of matrices listed in 1), and
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As an example, we consider the bush of 2.3 and the case

uqu\ ¦ ¦ ¦ «Tr-i aea^K~eA6.

The structure maps are then visualized by the following diagram:

(ke-,)1 +- (kaT)1 (ka-,)1 +~ (kb7)m (kb-t)m*m (ke2)m

(fa?*)'

CMH

(kcu)1 (kb7)

and the corresponding matrices are

b

X

0

0

ll
0

e

Im

0

0

0

e

0

0

0

h>

0

Im'

0

0
c D_

In view of our classification, we finally choose a set Q4 of symmetric periodic
catenations which contains one representative of each class ]J eZ[w{p}]. For each

(u, K) G Q4 x Q the preceding construction then provides a representation R{u, K).
A representation of S isomorphic to such an R{u,K) will be called a dimidiate
hand.

2.7. Main Theorem. Each indecomposable representation of a (completed) bush
S is a string (asymmetric or dimidiate) or a band (asymmetric or dimidiate). The

represetations R(ö), where

ô e Qi IIQ2 x {0,1} IIQ3 x V IIQ4 x Q

are indecomposable and pairwise non-isomorphic.

The proof of the main theorem is based on the reduction in section 3 and will
be given in section 4.

2.8. Remark, (a) Let w w\W2 •••«)( be an asymmetric catenation, then the
reverse catenation w* w* ¦ ¦ ¦ w^w^ is also asymmetric. By the construction of
R(w) and R(w*), we may identify Xw with Xw* by identifying w~% with w*_t+1
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for 1 < i < t. In fact, one sees easily that such an identification induces an
isomorphism between R(w) and R(w*).

(b) Let w w\W2 ¦ ¦ ¦ wt be a symmetric catenation. Then w is of the form

w a\a,2 ¦ ¦ ¦ asebs ¦ ¦ ¦

where [a* ¦ ¦ ¦ a^aj] [bs ¦ ¦ • 62^1] an(i e^eA. Set

v a\a,2 ¦ ¦ ¦ asea* ¦ ¦ ¦

Then v is a symmetric catenation and equivalent to w. By the construction in
2.2, one easily sees that (Xv; fv\, • • • fvn) is decompose into a direct sum of two
representations.

(c) Let u (ut)tez be an asymmetric periodic catenations of period it. Let
v (vt)z be such that Vk-K+t ut for all k G Z and 0 < i < tt — 1. Then v is also

an asymmetric periodic catenation of period tt which is eqiuvalent to u. By the
construction in 2.5, there holds that R{u, Q) R{v, Q) for each Q G V. Moreover,
by changing basis vectors, one can easily prove that R{v,Q) R(v{p},Q) for
all p G Z. Thus u and v{p} (p G Z) provide the same family of isoclasses of
representations of S.

Further, the reverse catenation v* of v is asymmetric. By the construction in
2.5, for each

V — r — ^ — Ö1-A — (22^ — — am;, I s_ 1

in P, we set Q'(X) (-1)^-Xm'g(^) G V, then there holds that R{v,Q) ^
R(v*,Q') since A(Q') ^(qJ-1. Conversely, R(v*,Q) ^ R(v,Q'). Thus u and
w* provide the same family of isoclasses of representations of S.

(d) Let u (ut)tez be a symmetric periodic catenations of period it. As in (c),
let v (vt)tez be such that v^+i ut for all k G Z and 0 < i < tt — 1. Then w

is also a symmetric periodic catenation of period tt which is eqiuvalent to u. By
changing basis vectors, there holds that R{u,K) R{v{p},K) for each K G Q
and each p G Z. Hence m and w{p} (p G Z) provide the same family of isoclasses

of representations of S.

3. A reduction of representations of bushes

In this section, we shall formulate the algorithm in [3] with respect to tangles
formed by sequences of modules. We shall see in next section that such an
algorithm will lead us to an efficient reduction of representations of bushes. All the
proofs are analogous to those in [3]. We omit them.

3.1. Let S (Sf ,••• ,S-;Sl,---S+;~) ba a bush as in 1.3 and (M~,M+) the
tangle associated with S. For each representation (X; /1, • • • fn) of (M~, M+), we
denote by / the sequence (/1, • • • /„) and simply write (X; /) for (X; /1, • • • fn)-
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Let 1 < i < n. We start with submodules K Ç L of M% and sub-
modules K+ Ç L+ of M^~. We are interested in the representations (X;/)
(X;fu ••-,/„•••/«) of (M-,M+) which satisfy /,(tf-(X)) Ç if+(
ML-(X))CL+(X).

From now on, for each X £ A, we fix subspaces U^ (X), £/2 (X) of
and subspaces t/^X), U${X) of M+(X) such that

M-(X)=L-(X)(&U2(X),
£/+(X)eL+(X).

and

(X)

Then for each representation (X;/) of (M ,M+), the /4 can be written as the
form:

/.=
hi

h?

fil fi3
r r

Ji5 J16

hs /»9
e t/f (X) e t/2~

e

To the tangle (M ,M+) we now attach a new tangle as follows. First, we
denote by B the full subcategory of rep(M~,M+) formed by representations
(X;p), where p : C/-j~(X) —> ^/^(X) is a A;-linar map and p denote the sequence
(0, • • • 0, pq, 0, • • • ,0) with po of the form:

"0

0

0

0

p
0

0"
0

0
po= u p u :M-(x)=if-(x)et/f(x)et/2-(x)

e ^(x) e if+(x)

Further, for each (X;p) G ß, we define

N-(X;p) := M-(X), W/(X,p) := M+(X), for all j
N~(X;p) := Keip K~{X) 0 Kerpe U^{X),

and A^+(X; p) := Cokerp U£(X)® Cokerp 0 K+(X).

For a morphism \i : (X;p) —> (X';p'), we denote by N~(fi) and N the

A;-linear maps induced respectively by M~(/x) and M^(p) for 1 < j < n. Then we

obtain two sequences of modules N~ (N± • • • N~) and N+ (N^~, • • •

over B, that is, a tangle (N~,N~^~) over ß. Moreover, the modules N~ and A^
admit respectively submodules J~ and J+ such that
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Finally, we denote by M. the full subcategory of rep(M M+) formed by
representations (X;f) satisfying ft(K-(X)) Ç K+(X) and fl{L~{X)) Ç L+(X), and
by J\f the full subcategory of vep(N~, jV+) formed by representations ((X, p);h)
((X;p); hi, ¦ ¦ ¦ hn) satisfying ht(J~(X,p)) Ç J+(X, p). Our purpose is to build up
a relation between categories Ai and J\f.

3.2. From now on, we suppose that K~ 1Z%1M~ and L~ 1Z%2M~ for some

H > «2, and that if+ ^J1M+ and L+ W2M+ for some ji > j2-
In order to establish a reduction from objects of M. to those of TV, for each

(X; p) in B, we choose a supplement T~(X; p) of Keip in C/-j~(X) and a supplement

X; p) of Imp in U^~(X). Then po can be written in the form:

P0

0 0 0 0

0 0 p 0

0 0 0 0

.0 0 0 0.

0 T~(X;p) 0 U2{X)

0 Imp 0 T+(X; p) 0 if+(X) M+(X),

where p : T (X; p) -^ Imp is induced by p.
Further, for each object (X; /) in Ai, the ft is of the form:

/.=
0 0 Ai
0 /,2 A3

e

)et/f(X)et/2-(X)

e k+(X)

In such a way, (X; /) gives rise to an object (X; ft%) in B. By further decomposing

C/-j~(X) and t/^(X), we infer that /4 has the form:

/.=
r o

o

o

o

o

o

o /,i
/;2 j%
o /;3

0 Ker/2 0 T~(X; ft2) 0

0 Im/2 0 T+(X;fl2)

Since the tangle (M M+) is rodded, (X;f) is isomorphic to the object
(X; /') (X; /!,-.., /,_!,/,', /,+!,••-, /„) with /,' of the form:

/,'

0

0

0

"¦A

0

0

0

f'ih

0

A2
0

0

Ar
0

/:3
f-s-

:M-(X) if-(X) 0 Ker/2 e T~(X; ft2) 0 U2

0 Im/2 0 T+(X; A2) 0 Ä"+(X)
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where f'^ ftß — f^fa $"%¦ Finally, we denote by i](x-f) an isomorphism from

Thus each object (X;f) then gives rise to an object ((X; fa),f) in TV with

/=(/!,••• ft-lJtJt+1, ¦¦¦ fn), where ft is of the form

/.=
0

0

A4
¦N-(X; fa) K-{X) 0 Ker/2 0

-U+{X) 0 Coker/2 0 if+(X) N+(X; fa)-

(Here 'Ptx-f denotes the restriction of the canonical projection ^fX-f '¦

^ Coker/21 U+(X)/Imf2 to T+(X; Z^).)

3.3. Rem£trk. Up to isomorphisms, the representation ((X;/,^),/) induced by
(X; /) is independent on the choice of supplements T~(X; fl2) and T+(X; fa).

3.4. In view of Remark 3.3, for each (X; p) in B, we may fix a supplement T~(X; p)
of Kerpin C/-j~(X) and a supplement T+(X;p) of Imp in U^{X). By the discussion

in 3.2, each object (X; /) in M. then gives rise uniquely to an object ((X; fa); f)
in TV.

Let (X; /) and (Y; g) be objects in M. and /x a morphism from (X; /) to (Y; g).
With /x we now associate a morphism from {{X; fa); f) to ((Y; g~%2); g)-

Again by 3.2, one has that ß =: r//Y-g)^(V(x-f))^^ is a morphism from (X; /')
(X;/i,--- ,//,••• ,/„) to (Y;g') (Y;gi,--- ,&',-•• ,<?„), where // and g[ are

of the forms:

/,'

0 0 0 /tl
0 0 /,2 0

0 0 0 /;3
L/,4 /,'5 0 /;6J

:M-(X) if-(X) 0 Ker/2 ® T~{X; fa) 0 U2(X)

-U+(X) 0 Im/2 0 T+(X; fa) 0 if+(X) M+(X)

and

9

- o

0

0

0

0

0

0

gl2
0

0

g%\~

0

9's-

:M-(Y) K-(Y) 0 Ker<72 0 T-(Y;gl2) 0

e e ; g;2) e
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Further, the maps M~(ß) and M^(fi) can be written as the following forms:

'«Il «12 «13 «14
0 O22 «23 «24
0 O32 «33 «34
0 0 0 a44

K-{X) © Ker/2 © T-(X;fl2) © U2~(X)

—> K~(Y) © Kerg2 © T~{Y]gl2) © Sö(Y) M~(Y)

and

0 0 0

&22 ^23 0
6qo 6qq 0

L641

U+{X) 0 Im/2 0 ; fl2) 0
e e t+{y- g~l2) e k+{y)

Then there holds that

¦ 0

0

0

¦sU
rfeii
hi
hi

.641

0

0

0

g't5

0

622

&32

642

0

ft2
0

0

0

&23

hs
643

9tl~
0

3:3

0

0

0

644

«11
0

0

0

" 0

0

0

-f,A

«12

«22

«32
0

0

0

0

/'5

«13

«23

«33
0

0

/~2

0

0

«14 '
«24

«34

044.

Ar
0

fffie-

(1)

since fi is a morphism.
It then follows that 032 0 and 632 0. Since (M~, M+) is rodded, there is

a morphism // G TZ^X, Y) such that

,') (0,0) for all j ^ i,
"0
0

0

.0

0

0

0

0

0

0

0

0

0 -

0

«34
0

¦0
0

0

.0

0

0

0

&42

0

0

0

0

0-
0

0

0.

We then set ß fi — \a! : X —s- Y. It is easy to show that fi is a morphism from
;ft2) to (T;#;2). By (1) there also holds that

gN-{fi)=N+{fi)f,
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that is, ß is a morphism from ((X; f^)] /) to {{Y'¦> 9~%2)-, 9)¦
As a conclusion, we obtain two correspondences (X; /)

\i i—> /t which induce a functor

: M —>

((X; ft2); f) and

such that 3>(X; /) ((X; fa); /) and $(/x) fi + I, where / denotes the ideal of
A/" generated by z//x — uß for /x : (X; /) —> (Y; <;) and z/ : (Y; <;) —s- (Z; /i) in A4.

Proposition, (^j TTie «rfea/ / fees m i/ie radical of N'.
(2) The functor $ «s ara epivalence, i.e. $ is full, hits each isoclass, and detects

isomorphisms.

3.5. For the practical application, in certain situations it imports us to translate
the reduction into the language of matrix problems. We illustrate the translation
with an example: Let S be the (non-complete) bush in 2.3, i.e. S is formed by
the following pairs of rods:

• b

% ib

e

Mi

A5

eA

A2]
A4
A6

The associated tangle consists of two pairs of modules (M^ M^~) and (M2
Let (X; /i, /2) be a representation of S. If X is fixed, the chosen bases of M~{X)
and of M^(X) provide us a matrix problem given by a pair of partitioned matrices

b

X

together with the following admissible transformations
(a) arbitrary row transformations within stripes x and z and abitrary column

transformations within stripes e, eA and y;
(b) row transformations within stripe a~ coupled with the conjugate column

transformations within stripe a, row transformations within stripe b coupled with
the same row transformations within stripe 6~ (Note that the number of rows in
stripe a~ equals to the number of columns in stripe a and that the number of rows
in stripe b equals to the number of rows in stripe 6~);

(c) additions of multiples of rows between different stripes are allowed from b

to x and a~, from i to a~, and from z to 6~, additions of multiples of columns
between different stripes are only allowed from y to a.
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Thanks to the algorithm, we first reduce to the following form

¦u
0

0

0

u

0

I
0

1 0

1 0

1 0

1 I

0 1

0 1

0 1

0 1

0 1

I 1

0 1

0 1

U"

0

0

11

By performing admissible transformations, we reduce A3, A4, A5 and Aß to
the following forms (the row partition of stripe b induces a partition of stripe 6~)

u

0

0

0

-431

-451

1 0

1 0

1 I
1 0

1 0

1 0

1 0

1 0

1 0

1 I
1 0

1 0

0

0

0

0

-441

-4ôl

1 0 1

1 I 1

1 0 1

1 0 1

1 0 1

1 0 1

0 "

0

0

I
-442

-462

\BX
B31

B32
"

B33
"

--B34
"

S2I
^41
S42

-B43

S44-

Thus we are reduced to the matrix problems described by the following matrices

x

a~

0

A31

A51

0

An
A51

e

0

^42

A52 b'2

y

"Si
B31

S32

«33

ß34

a

B2~

Ä41

^42

«43

S44

Without spoiling the reduced form of [Ail^], we can perform the following
transformations to the matrices above

(a') arbitrary row transformations within stripes x, z, bfi, b'^, and b^, and

abitrary column transformations within stripes eo, eß, and y,
(b') row transformations within stripe a~ (resp b2) coupled with the conjugate

column transformations within stripe a (resp e'),
(c') additions of multiples of rows and columns between different stripes are

illustrated by the arrows in the figure above
Thus the reduced matrices can be viewed as a matrix representation of a new

bush T given by the following pair of rods



394 B. Deng CMH

* h mV

t! la- T2 ly T2

together with the equivalence relation such that a ~ a~, &o ~ &cT and e' ~ ^3-
This matrix problem coincides with that obtained from the algorithm. For further
reduction, one can reduce matrix [-A31I-A41], and so on.

4. The proof of the main theorem

4.1. In this section, we shall keep all the notations in the preceding Sections.
Let S be a bush and (X;f\,--- ,/„) a representation of S. By définition, the
dimension of (X; f\, ¦ ¦ ¦ /„) is

n

J2(dimkM-(X) + dimfcM+(X)),
%=\

where M~ and M^~ are the modules associated with S (see 1.3).
Let us now return and stick to complete bushes. We start from a complete bush

By abuse of notations in Section 2 we call a representation (X; f\, • • • /„) of S

an asymmetric string if it is isomorphic to R{w) for some asymmetric catenation w,
a dimidiate string if it is isomorphic to a non-trivial summand of (Xv; fv\, ¦ ¦ ¦ /„„)
for some symmetric catenation v, and an asymmetric (resp. a dimidiate) band if it
is isomorphic to R{u,Q) (resp. R{u,K)) for some asymmetric (resp. symmetric)
periodic catenation u and some Q G V (resp. K G Q).

Let (X; /) (X;/i,--- ,/„) be an indecomposable representation of S with
dimension d. Our objective is to prove by induction on d that (X; /1, • • • fn) is a

string or a band.
If d 1, it is clear that (X; /1, • • • /n) is a dimidiate string. We now suppose

that d > 1 and that every indecomposable representation of an arbitrary complete
bush T with dimension < d is a string or a band.

If all /j vanish, X is indecomposable in .A and (X; /1, • • • /n) (X; 0, • • • ,0)
is an asymmetric string (since d > 1). Otherwise, let 1 < i < n be such that
/j ^ 0. Then there are m~, m+ G N such that

i) ft(TZ"r+1M-(X)) Ç TZm++1M+(X),

ii) ft(1lm-M-(X)) Ç TZm+M+(X),
iii) the induced map

ft : 1lm~M-(X)/1lm~+lM-(X) —> TZm+M+(X)/TZm++1M+(X)
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is not zero, where 1Z denotes the radical of A.
We then set K~ TZ"r+1M-, L~ 1lm~M~, K+ Um++lM+, and

L+ TZm+M+.

By Proposition 3.4, we may reduce (X; /) to a representation ((X; f%2); /) of a

new tangle [N~,N+) over the aggregate B such that ((X; fa); /) is indecomposable

and has dimension strictly less than d.

Since the lattices of submodules of M~ and M^~ are rods, both the supports of
L~/K~ and of L+ /K+ contain one or two elements in <S. We examine the various
cases seperately.

4.2. Case I. supp(L~/K~) {x}, supp(L+ /K+) {y} and x 7^ y for some
x e S~ and y G 5+.

By way of example, we may suppose that x~ G S~, y~ G S~ for some j\ ^
h 32 7^ i- All the other situations can be treated similarly.

In order to apply the algorithm described in 3.2-3.4, we choose the supplements
C/-j~, U^ U^~ and U£ in the following canonical way: For each a G «S, we set

0 if a ^é x
Ux (a)= \ _ U2 (a) ®uea,ueP-,u<xku

[ kx if a x

and
0 if a =£ y^y_ U+{a) ®v€atV€P+tV<ykv

{ ky if a y

where x and y denote the equivalence classes of x and y in S, respectively. Finally,
M

for each X ®aesan{-a> € A, we set

U-(X) M-(M)-1(eoeSt/-(a)"(a))
and i 1,2.

U+(X) W

The representations (a;0) (a;0, ••• ,0), a G <S, and (x © y',r]), furnish a

complete list of indécomposables in the aggregate B, where r\ denotes the sequence
(0, ••• ,0,7?» 1,0, ••• ,0). Then there holds that

kx- if {Y-g) {x®y1r])
f M~(Y) if (Y;g) (a; 0)

N~(X- f) < n
n I ky- if (Y;g) (x®y,v)

We denote by <S the spectroid of B formed by representations (a; 0) (a; 0, • • • 0),
a G S and (x ®y',rj).
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By T (T{,--- ,Tn-;T1+,--- ,T+;~) we denote the bush formed by rods

T- S' II {xi}, T- S- H {yi}, and Tf Sf for (Z,e) ^ On, -), (j2, -). The

union U"=1(T^ UT^") is equipped with the smallest order relation which contains
that of S induced by Sf and is such that x~ > xi, y~ < y\ and 2 ^ xi (resp.
2 ^ y\) iff 2 ^ x~ (resp. z ^ y~). Finally we equip T with the equivalence
relation induced by S and extended by x\ ^ y\. The spectroid associated with T
(see 1.3) is denoted by T.

An easy observation shows that the correspondence

(z;0)i—> z, zeS, (x@y;ri)\—>x\=y\

gives rise to an isomorphism from S to T. Therefore, by identifying S with T, the
reduced form ((X; fl<i)1 /) of (X; /) can be considered as a representation of the
new bush T.

By induction hypothesis, ((X; fe); /) is a string or a band which is associated
with a catenation w (finite or periodic) of T.

We denote by w the catenation of S obtained from v by replacing each term
x\ by x"y and yi by y^x.

We first consider the case where v is an asymmetric catenation. Then w is

also an asymmetric catenation and R(w) (Xw; fw\, • • • /«,„) is an asymmetric
string. By the construction of R(w), one sees that each part x^y or y^x in w
provides a summand (x © y; 77) of (XM; jwli)- Thus (XM; /u,^) an(i ^ considered
as objects in ß are isomorphic. By identifying (Xw; fwl<i) with Xv, the action of
fwl coincides with that of fvl, so the representation ((Xw; fm2)', fw) is isomorphic
to R(v). By Proposition 3.4, we infer that (X;f) R(w), that is, (X,/) is an
asymmetric string (The decisive point is the following: If a term wr of w arises
from some term vq =/= v^, then [w*_1w*_2 • • •] < [wr+lwr+2 • • •] is equivalent to

If v is a symmetric catenation, so is w. One then obtains that (X; /) is isomorphic

to a non-trivial summand of (Xw; fw\, ¦ ¦ ¦ /«,„) since (X; f^)] /) is isomorphic

to a non-trivial summand of (Xv; fv\, • • • fvn), that is, (X; /) is a dimidiate
string.

In the case where v is a periodic catenation, one can similarly prove that
(X;f) R{w,Q) (resp. R{w,K)) according as (X;ft2);f) R{v,Q) (resp.
i?(v, K)) for some Q G V (resp. K G P), that is, an asymmetric (resp. a dimidiate)
band.

4.3. Case II. supp(L~/'K~) supp{L+/K+) {x} for some x G S~ with
xr g s+.

In this case, one can easily see that the representations (a;0), a G S and
((x)*;ry(t)), t > 1, furnish a complete list of indécomposables in B which are not
annihilated by J, where J denotes the intersection of annihilators of all N~ and

N^, and where ry(t) denotes the sequence (0, • • • ,O,ry(t)j,O, • • • ,0) with i](t)t of
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0 1 0 0

0 0 1 0

0 0 0 ••• 1

0 0 0 ••• 0

: M-((xf) {kxf -^ (kx~y M+{{xf).

(Note that the supplements S^ ,S^, S^~ and S^ are chosen in a cononical way
similar to the case I.)

Since (X; /) is finite dimensional, there exists an L > 0 such that the
induced representations (X;/,^) does not contain a summand isomorphic to some

Let S denote the spectroid formed by (a; 0), a G <S, and ((x)*; r)(t)), 1 < t < L+
1, and T the spectroid associated with the bush T T{L) {T{, • • • T~; ï\+, ¦ ¦ ¦

T^; ~), where the order relation on the union of the sets T~ S'~II{xi, • • • ,xl},
T+ S+ II {x^, ¦ ¦ ¦ ,x£}, and Tf Sf, (l,e) + (i, -), (i,+), are defined as in
case I (in particular, x < x\ < ¦ ¦ ¦ < xj_,, x£ < • • • < x^ < x~). The equivalence
relation equipped with T is induced by that of S and extended by x0 ~ x~ for

Then the correspondence

zeS, xt_i, 1 < t < L+ 1

defines an isomorphism from <S to T.
If (X; /j2) contains a non-zero summand annihilated by J, (X; /) is isomorphic

to (x, Q) for some Q £ V because of the indecomposability of (X; /), thus is an
asymmetric band.

If (X; f%2) does not contain a non-zero summand annihilated by J, the reduced
form ((X; fa), /) of (X; f) can be considered as a representation of the bush T.

By induction hypothesis, {{X; fa); f) is a string or a band associated with
a catenation o of T. We denote by w the catenation of S obtained from v by
replacing each term x3 (j > 1) by x • • • x and each term x~ by x

By a similar argument in case I, there holds that (X; /) is a string or a band

according as ((X; fa); /) is a string or a band.

4.4. Case III. supp(L~/K~) {{x},{xA}} and supp{L+ /K+) {y} for some

x, xA € S~ with x a xA and some y € St

By way of example, we suppose that y~ lies in S~ for some j =/= i. In this
case, the representations (a;0), a G <S, ({x} © y;rf{\)), ({xA} © y;i](2)) and

({x} © {xA} © 2/577(3)), furnish a complete list of indécomposables in B, where
77(1) 77(2) denotes the sequence (0, • • • ,0,1,0, ••• ,0), and 77(3) the sequence
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(0, • • • ,0, [1 l],0, • • • ,0). By <S we denote the spectroid formed by these
representations.

Let T be the spectroid associated with the bush T {T^, • • • ,T~;T^,--- T+;
~), where the union of the sets T~ S~ II {x'J, T~ S~ II {y'vy'2,y3}, and

Tf Sf ((/,£) ^ (i, —), (j, —)) is equipped with the order relation defined as in
case I (in particular, x > x'1; xA > x'1; y3 > y^ > y~, y3 > j/r, > J/~)- Finally,
we equip T with the equivalence relation induced by that of S* and extended by
xi ~y3.

Then the correspondence

es,

induces an isomorphism from <S and T. Hence {X; fa)', f) can be viewed as a

representation of the new bush T.
By induction hypothesis, {{X; fa)', f) is a string or a band associated with

a catenation o of T. We denote by w the catenation of S obtained from v by
substituting xy for each term x'^, y~xA for y3, y~xy for y[, and y""xAy for y2-

First we suppose that v v\v^ ¦ ¦ -vs is an asymmetric catenation, thus w
w\W2 ¦ ¦ ¦ wt is also an asymmetric catenation. We consider the following parts in
w.

a) wrwr-\-i xy (obtained from a term vq x\ in v). By construction of R(w),
the maps gwir and fwtr-\-i associated with w (2.2) behave as follows:

kw*+l

Note that > [wr_|_i wt] since v*_^ -l x (This follows from

the fact that ((X;/~2);/) satisfies /»(J~(X;/~2)) Ç J+(X;/~2)) (see 3.1)). Thus

every part xy in w provides a summand ({x} © {xA} © y;r](S)) in (Xtu;/tUî2).
Such a summand contributes a one-dimensional subspace A;(x — xA) in Ker/m2 Q

N~(XW; fwl<i) and a one-dimensional subspace fcy~ in N~(XW; jwl'i)-
Similarly, each part y~xA also provides a summand ({x} © {xA} © y); ?y(3]) in

(Xw; fwl2) which contributes a one-dimensional subspace both in N~(XW; fwl2)
and in N~{Xw;fwl2).

b) wrwr-^\wr-^2 y^xy (obtained from vq x^). By construction of R(w),
the maps fwir-\-\ and fwir-\-2 behave as follows:
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provided [u*_1 wj] > [vq+\ vs] (thus [w* w\] > [wr+2 • • • wt]).
In this case, the part y^xy provides a summand ({x} © {xA} © (y)2; 77), where

77 is of the form

1

1

Such a summand contributes a two-dimensional subspace (ky^)'2 of N~{XW\ jw%2)-

It is easy to see that the morphism

¦10 0 0"
0 10 0

0 0 10
.0 0 -1 U

{yf yf: {x} © {xA} © {yf -^ {x} © {xA} © {y

is an isomorphism from ({x}© {xA}© (y)2; 77) to ({x}©y; ry(l))© ({xA}©y;ry(2)).
In case [v*_i • • • v\\ < [wq+i vs] (thus [w* wj] < [wr+2 • • • wt\), the maps

fwir+l an(i fwir+2 behave as follows:

In this situation, the part y^xy provides a summand ({x} © {xA} © (y)2); r/'),
where 7/ is of the form

J Jj : M-({x}©{xA}©(y)2) kx®kxA -^ ky®ky M+({x}©{xA}©(y)2).

This summand also contributes a two-dimensional subspace(A;y~)2ofA^(Xti,;/u,j2)-
It is easy to see that the morphism

M

10 0 0
0 10 0

0 0 1-1
Lo 0 0 1 J

: ({x} © {xA} © (y)2) -^ ({x} © {xA} © (y)2)
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is an isomorphism from ({x}© {xA}© (y)2; r/) to ({x}(By;i](l))(B ({xA}®y;i](2)).
Therefore, every part y^xy in w provides a summand in (Xw; fm2) which is

isomorphic to ({x} © y; 77(1)) © ({xA} © y; ry(2)).
Similarly, every part y^xAy in w also provides a summand isomorphic to ({x}©

c) Each term wr (obtained from some term vq in v) in w provides a summand

(«v; 0) in (Xw; fwl2) if «V ^ w~, and a summand ({wr} © {wA}; 0) if wr ^ wA.
Form the observations in a)-c), it follows that (Xw;fwl2) and Xv viewed as

objects in B are isomorphic.
Furthermore, by suitably choosing basis vectors of N^(XW; fwl2) for 1 < j < n

ande —, +, one can show that ((Xw; jwl2)\ fw) is isomorphic to (Xv; fv\,- ¦ -,fVn)-
This implies that (X;f) is isomorphic to R(w) (Xw; fw\,- ¦ ¦ ,/«,„), that is,

(X; /) is an asymmetric string.
Similarly, one gets that (X; /) is a dimidiate string if so is ((X; f,^); /) and

that (X;f) R(w,Q) (resp. R(w,K)) according as ((X;/~2);/) R(v,Q) (resp.
R(v, K)) for some Q eV (resp. if G V).

4.5. Ceise IV. supp(L~/K~) {x} and supp(L+/K+) for some
x G S~ and some y,yA G S^~ with y ïi yA. This is an anologue to Case III.

4.6. Case V. supp(L-/K~) {{x}, {xA}} and supp(L+/K+) {{y}, {yA}} for
some x, xA G S~ and y, yA G with ararf y

In this case, one can show that the representatons (a;0), a G <S, and TZ(E) :=
(({x})si © ({xA})s2 © ({y})*1 © ({yA})*2; ??(S)), furnish a complete list of indécomposables

in B which are not annihilated by J, where f](E) denotes the sequences
(0, • • • 0, E, 0, • • • ,0) and E ranges over the following matrices (m > l)(see Sect.
11 in [GKR]):

Pim-1
I

I

m

m

i

1

m-1
0

0

m-1

s2 m - 1

51 tl £2 TO

2m-1

0

lm-1
lm-1

0

Im

Im

si =m- 1

S2 il 12 7rl

" 0

Im
Im "

0

Im

si 52 £2 ton

£l =m+ 1
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"

Im

Im
0

Im"

0

Im-

si s2 =ti m

Im

lm-lO

Im *2 TO - 1

"

si 52 il m

TA _72m-l —

Im Im

tl =TO- 1

51 52 ti TO-

"Olm

ImO

Im"

Im 51 TO

7-A _72m —

im

Im Olm

51 =tl =t2 =TO

52 TO + 1

+
Im

Im

Im

Im
(si s2 =t\ =*2 to).

By the finite-dimensionality of (X;f), there exists an I > 0 such that the
induced representation (X; fa) does not contain a summand isomorphic to some

Tl{E) for E Pt,PtAJt, /tA or T/ with t > L. We then denote by <S the spectroid
formed by (a;0), a G <S, and ^(S) for S Pt, PtA,7t, /tA and T/ wiht 1 < t < L.

By T we denote the spectroid associated with the bush T T(L) (Tj~,...
T-;ï\+,... ,T+; -), where the sets T~ =5"n{x_i, ••• ,x_L, xi,xA,--- ,xL,xA},
T+ S+n {y-i,---y-L,yi,yî,--->yL,yî} and î]e Sf ((/,£) ^ (i,-),(i,+))
are equipped with order relations defined as in case I. In particular, we require
that the induced order relations on {x_i, • • • ,x-l, x,xa, xi,xa, • • • ,xl,x£} and

{y_l, • • • ,y-L, y,yA, yi,yf, • • • ,VL,y£} admit respectively the following Hasse-

quivers:
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We then equip T with the equivalence relation induced by S and extended by
X-m^ y-m, m 1, ,L.

Then the correspondence

1 <t < L

defines an isomorphism from S to T.
If {X;fa) contains a non-zero summand annihilated by ^7, {{X; fa)', f) is

isomorphic to R{xy, K) for some if G Q, thus is a dimidiate band.

If (X; fa) does not contain a non-zero summand annihilated by ^7, ((X; fa); /)
can be considered as a representation of the bush T. In the following we simply
identify S and T.

By induction hypothesis, the representation {{X; fa); f) is a string or a band
associated with a catenation v of T. We denote by w the catenation of S obtained
from v by replacing each term xm by xyA ¦ ¦ -yAxy xAy ¦ ¦ ¦ yxA

m m
(resp. xyA ¦ ¦ -xyA xyxA ¦ ¦ -yxA) if m. is odd (resp. even),

a^ by xAy "¦¦ yxA yA xyA™ • • yAx (resp. xAy ¦ ¦ ¦ xAy xA yAx ¦ ¦ ¦ yAx) if m is odd (re-

mm mmsp. even), ym by yxA ¦ ¦ ¦ xAy xyAx ¦ ¦ ¦ xyA (resp. yxA ¦ ¦ ¦ yAxyxyA ¦ ¦ ¦ xyA) if m is

odd (resp. even)yAk by yAx- ¦ ¦xyAxA yxA ¦ ¦ -xAy (resp. yAx- ¦ ¦ yAx yA xAy- ¦ ¦ xAy)

mm mmif m is odd (resp. even), x_m by xyA ¦ ¦ ¦ xyA, and y_m by yx^ ¦ ¦ ¦ yx^.
2m 2m

First we suppose that v v\v<i ¦ ¦ -vs is finite and asymmetric, and set w
¦ wt. We consider the following parts in w:
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a) wrwr-\-i wr^-2m-l XVA XVA (obtained from a term x_m in v) By
construction of R{w), the map fwl associated with w acts as follows on basis
vectors wr x1; w* xA, ,2är+2m-2 xmi 2ä*r+2m-2 ^m

since [w* wf\ > [wj+2 wt], for j r — 1, ,r + 2m — 2

The matrix describing the action of /„, on the basis vectors xt, x_A, 1 < i < m
in the figure above is

-1
0

0

0

1

0

0

.0

1

1

0

0

0
1

0

0

0

0

1

0

0

0

1

0

0

0

1

1

0

0

0

1

1

0

0

0
1

0

0

0

0

1

0

0

0

1

0

0

0

0

1

0

0

0

1

0

0"
0

0

1

0

0

0

1.

T1

Thus every part xyA xyA in w provides a summand in (Xw,fm2) which is

2m

lsomorphic to TZ(T^), and such a summand contributes a one-dimensional sub-

space both in N~{Xw,fwl2) and in N+(XW, ]mi)
Similarly, every part yAx yAx (obtained from some term y_m in v) provides

2m

a summand lsomorphic to 1Z(T^), too
b) wrwr-\-i wr+2m XVA VxA (obtained from a term vq xm)
Case 1 m 2p — 1 By construction of R(w), the map /„, associated with w

acts as follows on basis vectors w_r x_i, w* xA, wr_|_2m 3^% j Ui*-\-2m

X2P

./- -2p 1

-2p 1
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provided [v*_l v{] > [vq+1 vs] (Hence [w*+2p_l w\] > [wr+2p+i wt])

We start with the following change of basis vectors

4P i j%2p i^—. 4P

4~4

yAxyxAy

-1 -lp ' -^1 *-2p 1 i2 -2p 1

Thus, the part wrwr^\ wryim yxA porvides a summand

of (Xw,fwl2) which is isomorphic to TZ(Y) 0 Tl(YA), where Y and YA are the
following matrices

Set

where

Y

YA

-1
0

0

0

1

0

.0
-1
0

0

1

0

0

.0

1

1

0

0

0
1

0

1

1

0

0

1

0

0

0

0

1

0

0

0

1

0

0

1

0

0

1

0

0

0

1

1

0

0

0

0

0

1

0

0

0

1

1

0

0

0

1

0

0

1

0

0

1

0

0

0

0
1

0

0

0
1

0

0
1

0

0
1

0

0

0

0

1

0

0

0

1

0

0

1

0

0

1

0

0-
0

0

1

0

0

0.
0-
0

0

0

0

0

1.

un
Hn

€kpxp

R-n —

0

-1
0

0

0

_o

0

0

0

0

0

0

L 0 -p+l 0j

€kpxp
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and Hp denotes the last row of the matrix exp Rp Then there holds that

Un

0

0
/2„-i yr |"exp_Rp

l_ °
0

Ur

and

0 exp IL

that is, the morphism

Y

p_t {x}p 0

^{Xy e

exp Rp

0
e

exp IL

0
e

defines an lsmorphism from TZ(Y) to TZ{l2p-l), an(i the morphism

p 0 expßp 0 expflp_i 0 expßp {x}p 0 {xA}p 0 {

-^{x}P 0 {xAF 0 {

1 0 {yA}p
1 0 {yAF

defines an lsmorphisin from 1Z(YA) to
Therefore, every part xyA yAxyxAy yxA in w porvides a suminand of

m m
(X, /j2) which is isomorphic to 72.(/2p_i) 0 ^-(-f^-l) an<^ wnlcn contributes a two-
dimensional subspace in N~{Xw,fw%2)

ws] can be treated similarlyThe case <

Case 2 m 2p By construction of R(w), the map /„, acts as follows on basis
vectors wr x_i, w* xA, wr i 2m

xf-

provided [v*_x v{] > [vq+1 vs]
We start with the following change of basis vectors

-2?

-2p+l
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Thus, in this case, the part wrwr^\ ¦ ¦ • wr+2m xyA • • • xyA xyxA ¦ ¦ ¦ yxA provides

m m
a summand of (Xw; fwl<i) which is isomorphic to TZ(Z) © 1Z(ZA), where Z and ZA
are the following matrices:

Z

ZA

then there hold that

\expRp

1

0

0

0

1

0

0

0

1

1

0

0

0

1

0
0

• 0

• 0

• 1

• 0

• 0

• 0

• 1

• 0

0

0

1

1

0

0

0

1

0

0

0

1

0
0

0

0

1

0

0

0

1

0

0

0

0

1

0

0

0

1

0

0

• 0

• 0

• 1

• 0

• 0

• 0

• 1

• 0

0

0

0

1

0

0

0

1

L

o

-1
0

0

0

1

0

0

.0

1

1

0

0

0

1

0

0

• 0

• 0

• 1

• 0

• 0

• 0

• 1

• 0

0

0

1

1

0

0

0

1

1

0

0

0

1

0

0

0

0

1

0

0

0

1

0

0

• 0

• 0

• 1

• 0

• 0

• 0

• 1

• 0

0

0

0

1

0

0

0

1

o-
0

0

1

0

0

0

0.

up

expRp

0

exp IL

hv=

A _hP -

_ \expRp+1
L o

7A [expflp

o

0

exp Rp j

0

where Up and Rp are defined as before and Vp+i has the form

Vp+1
0 expRp

-HP+l
P g k(p+l)x(p+l)

This implies that the morphism

expRp+1 © expRp © expRp © expRp :{x}p+1 © {xA}p © {y}p © {yAy
-^{x}P+1 © {xAY © {y}P © {yAy
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defines an ismorphism from TZ(Z) to TZ(l2P), and the morphism

expRp 0 Vp+1 ®UP® expRp :{x}p 0 {xa}p+1 0 {y}P 0 {yA}P

-^{x}p ® {xA}P+l ® {y}P ® {yA}P

defines an ismorphism from 1Z(ZA) to 72.(7%,).

Hence each part xyA ¦ ¦ -xyA xyxA ¦ ¦ -yxA in w porvides a summand of (Xw; ]w%2)

m m
which is isomorphic to Tl(l2p) 0 72.(1%,) and which contributes a two-dimensional

subspace in N~(XW; jwli)-
The case [v*_^ • • • wj] < bq+l • • • vs] is similar.

b') wrwr-\-i ¦ ¦ ¦wrjr2m xAy • • -yAx (obtained from a term vq x^J. As in

b), one has that every part xAy ¦ ¦ ¦ yAx provides a summand in (Xw; fwl<i) which

2m+l
is isomorphic to TZ(Im) 0

c) By a similar argument in b), one can show that both the parts yxA ¦ ¦ ¦ xyA

2m+l
(obtained from a term vq ym) and yAx ¦ ¦ ¦ xAy (obtained from a term vA ym)

2m+l
provides a summand in (Xw; jwl2) which is isomorphic to lZ(Pm) 0 TZ(P^).

d) Each term wr (obtained from some term vq in v) in w provides a summand

(«v; 0) in (Xw; jwl2) if wr ^ w~, and a summand ({wr} 0 {w^}; 0) if wr ^ w^.
From the observations in a)-d), one gets that (Xw;fwl2) and Xv viewed as

objects in B are isomorphic.
Furthermore, by checking each summand described in a)-d) and suitably choosing

basis vectors of N^(XW; jwl2) for 1 < j < n and e —,+, one obtains that

((Xw; fwt2); fw) is isomorphic to (Xv; fv\, ¦ ¦ ¦ /„„). Thus (X; /) is isomorphic to
R(w), that is, an asymmetric string.

Similarly, one can show the following:
(1) If v is a symmetric catenation, there holds that (X; f) is isomorphic to a

non-trivial summand of (Xw; fw\, • • • /«,„), that is, a dimidiate string.
(2) If v is an asymmetric periodic catenation of period it and ((X; fa); /)

R(v, Q) for some Q e V, there holds that (X; f) R{w, Q), where Q denotes the
polynomial Q(X) (-l)tdegQQ((-l)lX), and i is the number of terms xm, x^,
ym, and x^ in v vqv\ ¦ ¦ ¦ w^-i with m an odd number.

(3) If v is symmetric periodic and ((X; fa); f) R(v,K) for some K G Q,
there holds that (X; /) R(u, K).

4.7. As a conclusion of 4.2-4.6, we have the following

Proposition. Each indecomposable representation of the hush S is a string or a
band.
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4.8. Throughout the reduction above, by substituting (X; /i, • • • fn) for
representations associated with catenations, one can prove inductively the following
propositions.

Proposition 1. (1) The representation R(w) associated, with each asymmetric
catenation w is indecomposable, and the representation (Xv; fv\, ¦ ¦ ¦ fvn)
associated with each symmetric catenation v is a direct sum of two non-isomorphic
indécomposables.

(2) For each asymmetric (resp. a symmetric) periodic catenation and each Q €
V (resp. K € Q), the representation R(u,Q) (resp. R{u,K)) is indecomposable.

(3) The representaions Riß), where

5 e Qi IIQ2 x {0,1} IIQ3 x V II ü4 x Q

are pairwise non-isomorphic.

Proposition 2. The equivalent catenations (finite or periodic) of S define the

same family of isoclasses of indécomposables.

Proof. Let w w\W2 ¦ ¦ ¦ wt and w' w'^w^- • • w't be equivalent catenations. We
denote by d(w,w') the number of indices i (1 < i < t) such that w[ ^ wt. If
d(w,w') 0, the proposition holds. If d(w,w') > 1, there exists a sequence of
equivalent catenations W\ w, W%, • • • Wd w' such that d(Wt, Wj_|_i) 1 for
1 < i < d — 1. So we may suppose that d(w,w') 1. Applying the reduction
in 4.2-4.6, the representations [Xw; fwi,- ¦ ¦ ,/«,„) and [Xw>; fw>\, ¦ ¦ ¦ ,/«,'„) are
respectively reduced to representations (Xv; fv\, ¦ ¦ ¦ fvn) and [Xv>; fv>\, ¦ ¦ ¦ fv>n)
of a new bush T, where v and v' are equivalent catenations of T such that d(v, v') <
1. By induction, we may suppose that v and v' define the same family of isoclasses
of indécomposables of T. By Proposition 3.4, this implies that w and w' defines
the same family of isoclasses of indécomposables of S.

By a similar argument, the proposition holds for periodic catenations.

4.9. Remark. By Proposition 2 in 4.8 and Remark 2.8, one obtains the following
statements.

(a) For each asymmetric catenation w, catenations in the class [w] U[w*] define
isomorphic representations.

(b) For each symmetric catenation w, catenations in the class [w] define
isomorphic representations.

(c) For each asymmetric periodic catenation u, catenations in the class

LLËz([M{rf] LJ[M{-P}*]) provide the same family of isoclasses of indécomposables.
(d) For each symmetric catenation w, catenations in the class LLez[M{p}]

provide the same family of isoclasses of indécomposables.

The main theorem then follows from Propositions in 4.7, 4.8, and Remark 4.9.



Vol 75 (2000) On a problem of Nazarova and Roiter 409

Acknowledgements

The present paper is a revised version of my dissertation The author is grateful
to Professor P Gabriel for his encouragement and his many valuable suggestions
in the preparation of this paper We would like to thank Professor Sergejchuk for
pointing out to me the work of Bondarenko

References

[1] V M Bondarenko, Representations of bundles of semichained sets and their applications,
St Peterburg Math J 5 (3) (1992), 973-996

[2] W W Crawley—Boevey, Functonal filtrations II clans and the Gelfand problem, J London
Math Soc 40 (2) (1989), 9-30

[3] B Deng, An algorithm and self—reproducing systems, G'omm Algebra 26 (1998), 3419—

3434

[4] P Gabriel, A historical recording Finite—dimensional representations of the algebra A
fc[[a,6]]/(afe) after Gelfand—Ponomarev, A literal translation of notes in German reproducing
a lecture at a seminar organised in Bonn during the winter term 1973/74 16 pages, April
1991

[5] P Gabriel, B Keller, L A Roiter, Representations of finite-dimensional algebras, Encycl
Math Sc 73 (1992), 1-176

[6] I M Gelfand, The cohomology of infinite dimensional Lie algebras, some questions of
integral geometry, Actes du Congres International des Mathematician, Nice 1970

[7] I M Gelfand, V A Ponomarev, Indecomposable representations of Lorentz group, Russian
Math Survey 23 (1968), 1-58

[8] L A Nazarova, A V Roiter, A problem of I M Gelfand, Funktsional'nyi Anahz % Ego
Pnlozheniya 7 (1973), 54-69

[9] C M Ringel, The indecomposable representations of the dihedral 2—groups, Math Ann
214 (1975), 19-34

Bangming Deng
Department of Mathematics
Beijing Normal University
100875 Beijing
P R China
e-mail dengbm@bnu edu en

(Received April 10, 1997


	On a problem of Nazarova and Roiter

