
Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 75 (2000)

Artikel: Additivity of tunnel number for small knots

Autor: Schultens, Jennifer

DOI: https://doi.org/10.5169/seals-56624

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 06.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-56624
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


© 2000 Birkhauser Verlag, Basel
Comment Math Helv 75 (2000) 353-367
0010-2571/00/030353-15 $ 1 50+0 20/0 I Commentarii Mathematici Helvetici

Additivity of tunnel number for small knots

Jennifer Schultens

Abstract. We show that for small knots Klt K2, t(K{) + t(K2) - 1 < t(K1#K2) < t(K{) +
t(K2) + 1, and that for small knots K\, ,Kn,t(K\# #Kn) > n

Mathematics Subject Classification (2000). 57N10
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1. Introduction

The tunnel number of a knot has been shown to behave quite erratically under the

operation of connected sum On the one hand, Kobayashi has exhibited knots for
which the tunnel number degenerates by an arbitrarily high number under
connected sum ([6]) and on the other hand Moriah and Rubinstein and independently
Monmoto, Sakuma and Yokota have exhibited knots for which the tunnel number
is strictly super-additive under connected sum ([8] and [10]) Restricting attention
to connected sums of small knots circumvents some of the possibilities and many
of the technical difficulties encountered m the work of Kobayashi concerning torus
decompositions of manifolds and of Monmoto concerning the additivity of the
tunnel numbers of knots ([7] and [9]) The more general question of how Heegaard
genus behaves when two manifolds are glued together along an annulus remains
open This project was inspired by and answers problem 1 70 m [5] for the case of
small knots I wish to thank Andrew Casson and Marty Scharlemann for helpful
conversations I also wish to thank MSRI, where part of this research was carried
out

2. Definitions and general facts

Definition 1. For any suhmanifold L of M, 1](L) denotes an open regular
neighborhood of L in M and N(L) denotes a closed regular neighborhood of L in M

Research supported by an NSF postdoctoral fellowship
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Definition 2. Let K be a knot in S3, then C(K) S3 - r)(K).

Definition 3. A knot K is small, if C(K) contains no closed, essential surfaces.

Definition 4. A tunnel system for a knot K is a collection of disjoint arcs T t\
U U tn embedded, in C(K) such that C(K) — rj(T) is a handlebody. We require
one endpomt of tt to lie on dC(K) and the other to either also lie on dC(K), or
to meet an interior point oftt. The tunnel number of K, denoted, by t(K), is the
least number of arcs required in a tunnel system for K.

Definition 5. A compression body is a, 3-mamfold W obtained, from a, closed,

orientable surface F by attaching 2-handles to Fx{0} C FxI and, capping off any
resulting 2-sphere boundary components. We denote Fx{l} by d+W and dW —

d+W by d-W.

Definition 6. A syine X of a compression body W is a properly embedded 1-

complex in W such that X U d-W is connected and such that W collapses to X
U d-W.

Definition 7. A Heeqaard splitting of a Z-manifold is a pair (W\, W2) of
compression bodies, such that W\ C\ W<i d+W\ d+W2 and M W\ U W%. We

call d-\-W\ d-\-W2 the splitting surface or Heegaard surface and denote it by F.

Definition 8. A disk D in a compression body W is an essential disk if(D, dD) C
(W, d-\-W) and dD is an essential curve in d+W. A defining collection of disks for
W_ is a collection of essential disks T> D\ U U Dn which cut W into dJW
U 3-balls.

Definition 9. A Heegaard, splitting is (weakly) reducible if there are essential
disks Dt and D2, such that (A, dD%) C (Wt, d+Wl) and, (dDx n 8D2 9) dDx

dD2. A Heegaard, splitting which is not weakly reducible is strongly irreducible.

Definition 10. Let K\ =$= K2 be the connected, sum of the knots K\ and K2. Then
there is a sphere S which intersects K\ =$= K2 in exactly two points, the annulus
A S Pi C(K\ # K2) is called, a decomposing annulus. Note that cutting C(K\
# K2) along A produces a copy of C(K\) and of C(K2).

The following four lemmata are well known but crucial. We repeat them here
for completeness.

Lemma 1. An incompressible and boundary incompressible surface S with OS =/=

0 properly embedded in a compression body W is either an essential disk, or an
annulus with one boundary component in d-W and the other in d+W.
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Proof. This is [1, Lemma 9]. D

Lemma 2. An incompressible surface S in a compression body W with dS C
d-\-W cuts W into compression bodies.

Proof. Let I? be a defining collection of disks for W. Isotope S so that #|X> l~l S
is minimal. Then, in particular, T> n S contains no simple closed curves. Cut W
along V to obtain (d-W x /) U (3 — balls). Since dS C d+W, Lemma 1 implies
that S is boundary parallel in or disjoint from any given component of (d-W
x /) and hence cuts it into (closed surface) x / and perhaps handlebodies.
Furthermore, the incompressibility of S guarantees that S intersects each 3-ball
in meridian disks. Therefore the closure of a component of W — S is obtained
by attaching (closed surface) x / components, handlebodies and 3-balls along
disks. The result is a compression body. D

Lemma 3. Let M1 and M2 be 3-mamfolds such that M' has a Heegaard splitting
(Vj, V£) of genus g% and there is an annulus A% in dM%. Then the manifold M
obtained, by glueing M and M together along A and A has a Heegaard splitting
of genus g g -\- g

Proof. Let Bl be the boundary component of Ml containing A1. We may assume
that Bl C V^. Then by shrinking VJ, we may assume that V-j* consists of a collar
of Bl in Ml, denoted by collar(Bl), 1-handles, some of which are attached to
colla,r(B%) and, perhaps, other collars of boundary components of Ml.

Let o% be a simple arc in A% connecting the two components of dA% and let D%

A1 - r)(ctl U dA%). Let collar(Dl) be the subset of collar(Bl) which is a collar
on D%. We may assume that collar (Dl) does not meet any 1-handles. Glue M1 to
M2 along A1 and A2 so that D1 and D2 match up. Define V\ (V/ - collar(D1))
U (V? - collar(D2)) and V2 (Vj U collar(D1)) U (V22 U collar(D2)). Then
(Vi, V2) is a Heegaard splitting of the manifold M obtained by glueing M1 and
M2 together along A^ and A2 and has genus g g^ + g2.

Definition 11. Suppose an arc a shares an endpomt with an arc ß. An arc slide
of a over ß is the result of replacing a with a U ß, where a U ß is a pushoff of
aUß.

Remark 4. Tunnel systems of a knot correspond to Heegaard splittings of the
complement of the knot. Given a tunnel system T for K, set V\ N(dC(K)
U T) and V2 equal to the closure of C(K) — V\. Conversely, given a Heegaard
splitting (V\, V2) of C(K), we may assume that 8C(K) C V\. Then, after arc
slides, if necessary, a spine X\ of V\ is a tunnel system for K. Note that in this
correspondence, the number of arcs in T is exactly one less than the genus of (V\,
v2).
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Corollary 5. t{K\ # K2) < t{K\) + t{K2) + 1.

Proof. This follows from Lemma 3 and Remark 4. D

Lemma 6. The splitting surface F of a strongly irreducible Heegaard splitting (V\,
V2) of M may be isotoped to intersect a properly embedded incompressible surface
S <Z M only in essential simple closed, curves.

Proof. Let Xt be a spine of Vt. If Xt is disjoint from F, then, perhaps after isotopy,
F n S 0. So suppose that X% n S ^ 0, for i 1, 2. Let H :F x I ^ M - r](Xt
U X2) be a foliation, by surfaces isotopic to F, of M — 77(Xi U X2). We denote

H(F,t) by Ft and assume that F% dN{Xl).
Set V 1 {t \ Ft H S contains simple closed curves bounding disks entirely

in Vt n S}. Then for t close to 1, t e V 1, whereas for t close to 2, £ e V 2-

To better understand V 1 and V 2, consider the singular foliation of S — ri(X\
U X2) induced by H. If a regular leaf contains a simple closed curve bounding
disks entirely in Vt, then so do nearby regular leaves. Furthermore, if the regular
leaves limiting on a singular leaf a from one side all contain simple closed curves
bounding disks entirely in Vt, then so does a. It follows that either V 1 n V 2 7^ 0

or the complement of V 1 U V 2 nas nonempty interior. Since (Vi, V2) is strongly
irreducible, the latter must be the case. Choose t in the complement of V 1 U V2

and so that F\ n S is a regular leaf. Then Ft is a copy of F which intersects S

only in essential simple closed curves. D

3. Tunnel systems corresponding to weakly reducible Heegaard
splittings

Tunnel systems fall into two types, those corresponding to weakly reducible
Heegaard splittings and those corresponding to strongly irreducible Heegaard
splittings. We here investigate tunnel systems for K\ =fj= K<i which correspond to
weakly reducible Heegaard splittings and show how they define tunnel systems for
K\ and K2- We exploit the ideas in introduced in [2] and extended in [13] and
[12], linking weakly reducible Heegaard splittings and incompressible surfaces.

Definition 12. Let (V\,V2) be an irreducible Heegaard splitting of M. We may
think of M as being obtained from d-V\ X / by attaching all 1-handles in V\
followed by all '1-handles dual to 1-handles in V2, followed, perhaps, by 3-handles.
An untelescoyinq of (V\, V2) is a rearrangement of the order in which the 1-handles

(of V\) and the '1-handles (dual to the 1-handles of V2) are attached,, so that M
is decomposed into submanifolds M Mk, 'meeting along surfaces S
Sk, which are incompressible in M, and which inherit, from a subcollection of
the original 1-handles and, 1-handles, strongly irreducible Heegaard splittings (Vj°,
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Figure 1.

%), (Vf, V%). For details see [13] and [12]. D

Remark 7. The proof of the Main Theorem in [2] shows that if (V\, V^) is

irreducible but weakly reducible, then k > 1 in any untelescoping of (V\, V^).

Remark 7 shows that we must understand what sort of incompressible surfaces

occur in the complement of the connected sum of small knots.

Lemma 8. Let S he a separating essential surface in C(K\ ][ Kq), where Kt is a

small prime knot. Then S C C(Kt) for either i 1 or i 2; and S is boundary
parallel m C(Kt). (See fig. 7)

Definition 13. A surface of the type described is called a swallow follow torus.

Proof. Let A be the decomposing annulus. If S n A 0, then the claim follows.
So suppose S n A =/= 0, and set S1 S n C(K%). Here C(K%) is obtained from
C(K\ # K<i) by cutting along the decomposing annulus. Since dSl consists of
meridians, the meridian is a boundary slope. Hence by [3, Theorem 2.0.3], C(K%)
contains a closed essential surface. But this contradicts the fact that C(K%) is

small. D

Theorem 9. Let K\, K^ be small knots, and suppose the tunnel system T realizing
the tunnel number of K\ # K^ corresponds to a weakly reducible Heegaard splitting.

Proof. Let (V\, V^) be the Heegaard splitting corresponding to T. Since T realizes
the tunnel number of K\ =fj= K<i, (V\, V^) is irreducible. Consider an untelescoping
of (V\,V<2). By Remark 7, k > 1. If an Sl were boundary parallel in C(K\ =fj=

K<i), then the untelescoping of (V\, V^) would define a Heegaard splitting of C(K\
# K<i) of lower genus, contradicting the choice of T. Hence each S% must be a
swallow follow torus. Since the two distinct isotopy classes of swallow follow tori
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A swallow-follow torus

Figure 2.

can't be embedded simultaneously, the Sl must in fact be parallel swallow follow
tori.

If we assume, for convenience of notation, that Sl C C(K\) for i 1, k,
then Mo is homeomorphic to C{K\) minus a 2-handle, hence (V-f, V^0) defines a

Heegaard splitting for C(K\), and Mk is homeomorphic to C(K-2), hence (V*,
VJf) defines a Heegaard splitting for Ciji^)- Counting the 1-handles in V® and
Vifc, which is the number of arcs in the corresponding tunnel system, shows that

t(K2) < # K2). a

Remark 10. By Lemma 3, k < 2. For more subtle reasons (certain properties of
the Heegaard splittings (Vf, VÇ) and of Heegaard splittings of [surface) x /), k

1.

4. Tunnel systems corresponding to strongly irreducible
Heegaard splittings

In this section we restrict our attention to tunnel systems of knots which
correspond to strongly irreducible Heegaard splittings. Most importantly, we show how
to use a tunnel system for a connected sum of knots to construct tunnel systems
for its summands when all tunnel systems realizing the tunnel number of the
connected sum of knots correspond to strongly irreducible Heegaard splittings. The
trick in Définition 14 allows us to choose the original tunnel system so that this
process proves bounded degeneration of tunnel number under connected sum.
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The results were originally inspired by [9]. However, the arguments changed
dramatically due to the use of the notion of strongly irreducible Heegaard splittings
and the terminology and techniques available for their study.

Theorem 9 allows us to make certain assumptions. Since these assumptions
will be used over and over again, we summarize them here:

Assumption 1: All tunnel systems realizing t{K\ =fj= K<i) correspond to strongly
irreducible Heegaard splittings.

Assumption 2: The tunnel system T realizing t{K\ =fj= K<i) is chosen so that
the splitting surface of the corresponding Heegaard splitting may be isotoped to
intersect the decomposing annulus in the least number of essential curves.

The following définition gives an operation which helps move arcs in a tunnel
system away from a decomposing annulus. The trick is due to Marty Scharlemann.

Definition 14. Let T be a tunnel system for the knot K, let [V\, V2) he the

corresponding Heegaard splitting of C(K) and suppose there is an annulus A with
interior(A) C V2, such that one component, d\A, of dA lies on dV\ and intersects

the boundary of a meridian disk D ofV\ exactly once and such that the other
component, d^A, of dA lies on the boundary of an arbitrarily small regular
neighborhood of dC(K). Then setting V\ N(dC(K) UTuI) and V2 the closure

of the complement produces a Heegaard splitting of C(K). To see that V\ is a

compression body, consider a collection T>\ of defining disks for V\ containing D.
By [16, Lemma 2.1] N(D U d\A) is a solid torus summand ofV\. Let I) be an
essential disk in V\ which cuts off this solid torus summand. Then {TD\ — D) U

D is a defining collection of disks for V\. V2 is a handlebody by the proof of [1,
Lemma 9]). This Heegaard splitting has the same genus as the Heegaard splitting
corresponding to T. (For the splitting surface of the former is obtained, by

cutting the splitting surface of the latter along two essential curves and reconnecting
the resulting boundary components along annuh, this operation doesn't change the
Euler characteristic of the surface.) The new Heegaard splitting corresponds to a

new tunnel system T'. We will say that T' is obtained from T by replacing one of
the arcs in T by its dual. (The terminology generalizes that used in the case where
the tunnel system contains only one arc.)

Lemma 11. Let K\ and K2 be small knots. Suppose that K\ =f/= Ä2 satisfies
Assumption 1, and the tunnel system T for K\ =f/= K2 satisfies Assumption 2. Then,
after isotopy, the splitting surface F of the Heegaard splitting (V\, V2) corresponding

to T intersects A only in essential curves, and =f/=\ F (~\ A\ < 4.

Proof. Suppose that F D A consists only of essential curves and that #| F D A\
> 4. Then one of the components of V\ C\ A is boundary reducible in V\. We may
assume, by choosing an outermost one, that the boundary reducing disk is disjoint
from A. Then after performing the boundary compression along this disk, V\ n A
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Replacing an arc by its dual

Figure 3.

consists of one disk and at least three annuli. Perform an ambient 2-surgery on F
along the disk, and then perform ambient 2-surgery on the resulting surface,along
all compressing disks disjoint from A, to obtain a surface F*, each component of
which is separating. We will denote the two sides of F* by Vf and V^ ¦ A priori,
neither Vf nor V£ need be connected.

Note that the ambient 2-surgeries may be performed in sequence. Then at
each step, the next compressing disk E can be isotoped so that dE lies entirely in
F. Consider the annulus in F consisting of a bicollar of dE. It follows from [14,
Lemma 2.6] and the strong irreducibility of (V\, V^), that E lies either entirely in
V\ or entirely in V^. The strong irreducibility further implies, that in this case, E
lies entirely in V\. It follows that Vf C V\ (whereas V£ V<2 U 2-handles). In
particular, Vj* needn't be connected, but V£ must be.

Consider a component F* of F* n C{K%). If F* were an essential surface
in C{K%), then the meridian of C(Kt) would be a boundary slope, hence by
[3, Theorem 2.0.3], C(Kt) would contain a closed essential surface. Since Kt
is small, and since F* is incompressible in C{K%), F* must be boundary parallel
in C(Kt). Hence F* is either parallel into a subannulus of A, or into dC(Kt) U
2 subannuli of A. In the former case, we will call F* a narrow annulus, and in the
latter case a wide annulus. Note that since a component of F* can be constructed
by identifying annuli along their boundary, it must be a torus.

Claim 1: A narrow annulus in F* cobounds, together with a subannulus of A, a
solid torus entirely in Vj*.

Suppose the solid torus T cobounded by a narrow annulus N\ in F* and a
subannulus A' of A meets the interior of V^ ¦ Then we may assume, by replacing
N\ with a narrow annulus properly embedded in T if necessary, that a collar of
N\ in T lies in V^¦ The torus T defines an isotopy of N\ into A'. Since V£
V-2 U 2-handles, that is, since V£ contains V^, this isotopy defines an isotopy of F
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which reduces =fj=\ F n A\. Since this number was chosen to be minimal, the Claim
follows.

Claim 2: There can be at most two nested components of F*.

This follows from the fact that (the "side") V£ (of F*) is connected.

Claim 3: There is exactly one component of F* which is parallel into dC{K\ =fj=

K2).

By Claim 2, there can be no more than two such components. If there were
exactly two such components, then, again by Claim 2, Vf C V\ would contain a

copy of C{K\ =fj= K<2), but this is impossible. If there were no such component,
then the component C of Vf containing dC{K\ =fj= K2) would be cobounded by
tori in F* none of which was parallel to dC(K\ # K2). Since V£ is obtained
by cutting V\ along essential disks, a process which produces 3-balls, handlebod-
ies, and compression bodies with only one interior boundary component, this is

impossible. This proves Claim 3.

Let T be a component of Vf — C (for C as above). Then dT is a torus, so, by
the same reasoning as above, and Claims 1,2 and 3, T must be a solid torus. It
follows that dT is comprised of narrow annuli and, by Claims 1, 2, and 3, pairs of
adjacent wide annuli.

Let À be a subannulus of A connecting dT and dC. We may assume, by
rechoosing T to be outermost if necessary, that A C V2. It follows from the pre-
ceeding paragraph that T has a meridian disk D consisting of boundary reducing
disks in the subtori cut off by narrow annuli and of disks (rectangles) defining a

parallelism between the pairs of wide annuli. Now #|<9_D C\ A\ 1. Hence the
requirements of Définition 14 are met. So the splitting surface of the Heegaard
splitting (V\, V2) obtained by replacing the appropriate arc in the tunnel system
under consideration into its dual intersects A in two fewer essential curves. It thus
corresponds to a tunnel system which violates the minimality assumptions. D

Theorem 12. Let K\ and K2 he small knots. Suppose K\ # K2 satisfies
Assumption 1 and the tunnel system T for K\ =$= K2 satisfies Assumption 2. Then

t{Kx) + t(K2) - 1 < t{Kx # K2).

Proof. Let (Vi, V2) be the Heegaard splitting corresponding to the tunnel system
for K\ # K<i- Isotope the splitting surface F of (Vi, V2) so that it intersects the
decomposing annulus A for K\ # K2 only in essential circles and so that \F D A\
is minimal.

Case 1: \F n A\ 2.

Cut C(Ki # Ki) along A and set V{ (Vi n CiK,,)) U collar(A n V2), and
let V$ be the closure of the complement of Vf in C(Kt).
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A component of Vj intersecting A

Figure 4.

V, before cutting along A

Figure 5a.

Claim: (Vf, VÇ) is a Heegaard splitting for C(K%). (See fig. 5a and fig. 5b)
Let T>\ be a defining collection of disks for V\. After isotopy, we may assume

that T>\ n A 0. Then V\ =T>iC\M% cuts V{ into (dosed surface) x /. (Here
V cuts V\ into d-V\; then cutting d-V\ along A' U A" and adding the collar
creates (closed surface) x /.) Hence VJ is a compression body.

V2 is a compression body by Lemma 2.

Let g* be the genus of (Vf, VZ) and g the genus of (Vi, V2). Then, by an Euler
characteristic argument, g1 + <? =3+ 1- Here the spine of V'{ defines a tunnel
system corresponding to the Heegaard splittings (Vf, V$), hence t(K\) +
t(Ki # K2).

Case 2: |F n A| 4.
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V, and V,

Figure 5b.

V, before cutting along A

Figure 6a.

As in the proof of Lemma 11, one of the components of V\ C\ A is boundary
reducible in V\. We may assume, by choosing an outermost one, that the boundary
reducing disk is disjoint from A. Then after performing the boundary compression
along this disk, V\ n A consists of two annuli and one disk, and V2 l~l A is a pair
of pants.

As before, cut C(K\ # K2) along A and set V{ (Vi n C{K%) U {collariy^
n A)) and V^ equal to the closure of the complement of Vf in C(Kt). (See fig. 6a
and fig. 6b.) Then by an argument similar to the one above (add the disk D to
V\ as necessary), (Vf, V%) is a Heegaard splitting of Ml. By the same reasoning
as above, we find that t(K\) + t(Ä"2) -1 < t{K\ # K2).

By Lemma 11, this completes the proof. D

Corollary 13. Let K\ and K2 he small knots, then t{K\) ^) — 1 < t(K\
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V, and V,

Figure 6b.

Proof. This follows from Theorem 9 and Theorem 12. D

5. Simultaneous decomposing annuli

The arguments in the two preceeding sections can be tailored to show that for small
knots K\, Kn, t(K\ # # Kn) > n. In the following we will assume that the
decomposing annuli for C(K\ # # Kn) have been chosen so that each C(Kt)
meets at most two decomposing annuli (i.e., we assume that the decomposing
spheres are nested in "Matryoshka" fashion).

Lemma 14. Let S be a separating essential surface in C(K\ =f/= =f/= Kn), where
each Kt is a small knot. Then, after isotopy, for any i, S (~) C(Kt) is either empty,
or boundary parallel; i.e., S is a swallow follow torus.

Proof. Isotope S so that #\S l~l A\ is minimal. Let A^, An~^ be the decomposing

annuli for C(K\ # # Kn). Consider C(Kt) and suppose it is cut off of
C{Ki # # Kn) by A\ and perhaps At+1. If S does not intersect A1 or At+1,
for any /, then S must be disjoint from C(Kt), since Kt is small. If S intersects A%

or j4*+1, then S must be boundary parallel in C{K%) to avoid the contradiction in
the proof of Lemma 8. D

Theorem 15. Let K\, Kn be small knots, then t{K\ =fj= =fj= Kn) > n.

Proof. Suppose the inequality does not hold, and let K\, Kn be small knots
chosen so that n is minimal among such collections of small knots. Let [V\, V^)
be the Heegaard splitting corresponding to a tunnel system T which realizes the
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A generalized swallow-follow torus

Figure 7.

Claim 1: (Vi, V^) is strongly irreducible.

Suppose (Vi, V2) is weakly reducible. Since T realizes t(K\ # # Kn),
(V]_, V2) is irreducible. Consider an untelescoping of (Vi,V2). By Remark 7, k
> 1. Again, if an 5* were boundary parallel in C(K\ # # Än)j then the
untelescoping of (Vi, V2) would define a Heegaard splitting of C(K\ # # ifn)
of lower genus, contradicting the choice of T. Hence each Sl must be a generalized
swallow follow torus. A generalized swallow follow torus separates C{K\ =fj= =fj=

Kn) into C(Kn # # Kl3) minus a 2-handle and C(lfÎ3+1 # # i^J for
some partition } U

3+
• • • ,in} of {1,... ,n}. Thus the untelescoping

provides at least one Heegaard splitting corresponding to tunnel systems violating
the choice of K\, Kn.

In the following, we assume that the splitting surface of (Vi, V2) has been

isotoped to intersect the decomposing annuli only in essential curves, and in the
least number of such curves.
Claim 2: T can be chosen so that the splitting surface F of (Vi, V2) intersects at
most one of the decomposing annuli in more than 2 curves and it intersects this
decomposing annulus in exactly 4 curves.

The proof of this Claim mimics and extends the proof of Lemma 11. Suppose
the Claim is not true. Proceed as in the proof of Lemma 11, performing one
boundary compression to produce a disk in the intersection of V\ with one of the
decomposing annuli, then performing an ambient 2-surgery on F along this disk,
and then performing ambient 2-surgeries on all compressing disks for the resulting
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surface which are disjoint from all the decomposing annuli, to obtain a surface

F*, each component of which is separating Again, denote the sides of F* by Vj*
and Vif Again, Vf C V\ and V^ is connected Again, a component of F* n
C(Kt) is boundary parallel Such a component could either be a narrow annulus
as in the proof of Lemma 11, or a wide annulus, but here a wide annulus may
either have boundary components on the same decomposing annulus, or on distinct
decomposing annuh Other possibilities would make the meridian a boundary slope
and produce the same contradiction as before Claims 1, 2, and 3 in the proof of
Lemma 11 still hold

Denote the component of Vf containing dC{K\ =fj= =fj= Kn) by C, and
consider a component T of Vf — C As before, T must be a solid torus A meridian
of T can be constructed as before Again we obtain a new tunnel system T' for
K\ # # Kn, by changing an arc of T into its dual, which contradicts the
minimality assumptions on T This proves the Claim

The arguments in Theorem 12 now only give the weaker result t(K\ # #
Kn) > n — 1 However, applying the argument in Case 1 of Theorem 12 along all
decomposing annuh which intersect F exactly twice, and noting that the remaining
composite summand has tunnel number at least 2, since tunnel number 1 knots
are prime (see for instance [11]), proves the Theorem D
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