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Invariant currents on limit sets

John Lott

Abstract. We relate the L2-cohomology of a complete hyperbolic manifold to the invariant
currents on its limit set.
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1. Introduction

Let M be a complete oriented connected n-dimensional hyperbolic manifold. We
can write M = H™ /T, where I is a torsion-free discrete subgroup of Isom™* (H"),
the group of orientation-preserving isometries of the hyperbolic space H™. The
action of I' on H" extends to a conformal action on Sf}o’l, the sphere at infinity. For
basic notions of hyperbolic geometry, we refer to [2]. Unless otherwise indicated,
we assume that I' is nonelementary, i.e. does not have an abelian subgroup of
finite index.

A major theme in the study of hyperbolic manifolds is the relationship between
the properties of M and the action of I' on $71. For example, let \g(M) € [0, o0)
be the infimum of the spectrum o(A) of the Laplacian on M. Let A € S ! be
the limit set of I' and let D(I') be its Hausdorff dimension. Sullivan [15] showed
that if M is geometrically finite then

- (n_1)2/4 ifD(F)S%:
Ao(M) = { D(D)(n—1—D(T)) if D(I') > 251

(1.1)

Thus there is a strong relationship between the spectrum of the Laplacian, acting
on functions on M, and the geometry of the limit set. There is also a Laplacian
Ay, on p-forms on M (see, for example, [9]). The motivating question of this paper
is : What, if any, is the relationship between the spectrum of A, and the geometry
of the limit set?

Research supported by NSF grant DMS-9704633.
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If p > 0, it is clear that the infimum of the spectrum of A, depends on more
than just the limit set as a set. For example, let M be a closed hyperbolic 3-
manifold. From Hodge theory, 0 € o(A1) if and only if the first Betti number
b1 (M) of M is nonzero. There are examples with b1(M) = 0 and examples with
bi(M) # 0. However, in either case, A = S2 .

In this paper, we address the question of whether Ker(A,) # 0 for a hyperbolic
manifold M. We show how the answer to the question is related to the existence
of I'-invariant p-currents on SQO*I, of a certain regularity. In some sense, these
currents probe the finer geometry of the limit set.

In order to state our results, let us recall the notion of harmonic extension of
p-forms. We use the hyperbolic ball model for H™, with boundary $"!. The
space of p-hyperforms on 571 s the dual space to the space of real-analytic
(n—1—p)-forms on 571 We think of a p-hyperform on $*~1 as a p-form whose
coefficient functions are hyperfunctions. A p-current on S"~1 is a p-hyperform
whose coefficient functions are distributions.

There is a Poisson transform ¢, from p-hyperforms on 571 to coclosed har-
monic p-forms on H™ [6]. To describe &, in terms of visual extension, let w be a
p-hyperform on 571 Given z € H", let S, be the unit sphere in T, H" and let
A, Sy — 8™ 1 be the visual map. Givenv € T, H" = Ty(T, H™), define a vector
field V' on S, by saying that at y € S,, V is the translation of v in T, H" from 0
to y, followed by orthogonal projection onto 7,5,. Then for vy,...v, € T, H™,

1

(Pp(w),v1 AL Avy) = vol(5"T)

/s (Arw, VI A .. A Vp)dvol. (1.2)

B

Equivalently, given x € H™ and v € T, H", take an upper-half-space model
{(z1,... ,2zn) eR" 1 2, >0} (1.3)

for H™ in which z = (0,...,0,1) and v = C% for some ¢ € R. Consider the
Killing vector field ¢Y_7 4 xi—a%. It restricts to a conformal vector field W on
OH™ = 5™, Then for vy,...v, € T,H",

1

(Pp(w),v1 A ... Avp) = m

/ W WA AWdvol.  (1.4)
sn—1

By aresult of Gaillard, for p > 0, ®, is an isomorphism from ezact p-hyperforms
on S™"~ 1 to closed and coclosed p-forms on H™ [6, Théoreme 2|. Following [6], we
say that a p-form a on H™ has slow growth if there are constants a,b > 0 such
that for some (or any) mg € H™,

la(m)| < aebdmom) (1.5)

for all m € H™. Then for p > 0, ®, is also an isomorphism from ezact p-currents
on 8™ ! to closed and coclosed p-forms on H™ of slow growth [6, Théoréme 3].
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Let w: H™ — H"™/T" be the quotient map. Let Q = 571 _ A be the domain
of discontinuity.

By Gaillard’s theorem, if p > 0 then <I>Zjl o7m* induces an isomorphism between
closed and coclosed p-forms on H™/T", and T'-invariant exact p-hyperforms on g1,
Let o be an L%harmonic p-form on H"/I". By Hodge theory, o is closed and
coclosed. Thus we can use results about the LQ—cohomology of H™/T" to construct
[-invariant exact p-hyperforms on S"~ 1 and vice versa. The questions that we
address are :

1. What can we say about the regularity of these hyperforms?
2. Are they supported on the limit set?

Under Hodge duality, the space of L2-harmonic p-forms on H™/T" is isomorphic
to the space of L2-harmonic (n — p)-forms. Without loss of generality, hereafter
we assume that p € [1, §].

Theorem 1. Ifn is even then up to a constant, q>% is an isometric isomorphism

1
between exact F-forms on S =1 which are Sobolev H™ 2 -regular, and L2-harmonic
5-forms on H™.

From Theorem 1, we obtain that the §-hyperforms that we construct on gn—1
cannot be too regular.

Corollary 1. Suppose that o is a nonzero L2-harmonic g-form on H™/U. If T’

1
is infinite then @%I(W*a) is not Sobolev H™ 2 -regular.

We now give some positive regularity results. Let us recall that ' is said to
be cocompact if H™/I" is compact. It is said to be convez-cocompact if there is a
compact subset K of H™/I" such that all nontrivial closed geodesics in H"/T" lie in
K. If T' is convex-cocompact then H™/T" consists of K along with a finite number
of flaring ends attached to K.

Theorem 2. A. IfT' is cocompact then for any p € [1, %], there are isomorphisms
between the following vector spaces :
Vi ={ Harmonic p-forms on H"/T'}.
Vo ={D-invariant exact p-hyperforms on S™ 1}
Va ={D-invariant exact p-currents on S™ 1 which are Sobolev H™ P~ -regular
for all e > 0}.
Vi =HP(H™/T',R), the p-dimensional real cohomology group of H"/T.
B. If T is convex-cocompact then for any p € [1,%5=), there are isomorphisms
between the following vector spaces :
Vi ={L2-harmonic p-forms on H™/T'}.
Vo ={T'-invariant exact p-hyperforms on S which are supported on the limit
set}.
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V3 ={T'-invariant exact p-currents on S which are supported on the limit set
and which are Sobolev H P~ -regular for all € > 0}.

Vi =HE(H™/T',R), the p-dimensional real compactly-supported cohomology group
of H"/T.

In Theorem 2, we show that the injection V3 — V5 is surjective and that &,
induces an isomorphism from V5 to V1. In case A, there is an isomorphism between
V4 and Vi from standard Hodge theory. By [12], this is also true in case B.

There are extensions of Theorem 2 to hyperbolic manifolds with vanishing
injectivity radius. We state one such extension here.

Theorem 3. Ifn =3, suppose that there is a positive lower bound to the lengths
of the nontrivial closed geodesics on H3/F. Let o be an L2-harmonic 1-form on
HB/F. Then for all € > 0, the hyperform @f](w*a) is Sobolev Hflfe—regular.

We show that the regularity estimate in Theorem 2 is sharp in some cases. We
find an interesting distinction between cocompact groups, and convex-cocompact
groups which are not cocompact.

Theorem 4. A. Suppose that I' is cocompact. Let o be a nonzero harmonic 1-
form on H™/T'. Then @Il(w*a) is not Sobolev H™ ! -regular.

B. Let T be a convex-cocompact group which is not cocompact. Let o be an P2
harmonic 1-form on H™/T'. Then @fl(w*a) is Sobolev H™ ' -reqular.

We look at what our general results become in the case of surfaces and 3-
manifolds. In the case of surfaces, we obtain results about the actions of Fuchsian
groups on certain function spaces on S!. Let A’(S1) denote the hyperfunctions on
ST and let .Aé(Sl) denote those which vanish on constant functions. Let D’(S1)
denote the distributions on S and let Dy(S 1) denote those which vanish on con-
stant functions. Recall that a Zygmund function on S! is a function f : §1 — C

such that

zeSl heRt h

A Zygmund function is continuous and lies in the Sobolev space Hle(Sl) for
all € > 0. Let DZ(S!) denote the generalized functions on S which are deriva-
tives of Zygmund functions, plus constants. If I is a subgroup of PSL(2,R), let

(A@(Sl)) I denote the T-invariant subspace of A (S1), and similarly for (Dg (st ))F
and (DZ(s1)/C)".

Theorem 5. A. Let I' be a torsion-free uniform lattice in Isom™ (H?), with H? /T
a closed surface of genus g. Then

1. dim (A (s1)" = 24.
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2. dim (Djy(s1)" = 24.

2. dim (DZ(51)/C)" = 24.

4. dim (£2(sY)/c)" =o.

B. Let T' be a torsion-free nonuniform lattice in Isom™ (H?), with H? /T the com-
plement of k points in a closed surface S of genus g. Then

1. dim (,46(51))F = 00.

dim (D(’)(Sl))F = max(2g,2g + 2k — 2).
dim (H—%(sl)/cc)F = 2g.
pz(sh/c)" = 2.

L2sY/c)" = o.

LUt
a
B

Parts A.2 and B.2 of Theorem 5 are due to Haefliger and Banghe [8].

Next, we look at the case of quasi-Fuchsian 3-manifolds. We follow the philos-
ophy of Connes and Sullivan [5, Section IV.3.4]. Let S be a closed oriented surface
of genus g > 1. Let I' be a quasi-Fuchsian subgroup of Isom+(H3) which is iso-
morphic to 71(S). Then H3/I' is diffeomorphic to R x S and H}(H3/I';C) = C.
Thus there is a nonzero L?-harmonic 1-form a on H3 /T

We show that @Il(ﬂ*a) is a I-invariant exact 1-current supported on the limit
set A C S2. The domain of discontinuity Q C S? is the union of two 2-disks D
and D_, with D4 /T" and D_ /T homeomorphic to S. Let xp, € L%(S?) be the
characteristic function of Dy. We show that @Il(w*a) is proportionate to the
exact l-current dxp, on 82,

Let Z : D2 — Dy be a uniformization of Dy . By Carathéodory’s theorem, Z
extends to a continuous homeomorphism Z : D2 — D . The restriction of Z to
D2 gives a homeomorphism 97 : S1 — A.

The 1-current dyp, defines a cyclic 1-cocycle 7 on the algebra C’l(S’Q) by

T(FO,FI):/ dxp, A FOdF. (1.7)
52

Lemma 1. The function space H%(Sl) N L*(SY) is a Banach algebra with the
norm

~ FO+h) —FOR N}
o= ([, [ IO an) i (18)
Given O, f1 € H2(S1) N Lo(SY), let
7o) =Y cheV=10 (1.9)

JEZ
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be the Fourier expansion. Define a bilinear function

7 (H%(sl)me(sl)) X (H%(Sl)ﬂL"o(Sl)> ~C (1.10)
by
(0, 1N = —2miy gl (1.11)
JEZ

Then T is a continuous cyclic 1-cocycle on H%(Sl) N Le(sh).
We relate the function-theoretic 1-cocycle 7 to the 1-cocycle 7.

Theorem 6. Given FO F1 e C1(8?%), put f' = (9Z)*F*, i € {1,2}. Then
fie HB(SY) N Lo(SY) and

T(FO, FY = —7(5°, 7). (1.12)

In Subsection 5.2 we give examples of discrete subgroups I' of Isom+(H 3) with
limit set S? such that for all ¢ > 0, the I'-invariant subspace of H ¢(52)/C is
infinite-dimensional. This constrasts with the fact that from ergodicity, the I'-
invariant subspace of L2(S?)/C vanishes.

Let us remark that our results could be extended to eigenfunctions of A, with
nonzero eigenvalue. In this paper we only deal with L2-harmonic forms since the
dimension of the space of such forms can often be computed in terms of topological
data, such as when M is a geometrically-finite hyperbolic manifold [12].

2. Regularity

Let p be an integer in [1,%] Take coordinates (r,6) € (0,1) x sm=1 for H™ — {0},
with metric
o A(dr® 4 r2de?)

ds* = ——— = 2.1
8 (1—1r2)2 (2.1)
For k > 0, consider the hypergeometric function
n n
Fpr(z) = Fltp =514 pt ki1t 5+ k). (2.2)
Put
WHT(m—p+k)I(5+1) 22T (n—p)n—p+1)...(n—p+k—1)
Cp s = = .
P T Tn—p (B +k+1)  n GE+DE+2)... 5B +k

(2.3)
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Let {a;}2 be a sequence of coclosed (p — 1)-forms on 571 such that

1. oy is an eigenvector for the Laplacian with eigenvalue (k; + p)(k; + n — p),
ki€ Zn [07 OO)

2. {da;}° is an orthonormal basis of the exact p-forms on gl

Then

1
2
; = : 24
o o= G 7 —p) i
Given an exact p-hyperform w on S”*I, let

o0

W= Zcidai (2.5)
=1

be its Fourier expansion. Gaillard [6, p. 599] showed that the Poisson transform
of wis

— (kit+p)(kitn—p
@) = Yo Lt TD)
i=1

s (2.6)

|:]{:7;L<|>pr7]7ki (r)de; + (1 — T’Q)ijﬂ(?"g)d?" A

Put S*1(r) = {(,0) : 6 € S*~ 1} € H". Givenn e QP~1(S" 1), we can think
of dny and dr A ) as p-forms on H™ — {0}. Their pointwise norms on S™~1(r) are

1—7r2\"
sy = (5 ) el (2)
and ,
1—72 (1-r2\""
|dr A 77'571.71(7) - ( o ) [N gn-1. (2.8)

Theorem 1. Ifn is even then up to a constant, @g is an isometric isomorphism

1

between ezact F-forms on 571 which are Sobolev H™ 2 -regular, and L2-harmonic
n n

5-forms on H™.

Proof. We have

Fyu(z) = F(L1+ 5 +k1+3 +kz) = (1—-2)", (2.9)
n n
and .
03
Cpp= — (2.11)

n ok .
2 k+_722
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Then

Py(w) =) e28! [r%Jrkidai + (ks + g)r%ﬂrldr A ai] . (2.12)
=1

Thus

[e’e] 1 DRNEL
j
[ 1@y ()Pavol = Y fe 22 2volsm ) | {* (Z—) '
! i=1 4 (2.13)

n-+2k; —2 <1 —T2>2 (1 —r2>n2} < 2r )nﬁl 2 d
r — —dr
2 2r 1—r 1—r (2.14)

00 1
=il 2r tvol(sm ) / e b=l
i=1

0

1
__on—2 n—1 2
=2""“yol(S" ) E - |eq] .

3

o0
=1

The theorem follows. O

Corollary 1. Suppose that o is a nonzero L2-harmonic F-form on H™/TU. IfT

is infinite then @:}1(#*04) is mot Sobolev H_%—regular.

Proof. 1f @:}I(W*a) were Sobolev Hfé—regular then Theorem 1 would imply that

m*a is L2, contradicting the assumption that T is infinite. O
The following is the main technical result of the paper.

Theorem 7. If w is an exact p-hyperform on S™ 1 and if &, (w) is L®-bounded
on H™ then w is Sobolev H P~ “-regular for all ¢ > 0.

Proof. By the assumptions, WS”_I—IT?W fS”‘l(r) |Dp(w) |2dvol is uniformly bounded
in r € (0,1). Thus for e > 0,

! 1
2 —142¢ 2
/0 r(l —r7) ol ST /Snl(r) | Py (w)|“dvoldr < oo. (2.15)

In particular, just looking at the dr A o component of ®,(w) in (2.6) gives

o0

> (ki +p)* (ki +n —p)Pep i leil? (2.16)
i=1
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1 2 2
1—17r 1—7r

o142 2p- 242k g 2\2p2 (2
/Or(l r) r (1 ?”)Fnki(?”)( 3 > ( o >

1
(ki +p)(ki +n —p)

dr < o0,

or

o0

1
> (ki +p) (ki +n = p)cl ;. |ci|2/0 2R (1 — )P R2 (2)dz < co.  (2.18)
i=1

For the regularity question, it is the regime of large k; and z near 1 which is
relevant. Thus our main problem is to derive uniform estimates for Fp% k,(2), for
large k; and z near 1.

Substituting z = ﬁf gives

o0

* " D YRR w—1
S (i) kitn—p)dlal? [ (1) (1) 2h3-2p2,
=1 1 wtl

Jdw < o0.

(2.19)
Restricting the summation to k; > 0, the further substitution w = k;z gives

> ki 4 p) (ks + 1 — p)el  leal*h; P2 (2.20)

K2

> 1 1 kiz —1
—2p—3—2¢ 1 - — ks 1 - 72[)77%73726F2 v d
/kl—lx ( klac) ( +kix) p’k"(kiqul) s 8.

In order to estimate F}, ,, we use the transformation [1, 15.3.4]

Fpr(e) = F(L4+p— 5,1 +p+kil+ 3 +k2) (2.21)

— (=23 Pl 4p-2 2 _p14 22

(1-2) Atp=5.5—pltg+k—)
Then
P (w—l)i 2 %7p71F(1+ n n .1+n+k.1 w) (2.22)
PR w+1’  \w+l Poqig ~heTg g TYe =
From [11, (4) p. 246 and (15) p. 248],

n k

_n_ 1 w+1\ 4 2 n n n 1 w
P ER (w) = Fll4p—=,=—plt=+k=z—=
3 -p-1(¥) F(1+%+k)<w—1> Itp=—g3-piltgtks-3)

(2.23)
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and
o0 1
I'(k nr k —
f e metdry o = (5) R P )
p) 2 3p
0 ( It
(2.24)
‘We obtain
i,
_ 2\2 . ri+2+k
Rl =(2) 2 e e
ot TA\F L(k+p+1)I(n+k—p) (2.25)
o0 +k 1
—wiyntk-g
/O e v K%,p,%(t)dt
SO
it ’
k'(kix—l):<z>7 sop1 kfz+p+1r(1+%+ki) Shitp
PR+ 1 ™ I'(ki +p+ 1l(n+ ki — p) (2.26)

Lokt ~hiwty B thi— g
i+p+1 kot Bthi—%
(147 /O e hivty Ky

(Recall that for large ¢ [1, 9.7.2 and 10.2.17],

s p 1)~ \/get.) (2.27)

k?ki72er2(1+n+k,)
k’i k'z _ 2 i2 3 2 ?
2l =)o TP DI R

/ 2k;—1— 95/ / i(1 +ki)m—l—Qee—kiz(t-f—t/)(tt/)!ZL-H%—%
T

K (t )K% ( )dtdt dz < oo,

Then from (2.20),

(2.28)

3-p—% —p—

or

KRN TPT2(1 4+ 5 + )
Z(k )kt 1= p)ep el P2(k +p+1)F2(n+k ~p)

( Ndtdt! dac < 0.

(2.29)

n 1
37}77? ?7
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Formally taking k; large, we obtain

k2R 2T2(1 4 8 4 k)
(ki +p+1)F2(n+k —p) (2.30)

/ / / p2ki—1-2¢ —k; z(t+t/)(tt )7+k1—7
’z

Z(k +p)(ki +n — p) Cp ks |Cl| T2

(t')dwdtdt’ < oo,

Ky pg
or
T(2k; — 26)T2(1 + 3 + ki)
ki ki +n—p)2 . |el? 2.31
2k 4Pkt =Pyl S o T Dt R ) 230
/ / G-yt *7K ey Ky, ()dtdt’ < co.
That is,
I'(2k; — 2021+ 5 + ki)
k; k; —p)e2 , |el? 4k 2.32
Z( TRkt =Rl e I R — ) 232

1T i N T )
/ / ( > Yz 2(t+t)) EKgfpf%(t)KéLpf%(t’)dtdt’<oo.

Making the change of variables ¢ = ¢%v and t/ = e “v, we have

T(2k; — 26)T2(1 + 5 + ky) ks

ki ks _ 2 12
2 kst p)s =)l o P k)

%

e —2%k; 2e o n+2e U —u
[m(cosh u) (coshu) /O v K%ﬂk%(e ’U)ngipi%(e v)dvdu < 0.

From [11, (8) p. 325],

[e.e]
n-+2e u — o
/0 v K%,p,%(e U)K%7p7%(6 v)dv = (2.34)

o261~ (2n—2p+2)u T(n—p+eTHLZEZOT(1 4 p+€)
8I'(1 4 n + 2¢)

1 2
F(n—p+e,%;l+n+2e;l —674“).
Using the asymptotics of the hypergeometric function from [1, 15.3.6], one finds
that for large u,

o0
(coshu)? /O v”+2€K%7P7%(e“v)K (e “v)dv = O (ﬂlu\). (2.35)
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Thus we can apply steepest descent methods to (2.33) to obtain

[(2k; — 26)T2(1+ 5 + ki) .
ki + p) (ki +n —p)ed . lei|* 4k
2k 4 kit =plcp e I2(ki +p + 1)1 (n + k; — p) (2.36)

K2

1 e
k; 2 / A 6
0 27

vk (v)dv < 0.

Using the asymptotics of the gamma function [1, 6.1.39], we find

STk e < oo (2.37)
i

Recalling (2.5), this is equivalent to saying that w is Sobolev H P~ “-regular.
To justify passing from (2.29) to (2.30), it is enough to note that if z > k;l

then
1 1

(1—W)ki(1+m)—1—25 <1 (2.38)

Thus we have uniform bounds in the preceding arguments. |

Corollary 2. Suppose that H" /T has positive injectivity radius. Suppose that
o is an L2-harmonic p-form on H"/T, p € [1,5]. Then @;I(W*a) is Sobolev
H™ P ¢-regular for all € > 0.

Proof. By elliptic theory [4, Prop. 1.3], there is a constant » > 0 such that
for all m € H™/T, |a(m)| is bounded in terms of the L?-norm of a on the ball
By(m) C H"/T". Then 7*« is uniformly bounded on H"™. The corollary follows
from Theorem 7. (|

Theorem 2.A. If ' is cocompact then for any p € [1, %], there are isomorphisms
between the following vector spaces :
Vi ={Harmonic p-forms on H™/T'}.
Vo ={D-invariant exact p-hyperforms on S™ 1},
Vi ={T-invariant exact p-currents on S™ 1 which are Sobolev H™ P~ -regular
for all € > 0}.
Vi =HP(H™/T",R), the p-dimensional real cohomology group of H™/T'.

Proof. By standard Hodge theory, V1 22 Vy. In particular, V7 is finite-dimensional.
By Corollary 2, there is an injection Vi — V3. There is an evident injection
V3 — Vo. By Gaillard’s theorem [6, Théoreme 2], if w € V5 then ®,(w) is a I'-
invariant closed and coclosed p-form on H™. Hence ®,(w) = 7*« for some closed
and coclosed p-form o on H™/T". Hence there is an injection V5 — Vi. The
theorem follows. O
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Corollary 3. Suppose that there is a positive lower bound to the lengths of the
nontrivial closed geodesics on H™/T'. Suppose that all of the cusps of H" /1" have
rank n — 1. If o is an L%-harmonic p-form on H"T, p € {"7717 5}, then for all
€ > 0, the hyperform @;I(W*a) is Sobolev H™ P~ _regular.

Proof. For some p > 0 less than the Margulis constant of H™, the p-thin part of
H™ /T has a finite number of compact components. By the proof of Corollary 2, «
is bounded on the p-thick part of H"/T". Tt follows from [12, Theorem 4.12] that
a is bounded on the cusps of H™/I". The corollary follows from Theorem 7. [

Theorem 3. In the case n = 3, suppose that there is a positive lower bound to
the lengths of the nontrivial closed geodesics on H3JT'. Let a be an L%-harmonic
1-form on H3/T. Then for all € > 0, the hyperform @Il(w*a) is Sobolev H~1¢-
reqular.

Proof. Following the line of proof of Corollary 3, it suffices to analyze the asymp-
toties of an L2-harmonic 1-form w on a rank-1 cusp. We can take a neighborhood
of such a cusp to be the quotient of

{(z,9,2): 9> + 22 > R,z > 0} (2.39)

by the group generated by = — x + 27, for some R > 0. We follow the analysis of
[12, Section 4], with care for constants. Make a change of coordinates toy = r cos 6,
z = rsinf, with r € [R,00), # € (=%,%5). The Riemannian metric in these
coordinates is

da? dr? d6?
ds® = 2.40
y 72 cos? 0 T 72 cos? 0 T cos2 g’ ( )
with volume form dvol = szc‘égdee.
Let
w = agdf + aydx + Bodr (2.41)
be an L2harmonic 1-form on the cusp. Then
. dxdrdf
/ (r 2lagl? + Jaa|* + |ﬁo|2) = <. (2.42)
cosf
The equations dw = d*w = 0 become
0 = dpag — Ogary = Orag — Fpfo = Orary — Bl (2.43)

a0

= cos 00y ( ) + Tgazal + T23r50~

cosf
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From these equations, one obtains the Laplacian-type equations

—9%aq — 82ap — %289 (cos 0, (%)) —0, (2.44)

1 1
—820q — &2ay — —5 cos 00y (
7 cos 6

80a1> - Oa
928 — 525 — L S - 2 —2
0o — 0z 00 — —5 cos80p | — 06/ | = ——3 cos 60y (0089) '

We first analyze the second equation in (2.44). Given a function f € C* (—% %)7
put

Lf = —cos00y < L 89]”) (2.45)

cos

T T

Then L is the self-adjoint operator coming from the Dirichlet form on L2 ((—57 %)

cos @

Lf = Af becomes

1 d@). Making the change of variable v = sin#, the eigenfunction equation

—(1 —u?)f"(u) = M. (2.46)

The square-integrable solutions to this have A = (¢+1)(¢+2) with g € ZN [0, c0).
The corresponding eigenfunction is given in terms of ultraspherical polynomials
[1, 22.6.6] by

falw) = (1 = )O3 2(w). (2.47)

Explicitly, f,(u) is proportionate to % ((1 — uQ)q+1).
Performing separation of variables on the second equation in (2.44), suppose
that

a1($7 7, 0) = eimwg(r)fq(9)7 (248)

with m € Z. Then

1)(q+2
g+ migy D T2) 2§q L) ) (2.49)

If m # 0 then g decreases exponentially fast in . Suppose that m = 0. One
finds that for large 7, g(r) ~ r9t2 or g(r) ~ ¥—9~1. For w to be square-integrable,
one must have g(r) ~ r—9-1 If ¢ > 0 then |ajdz| = rcos|g(r)||f,(0)| decays
polynomially fast in . In the critical case ¢ = 0, |a1dz| remains bounded in r.

Next, put
L'f=-8 (cos@(?g ( / )> . (2.50)
cos
and I = colse o L' ocosf. Then L is the self-adjoint operator coming from the

Dirichlet form on 2 ((—g, 5 ),cos Hdé’)‘ It has a nonnegative discrete spectrum
starting at 0, and hence so does L’. Suppose that f(6) is an eigenfunction of L’
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with eigenvalue A > 0. Performing separation of variables on the first equation in
(2.44), suppose that

ag(x,7,0) = "™ g(r) f(8), (2.51)
with m € Z. Then 3
—g" +m?g+ —9=0. (2.52)
7
If m # 0 then g decreases exponentially fast in . Suppose that m = 0. One finds
JESVAERTY .
that for large v, g(r) ~r— 2 . For w to be square-integrable, one must have

glr) ~ P2 If A > 0 then |apdf| = cos 0|g(r)||f(0)| decays like a power in .

In the critical case A = 0, |apd@| remains bounded in r.
Finally, one can analyze the third equation in (2.44), an inhomogeneous equa-

tion, by similar methods. The upshot is that |w| is bounded on the rank-1 cusp.
|

Proposition 1. Suppose that there is a positive lower bound to the lengths of the
nontrivial closed geodesics on H"/T'. Let o be an L2-harmonic p-form on H"/T,
pe[l,5]. Then <I>];1(7r*a) is a current.

Proof. For some p > 0 less than the Margulis constant of H™, the p-thin part of
H™ /T has a finite number of compact components. As in the proof of Corollary
2, there is a uniform upper bound for |a| on the p-thick part of H"/I'. On each
cuspidal component of the p-thin part, |a| has at most exponential growth, with a
uniform exponential constant [12, Section 4]. The result follows from [6, Théoréme
3]. O

Proposition 2. Forr € (0,1), leti, : S" 1 — 5" 1(+) be the embedding of S™~!
as the r-sphere around 0 in the ball model of H™. As in [6, p. 586], put
_2T(n—-2p+1)I(5+1)
oo Tn—p)l(3 —p+1)°

Let w be an exact p-current on S*1. Then asr — 1, the forms 5Py (w) converge
to Cpw in the sense of convergence of currents.

(2.53)

Proof. From (2.6),

" o~ (ki +p)(ki +n—p) AT 2
iy dy(w) = ;ci B Cp ks TT +kszp_1yki(r Jde;.  (2.54)

Given a smooth form 7 € QF(S™ 1), let TI(5) be the projection of 5 onto the
square-integrable exact p-forms on 571 Then II(n) is also smooth and has a
Fourier expansion

M(n) =Y aidas, (2.55)
i=1
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with 32°°, kN|a;)? < oo for all N € Zt. The pairing

(ﬁ@ﬂwxm:iégiﬁ¢ﬁw)AW7 (2.56)
is given by
ok > i, k’L + kl +n— - .
<7’rq>}7(w)>77> - aici( p)( p) Cp,kirp Itk FP*L’% (7’2). (257)
— 2 ki+p
Then
i (ki + p)(kq + n— p) 1
®,( ; ) 2.58
(11 (w),n) =S e o (2.58)

i=1
T(1+ 2+ k)T(1 - 2p + n)
Fl—p+nt+k)l(1-p+3)

o0

- pg a;c;
=l

i Y.

As w is a current, Y o kN |a;||c;] < oo for all N € Zt.

Lemma 2. Asr increases from 0 to 1, the expression P~ 11k =" Fp—l,lw(’"Q)

P
1 T+3+k)C(1-2pin)
T TU—ptntk)T(—p1%)

increases monotonically from 0 to o

Proof. The fact that the right-hand-side of (2.6) is closed implies that

d _ o _ )
ar ( ”“mFm,m(r?)) = P IR (1) F (), (2.59)

(Of course, this can be checked directly.) From [1, 15.3.3],

n n
By () =F(Ltp— 2,14 pt ki1 5 + ki) (2.20)

n n
=(1 =) WPt ki —p, 5 —pi 1 5 + k).

As the arguments of I'(n + k; —p, 5 —p; 1+ 5 + ki 1"2) are all nonnegative, the
lemma follows. g

Proposition 2 now follows from dominated convergence. O
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Proposition 3. Suppose that « is an L*-harmonic p-form on H*/T, p € [1, ).

Suppose that <I>;1(7T*oz) is a current. Then q);l(w*a) is supported on the limit set
A of T

Proof. Given a smooth form ¢ € QF (S"il) with relatively compact support in
Sn—1 _ A, Proposition 2 implies that

lim (i7", ¢) = C, <<I>;1(7r*a)7qb>. (2.61)

If A = (), we assume that supp(¢) # S5n—1: this is sufficient for the argument.
Then we can use an upper-half-space model for H", with supp(¢) C R* 1. Put
V = supp(¢) x (0,00) C H™. Using the coordinates (z1,... ,z, 1,y) for H™, let
us write & = a(z,y) + dy A b(z,y). Then [12, Theorem 4.3] states that on V| as
y—0,

{ ago(2)y" 1 + Oy log(y)) if p < 2pL, (2.62)
a - .
aoy (z)y? log(y) + O(y?) if p = 251
and ) , . »
b= { boi(@)y" = log(y) + O(y" ) ifp < 23, (2.63)
boo(2)y + O(y? log(y)) if p— 251

(The statement of [12, Theorem 4.3] should read “y — 07.) As r — 1, the
intersections S”*I(r) NV asymptotically approach the horosphere pieces
1—7r
e _ H" :y = nv. 2.64
{@1,.. s zn-1,9) € V=10 (2.64)

It follows that <<I>; 1 (m*a), qb> = 0 for all such ¢, from which the proposition follows.
|

Remark. The analog of Proposition 3 is false if p = 5. This can be seen in the
case I' = {e} using Theorem 1.

We give a partial converse to Proposition 3, in the case of convex-cocompact
groups.

Theorem 2.B. If I' is convez-cocompact then for any p € [1, "71), there are
isomorphisms between the following vector spaces :

Vi ={L*-harmonic p-forms on H™ T}

Vo ={T'-invariant exact p-hyperforms on 571 which are supported on the limit
set}.

Vs ={T'-invariant exact p-currents on S" 1 which are supported on the limit set
and which are Sobolev H™ P~ “-regular for all ¢ > 0}.

Vi =HE(H™/T',R), the p-dimensional real compactly-supported cohomology group
of H" /T
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Proof. By [12], V1 22 Vy. In particular, V1 is finite-dimensional. By Gaillard’s
theorem [6, Théoreme 2], Corollary 2 and Proposition 3, there are injections V; —
Va — Va. It remains to show that there is an injection Vo — Vi. In view of
Gaillard’s theorem, it suffices to show that if w € Vo then ®,(w) descends to a
form which is square-integrable on H™/I'. If I is cocompact then this is automatic,
so assume that I' is not cocompact. As Q/I" is compact, we can find a fundamental
domain F for the action of I' on H™ such that F N S" ! is disjoint from A. Take
an upper-half-space model for H™ with oo € Q. In terms of the upper-half-space
coordinates (z1,... ,2,_1,¥), [6, Lemme 3] implies that near y =0,

Oy ()] p =y P (2, y), (2.65)

where the p-form ¢(z,y) is continuous up to y = 0. It follows that [, |®,(w)|2dvol
< 0. O

3. 1-Forms

In this section we look in more detail at the case of L2-harmonic 1-forms on convex-
cocompact hyperbolic manifolds. If the hyperbolic manifold is compact, we show
that the Sobolev regularity estimate of Theorem 2.A is sharp. If the hyperbolic
manifold is convex-cocompact but not compact, we show how to construct its
L2-harmonic 1-forms explicitly in terms of the harmonic extension of functions.
In this case, we show that the Sobolev regularity estimate of Corollary 2 can be
slightly improved.

Proposition 4. Suppose that 1" is cocompact. Fore > 0, let VEF be the I'-invariant
subspace of the function space H¢(S"~1)/C. Then VI is isomorphic to HY(T;C).

Proof. We first define linear maps [ : HI(F; C)—-Vland J: VI — HY(T; C). To
define I, givenz € HI(F; C) = Hl(H”/[‘; ©), let a € QY(H™/T) be the harmonic 1-
form which represents z. Put & = 7*«. By Theorem 7, @fl(&) is an exact H 17
regular T-invariant 1-form on $”~1. Choose f € H™¢(S" 1) so that @Il(&) =df.
Then for all v € T,
d(f =y f)=df —y-df =0. (3.1)
Thus
F—a*f=dq) (32)
for some ¢(v) € C. Put I(z) = f mod C.
To define J, given f € ‘/;7 let f € H (5" 1) be a representative of f, not

necessarily I'-invariant. As f is [-invariant, for each v € T" there is a ¢(v) € C
such that f —~ - f =c(v). As

clniv2) = f=(my2)-f = (F—n-An-(F=r2-f) = c(n)+n-clr) = 0(71)+0823))7
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we have a cocycle ¢ : I' — C. Put J(f) = [c].
We show that Jo[ is the identity. It suffices to show that the cocycle ¢ of (3.2)
represents x € Hl([‘;(C). For this, it suffices to show that for all v € T,

= [ a (3.4)

~

where C,, is a closed curve on H™/I" in the homotopy class of v € 71 (H™/I") and

a € Ql(H”/F) is the harmonic representative of z. Let C be a lift of C, to H",
ending at a point m € H™ and starting at ~1 .. Then

/ B / B = / Py (df) = / do(f) = (@o(f)) (m) — (@o(F)) (v - m)
(3.5)
— (@0(f) — - Bo(f)) (m) = (Bo(f — 7 - 1)) (m) = (Bo(c())) (m) = e().

This shows that J o[ is the identity. To see that I o J is the identity, given
FeVE let f e H(S™ 1) be a representative of f, not necessarily I'-invariant.
Define & = ®1(df). Then & is a smooth I'-invariant harmonic 1-form on H™ and
projects to a harmonic 1-form o € Q'(H™/I'). By the same sort of calculation as
n (3.5), one finds that J(f) = [a] in Hl(F;(C). By construction, I([a]) = f. Thus
I oJ is the identity. O

Theorem 4.A. Suppose that I" is cocompact. Let o be a nonzero harmonic 1-form
on H"/T'. Then &1 (7*a) is not Sobolev H ' -regular.

Proof. Suppose that @Il(w*a) is Sobolev Hfl—regular. Then @Il(w*a) = df for
some [ € LQ(Snfl). Extending the proof of Proposition 4 to the case e = 0, the
equivalence class f of f in LQ(Snfl)/(C is I-invariant and satisfies J(f) = [a].
As T' acts ergodically on S”*I, we must have f = 0 and hence [a] vanishes in
H'(H™/T;C), which is a contradiction. O

We now consider groups I which are convex-cocompact but not compact. First,
we prove some generalities about the relationship between compactly-supported
cohomology and L2 cohomology.

Let M be a complete connected oriented Riemannian manifold. Let H( )(M )

be the p-th (reduced) L2?-cohomology group of M. It is isomorphic to Ker(Ay).
There is a map ¢ : HE(M;C) — H’(’Q)(M). In general, ¢ is not injective; think of
M = R™. However, it is true, and well-known, that ¢ always induces an injection

of Im(HE(M;C) — HP(M;C)) into H‘E)Q) (M) [9, Prop. 4]. The next result gives a

sufficient condition for ¢ to be injective on all of HE(M ;©). Recall that there is a
notion of the space of ends of M, and of an end being contained in an open set
U C M, see, for example, [3, §1.2].
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Proposition 5. Suppose that for every end e of M, every open set U containing e
has infinite volume. Suppose that M has a Green’s operator G : Cg°(M) — L2(M)

such that Ao G =1d. Theni:H'(M:C) — H(lg)(M) is injective.
Proof. We have the decomposition

HL(M;©) = (Ker(HI(M;C) — B (M;€)) @ (Im(HE(M;C) — B (M;)
(3.6)
We first show that ¢ is injective on Ker(Hg(M; C) — HY(M;C)). A representative
of Ker(Hg(M; C) — Hl(M; C)) is a closed compactly-supported 1-form « such
that o = df for some function f. By construction, f is locally constant outside of

a compact subset of M and so gives a function on the space of ends of M. Now
d(f — GAf) is a harmonic 1-form on M. As

(dGAS,dGAS) = (GAS, Af), (3.7)

we have that d(f —GAf) is square-integrable. The map o — d(f —GAf) describes
i on Ker(H}(M;C) — H'(M;C)). To see that it is injective, suppose that d(f —
GAf)=0. Then f—GAf is constant. As GAf € L*(M), the volume assumption
implies that f, as a function on the space of ends of M, is a constant ¢. Then
f — ¢ is compactly-supported on M, with d(f —¢) = a, so [@] =0 in Hi(ZW7 C).
In summary, we have realized an injection of Ker(H!(M;C) — H'(M;C)) into
Higy(M).

It remains to show that

i (Ker(Hg(M; C) — H(M; (C))) N (Im(Hg(M; C) — H(M; (C))) =0. (38)

Suppose that d(f —GAf) is nonzero and lies in the image, under ¢, of Im(Hi (M;C)
— HY(M; C)). Then d(f — GAf) = w mod Im(d) for some closed compactly-
supported 1-form w. Furthermore, by assumption, there is a closed compactly-
supported (dim(M) — 1)-form 7 such that [, w An = 1. However, [, d(f —
GAf)An=0. It follows that

i (Ker(Hg(M; C) — HY(M; C))) ni (Im(Hg(M; C) — HY(M; C))) —0. (3.9
This proves the proposition. |

Suppose that I' is convex-cocompact but not cocompact. Then H™/T" satisfies
the hypotheses of Proposition 5 and so i : HX(H™/T’;C) — Hé) (H™/T') is injective.
For the rest of this section, we assume that n > 2. It follows from [12, Theorem
3.13] that ¢ is an isomorphism. This essentially comes from the fact that given an
L2-harmonic 1-form w on H™ /I', one can apply the Poincaré Lemma from infinity
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to homotop w to something with compact support. We show how to construct the
L2-harmonic 1-forms on H™ /T explicitly.

Lemma 3. There is an isomorphism between Hi(H"/F; C) and the quotient space
W ={(f,c) € COO(Q)XHI(F; C) : f is locally-constant and for all v € T", (3.10)

f=v-f=c}/C
(Here C acts by addition on C*°(Q) and fizes Hl(F;(C).)

Proof. Givenzx € Hi (H™/T'; ©), represent it by a smooth closed compact-supported
1-form o € QL (H"/T'). Put & = 7*a. As o is compactly-supported, we can extend
a continuously by zero to become a closed 1-form on H™ U Q. Fix a point s € .
Define f : Q@ — C by

f(z):/~&, (3.11)

c

where C' is a curve in H" UQ from s to z. Then

(f = Hz) = /N , (3.12)

’

where C” is a curve in H* U from 7*1 -z to z. Now C’ projects to a closed curve
C’ on the compact manifold-with-boundary (H™ U€Q) /T". Then

(F=70E= [ o (3.13)

’

It follows that f —~ - f = ¢(v), where ¢ is the image of = in Hl((H" uQ)/I';C) =
Hl(F; C). A different choice of s changes f by a constant.

Conversely, given (f,c) € W, fix a point mg € H"/I". Let R be large enough
that the convex core of H"/I' lies within Bgr(mg). Let ¢ : [0,00) — R be a
smooth function which is monotonically nonincreasing, identically one on [0, R] and
identically zero on [R+1,00). Let n € C°°(H™) be the lift to H™ of ¢(d(mo,-)) €
C>(H™/T"). Extend f inward to a locally-constant smooth function F' : (H™ —
71 (Br(mgp))) — C. Put & = d((1 —n)F) on H” — 7~ Y(Bg(mg)) and extend it
by zero to H™. Then & is a closed I'-invariant 1-form on H"™ which descends to
a closed 1-form a € QY(H™/T") with support in B 1(mp), and hence an element
[o] € HL(H"/T;C).

One can check that these two maps are inverses. We omit the details. O

The map W — Hl(H"/F; C) induced from (f,c) — c is the same as the map
Hi(H”/F; C) — Hl(H”/[‘; C). Its kernel can be identified with the I'-invariant
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locally-constant functions on €2, modulo C. This has dimension equal to the num-
ber of ends of H™/I" minus one, as it should.

Choose z € Hi(H"/F; C). Define the locally-constant function f : Q@ — C as in
the proof of Lemma 3. As A has measure zero, we can think of f as a measurable
function on S™ 1.

Proposition 6. f lies in LP(S™ 1) for all p € [1,00).

Proof Let K be the convex core of H™/I' and let 0K be its boundary Put
K = 7 Y(K), the convex hull of A, and put 0K = 7 1(8K). As K is convex
and K is compact, it follows that oK is quasi-convex, meaning that there is an
R > 0 such that if y1,y2 € OK then the geodesic from y1 to yo, in H”, lies in an
R-neighborhood of OK. We take a ball model B" for H™ such that zo = 7(0) lies
in K.

If @ ¢ 8”1 is connected then the result is trivial, so we assume that Q has
more than one connected component. Let D be a connected component of Q. We
first estimate the spherical volume of D. There is an end e of H” /T" such that if a
curve ¢ in H™ goes to D then 7 o c exits e. Let 0. K be the connected component
of OK corresponding to e. Then there is a component (9;?( of 71 (0. K') such that
D retracts onto 8DK under the nearest- st-point retraction. Furthermore, the closure
of 8DK in B® separates D from K — BDK Let rp be the hyperbolic distance from
0 to dpK. Then dpK C H™ — B, (0). We are interested in what happens when
rp is large. If 21, z9 € D then the geodesic from z1 to z9 cannot enter B,,_r(0),
as this would violate the quasi-convexity of K. Quantitatively, this implies that

the spherical distance from z1 to zo cannot exceed 2sin~! (ng——R» Thus D

lies within a spherical ball of radius rg = 4sin~! (m) As the volume of

this spherical ball is bounded above by a constant times 7’871, we conclude that

there is a constant C' > 0 such that vol(D) < Ce~(=Drp yniformly in the choice
of D.

The connected components of €2 are in one-to-one correspondence with the set
7 (K,0K). Fix an end e of M, with associated connected component 9. K of
OK . Take the ball model so that zg € 0.K. The connected components D of
corresponding to e form the preimage of d. K under the map w1 (K, 0K) — m(0K).
Given D, let ¢(s),0 < s < rp, be a normalized minimal geodesic from 0 to 8;5?(.
Consider a loop Lp in H™/T" which starts at zg, follows 7o ¢ to 7(c(rp)) € 0. K
and then returns to zg by a length-minimizing path in d.K. The length of Lp
will be bounded above by rp + diam(d.K). On the other hand, Lp describes a
class [Lp| € m (K, zp). It follows that d(0,[Lp]-0) < length(Lp). Also, as ¢ is
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minimal from 0 to ¢(rp), we have rp < d(0,[Lp]-0)+ diam(0. K ). Thus

d(0,[Lp]-0) <length(Lp) < rp + diam(d.K) < d(0,[Lp] - 0) + 2diam(0. K).
(3.14)
In terms of the homotopy sequence

(K, z0) % m1(K,0K) 2 mp(9K), (3.15)
we have defined a map s : 871 (9. K) — (K, o) which sends D to [Lp], with

aos=1d on f1(9,K). Thus s is injective. By the construction of f, there is a
bound

|£(D)| < Alength(Lp) + B < Ad(0,[Lp]-0)+ B’ (3.16)
for D € ~1(9.K). Then
> IfD)Pvol(D) < > (Ad(0,[Lp]-0)+ B (3.17)
Dep~1(8.K) Dep~1(0.K)

Cef(nfl)(d(O,[LD]~O)7diam(85K)).
y [14], there is an € > 0 such that

Y g Pl o e (3.18)

vel

It follows that f is L? on [J{D € B 1(d.K)}. Considering together the finite
number of ends of H™/T", the proposition follows. O

Lemma 4. For f € L2(S™ 1), let ®of € C®(H™) be its harmonic extension.
For 1 <j < n, let z; be the restriction to sn—1 of the j-th coordinate function on

R™. Then
IV (@0 f)[2(0 Z
=1

Proof. Let {;}5° be an orthonormal basis of L2(8™ 1) consisting of eigenvectors
of Agn—1 with eigenvalue (k; +1)(k;i +n—1), k; € ZN[—1,00). Let f =377, a;5;
be the Fourier expansion of f. Then from [6, p. 599],

fsn 1xjfdvol
vol (8™~ 1

(3.19)

o0

L(n+ ki)

%
(®of)(r,0) = “T(E+hit1)

1+kiF(1—g7 1tk 1*%*’% 2)8:(6).

(3.20)
It follows that

IV (®0f)(0) Z| (182 + VsmBl?) . (321)
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il n
We can take the 3;’s with k; = 0 to be the functions {(Tl(éﬁ) ? xj} . In
=1

this case, one can verify that |3;|2 + |V gn-13:|? is constant on S”~1. Tts integral
is

[ (8P4 1950 dvol = (50,5 + (B Bgn) = 1+ (0= 1) =

(3.22)
Hence "
1Bil? + IV gn-18:* = wol(S7 T (3.23)
and so
V(P 20 "= 1 2 3.94
V@NP0) = X (3:24)
(n—1? & . ’
n—1 n 2
= nvol(5n 1) z; /SW1 <U01(5n71_)> z; fdvol
J
- Zn: fsn 1 xjfdvol
B T wol(SnT)
=1
The lemma follows. O

Proposition 7. d(®qf) is a [-invariant harmonic 1-form on H™. It descends to
an L2-harmonic 1-form on H™ /T

Proof. As f is L?, ®of is welldefined. As ®gf is harmonic, A1d(®of) =
d(LoPof) = 0. Thus d(Pgf) is harmonic. Furthermore, for all v € T,

d(®of) —~-d(®of) = d(®o(f — 7 f)) = d(®Pocy) = dcy = 0. (3.25)
Thus d(®Pgf) is -invariant. It remains to show that the descent of d(®gf) to
H™/T is L.

Let m be a point in the connected component of H"/I' — K corresponding to
an end e. Take a ball model B™ of H"™ with 7(0) = m. Let D be the connected
component of Q adjacent, in B?, to the connected component of H" -K containing
0. Changing f by a constant, we may assume that f vanishes on . The method
of proof of Proposition 6 implies that the Ll-norm of f, as seen in the visual sphere
at m, is O(e*(”*l)dw*m) with respect to m. Then by Lemma 4,

[V (@0 £)2(0) = O(e~ 2= 1dln 1)y (3.26)

On the other hand, the volume of {m € H"/T : d(m,K) € [j,j+1]} is O(e(~ D7),
The proposition follows. O
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Thus we have constructed dim(Hi (H™/T'; C)) linearly-independent L2 harmonic
1-forms on H™/T.

Theorem 4.B. Let I' be a convex-cocompact group which is not cocompact. Let
o be a nonzero L2-harmonic 1-form on H"/T. Then @fl(w*a) is Sobolev H™ -
reqular.

Proof. We know that 7*a = d(®gf) for some f € L*(S" 1) constructed as in
Lemma 3. Then 7*« = ®1(df), with df being Sobolev Hfl—regular. O

4. Surfaces

Theorem 5.A. Let I' be a torsion-free uniform lattice in Isom™ (H?), with H?/T
a closed surface of genus g. Then

1. dim (A (s1)" = 24.

2. dim (Dy(s1))" = 2g.

3. dim (DZ(s1)/C)" = 24.
4. dim (L2(sY)/C)" =o.

Proof. The proof is similar to the proof of Theorem 2. A. If F' € (A{)(Sl))r then
dF is a T-invariant exact hyperform on S and ®1(dF) is a I'-invariant closed and
coclosed 1-form on H2. Thus ®1(dF") = n*a for a harmonic 1-form on H?/T. In
terms of the complex coordinate z on D?, we can write ®1(dF) = hy(2)dz+ho(Z)dz
where hi(z) and hg(z) are holomorphic functions. Let kq(z) and ko(z) satisfy
hi(z) = k'(z) for i € {1,2}. Then

d(QoF') = ©1(dF) = d (k1 (2) + k3(2)) , (4.1)

so $ol' = E|(2) + kb(Z) + const. As « is bounded, ®1(dF") is uniformly bounded
on H? and so
sup (1 — |22 |k (2)] < co. (4.2)
2€D?
That is, k! is an element of the Bloch space and so k; has a boundary value in the
Zygmund functions Z [7, p. 282,442]. Thus F(6) = k{ (%) + kb(e~") + const.,
showing that I’ has the required regularity.
Part (4) follows from the fact that I' acts ergodically on S O

Theorem 5.B. Let I' be a torsion-free monuniform lattice in Isom™ (H?), with
HQ/F the complement of k points in a closed surface S of genus g. Then

1. dim (,4{’)(51))F = 00.
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2. dim (D)(s1)" = max(2g,2g + 2k — 2).

L2(sh/c)" =o. O

Proof. Sending f € (.A{)(SI))F to ®1(df), we see that (.A{’)(Sl))F is isomorphic
to the space of closed and coclosed 1-forms on H2/T'. Let p be a puncture point
in S and let Z be the subgroup of I' generated by a loop around p. Then the
cusp of HQ/F corresponding to p embeds in HQ/Z. We model the latter by the
upper-half-plane quotiented by z — 2 + 1. Consider the pullback of ®;(df) under
the quotient map H2/Z — H?/T'. Asin [8], such a 1-form on H?/Z can be written
as hi(z)dz + ha(Z)dz, where h;(z) = hi(z+ 1). Each h; has a Fourier expansion

hi(z) =Y e; e 71%, (4.3)
JEZ

If ¢y ; = 0 for j < —J then a change of variable w = e2mV=Iz gives

. d
hi(z)dz = Z chwJ*l a

, (4.4)
S 21/ —1

and similarly for ha(z)dz.
To each puncture point p; € 5, 1 < [ < k, assign an integer J; and let

] (— Z;;l(Jl + 1)pl) denote the space of holomorphic differentials on S whose

Laurent expansion around each p; has the form of the right-hand-side of (4.4)
with J = J;. By the Riemann-Roch theorem, i(D) > g —1 +Zf:1(Jl +1). Taking
the numbers {J;}_; large, part (1) follows.

Part (2) was proven in [8]. For completeness, we repeat the argument. On the
upper-half-plane, |hy(2)dz| = |hi(z + iy)|y. As d(i,3y) = |In(y)|, if hi(z)dz has
slow growth as y — oo then we must have c; ; = 0 for j < 0. The space of such

holomorphic differentials on S has dimension ¢ (— Zlkzl pl). The Riemann-Roch
theorem implies that ¢ (— Zlkzl pl) =max(g+k,g+ k—1). Part (2) follows.

g
Suppose that f € (Hfé(Sl)/(C> . Then df is Hfg—regular‘ Considering
®1(df), we know that on a cusp, hq(z) has an expansion (4.3) with ¢; ; = 0 for
J < 0. If 19 # 0 then as y — 00, hi(z)dz ~ c10dz. To analyze the singularity
at a cusp point on 517 we consider the 1-form ¢y gdz on the upper-half-plane
and perform the reflection z — ﬁ; On the boundary of the upper-half-plane,

this restricts to =z — % and so ¢y gdr — —0170%5. The point ‘0o gets mapped
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to 0 and so it is enough to look at the singularity of —cLo% near z = 0. The
Fourier transform of ;15 is proportionate to |k|. Hence ;12 lies in H® if and only
if fp(1+ k2% |k2dk < oo, Le. if s < —%. This contradicts the assumption that
df is Hfg—regular. Thus ¢1 0 = 0. Then ®1(df) is bounded and as in the proof

of Theorem 5.A, f € (DZ(Sl)/C)F. Furthermore, h1(z)dz extends smoothly over
the puncture points to give a holomorphic differential on S. We conclude that

r
both (Hf% (Sl)/(C> and (DZ(Sl)/(C)F are isomorphic to two copies of the space

of holomorphic differentials on S, the dimension of which is g. Parts (3) and (4)
follow.
Finally, part (5) follows from the ergodicity of the I'-action on S 1, O

5. 3-Manifolds
5.1. Quasi-Fuchsian groups

Let S be a closed oriented surface of genus ¢ > 1. Let I' be a quasi-Fuchsian
subgroup of Isom™ (H?3) which is isomorphic to 7 (S). Then H3/I"is diffeomorphic
to R x S and Hi(H?’/F;(C) = C. (In terms of the projectionp : R x S — R, a
proper map, one has H!(H3/T';C) = p* (Hi (R; (C))) Thus there is a nonzero
L?-harmonic 1-form « on H3/T".

By Corollary 2 and Proposition 3, @fl(w*a) is a I-invariant exact 1-current
supported on the limit set A C S 2. The domain of discontinuity € C 52 is the
union of two 2-disks Dy and D_, with Dy /T" and D_/I" homeomorphic to S. Let
XD, € L%(S?) be the characteristic function of D . By Proposition 7, @Il(w*a)
is proportionate to the exact 1-current dxp, on 52,

In order to write dx p, more directly on A, we follow the general scheme of [5,
Section IV.3.4]. Let Z : D* — D be a uniformization of D . By Carathéodory’s
theorem, Z extends to a continuous homeomorphism Z : D2 Dy . The restric-
tion of Z to D2 gives a homeomorphism 87 : S1 — A.

From a general construction [5, Theorem 2, p. 208], the 1-current dy p, defines
a cyclic 1-cocycle 7 on the algebra C1(52) by

T(FO7F1):/ dxp, NFYdFl. (5.1)
52

Lemma 1. The function space H%(Sl) N L®(SYY is a Banach algebra with the

o2 3
= ([, [ 2O ) il 52
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Given [0, fl e H%(Sl) N LOO(SI); let

be the Fourier expansion. Define a bilinear function

7 (H% (s1) mLOO(Sl)) X (H%(Sl) me(sl)) ~C (5.4)
by
(0, 1) = —2miy_jelel ;. (5.5)
JEZ

Then T is a continuous cyclic 1-cocycle on H%(Sl) N Le(sh).

Proof. 1t is straightforward to check that H%(S yn Lo°(S1) is a Banach algebra
with the given norm. It is also easy to check that 7 is continuous. If f0 f1 e
C>°(S1) then

0 = [ (5.6)
s1
As in [5, p. 182], put
U VR R S G i Ik U o S o i e A (5.7)

It 0, 71, £2 € € (S) then (57)(f0, f1, f2) = 0. As C(S1) is dense in HZ(S1)N
L>°(S1) and b7 is continuous in its arguments, it follows that b7 = 0. O

Theorem 6. Given FO F! € CY(S?), put f' = (9Z)*F*, i € {1,2}. Then
fi e HE(S1) N L°(S1) and

T(FO P = =7 (0, ). (5.8)
Proof. Consider S? as C U oo with oo € D_. For r € (0,1), let 4, : S1 — D? be

the embedding of S1 as the circle of radius » around 0 € D2. Thinking of Z as a
map from D? to C, let

o0
Z(z) = chzk (5.9)
k=0
be its Taylor’s series. Then
3/ dZ NdZ* = 1/ FZA(2Y) =71y kr e, (5.10)
2 Bv‘(0> 2 sl =0
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As 7 is univalent,

% dZ A dZ* = area(Z(D?)) < o. (5.11)
D2
It follows that
1'1mlz’jz = a7 (5.12)
: 5ol oofal i 5(al oofcl
in H2(S") N L*°(S"). Then f* € H2(S") N L>(S).
We have
(FO Fh :/ dx p+ A FOdF! (5.13)
/ xp+dF° A dF!
SZ
/ dFO A dF!
D+t
/ d(Z*FO) A d(Z*F1).
D2
Then
0 1y 1 * 170 * ol
7(FO, Fl) = lim — d(Z* FOY A d(Z*F) (5.14)
r—1 B,.(0)
=lim— | &Z*FOAd(i*Z*F)
r—1 S1
= limy B S OWAN AR A A AT
From (5.12),
hmli:Z*Fi — f (5.15)
in H%(Sl) N L>°(S1). The theorem follows. O

Example. Let Y. be a closed oriented surface of genus g > 2, let ¢ € Diff(3) be an
orientation-preserving pseudo-Anosov diffeomorphism and let M be the mapping
torus of ¢. Then M is a 3-manifold which fibers over the circle and admits a
hyperbolic structure [16, 13]. Let M = H3/T be the corresponding cyclic cover
of M, with the pullback hyperbolic metric. The group I' is isomorphic to m1(32).
From [10, Proposition 9], M has no nonzero L2-harmonic 1-forms. This contrasts
with the quasi-Fuchsian case.
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5.2. Covering spaces

If M is a closed 3-manifold then M has nontrivial L2-harmonic 1-forms if and only
if b1(M) > 0. There are many examples of hyperbolic manifolds 3-manifolds A
with b1 (M) > 0, such as those which fiber over a circle. It is less obvious that
there are infinite normal covers M = H3 /T of closed hyperbolic 3-manifolds such
that M has nonzero L2-harmonic 1-forms. We give some examples. The limit sets
will be all of S2.

Let M be a closed oriented hyperbolic 3-manifold with a surjective homomor-
phism o : w1 (M) — F, onto a free group with r > 1 generators. Let M= H3/T
be the corresponding cover with I' 2 Ker(«). The space of ends of M is a Cantor
set. As I} is nonamenable, Proposition 5 applies to show that M has an infinite-
dimensional space of L*harmonic 1-forms. Thus for all € > 0, (H*(SQ)/(C)F
infinite-dimensional.

For another example, let Y be a closed oriented surface of genus g > 2. Let p
be a nonzero element of H' (%, Z) = 2. Let 5 be the cyclic cover of 3 coming
from the homomorphism 71(X) — Hy(3;Z) 2 Z. It is an infinite-genus surface.

Let ¢ be an orientation preserving pseudo-Anosov diffeomorphism of ¥ which
acts trivially on m! (3;7); it is a surprlslng fact that such diffeomorphisms exist
[17]. Tt lifts to a diffeomorphism gb of 3. Let M be the mapping torus of ¢, with its
hyperbolic metric. It follows from the Wang sequence that Hl(M (L) = Z¥ 7.
Let M = H3/T be the cyclic covering of M coming from p & 0 € Hl(M; 7).
Equivalently, M is the mapping torus of $

Given € € U(1), let pp : Z — U(1) be the representation pg(n) = ™. Let
Ey be the flat unitary line bundle on Y. coming from the representation 7{(3) —

H{(3:Z) % Z 2 U(1). Let Fy be the flat unitary line bundle on M coming from
the representation 71 (M) — Hy(M;Z) o 2 % U(1); it is the mapping torus
for the action of ¢ on Ey. As in [10, Section 4], it follows from Fourier analysis
that M has a nonzero L2-harmonic 1- form if and only if H! (M; Fy) # 0 for all 6.
Furthermore, because of the Z-action on M if there is one nonzero L2-harmonic
1-form then there is an infinite-dimensional space.

From the Euler characteristic identity and Poincaré duality,

2 —2g = 2dim H(2; Ep) — dim H' (; Ey). (5.16)
As dim HO(E; Ep) <1, it follows that
dim HY(3; Ey) = 2g — 2 (1 — dim HO(%; E9)> > 0. (5.17)
From the Wang sequence,

HY(M; Fy) = HY(3; Ep) @ HY(S; Ep) £ 0. (5.18)
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Thus M has nonzero L2-harmonic 1-forms and for all ¢ > 0, (H*(SQ)/(C)F is

inﬁnite—d/iglensional. Ihe [2-harmonic 1-forms on M arise from the fact that
Im (Hi(M7 C) — HY(M; (C)) is nonzero.
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