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Oscillation, spiralement, tourbillonnement

F Cano, R Moussu and F Sanz

A René Thorn

Résumé. La dynamique oscillante d'un champ de vecteurs analytique en dimension trois s'organise

autour d'un nombre fini d'axes de tourbillonnement lorsqu'elle ne se délocalise pas par des

éclatements de point

Abstract. The oscillating dynamics of an analytic vector field in dimension three is organized
around a finite number of twister axis when it is localisable by point blowing-ups

Mathematics Subject Classification (2000). 34Cxxm, 32B20

Introduction

Soit X un champ vecteurs analytique sur une variété M et soit t h-> j(t) une
courbe intégrale de X dont l'ensemble w-limite ^(7) est un point singulier p de X
Dans ce travail nous étudions la question suivante comment, d'un point de vue
analytique, 7 peut-elle tendre vers p 7 C'est une question classique déjà étudiée
à la fin du 19eme siècle par Pomcaré [Po] et Lyapunov [Ly] En dimension 2,

leurs travaux apportent une réponse satisfaisante à cette question 7 possède une
tangente en p ou 7 spirale autour de p et alors p est un foyer monodromique Pour
décrire le comportement analytique de 7 en dimension > 2 nous utiliserons les

concepts d'oscillation, de tangentes itérées et de spiralement axial en dimension 3

Donnons brièvement leur définition
La courbe 7 [0,oo[—> M est non oscillante si toute hypersurface analytique

qui ne la contient pas la coupe un nombre fini de fois seulement Soit tv\ M\ —s- M
l'éclatement de M de centre p La courbe 7 possède (par définition) une tangente
en p si son relevé 71 tt^ 07 possède un unique point w-limite p\ ^(71) S'il
existe une suite d'éclatements

M Mo ^- Mi ^- Mi <— Mn_i ^- Mn

de centres respectifs p po, p\, ,pn-i, tels que, pour tout n, le relevé 7„
tt^1 o 7„_i possède un unique point w-hmite pn w(7n) On dit alors que 7
possède des tangentes itérées en p et on écrit TI(j) {pn} On voit que si 7 est
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non oscillante alors TIfa) existe. La réciproque est vraie en dimension 2. Cette
dichotomie osciller-tangentes itérées est propre à la dimension 2. En dimension 3,

il faut la remplacer par le spiralement axial comme le montre le théorème suivant.

Théorème 1. Si TI(j) existe et si 7 est oscillante alors 7 spirale autour d'un
axe analytique F invariant par X.

La définition générale du spiralement axial étant un peu technique (voir f .4), nous
allons seulement en donner une propriété caractéristique lorsque F est lisse: 7
spirale autour de F lisse s'il existe des coordonnées analytiques (x,y, z) en p telles

que F {x y 0, z > 0} et telles que si j(t) (x(t), y(t), z(t)) la courbe t 1—s-

(x(t), y(t)) spirale autour de 0 dans le plan réel et lim (x2(t) + y2(t))z(t)^n 0

pour tout n. L'hypothèse F lisse n'est pas essentielle. En effet par une suite finie
d'éclatements ponctuels on se ramène à ce cas.

Nous dirons qu'une demi-courbe analytique (ouverte) F est un axe de

tourbillonnement de X s'il existe un voisinage semi analytique V de F, positivement
invariant par X tel que F soit un axe de spiralement pour toute courbe intégrale
de X issue d'un point de V. Il est dit non dégénéré si F n'est pas contenu dans
l'ensemble Sing X des points fixes de X. Ce concept doit être rapproché de celui
de foyer monodromique en dimension 2 comme le montre le théorème suivant.

Théorème 2. Un axe de spiralement non dégénéré F pour 7 est un axe de

tourbillonnement de X.

Ces axes sont des "centres organisateurs" de la dynamique de X au sens de R.
Thom. Ils possèdent la propriété de finitude que l'on exige en général de tels
objets.

Corollaire. Tout point p de M possède un voisinage qui ne contient qu'un nombre

fini d'axes de tourbillonnemment non dégénérés.

La motivation initiale de ce travail était l'étude de la dynamique d'un champ
de gradient, X V/, où / est une fonction analytique. S. Lojasiewicz a montré
[Loi] qu'une courbe intégrale 7 de V/ a au plus un point w-limite ^(7) p et
R. Thom [Thi] a proposé la conjecture du gradient: 7 possède une tangente en p.
Cette conjecture1 est vraie en dimension 2 et dans certains cas en dimension plus
grande [Hu]. On peut aussi proposer la conjecture forte du gradient: 7 n'est pas
oscillante. Cette conjecture est encore vraie en dimension 2. Elle l'est aussi en
dimension 3 lorsque la hessienne de / en p n'est pas nulle [Sa]. De plus, on peut
montrer qu'un champ de gradient ne possède pas d'axe de tourbillonnement non
dégénéré lisse [Fo-Sa]. Signalons enfin que dans un travail récent [Br], M. Brunella
montre que tout champ de vecteurs analytique en dimension trois, à singularité

1 Récemment K. Kurdyka, T. Mostowski et A. Parusirïski ont prouvé cette conjecture.
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isolée, possède une courbe intégrale ayant la propriété des tangentes itérées. Ainsi,
les deux théorèmes précédents s'appliquent à ces champs de vecteurs.

Ce travail comporte deux parties. Dans la première partie, on étudie tout
d'abord les relations entre les concepts oscillation, tangentes itérées et spiralement
pour une courbe analytique quelconque 7 : [0,oo[—> M telle que lim j(t) p.

t—>OO

Ensuite on précise ces résultats lorsque 7 est une courbe intégrale et on prouve
le théorème 1. La deuxième partie est essentiellement consacrée à la preuve du
théorème 2 et de son corollaire.

Les trois auteurs remercient vivement la C.E.E. pour le support financier qu'elle
leur a apporté pendant la préparation de ce travail, par l'intermédiaire du réseau
T.M.R..

I. Tangentes itérées, oscillation, spiralement

Dans tout ce chapitre M désigne une variété analytique (non singulière) de dimension

m et 7 désigne une application analytique non constante de R+ dans M qui
possède un unique point w-limite p lim 7ft). Pour décrire le comportement

t >oo

analytique de | 7 |, l'image de 7, au voisinage de p nous utilisons quatre concepts:
tangentes itérées, contact plat, oscillation et spiralement. Dans la partie 1 de ce

chapitre, nous étudions les relations qui les lient dans le cas général et dans la partie

2 nous précisons ces résultats lorsque 7 est une courbe intégrale d'un champ
de vecteurs analytique réel.

1. Courbes paramétrées

Les définitions que nous allons donner dans ce paragraphe reposent sur les éclatements

ponctuels et sur quelques propriétés classiques des ensembles semi-analytiques

que l'on peut trouver dans [Hii], [L02].

1.1. Eclatement ponctuel et tangentes itérées. Précisons tout d'abord
quelques notations et définitions. Une carte affine centrée en un point p de M
est un difféomorphisme analytique x (x\,X2,--- ,xm) d'un voisinage U de p
sur Rm tel que x(p) 0 (on dit "affine" pour rappeller que l'image de la carte
est Rm, quoique les changements de cartes ne seront pas linéaires). Un diviseur à

croisements normaux E de M est une union finie d'hypersurfaces analytiques lisses

vérifiant: en tout point p de M, il existe une carte affine centrée en p et un entier
v > 0 telle que EC\U {x\x<i ¦ ¦ ¦ xv 0}. Une orientation de M en p adaptée à E
est le (choix du) germe M+ en p d'une composante connexe de U\E. Rappelons
que l'éclatement de centre p de M est un morphisme analytique, surjectif, propre
¦k : M\ —s- M dont la restriction à M\ir~^{p} est un isomorphisme sur M\{p}
possédant la propriété suivante. En tout point p\ de ir~^{p) il existe une carte
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affine {{x,z),U\), x {x\1xi1 ¦ ¦ ¦ ,xm_\) centrée en pi et une carte affine centrée
en p telles que

n{x,z) {zx,z), U1n7T-1(p) {z 0}.

Notons que la restriction de tt à U\ Rm est un morphisme algébrique sur U
Rm et que le diviseur exceptionnel ir~^{p) peut être identifié à l'espace projectif
RP(m — 1). Si E est un diviseur à croisements normaux de M, E\ n~ (EU{p})
est un diviseur à croisements normaux de M\. Une orientation M^~ de M\ en un
point pi de E\ adaptée à E\ est dite compatible avec une orientation M^~ de M
en p adaptée à E si tt(M^) Ç M+.

Soit 7 : R+ [0,oo[—> M\EL){p} une application analytique dont l'ensemble
u;-limite est le point p, c'est-à-dire:

p w(7) üm^ f|>°°
t>0

Soit 7i tt^1 o 7 le relevé de 7 par tt l'éclatement de centre p, i.e tt(7i(£))
pour £ > 0. Si 71 possède un seul point w-limite p\ ^(71) on dit (naturellement)
que 7 possède une tangente en p et que p\ G RP(m — 1) est la (direction de la)
tangente à 7 en p. Posons Mq M po p Eq 0, tt\ tt.

Définition. On rf«i owe 7 a (7a propriété) des tangentes itérées s'il existe une
suite:

Mo ^ Mi ^- M2 ^- ¦¦¦ Mn_i ^- Mn ^- ¦¦¦
d'éclatements irn de centres pn-\ telle que le relevé 7„ tt~ o 7„_i possède un
unique point ui-limite pn uj{^n). La suite TI(^f) {pn} est la suite des points
infiniment proches de 7 70. Notons, pour n > 1, En tt~ {En_\ U {pn-i}) et

M^ l'orientation de Mn adaptée à En telle que M^~ contient le germe de | 7„ |

en pn. La suite TI^("f) {(pn, M^)} est la suite orientée des points infiniment
proches de 7. (Notons que lorsque p (Ë| 7 |=image de 7 et que ^(7) {p}, alors le

germe en p de | 7 | coïncide avec "l'image du germe" en t 00 de 7).

1.2. Oscillation. Dans tout ce paragraphe 7 désigne encore une application
analytique de R+ dans M\{p} telle que ^(7) p.

Définition. Soit H une hypersurface semi-analytique de M. On dit que 7 est
oscillante en p par rapport à H si \ 7 | n'est pas contenu dans H et si \ 7 | C\H est

un ensemble infini. S'il n'existe pas une telle hypersurface nous dirons que \ 7 |

est non oscillante en p.

Ce concept d'oscillation d'une courbe est étudié quantitativement dans le cadre

global par D. Novikov et S. Yakovenko dans [No-Ya].

Proposition. Si \ 7 | est non oscillante en p, elle possède la propriété des

tangentes itérées en p.
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Figure 0

La proposition réciproque n'est pas vraie en général Par exemple la courbe
t i—s- (1/t, exp (—t)sm t) possède des tangentes itérées en (0,0) et est oscillante par
rapport à la droite y 0 Dans la deuxième partie de ce chapitre nous étudierons
cette réciproque lorsque 7 est une courbe intégrale d'un champ de vecteurs analytique

Preuve Nous allons montrer la proposition contraposée Posons Mq M, po p,
70 7 et supposons qu'il existe une suite d'éclatements tt^ M.% —s- M]._\ pour
k 1,2, ,n de centres Pk-i, telle que, pour k 1,2, n — 1, le relevé 7^
ttjT o 7fc_i de 7fc_i possède un unique point w-limite pk <^(7fc) et telle que
7« nn

* °7n-l possède au moms deux points w-limites distincts p'n, p" Puisqu'il
s'agit de prouver un résultat local nous pouvons supposer que Mq Rm et que les

deux points p'n, p" sont contenus dans une même carte affine x U —> Rm telle
que Tri o 7T2 o o 7rn o x^1 soit une application polynomiale D'après le théorème
de Tarski-Seidenberg [Ta] sur les projections d'ensembles semi-algébriques, il suffit
de construire une hypersurface algébrique Hn dans U Rm non contenue dans
le diviseur telle que j=f Hn(~)

par 7T1 O 7T2 O O 7Tn O X"

# H n 7 00 et
sur U telles que

|= 00 et | 7„ \çt Hn En effet, sa projection
sera une hypersurface semi-algébrique H telle que

7 \<jt H Soient (xi,X2, ,xm_i,z) des coordonnées affines

et < 1

Si | 7„ | coupe une infinité de fois la sphère dB on prend Hn dB Si ce n'est pas le

cas, soit iîn un hyperplan/(xi, ,xm_\,z) a\xi+ -\-am_\xm_\+ß 0 tel
que f(p'n) f(p'n) < 0 Les points p'n, p" appartenant à deux composantes connexes
distinctes de B\Hn, | 7 | coupe une infinité de fois leur "frontière commune"
BnHn a

Remarque. Le concept "osciller" est stable par éclatement Si 7 est oscillante

par rapport à H, alors tt^1 o 7 71 est oscillante par rapport à ir~^(H)
H\ Par contre, il ne l'est pas, à priori, par effondrement puisque l'image directe
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par éclatement ponctuel d'une hypersurface analytique n'est pas en général semi-
analytique [L02], [H11] Dans la preuve précédente, on contourne cette difficulté
en travaillant dans des cartes affines pour se placer dans le cadre algébrique Nous

aurions pu faire une théorie semblable dans le cadre sous-analytique Les deux
théories ne sont pas équivalentes II nous semble qu'elles coïncident lorsqu'il s'agît
de trajectoires de champs de vecteurs (mais nous ne l'avons pas démontré)

1.3. Contact plat avec une demi-branche analytique. Soit c une application

analytique non constante de R dans M et soit E un diviseur à croisements
normaux Le germe F de c(]0,e[), e > 0, en p c(0) est appelé une demt-branche
analytique en p Elle est dite adaptée à E si F Pi E 0 On dit que F est lisse

relativement à E s'il existe une carte affine ((#i, ,xTO_i, z),U) centrée en p
telle que

F \x\=X2= =xm_i=0, z > 0) et EnU {z 0}

Soit tv\ M\ —> M Mq l'éclatement de centre p po On sait que c possède un
unique relèvement c\ par tt, c(s) ttoci(s) La contre-image Fi n^ (Fo), avec

Fo F, est la demi-branche analytique enpi ci(0) adaptée à E\ Tr

qui est le germe de ci(]0,e[) en p\ En itérant cette construction, on obtient une
suite d'éclatements

Mo ^- Mi ^- M2 <— Mn_i ^- Mn

de centre des points pn_i et une suite de demi-branches analytiques Fn, n > 0,

aux points pn adaptées aux diviseurs En ir~^{En_i) La suite {pn}, n > 1 est
la suite des points infiniment proches au sens de 1 1 de la courbe a t 1—s- c(l/t),
t > 0 et nous écrirons

TI(T) TI(a) {Pn} et TI+(T) TI+(a) {(p„,M+)}

Rappelons ([L02], [H11]) les propriétés suivantes des demi-branches analytiques qui
sont bien connues

1) II existe no tel que, pour n > no, Fn soit lisse relativement à En
11) Si F' est une demi-branche analytique telle que TI+(T') T/+(F) alors F'

F
_m) Soit A un sous-ensemble semi-analytique de M Alors F est contenu dans A

si et seulement si pn appartient à l'adhérence de tt\ o tt2 o o tt„ J (A) n A£+

pour tout n > 0

Dans toute la suite de ce paragraphe, 7 désigne une application analytique de R+
dans M\{p} telle que ^(7) p
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Définition. Sott T une demi-hranche analytique en p. On dit que 7 a un contact
plat avec T si 7 a la propriété des tangentes itérées et si TI'("f) TI'(T).

Par définition, ce concept est stable par éclatement et par effondrement.

Proposition (propriété caractéristique). Soit T une demi-branche analytique lisse

enp adaptée à E, i.e. T {x\ ¦ ¦ ¦ xm_\ 0 z > 0}, E(~\U {z 0} dans

une carte affine U centrée en p. Alors 7 a un contact plat avec T si et seulement
si on a:

lim z(t) 0 z(t) > 0 et lim "x\'" 0 pour n > 0,
t^oo W ' W t^oo Z(t)n ~

en écrivant 7(t) (x(t), z{t)), \\xf x\ + x\ + ¦ ¦ ¦ + x2m_v

L'existence des tangentes itérées n'implique pas le contact plat comme le montre
l'exemple 7 : t —s- (t"1, £~A), A G R+\Q. En effet TI(j) contient un nombre infini
de "coins" du diviseur déterminés par le développement en fraction continue de A.

Preuve. Soit TI(T) {pn} la suite de points infiniment proches de F et soit {irn}
la suite d'éclatements de centre les points pn-\. Il existe une carte affine en pn,
((u,z), Un), u («i, M2,--- ,«m-l) telle que:

7T\ O 7T2 O • • • O 7T„(m, z) (znU, z).

Soit 7„ tt^1 o 7„_i le relevé de 7 70 par cette composition d'éclatements.
En écrivant 7„(t) (u(t), z(t)) la proposition est une conséquence immédiate des

définitions et de l'égalité x(t) z{t)nu{t). D

1.4. Spiralement. Le concept de "spiraler autour de..." en dimension 2 et 3

fait partie du langage courant, nous allons le préciser. Dans tout ce paragraphe
7 est, comme dans les paragraphes précédents, une application analytique de R+
dans M\{p} telle que ^(7) p. Nous dirons qu'une hypersurface semi-analytique
T est transversalement orientée par 7 si T est connexe, lisse, orientable et si 7
coupe transversalement T une infinité de fois toujours dans le même sens pour t
assez grand. C'est-à-dire que T possède un voisinage ouvert connexe U dans M
tel que U\T a deux composantes connexes [/+, U~ et tel que pour t assez grand
et 7(t) G T on a 7(t + et) G U+ et 7(4 - et) G U~ pour et > 0 assez petit.

Spiralement en dimension 2. Si m dim M 2 on dit que 7 spirale autour
de {p} si toute demi-branche analytique T en p est transversalement orientée par
7 (figure 1).

Soit (#i,X2) une carte affine centrée en p et soient (r,6) les coordonnées polaires
correspondantes. Si 7 spirale autour de p, l'angle 6(t) / irg ti dO tend vers plus
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Spiralement Nonspiralement

Figure 1

ou moms l'infini si t tend vers l'infini Cette dernière propriété n'implique pas en
général que 7 spirale autour de p Cependant, nous verrons dans I 2 que c'est le

cas lorsque 7 est une courbe intégrale d'un champ de vecteurs analytique

Spiralement en dimension 3. En dimension 2, la définition de spiralement
repose sur la notion de demi-branche analytique transversalement orientée par 7
En dimension 3 elle va reposer sur la notion de triangle analytique transversalement
orienté par 7 de côté une demi-branche analytique Soit F une demi-branche
analytique en un point p et soit c ]0, e[—> M3 un représentant de F où c est une
application analytique de R dans M3 Un triangle semi-analytique de côté F est

un couple (T,W) où
1) W est un voisinage tubulaire ouvert semi-analytique de c(]0,e[) C'est-à-dire

que W est un ouvert semi-analytique image de ]0,e[xR2 par un plongement
analytique j tel que j(t,O) c(t)
11) T est une surface semi-analytique lisse, connexe contenue dans M/\c(]0,e[) telle

que le triplet (W,T,cQ0,e[)) soit homéomorphe à f]0,e[xR2, ]O,e[xR+ x {0},

]0,£[x{0}x{0}
Deux triangles semi-analytiques {T\,W\), {T<2,W<2) sont dits compatibles si W\
W2 W et soit T\ Ti soit il existe un homéomorphisme de W, T\, Ti, c( [0, e] J

sur (]0,e[xR2, ]0,e[xR+, ]0,e[xR-, ]0,e[x{0} x {0})

Compte tenu de la structure conique [L02] des ensembles semi-analytiques, les

propriétés 1), 11) de (T, W) se germifient en p et dans leurs énoncés nous pouvons
remplacer c(]0,e[) par F Ceci justifie l'expression triangle analytique de côté F
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Figure 2.

Définition. Supposons dim M 3 et soit F une demi-branche analytique en p.
On dit que 7 spirale autour de F (T est un axe de spiralement pour j) si pour tout
triangle analytique (T, W) de côté F, on a les propriétés: T est transversalement
orienté par 7 et 7(t) appartient à W pour t assez grand (figure 2).

Supposons que F soit un axe de spiralement lisse de 7. Soit {{x,z), U) une carte
affine centrée en p telle que F {x\ x% 0, z > 0}. Notons j(t) (x\(t),
X2(t), z(t)) et soit 70 : t 1—s- (x\(t), x^it)) la projection de 7 sur z 0. A toute
demi-branche analytique Tq C {z 0} au point p correspond le triangle analytique
(W,T) défini par

W {{xi,x<2,z): x\+xl<l,z>0} et T {(X1,x2,z) G W : (x1>x2) G To}.

Ainsi, To est transversalement orienté par 70 et ^(70) p, la projection 70 de 7
spirale autour de p. La réciproque n'est pas vraie en général, par exemple lorsque

7 est contenu dans le cone

Dans le cas général (axe de spiralement F non nécessairement lisse) la définition
du spiralement axial n'est pertinente que s'il existe "beaucoup" de triangles
analytiques de côté une demi-branche analytique F fixée. Le lemme suivant montre
que c'est le cas.

Lemme. Soit F une demi-branche analytique en p po G M3 et soit:
~ 7T;L t. j- 7T2 ni j-
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Figure 3.

la suite d'éclatements de centre po et les points p\, p%,... de TI(T). Il existe une
suite d'ouverts semi-analytiques {Wn} de Mq qui possède les propriétés suivantes:
i) Pour tout n le germe de Wn enp contient T, p n'appartient pas à Wn et Wn_|_i C
Wn.
n) Si A est un ensemble semi-analytique tel que AC\Y 0, alors A(~)Wn 0 pour
n assez grand.
ni) Soit A un ensemble semi-analytique de dimension 2 tel que A C\ F 0 et
F C A. Il existe no tel que, S\, S%, ¦ ¦ ¦ Sr désignant les composantes connexes de

A Pi Wno, les (St Pi Wn, Wn) sont des triangles s emi-analytiques de côté T deux à

deux compatibles pour i 1,2, ...,r et n >no-
w) Soient Wn^k et Tk les images réciproques de Wn et T par tti ott2 o cmk. Etant
donné n > 0, il existe ko, n1 > n et une carte affine (U, {x\,X2,z)) enpk0 tels que:

wnMnu {z>o} rko {xl x2 o, z>o},Wn,Min{z o} {Pko}.

Ce lemme est une conséquence de l'existence de triangulations semi-analytiques
des ensembles semi-analytiques [L02], [Hii]. Il peut être aussi prouvé de façon plus
élémentaire. Les assertions i), ii), iv) sont évidentes. L'assertion iii) se montre en
utilisant les équations de A. En fait, lorsque F est désingularisée par un morphisme
7T nous pouvons essentiellement supposer que les Wn sont les projections par tt des

W'n {x2 + y2 < z2n; 0<z< 1/n}.

D'après iv), si 7 : R+ —> R3, 7(0) p est une courbe analytique ayant un
contact plat avec F, alors, quelque soit n, il existe tn tel que j(t) appartient à Wn

pour t > tn. La proposition suivante précise le concept de spiralement axial.
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Proposition. Si 7 spirale autour d'une demi-hranche analytique F enp, alors 7
a un contact plat avec F.

Preuve. Raisonnons par l'absurde en reprennant les notations du lemme ci-dessus.
Si 7 n'a pas un contact plat avec F, il existe k tel que l'ensemble w-limite, w(7fc)

de 7fc Tri ° 7T2 ° • • • ° nk (7) contienne un point q =/= pi~- D'après l'assertion

iv) du lemme précédent il existe n et une suite {tm} tendant vers l'infini telle que
7fc(^m) n'appartient pas à Wn. Ainsi j(t) ne peut pas appartenir à Wn pour t
assez grand. D

Remarque. La définition que nous avons donnée du spiralement axial est très
restrictive. Il est possible de l'affaiblir, par exemple en supprimant la condition
"7(2) & W pour t assez grand", ou en remplaçant "pour tout (T,W) • • •" par "il
existe un (T,W) • • •". Nous verrons, dans la suite, que toutes ces définitions sont
équivalentes lorsque 7 est une courbe intégrale d'un champ de vecteurs analytique
en dimension 3.

2. Courbes intégrales

Dans toute cette partie X désigne un champ de vecteurs analytique sur Mm dont
p est un point singulier et 7 désigne une demi-courbe intégrale, 7 : h l{t)^
t > 0 telle que p ^(7). Nous allons essentiellement étudier comment sont alors
reliés les concepts: tangentes itérées, oscillation, spiralement en dimension 2 et 3.

Auparavant, nous allons montrer des propriétés du contact plat qui sont vraies en
toute dimension.

2.1. Contact plat entre une courbe intégrale et une demi-branche
analytique. Les résultats énoncés dans les deux propositions suivantes sont peut-être
déjà (bien) connus. Par exemple, celui de la première proposition peut certainement

se déduire d'un théorème classique de Borel [Bo], celui de la deuxième paraît
aussi classique, mais nous ne l'avons pas trouvé dans la littérature usuelle. Les
démonstrations que nous en proposons sont géométriques. Elles utilisent
essentiellement la "désingularisation" des demi-branches analytiques. La proposition
2.1.1. est un outil essentiel dans la preuve du théorème 1 et la proposition 2.1.2.
dans la preuve du théorème 2.

2.1.1. Proposition. Soit 7 une demi-courbe intégrale d'un champ de vecteurs
analytique X. Si 7 a un contact plat en p avec une demi-branche analytique F,
alors F est une courbe invariante par X.

Avant d'aborder la preuve de cette proposition, précisons quelques notations qui
seront utiles dans toute la suite. Soit M Mo *—!- M\ <^- Mi <— • • • la suite
d'éclatements de centre po P, PI, ¦¦¦ ou TI(T) {pn}- Pour k > 1 il existe un
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unique champ de vecteurs analytique Xk sur Mk relié à Xk-i par tt^, avec Xq X.
On dit que Xk est le relevé de X^-i par tt^. Le diviseur Ek (ttio^ • • -oirk)~^(po)
est invariant par Xk- Une application 7fc_i : M+ —*• -Mfc-l \ -E-fc-1 j i h^ 7fc-l(i) j

est une courbe intégrale de Xfc_i si et seulement si son relevé 7^ n^ o ~/k-l est

une courbe intégrale de Xk-

Preuve. Supposons T/+(F) TI+{^(). Puisque les propriétés tangentes itérées,
contact plat sont invariantes par éclatements, effondrements et que F est l'image
d'une demi-branche orientée lisse par le composé d'un nombre fini d'effondrements,
on peut supposer que F {x\ x<i ¦ ¦ ¦ xm_\ 0, z > 0} et que Eq {z 0}
est invariant par le champ de vecteurs X. C'est-à-dire que

m—1 m—1 o o

les a, a%, ahJ étant analytiques au voisinage de 0 G Rm. Si at 0 pour i 1,

2, • • • ,7« — 1, la demi-branche F est invariante par X. Supposons que ce ne soit

pas le cas. Il existe n > 0 tel que l'on ait pour chaque i:

a%(z) znb%(z) S 62(0)^0 6,0)gR-!>}.

Il existe une carte (y, z) centrée en pn telle que:

1 /l i •*/ 1 1 ç/ s'y* ç/ 1 /II 1 /l i j /l IC\ * * * f I "11

Le relevé Xn de X Xq s'écrit dans ces coordonnées:

m—1 m—1 „ „
Xn V (bt(z) + V y bt (zny z)) — + za(zny z) —

où les bhJ sont analytiques au voisinage de 0. On a alors:

m—1 o

Xn{Pn) Xn(0)

ce qui est incompatible avec l'hypothèse co(jn) Pn- O

2.1.2. Proposition. Soient X un champ de vecteurs analytique sur Mm singulier
enp, F une demi-branche analytique enp invariante par X et soit w(F) un vecteur
tangent à F en p. Alors, w(F) est un vecteur propre de la partie linéaire DX(p).
De plus, la valeur propre /i(F) correspondant à w(F) est nulle s'il existe une demi-
courbe intégrale positive de X distincte de F ayant un contact plat avec F en p.
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Preuve. La première assertion de la proposition est une conséquence de la remarque
suivante. Si ir\ : M\ —> M est l'éclatement de centre p, alors un point q G E\
^l (p) KP(tti — 1) est un point fixe de X\ le relevé de X si et seulement
si q G lP(n — 1) est une direction propre de DX(p). En effet, p\ est un point
singulier de X\ si p\ est la direction de la tangente à F en p. La preuve de la
seconde partie de la proposition repose essentiellement sur l'étude de l'évolution
du spectre de DX(p) par éclatement. Elle est décrite par l'assertion suivante.

Assertion. Soit {/xi, H2i •••,/%—lj A*(r)} le spectre de DX(p) où /x(F) est la
valeur propre correspondant à un vecteur v(Y) tangent à F enp, i. e p\ [v(T)] G

(m — 1). Alors E\ tt (p) est invariant par X\ et on a:

Spec (_DXi(pi)) {m - /x(F),...,/xTO_i -
Spec

De plus si H est une hypersurface lisse invariante par X, si v(T) est tangent à H
et si m correspond à un vecteur propre transverse à H, alors X\ est tangent au
transformé strict H\ de H par tt\ et on a:

Spec (DXtipt)) {W -M(F)}USpec (DX^n) \Hl

Pour prouver cette assertion choisissons des coordonnées (x,z), x [x\, x%, ¦ ¦ ¦

xm-l) en P telles que v(T) soit tangent à l'axe x 0. On écrit

Q^r+ (v(r)z+ <b,x >+¦¦¦") —
% i

où • • • désigne des termes d'ordre > 2 et <, > désigne le produit scalaire canonique
sur R1""1. Dans ces coordonnées on a:

at (ahi,ah2, ¦ ¦ ¦ ,a»,m-l)

DX(P)=(b M°r)j avec

{ b (61,62, • • • ,6m-l)

et A (ahJ). Soient (x',z) des coordonnées en p\ telles que x zx'. Dans ces

coordonnées on a

DX1(P1)={ ^Q> Mr)J avec

Ceci prouve la première partie de l'assertion. Pour prouver la deuxième partie
choisissons des coordonnées (x,z) tels que H {x\ 0}. Alors {x\ 0} étant
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invariant par X on a a\ 0 et f\ est divisible par x\, en particulier cm\ 0. On
en déduit:

Spec (DXxipx)) (W -M(F)) USpec (DXi(pi) |K=0}),

ce qui prouve l'assertion puisque {t\ 0} est le transformé strict H\ de H.

Fin de la preuve de la proposition. Cette preuve se fait par récurrence sur m
la dimension de M et par l'absurde. C'est-à-dire que nous allons monter que
(«(r) ^ 0 est incompatible avec l'hypothèse 7, F sont des demi-courbes intégrales
de X ayant un contact plat et | 7 \=/= F. Lorsque m 1, cette contradiction est
évidente puisque la condition ^(7) w(F) implique 7 F.

Supposons 77i > 1 et /x(F) =/= 0, alors /x(F) < 0 puisque p ^(7). Les courbes

7 |, F sont tangentes à Ws(X,p), la variété stable de X en p. Ainsi | 7 | et F

sont contenues dans Ws(X,p) qui est analytique lisse ([Po], [Ha]). Si Ws(X,p)
n'est pas de dimension m on aboutit à une contradiction d'après l'hypothèse de

récurrence. Ainsi on peut supposer que toutes les valeurs propres de DX(p) ont
une partie réelle négative.

Notons TTfc : M% —> M]._\ la suite d'éclatements de centres les points pk G

TI(T) et posons F Fo, 7 70, Tfc tt^IVi), 7fc ^(7), Puisque Ffc est
invariante par Xk, le relevé de X/.-1, sa tangente r(Ffc) en pu est une direction
propre de DXk{pk) de valeur propre /x(Ffc). En fait p>k+l est le point de irk {pk)

(m — 1) correspondant à r(Ffc) et de plus F^, 7^ ont encore un contact plat.
Distinguons deux cas:

1er cas, F est lisse. En choisissant des coordonnées (xSk\z) en pi~ telles que
Ffc {xSk> 0}, on a, d'après l'assertion précédente (et avec les mêmes notations)

Spec (DXk(Pk)) {w - kn(T), • • • Mm-1 - MO} u {m(O}.

Ainsi, /x(F) étant strictement négatif, pour A; assez grand les \i3 — k/^(T) ont tous
des parties réelles positives. La variété stable Ws(Xk,Pk) est de dimension 1. On
termine par récurrence.

cas, F singulière. Notons tout d'abord que /x(Ffc) ne peut pas rester strictement

négatif pour tout k. En effet, pour k assez grand, F^ est lisse et si /x(Ffc) < 0

pour tout k on retombe dans le cas précédent. Ainsi, il existe £ tel que /i(F£_i) < 0

et j-i{Ti) 0. De plus, d'après le premier cas, on peut choisir l tel que /x(Fj) 0

pour j > £. D'après l'assertion on a:

Spec (DXeipe)) M^t-l)} U Spec (DXe(Pe) \Ee)

où Ei 7T^1(p£_i). Puisque n(Te) 0, la tangente t(F^) est tangente en pu à En.
Pour tout indice j > £ on a d'après l'assertion

Spec (M,(p,)) Spec (DX3(p3)) {m(^_i)} U Spec (DX3(p3) \Fj)
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où Fo est le transformé strict de Eg par tTj o 7Tj_i o o tt^_|_i. Alors I\, est tangent
à Fj pour j > £ et ainsi F^ est contenu dans Eg. Ce qui est absurde.

2.2. Foyer monodromique. Supposons dim M 2. On dit que p est wra /oy-
er monodromique contractant de X s'il existe une demi-branche analytique F

c(]0,e[), où c est une application analytique avec c(0) p, telle que, toute orbite
positive 7 : R+ —> M de X issue d'un point c(s), 0 < s < e, recoupe F une
première fois en un point c{s\) avec s\ < s. L'application c(s) i—s- c(s\) est l'application
premier retour de Poincaré de p évaluée sur F pour X. Le résultat suivant est bien
connu. Ses preuves classiques reposent sur le théorème de désingularisation des

champs de vecteurs en dimension 2 [Se] ou encore sur un argument de Khovan-
ski [Kh]. Celle que nous proposons utilise de façon essentielle la proposition du
paragraphe 1.2.

Théorème. Supposons que p soit un point singulier de X et soit 7 une demi-
courbe intégrale de X telle que ^(7) p. Les propriétés suivantes sont équivalentes:
1) 7 ne possède pas de tangente en p.
n) 7 ne possède pas la propriété des tangentes itérées en p.
ni) 7 est oscillante en p par rapport à une demi-branche analytique F.

iv) 7 spirale autour de p.
v) p est un foyer monodromique contractant.
vi) II existe un voisinage V (semi-analytique) de p positivement invariant par X
tel que toute demi-courbe intégrale de X issue d'un point de V spirale autour de

p.

Preuve. Il est clair que vi) implique i), que i) implique ii) et ii) implique iii)
d'après la proposition de 1.2. Prouvons que iii) implique iv). Soit c une application
analytique de R dans M telle que c(0) p, c(]0,e[) F. L'ensemble des s > 0

tels que X(c(s)) et c'(s) soient colinéaires est un sous-ensemble analytique strict
de R puisque | 7 |çz! F. On peut le supposer vide en prenant e > 0 assez petit.
En particulier, F est transversalement orientée par 7, ce qui prouve iv). Montrons
que iv) (ou iii) implique v). On sait déjà que toutes les demi-courbes intégrales
de X coupent F transversalement et toujours dans le même sens. Soit qo c(sq),
q\ c(s\) deux points d'intersection consécutifs de | 7 | avec F et soit K le

compact de bord la réunion des arcs qo q\ sur F et | 7 | L'argument classique
utilisé dans la preuve du théorème de Poincaré-Bendixson appliqué à K montre
que toute demi-courbe intégrale de X issue d'un point c(sq) de F avec s'o < sq

recoupe F en un point s^ avec s^ < si (figure 4). Ceci prouve clairement les

assertions v) et vi) en prenant V int K. D

2.3. Tangentes itérées, oscillation et spiralement axial. Dans tout ce

paragraphe on suppose dim M 3 et 7 désigne une demi-courbe intégrale d'un
champ de vecteurs analytique X sur M telle que ^(7) p est un point singulier
(non nécessairement isolé) de X. Nous avons vu dans le paragraphe précédent
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Figure 4.

qu'en dimension 2 les propriétés 7 "oscille", "7 possède des tangentes itérées" sont
incompatibles. Cette dichotomie est propre à la dimension 2. En dimension 3, il
faut la remplacer par le spiralement axial comme le montre le théorème suivant.

Théorème 1. Soit 7 une courbe intégrale d'un champ de vecteurs analytique sur
une variété de dimension 3. Alors 7 spirale autour d'une demi-branche analytique
F enp si et seulement si 7 a la propriété des tangentes itérées en p et est oscillante
en p par rapport à une surface semi-analytique S.

Preuve. Si F est un axe de spiralement pour 7, nous avons déjà vu avec la proposition

de 1.4 que 7 a un contact plat avec F. De plus, 7 est oscillante par rapport
à toute surface semi-analytique S telle que F C S\T d'après le lemme de 1.4 et
la définition de spiralement axial. Supposons que 7 possède des tangentes itérées
orientées TI+{^() et que 7 est oscillante par rapport à une surface semi-analytique
S. Montrons que 7 spirale autour d'une demi-branche F.

lere étape, 7 a un contact plat avec une demi-branche analytique F.

Quitte à compléter S en une surface analytique et à prendre une composante
irréductible, nous pouvons supposer que S est irréductible et qu'il existe une carte
affine (£/, (x,y,z)) centrée en p ^(7) et une fonction analytique / sur U telle
que

Sing/C{/ O}, dim (Sing/)< 1, S=Un{f 0}.

De plus quitte à éclater une fois, on peut aussi supposer que | 7 |c U+ {z > 0}.
Remarquons tout d'abord que 7 coupe une infinité de fois S' S'\Sing /. En effet,
si ce n'est pas le cas, 7 coupe une infinité de fois une demi-branche analytique F

en p contenue dans S D Sing /. Les courbes 7 et F ont les mêmes tangentes itérées.
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D'après la proposition 2 1, F est une demi-courbe intégrale de X Ainsi | 7 | est

contenue dans S* et 7 n'est pas oscillante par rapport à S
Soit Z S n {df(X) 0} l'ensemble des points de "tangence généralisés" de

X et de S Montrons tout d'abord que dim Z < 1 En effet, S étant irréductible,
si dim Z 2 on &Z S La partie lisse S' de S est invariante par X Puisque

7 coupe S", | 7 | est contenu dans S et ainsi 7 n'est pas oscillante par rapport
à S Quitte à prendre une nouvelle carte affine centrée en p on peut supposer
que Z n £/+ Z~^~ est une union finie, éventuellement vide, de demi-branches
analytiques Montrons qu'une de ces branches a un contact plat avec 7 Si ce n'est

pas le cas et si TI(~/) {pn} il existe £ tel que p£ n'appartienne pas à la réunion
des tangentes itérées de ces branches Soit tt ir\ o -k<2 o o tt£ le composé de
la suite d'éclatements de centres p, p\, ,Pt-i II existe une carte affine (Ut),
centrée en p£ telle que si U^~ est la composante connexe de U(\ir~^(p) contenant

7£ 7r-1(7) on ait Zf £// n ir~l(Z) 0 Posons Se Tr"1^) fe f o n et

soit Xi le relevé de X par tt La restriction de tt à llf étant un îsomorphisine sur
son image, on a

Se n {dfe(Xe) 0} n U+ Z+ 0

Ainsi, en oubliant l'indice i et en identifiant une carte affine avec R3, nous sommes
dans la situation suivante / est une fonction analytique sur R3, X un champ de

vecteurs analytique sur R3, 7 une demi-courbe intégrale de X avec ^(7) {0} et
nous devons prouver que les deux conditions

7

sont incompatibles, où [/+ est une composante connexe du complémentaire de

x£ly£2z 0 avec e\, e% égaux à 0 ou f telle que | 7 |C U+ Soit S\ une composante
connexe de /~1(0) n [/+ qui est coupée une infinité de fois par 7 D'après la
deuxième condition, S\ est une hypersurface fermée de U+ et U+\S\ a deux
composantes connexes Puisque df(X) \s1^z 0 toute demi-orbite positive de X
issue d'un point de S\ et contenue dans [/+ est contenue dans une de ces deux
composantes connexes ceci contredit la condition $ | 7 | C\S+ 00

2. Fin de la preuve. D'après les arguments développés dans la première partie,
l'ensemble Z+ des points de tangence de X avec S+ /~1(0) n {z > 0} est la
réunion de F, une demi-branche analytique ayant un contact plat avec 7, et d'un
nombre fini de demi-branches analytiques parasites D'après le lemme de f 4, et
en repprenant ses notations, il existe no tel que, pour n > no, Wn n Z+ F

et, Si, S<2, ,Sr désignant les composantes connexes de S+ n W„\F, les couples
(WnC\Sl, Wn) sont des triangles de côté F Ainsi, il existe £q tel que, pour n > no,
Rn Wn n Si0 soit transversalement orienté par 7 De plus, puisque 7 a un
contact plat avec F, on sait que j(t) G Wn pour t assez grand Nous avons ainsi
déjà montré que les triangles (Rn, Wn), pour n > no, satisfont aux conditions de
la définition "7 spirale autour de F"
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Figure 5.

Montrons que ces conditions sont vérifiées pour tout triangle de côté F. Soit
(T,W) un tel triangle. D'après le lemme de 1.4, il existe n\ et une composante
connexe T\ de Wni n T telle que pour n > ni le couple (ï\ n Wn, Wn) soit un
triangle de côté F compatible avec (Rn, Wn). L'ensemble des points de tangence
de X avec T\ est d'après les arguments développés dans la première partie, un
ensemble semi-analytique Z\ de dimension au plus 1. D'après l'assertion ii) du
lemme de 1.4, il existe n^ tel que, pour n > n^, on ait Z\ n Wni 0 ; c'est-à-dire

que T\ n Wni est transverse à X.
Montrons, pour achever la preuve, que 7 coupe une infinité de fois T\ n Wn

pour n > ni lorsque T\ n Wn est différent de Rn. Soient 7(^0)1 7(^1) avec ^0 <
t\ deux points d'intersection consécutifs de 7 avec Rn. Les triangles (Rn, Wn),
(T\ n Wn, Wn) étant compatibles, le complémentaire de T\ U F dans Wn\Rn a
deux composantes connexes. Puisque 7([toi*l]) reue deux composantes connexes
distinctes du bord de Wn\Rn, il existe to < ^2 < t\ tel que 7(^2) appartient à

TiC\Wn. D

Corollaire 1. La propriété de spiralement axial est invariante par éclatement et
effondrement pour les courbes intégrales d'un champ de vecteurs analytique réel.

Preuve. Soit tt : M\ —> M l'éclatement de centre p G M et soit 7 une courbe
analytique de X tel que ^(7) p. Supposons que 7 spirale autour d'une demi-
branche F. Alors 7 possède des tangentes itérées et oscille par rapport à une
surface S. La courbe 71 n^ 07 possède des tangentes itérées et oscille par
rapport à S\ ir^ (S). D'après le théorème, 71 spirale autour d'une demi-branche
analytique.

Supposons que 71 tt o 7 spirale autour de Fi. Alors tt(Fi) F est une
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demi-branche analytique qui a un contact plat avec 7. Si S* est une surface semi-

analytique telle que F C S\T, d'après la définition du spiralement on sait que:

# v-1{S)ç\\ll\= # ^

Ainsi 7 spirale autour de F d'après le théorème. D

Corollaire 2. (Propriété caractéristique du spiralement axial). Soit 7 une courbe

intégrale de X telle ^(7) p et soit F une demi-branche analytique en p. Alors 7
spirale autour de F si et seulement si pour toute surface serai-analytique S de M
on a l'équivalence suivante:^ S(~) | 7 |= 00 -<=> F C S\T.

Preuve. Supposons que 7 spirale autour de F et soit S une surface. Si F C

S"\r, d'après le lemme de 1.4 (existence de triangle analytique) et la définition du
spiralement 7 est oscillante par rapport h S. Si F n S\T 0, d'après le lemme
1.4, il existe un voisinage ouvert Wn de F tel que S n Wn 0 et j(t) G Wn pour
t assez grand.

Supposons que l'équivalence soit vraie pour tout S de M3. L'argument utilisé
ci-dessus montre que l'implication féSn | 7 |= 00 => F C S\T entraîne que 7
a un contact plat avec F. La deuxième implication entraîne que 7 est oscillante.
Ainsi, 7 spirale autour de F d'après le théorème. D

Corollaire 3. Supposons que 7 (courbe intégrale de X sur Ms) ait un contact
plat avec une demi-branche F lisse et soit (x\, x%,z) une carte affine en p ^(7)
telle que:

T {x1=x2 0, z>0} <y(t) (x1(t),x2(t),z(t)).

Alors 7 spirale autour de F si et seulement si la projection 70(i) (xi(t), x^it))
de 7 sur z 0 spirale autour de p.

Preuve. On a déjà vu dans 1.4 que si 7 spirale autour de F, alors 70 spirale autour
de p. Si 70 spirale autour de p, il est clair que 7 est oscillante par rapport au plan

xi 0 et ainsi 7 spirale autour de F d'après le théorème. D

Remarque. Ce corollaire nous incite à comparer le spiralement autour d'un
point en dimension 2 et le spiralement axial en dimension 3. Nous avons vu (avec
le théorème de 2.2) que dans le premier cas, l'existence d'une courbe intégrale
qui spirale autour de p implique que p est un foyer monodromique, c'est-à-dire
l'existence d'un voisinage (semi-analytique) de p, invariant par X et formé de

courbes intégrales qui spiralent autour de p. En dimension 3, nous savons prouver
ce résultat lorsque l'axe de spiralement n'est pas formé de points fixes. C'est l'objet
essentiel du chapitre suivant.
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II. Axes de tourbillonnement

Soient M une variété analytique réelle de dimension trois et X un champ de

vecteurs analytique sur M.

Définitions. Si T est une demi-hranche analytique en un point p de M nous
dirons que:
i) F est un axe de spiralement non dégénéré de X si T est un axe de spiralement
pour une demi-courbe intégrale 7 et T n'est pas contenu dans SmgX.
n) F est un axe de tourbillonnement de X s'il existe un voisinage ouvert semi
analytique V de T qui est positivement invariant par X et tel que T soit un axe de

spiralement pour toute demi-courbe intégrale positive 7 d'origine un point de V\T.
Nous dirons alors que V est un domaine de tourbillonnement pour T. De plus nous
dirons que T est un axe de tourbillonnement non dégénéré si T <£_ Sing X.

Le but principal de ce chapitre est de montrer le théorème suivant.

Théorème 2. Si T est un axe de spiralement non dégénéré de X alors T est un
axe de tourbillonnement de X.

Les axes de tourbillonnement non dégénérés sont clairement des "centres
organisateurs" de la dynamique au sens de R. Thom [TI12]. Le résultat suivant montre
que ces axes possèdent les propriétés de finitude, d'analyticité que l'on souhaite.

Corollaire. Soit p un point de M. L'ensemble des axes de spiralement en p est

fini. L'ensemble des axes de tourbillonnement non dégénérés est localement fini
en p, c'est-à-dire qu'il existe un voisinage de p qui ne contient qu'un nombre fini
d'axes de tourbillonnement non dégénérés.

On déduit de ce corollaire que l'ensemble des axes de spiralement de X est contenu
dans un sous-ensemble semi analytique de dimension 1. Ces résultats ne sont pas
entièrement satisfaisants. Nous ne savons pas si le nombre d'axes de tourbillonnement

(éventuellement dégénérés) est fini. En particulier, nous ne savons pas si
la situation suivante peut se présenter pour un champ de vecteurs X analytique
dans le voisinage de 0 G R3: la droite A {y z 0} est contenue dans Sing X
et il existe une suite de points pn (xn,0, 0), xn^\ < xn, tendant vers 0, tel que
le germe de A en pn soit un axe de tourbillonnement de X (figure 6).

La preuve du théorème 2 est décomposée en trois étapes. Dans la première
nous étudions le spectre de DX{p) lorsque p est un point singulier élémentaire
de X, i.e. lorsque DX{p) n'est pas nilpotente et nous en déduisons le concept
de singularité réduite spiralante. Dans le paragraphe suivant nous montrons que
le théorème est vrai pour ces singularités. Enfin, dans la dernière étape, nous
montrons tout d'abord qu'il est vrai pour les singularités élémentaires et ensuite
en utilisant des éclatements et des ramifications nous montrons que le cas général
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Axe de tourbillonnement
non dégénéré

Figure 6.

se ramène au cas élémentaire. Le paragraphe suivant est consacré à la preuve du
résultat de finitude, elle repose sur l'uniformisation locale des champs de vecteurs
en dimension 3. Enfin, dans le dernier paragraphe nous étudierons le caractère
"équilibré" des axes de tourbillonnement non dégénérés.

1. Singularités élémentaires. La preuve de la proposition suivante utilise
essentiellement la proposition 2.f .2. du chapitre précédent.

Proposition. Soit p une singularité élémentaire (DX(p) non mlpotente) d'un
champ de vecteurs analytique X sur M. Supposons que F soit un axe de spiralement
non dégénéré d'une demi-courbe intégrale 7 de X avec p ^(7). Alors F est lisse,
sa tangente en p est une direction propre de DX(p) de valeur propre /x(F) 0 et
les deux autres valeurs propres de DX(p) sont conjuguées à partie réelle négative
ou nulle.

Preuve. D'après le théorème f, 7 a un contact plat avec F et, d'après la proposition
2.1.2., la tangente à F en p est une direction propre de DX(p) de valeur propre

0. Notons tt^ : M% —s- M]._\ la suite d'éclatements de centre les points
de T/(F) avec po P, Mq M et soit £ > 0 le premier entier tel que

j ^_i) soit lisse. D'après l'assertion de la preuve de proposition 2.1.2.

Spec (DX(p)) Spec (DXe(Pe)).

Ainsi, pour étudier le spectre de DX{p), nous pouvons supposer que F est lisse.
Choisissons une carte affine en p telle que T {x y 0, z > 0}. Soit 7' l'image



Vol. 75 (2000) Oscillation, spiralement, tourbillonnement 305

de 7 par la projection (x,y,z) i—> (x,y). D'après I.1.4, la demi-courbe 7' spirale
autour de p dans le plan z 0. Soit a : M —s- M l'éclatement de centre la droite
x y 0 et soit 7 a^1 o 7 le relevé de 7 par a. Puisque 7' spirale autour de

p on a ^(7) <j~^{p) ~ S*1. Montrons (par l'absurde) que les valeurs propres /x',
/x" de DX(p) distinctes de /x(F) sont conjuguées, en particulier /x' ß" ^ 0. Si ce

n'est pas le cas, /x', /x" sont réelles distinctes. On peut choisir les coordonnées x,
y, telles que le jet d'ordre 1 de X en p s'écrive (compte tenu du fait que x y 0

est invariant)

JlX(p) n'x — + n"y — avec /x' 7^ 0.
ax ay

Soient (x, y, z) des coordonnées sur M au point p' G RP(1) correspondant à

y z 0 telles que x x/y ,y y ,~z z et soit X le relevé de X par <r. Alors
la restriction de X à a^^p) s'écrit dans ces coordonnées

~ dx \*-Hp)= (»'-»")* -fä ¦

Puisque /x' ^ fj,",p est un point singulier hyperbolique de X \a-itp\ et alors a~^-(p)

ne peut pas être un cycle limite de 7, en particulier ^(7) =/= a~ (p).
Montrons que F est lisse. Si ce n'est pas le cas il existe un entier k > 0 tel que

Ffc est tangente au diviseur exceptionnel Tr^\(pk) £*• Ainsi /x(Ffc) 0 est une
valeur propre de la restriction de DXu{pk) à Eu- D'après l'assertion de la preuve
de la proposition 2.1.2., ceci est impossible puisque l'on a:

Spec (pXk{pk) \Ek^j Spec (flln(ft_i) 1^) • • • {n',fi'}. D

Corollaire. Sott p une singularité élémentaire de X. Il existe au plus deux axes
de spiralement non dégénérés en p. De plus, il n'existe pas de suite de points
{in}iin 7^ Pi tendant vers p telle que X possède un axe de spiralement non
dégénéré Tn au point pn.

Preuve. Soit F un axe de spiralement en p pour 7. Fa suite de points TI(T) {pk}
est uniquement déterminée par la condition: le point p^ G RP(2) 7rfcj1(pj;_i) est

l'image par la projection canonique de R3 sur RP(2) du noyau de fl^-ifft-i).
Ceci montre la première partie du corollaire. Pour prouver la seconde partie,
raisonnons par l'absurde. Supposons qu'il existe une suite {qn} —? P et une double
suite {(Fn,7„)} d'axes de spiralement Fn pour des courbes intégrales 7„ de X aux
points qn. Puisque les courbes Fn, 7„ ne rencontrent pas le lieu singulier de X, on
peut supposer (quitte à diviser X par une unité) que dim Sing X 1. Il existe une
demi-branche A C Sing X contenant une infinité de qn. Puisque Ker DX{p) est
de dimension 1, on peut choisir qn G A voisin de p tel que Ker DX(qn) soit aussi
de dimension 1 et tel que le germe An de A en qn soit non singulier. Puisque Tqn

An et Tqn Tn sont contenus dans Ker DX(qn) on a TqnAn TqrTn. En répétant
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cet argument après éclatement on a TI(An) TI(Tn). Ainsi Tn An C Sing X
ce qui contredit l'hypothèse Tn est un axe de spiralement non dégénéré. D

2. Singularités spiralantes réduites. Dans le paragraphe suivant nous verrons
qu'après un nombre fini d'éclatements, les singularités élémentaires qui portent des

axes de spiralement non dégénérés satisfont à la définition suivante.

Définition. Un pointp de Sing X est une singularité spiralante réduite s'il existe

une carte affine ({x,y, z)), U) en p telle que T {x y 0, z > 0} soit un axe
de spiralement d'une demi-courbe intégrale 70 et telle que

1 / ß \X V z1 Lt + zq+1 +V) oùq>let*-^ V dz J
,,=0

1) Lt(x,y) (atx + ßty) —— + (jtx + ôty) —- avec Lq non nilpotent.
ox oy

11) V a{x, y,z) -^ + b{x, y, z) — avec a(0, 0, z) 6(0, 0, z) 0.

De telles coordonnées s'appellent des coordonnées adaptées à (X,p).

La composante de X sur —- étant —z9+1 les demi-courbes intégrales 7 de X
oz

d'origine un point 7(0) G {z > 0} sont contenues dans {z > 0} et peuvent
être paramétrées par z. Plus précisément, ces courbes sont solutions de l'équation
différentielle dans R2 (dépendant du temps z) suivante:

du 1

î=0
Lt(u)j — V(u, z) avec u=(x,y).

On écrit 7(2) (x(z), y(z), z) (u(z), z) la paramétrisation correspondante de

7 | et on pose r2(z) ||m(z)||2 x?{z) +j/2(z). Compte tenu de la condition
V(0, z) 0, on peut supposer que || V(u, z)\\ < 1 pour z <E C\ avec C£ {x2+y2 <
1,0 <z <e}.

D'après la proposition du paragraphe précédent, le spectre de DX(p) Lq est
du type {0, A, A}. On dit que (X,p) est asymptotiquement monodromique (resp.
non asymptotiquement monodromique) si A ^ A (resp. A A). Pour prouver le

théorème pour les singularités réduites nous envisageons ces deux cas. Le premier
a déjà été étudié dans [Bo-Du] avec une autre approche.

Proposition 2.1. Soit (X,p) une singularité spiralante réduite, asymptotiquement

monodromique d'axe T. Alors T est un axe de tourbillonnement. De plus
dans des coordonnées adaptées bien choisies X est transverse aux niveaux des

fonctions z, x2 + y2 et y/x sur le cylindre C£\T.
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Preuve. Un petit calcul (voir encore [Tak]) montre qu'il existe un changement de

coordonnées dépendant de z du type

u (x,y) » (Ao + zAx + ¦ ¦ ¦ + z«Aq){u) A% G M2ß{M.)

qui permet d'écrire les Lt pour i 0,1, 2, ...,q, sous la forme:

Li{x,y) (atx-ßty) — + (ßtx + aty) — avec /30 ^ °-
ax oy

Dans ces coordonnées on peut supposer (compte tenu de la condition V(0, z) 0)

que:

du dr r 2

avec I <p(u,z) |< f pour (u,z) G C£. Montrons tout d'abord que l'hypothèse, il
existe 70 ayant un contact plat avec {x y 0, z > 0}, implique l'existence de

j G {0, f, • • • q — 1} tel que at 0 si i < j et a0 < 0. Supposons que ce ne soit

pas le cas et étudions l'équation différentielle vérifiée par r^(z) Xq(z) + j/q(ä),
où 70(^) (xq(z), yo{z), z) est une réparametrization de 70 par la hauteur z. On
a alors trois possibilités

i) «o a\ • • • aj-l 0, «j > 0 avec j < q. On a alors pour z assez petit,
dr2
—-^ (z) strictement négatif, ce qui contredit ^(70) 0.

1 dVr\ [Zj
ii) «o al • • • aq-l 0, aq < 0. Pour z assez petit on a — >

Tri [ZJ UiZ

— avec a -. On en déduit Tq{z) > Aza avec A > 0 et alors 70 n'a pas un

contact plat avec F.

iii) «o a\ • • • aq 0. On voit que ro(z) ne tend pas 0 si z —> 0.

Soit a —Uj >0, s q — j>l. On peut écrire

dr2 ar2
,_

où ^ est bornée sur Ci. Il existe e, a > 0 tels que 0 < < sa ^
si (m, z) g

C£. Le cylindre Ce est positivement invariant par X et pour toute demi-courbe
intégrale 7(2) (x(z), y(z), z) r2(z) x2(z) + y2(z) on a

0<
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On en déduit r2(z) < A exp (—azs). Ainsi ^(7) 0 et 7 a un contact plat avec

{x y 0, z > 0}. Pour terminer la preuve de la proposition remarquons que
l'on a

(x2 +y2)-1(xdy - ydx){X) 2/%(l + zf{x, y, z))

où / est bornée sur C\. Ainsi pour e > 0 assez petit toute demi-courbe intégrale
7 d'origine un point de Ce\F coupe transversalement les niveaux de y/x. De plus,
l'équation différentielle ci-dessus montre que la projection de 7 sur z 0 spirale
autour de 0. D'après le corollaire 1.3, F est un axe de spiralement de 7. D

Proposition 2.2. Soit (X,p) une singularité spiralante réduite, non asympto-
tiquement monodromique d'axe T {x y 0,z> 0}. Alors il existe e > 0 telle

que, dans des coordonnées adaptées (x,y,z), C£ {x2 + y2 < f, 0 < z < e} soit
un domaine de tourbillonnement de X. De plus X est transverse aux niveaux des

fonctions x -\- y et z sur C£\T.

Preuve. Soit 70 la demi-courbe intégrale de X qui spirale autour de F. Puisque
w(7o) {0}> la valeur propre A A est strictement négative. Quitte à multiplier
X par une constante et à effectuer un changement de coordonnées linéaire en (x, y)
on peut écrire

Ln — x ——h y 7— + Sx 7— avec S 0 ou S l.
V ax oyJ ay

L'équation différentielle vérifiée par r2(z) x2(z) + y2(z), où 7(2) (x(z), y(z),
z) est la réparametrization d'une courbe intégrale 7, s'écrit:

^2 J2

où 0 < a < (fi(x,y,z) pour [x,y,z) G C£. Les arguments de la preuve de la
proposition précédente montrent immédiatement que Ce est positivement invariant
par X, que toute demi-courbe intégrale 7 :11—s- 7(t), avec 7(0) G Ce, a un contact
plat avec F en 0 et que X est transverse aux niveaux de x2 + y2 et de z. Pour
montrer qu'une telle demi-courbe est oscillante considérons l'éclatement polaire de

x y 0 avec les notations suivantes:

¦k : S1 xRxR^R3 Tr(x,r,z) (rx,z),
D* n-\{x y 0}),Ce* tt-^C,), X* n-\X).

Le diviseur D* est une variété centrale globale de X*, le relevé de X par tt.
L'assertion suivante est plus ou moins classique. D

Assertion sur la variété centrale. Soit 7* une demi-courbe intégrale positive
de X* (maximale) d'origine 7*(0) G C*. Il existe une unique courbe intégrale
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- — — I

Figure 7.

maximale positive a de X* contenue dans D* (~\ C* telle que la distance de 7*(t)
à c(t) soit bornée par C exp (—at) pour t > 0 où a, C > 0. On dit alors que a est
la courbe accompagnatrice de 7*.

Soit maintenant 7q tt"1 o 70 où 70 spirale autour de F et soit <ro sa courbe
accompagnatrice. Un argument de la preuve de la proposition du paragraphe
précédent montre que uj(^q) uj(ao) ir~^(p) ~ S*1. Le cercle ir~^(p) est un cycle
limite de X* \n* et uj(<j) -K~^(p) pour toute courbe intégrale dans C* C\D*. Soit

7 tel que 7(0) G C£, 7* tt^1 07 et soit a la courbe accompagnatrice de 7*. Alors,
d'après l'assertion, ^(7*) ui(a) -K~^(p) et ainsi 7 est oscillante par rapport au
plan x 0. On conclut en appliquant le théorème 1. D

Preuve de l'assertion. Cette preuve reprend des arguments de [Ke] et nous n'en
donnerons que les grandes lignes. Compte tenu de l'écriture de X dans des
coordonnées adaptées on peut écrire (modulo un changement de temps):

X' l 0(1) + A(x, r, z) — + b(x)r rB^r,;)) --;«+'-
où les restrictions de A, B à S*1 x {0} x {0} sont nulles et b(x) < b\ < 0 si x G S1.

Notons que D* D* n C* est positivement invariant par X*. Plus précisément
toute demi-courbe intégrale a de X* issue d'un point de D* est définie sur [0,oo[
et w(cr) est contenu dans D* C\{z 0}. Soient 7*, a des demi-courbes intégrales
de X* d'origines respectives {xQ,rQ,zo), (x_i,0,zq). Alors v(t) 7*(t) — a(t)
(x(t),p(t),0), t > 0 est solution de l'équation différentielle E sur S*1 x [0,l[,
dépendant du temps obtenue en écrivant v'(t) X*(j*(t)) —X*(a(t)). En écrivant
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que — x(t) < 5&i x(t), on peut utiliser la méthode classique d'approximations
successives pour obtenir v(t) comme point fixe de l'opérateur intégro-différentiel
déduit de E. L'existence de la solution a : t h-> a(t) cherchée et de la majoration
associée s'en déduisent. D

3. Fin de la preuve du théorème 2. Dans tout ce paragraphe, F désigne un axe
de spiralement en p, non dégénéré, pour une demi-courbe intégrale 70 de X. Nous

prouverons le théorème en nous ramenant au cas réduit tout d'abord pour une
singularité élémentaire et ensuite dans le cas général en effectuant des éclatements
de points, de courbes et, éventuellement, une ramification. Nous utiliserons le

résultat du paragraphe précédent sous la forme suivante. Si (x,y,z) sont des

coordonnées adaptées à une singularité réduite spiralante (X,p) il existe e > 0 tel
que C£ {x + y < 1, 0 < z < e} soit un domaine de tourbillonnement. De plus
X est transverse aux niveaux de x -\- y sur C£\T.

Proposition 3.1. Soit (X,p) une singularité élémentaire qui possède un axe
de spiralement F non dégénéré (pour une courbe intégrale 70 j transverse à une
hypersurface lisse D et soit ((xq, yo, zo), U) une carte affine en p telle que D
{zq 0} et F C {zo > 0}. Alors F est un axe de tourbillonnement de X qui
possède un domaine de tourbillonnement V semi algébrique dans les coordonnées

(xo, yo, zq).

Preuve. D'après la proposition du paragraphe 1, l'axe F est lisse et /x(F) 0. Il
existe un changement de coordonnées du type x xo + <p(z), y yo + i/j(z), z zq
tel que T {x y 0, z > 0}. Soit q + 1 l'ordre en z de la restriction de X à F.
On a

X a(x,y,z) — + b{x,y,z) — + (-zq+1 + c(x,y,z)) —

où a(0,0, z) 6(0,0, z) 0, ordre c(0,0, z) > q + 1 et DX(Q) n'est pas nilpotente.
Si TI(T) {p,,}, notons tt le composé des q+ 1 éclatements de centres p, p\ ¦ ¦ ¦ ,pq
et soit ((x',y',z), U') une carte affine en pq telle que x' xz9+1, y' y z9+1.

Dans ces coordonnées le relevé X' de X s'écrit

où les Lt et X' sont comme dans la définition des coordonnées adaptées au cas
réduit spiralant et h(0) < 0. Ainsi (x', y', z) sont des coordonnées adaptées au

champ h^xX'. Il existe e > 0 tel que C£ {xl<2 + y'2 < 1, 0 < z < e} soit
un domaine de tourbillonnement de X'. De plus X' est transverse aux cylindres
{x/2 + y'2 r2, | z |< e} pour r < 1. Si a(z), ß{z) sont des fonctions qui ont un
ordre assez élevé en z, il existe e' tel que

C£,{a,ß) {{x' + a(z))2 + (y'+ ß(z))2 <1 0 < z < e'}
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soit un domaine de tourbillonnement de (X',p'). Sa projection

7r(C£(a, ß)) {(x + zt+la{z)f + (y + z*+1ß(z))2 < z*+l 0 < z < e1}

est un domaine de tourbillonnement de (X,p). Ecrivons <fi(z) <ps(z) + fs(z),
ip(z) ips(z) + gs(z) où (ßs, ips sont les jets d'ordre s de (fi, ip. Pour s assez grand

V {(x - fs(z)f + (y- gs(z)f < z^1 0 < z < e1}

est un domaine de tourbillonnement de (X,p) qui est semi algébrique dans les

coordonnées initiales (xo, yo, zo) puisque x — fs(z) xq + fs(z), y — 9s{z)
yo + il>s(z). D

Proposition 3.2. Supposons que T sott un axe de spiralement non dégénéré en

p pour la demi-courhe intégrale 70 de X. Notons TI(T) {pt}, t» l'éclatement
de centre pt—i, I\ n~ (I\_i), et ((x,y,z), U) une carie affine en p. Il existe
k > 0 et des coordonnées (x^, y^, z/~) en pi~ telles que le relevé de X en pi~ s'écrit
Xk zskk X'k avec DX'k(pk) =£ 0 et Tk C {zk > 0} est lisse transverse à {zk 0}.
De plus tv\ o ir-2 ¦ ¦ ¦ o irk s'écrit algébriquement dans les coordonnées (x,y,z), (xk,
Vk-, zk).

Preuve. Pour i assez grand, Tt est lisse, transverse au diviseur exceptionnel (qui
est lisse en pt). Sa tangente est une direction propre de DX(pt) associée à une
valeur propre /x(I\) 0. On peut (modulo ces i premiers éclatements) choisir des

coordonnées [xl,y',z') telles que F {x' y' 0, z' > 0}, i.e que

X a — + b— + c— avec a(0,0,z') 6(0,0, z') 0
axJ oy' oz'

et 0(0,0,2/) est d'ordre d > 1 en z'. Soient (x\ x/z', y\ y/z', z[ z') des

coordonnées en p\. Alors si DX(p) 0 il existe si > 0 tel que X\ zslX[ où

X[ ai — + èi — +ci — avec ai(0,0,4) èi(0,0, z[) 0
ox^ oy^ oz^

et c(0,0, z']) est d'ordre d\ < d. Ainsi, il existe k > 0 et des coordonnées (x'k, y'k, z'k

en pk telles que les conclusions de la proposition soient vérifiées. La carte affine

((x, y, z), U) étant fixée, on peut évidemment choisir une carte affine ((xk,yk, zk)),
Uk en pk telle que tv\ o tt2 o • • • o irk soit algébrique et le diviseur exceptionnel soit
zk o. a

Si DX'k(pk) n'est pas nilpotente, il existe, d'après la proposition 3.1 un domaine
de tourbillonnement Vk de Tk pour {Xk, pk) semi algébrique dans la carte ((x^, yk,
Zk), Uk)- D'après le théorème de Tarski sa projection par tv\ o tt2 o • • • irk est semi
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algébrique dans les coordonnées (x,y,z). C'est un domaine de tourbillonnement
d'axe F pour (X,p).

Si DX'k(pk) est nilpotente, compte tenu de l'algébricité de tv\ o tt2 o • • • o nk, la

proposition suivante achève clairement la preuve du théorème 2.

Proposition 3.3. Supposons que DX(p) ^ 0 soit nilpotente, que F soit un axe
de spiralement en p non dégénéré, lisse, pour une demi-courbe intégrale 70 de X
et que ((xq, yQ, zq), Uq) soit une carte affine en p telle que F C {zq > 0} soit
transverse à {zq 0}. Alors F est un axe de tourbillonnement de X qui possède

un domaine de tourbillonnement semi algébrique dans les coordonnées (xq, yQ, zq).

Preuve. Soient (x,y,z) des coordonnées en p telles que z zq, x xq — <f(z),

y yo — 4>(z), où F {xq <f(z), yQ ip(z), z > 0}. Quitte à effectuer
les éclatements de centres p, p\, ¦ ¦ ¦ pq G TI(T), on peut supposer que, dans ces

coordonnées,

~ q ~

X=y — + V z% Ll(x,y)+z*+l (-— +V

où Lt(x,y) (atx + ßty) — + (jtx + Sty) — V a — + b — avec
ox oy ox oy

a(0,0, z) 6(0,0, z) 0 et q > 0 puisque 70 a un contact plat avec F. Distinguons
deux cas.
lér cas, 71 0. Soit 7T : M' —> Uq R3 l'éclatement de centre la droite A
{y z 0}. Notons que A a un sens intrinsèque, c'est le lieu singulier de X
dans le diviseur. En particulier c'est une courbe algébrique dans les coordonnées
initiales. Soient F' 7r~1(r), 7q tt^1 070 et soient (x' x, y' y/z, z' z)
des coordonnées au point p' w(r'). Dans ces coordonnées si X' est le relevé de

X par 7T on a
q o

Y" — IVM~1 Y1 I — Y^ -y'1 T1 4- v'i' ^
Jv — [Z J Jv \z>— > Z ±j% -\- Z

où q' q — 1, les L[, V sont comme plus haut et

Puisque V est un axe de spiralement non dégénéré de la courbe intégrale 7q de

X" on a encore q' > l. Si DX"(p') DL'0(0) n'est pas nilpotente, (X",p') est

une singularité réduite spiralante et les coordonnées (x', y', z') lui sont adaptées.
D'après les propositions 2.1, 2.2 le cylindre C'e {xa + ya < 1 0 < z' < e}
est un domaine de tourbillonnement d'axe F' pour (X", p'). Par le même argument

que dans la preuve de la proposition 3.1 on montre l'existence d'un domaine
de tourbillonnement V C C'£ d'axe F' pour (X',p') dont la projection par les

morphismes d'éclatement effectués est un domaine de tourbillonnement d'axe F
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pour (X,p), semi algébrique dans les coordonnées (xo, yo, zq). Si DX"(p') est

nilpotente on conclut immédiatement en raisonnant par récurrence sur q puisque
q' q-l > 1.

2eme cas, 7i =/= 0. Soit n' le composé de la ramification (x,y,z') —> (x,y,z/2) par
l'éclatement de centre {y z' 0}. Posons V tt'~^(T), 7q tt'^1 070 et soient
(x' x, y' y/z'2, z') des coordonnées en p' w(F'). Si X' est le relevé de X
par tt' on a

g n
X" (z'-l)X' V zrt U + z'2" f—1/2 — + V

avec L'n y' + 71 x' Puisque DX"(p') DL'n(0) n'est pas nilpotente,
ax' ay'

[X",p') est une singularité réduite spiralante. On conclut alors comme dans le cas

71 0. D

4. Preuve du corollaire de finitude

Soit p un point singulier de X. Nous pouvons clairement supposer que dim Sing
X < 1. Ainsi Sing X\{p} est une union finie de demi-branches analytiques.
L'ensemble des axes de spiralement de X en p contenus dans Sing X est fini. Pour
montrer que l'ensemble des axes de tourbillonnement non dégénérés est localement
fini nous utiliserons un résultat "d'uniformisation locale" des champs vecteurs en
dimension trois démontré dans [Ca]. Le résultat s'énonce en termes d'existence
d'une stratégie gagnante pour un jeu à la Hironaka [H12] que nous rappelons.

Soit X un germe en p de champ de vecteurs analytique sur une variété de

dimension trois. Deux joueurs A, B jouent au jeu suivant qui comporte deux
étapes:
1) Le joueur A choisit un centre d'éclatement Y qui est soit le point p soit une
(un germe de) courbe lisse en p. On fait l'éclatement ir\ : M\ —s- Mq M et on
considère X\ le transformé strict de X (relevé divisé).
2) Le joueur B choisit un point p\ G -K^(p) tel que p\ n'est pas une singularité
élémentaire de X\. S'il ne peut pas choisir un tel p\, le jeu s'arrête et le "joueur
A a gagné". Sinon on germifie la situation en p\ et le jeu recommence avec X\.
Une "stratégie gagnante" pour A est un critère de choix des centres d'éclatement
tel que, toute réalisation du jeu (partie) respectant ce critère soit finie. Le résultat
d'uniformisation s'énonce alors : II existe une stratégie gagnante pour A et les

longueurs de toutes les réalisations possibles (à partir de (X,p)) sont uniformément
bornées.

Prouvons le corollaire en raisonnant par l'absurde. Supposons qu'il existe une
suite infinie jTn} d'axes de tourbillonnement non dégénérés pour X tels que la
suite {qn} {iü(Tn)} converge vers p et Tn =/= SinglV si n =/= n!. Initions le jeu
d'Hironaka avec le choix de Y. Notons que les (Tn,qn) et (Y,qn) sont distincts
pour n assez grand. En effet, si ce n'est pas le cas, pour n assez grand on a
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Figure 8.

<ln 7^ <lri et puisque les qn appartiennent à Sing X n Y, on a Y C Sing X. Ce

qui contredit l'hypothèse Tn <£_ Sing X. Soit alors tv\ : M\ —> M l'éclatement
de centre Y. Notons Fni le transformé strict de Fn et qn\ u;(Fn i). Puisque
¦k\ est un morphisme propre, quitte à choisir une sous suite des {Fn}, on peut
supposer que {qn,l} converge vers un point p\ G ir~^(p). Le joueur B choisit le

point p\. En répétant ce type de choix pour le joueur B un nombre fini de fois on
obtient une singularité élémentaire pu qui ne vérifie pas la conclusion du corollaire
du paragraphe IL D

5. Coordonnées adaptées et équilibrées

Soit F un axe de tourbillonnement non dégénéré, lisse de X en un point p. Le but
de ce dernier paragraphe est de montrer que la dynamique de X induite sur un
domaine de tourbillonnement bien choisi V de F est équilibrée au sens suivant: il
existe une carte affine ((x,y,z), U) en p telle que l'on ait:

>0}, V {x2+y2< 0 < z < s}

et telle que X soit transverse aux niveaux de x -\- y z et y/x sur V\T. En
particulier la "rotation autour de F" serait strictement monotone autour de F.

Proposition. Si (X,p) est une singularité réduite spiralante, il existe des

coordonnées (x,y,z) adaptées à (X,p) telles que F {x y 0, z > 0} soit un
axe de tourbillonnement de domaine de tourbillonnement Ce et telles que X soit
transverse aux niveaux de x -\- y z et y/x sur C£\T.

D'après les propositions 2.f, 2.2, nous devons seulement prouver que nous pouvons
choisir des coordonnées adaptées (x, y, z) telles que X soit transverse au feuilletage
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Figure 9

ydx — xdy 0 dans le cas non asymptotiquement monodromique Avant d'aborder
cette preuve, examinons tout d'abord l'exemple suivant

d
X -[x —

ox

d
y —

oy

d
- [Zyz
ox

d

dy

d
~b~z

Notons tout d'abord que X n'est pas transverse au feuilletage xdy — ydx 0 En
effet, la fonction (xdy — yd,x)(X) s'annule sur les surfaces y — iz, y —2xz
Montrons que F {x y 0, z > 0} est un axe de tourbillonnement Soient ir
l'éclatement de centre {x y 0} et D son diviseur exceptionnel Le relevé X'
de X possède un seul point singulier p' G 7r~1(0) Soient x' x, y' y/x, z' z
des coordonnées centrées en ce point On a

D'après la preuve de la proposition 2 2 il suffit de montrer qu'il n'existe pas de

courbe a de Y |{z>0} telle que co(a) {p'} Or {z 0} est la seule direction
réelle du cône tangent à 7 en p' et en éclatant ce point on obtient le résultat
cherché Faisons le changement de coordonnées y'* y' + S/2z' qui correspond au
changement y* y + 2>/2xz à l'origine de R3 Le champ Y s'écrit alors

d

w* dz

II est transverse aux niveaux de y'* este lorsque z' ^ 0 On en déduit que X est
transverse au feuilletage y*dx — xdy* 0

Preuve de la proposition D'après la définition des coordonnées adaptées on a

^ 3
X J2 z* L% + z*+l (-— + X) q > 1 et Vx y(X) > 2
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De plus X n'étant pas asymptotiquement monodromique on a Lq —R ou Lq

—R + y -7— avec R x —— + y ——. Notons comme dans l'exemple ci-dessus ir
ox ox oy

l'éclatement de centre {x y 0}, D le diviseur exceptionnel et Y X' \r> ¦

Puisque F {x y 0, z > 0} est un axe de tourbillonnement de X on sait
d'après la preuve de la proposition 2.2 que:
(*) Si a est une courbe intégrale de Y avec <r(0) G ir~^{z > 0}, on a ui(a)
ir-1(Q) F~S1.
(**) Les singularités simples obtenues par réduction des singularités du feuilletage
C défini par Y sur D sont des "coins" (points de croisement du diviseur
exceptionnel) ou des points du transformé strict de F.

Notons t le premier indice i tel que Lt ^ o.tR. Si t > q, la fibre F n'est pas
invariante par £, ce qui contredit (*). Si t q, le feuilletage C possède une
singularité simple sur F, ce qui contredit encore (*). Posons

~ d ~ d
Lt Lt - atR ßty — + (-ftx + öty) —.ox oy

On peut supposer que Lt est écrite sous forme de Jordan. C'est-à-dire que l'on
d ~ „ ~ „ d_

_
_d_\

a: soit Lt St y 7— avec St =£ 0, soit Lt 3t[y — x 7— avec 3t =£ 0, soit
oy V Ox oy)

~ d
Lt y jr-¦ Le premier cas contredit (*) car C a une singularité simple sur F. Dans

le second cas, C n'a pas de singularité sur F et il est clair que X est transverse
~ d

au feuilletage ydx — ydx 0. Etudions le troisième cas, Lt y —. Dans les
ox

coordonnées (x,y' y/x,z) le champ Y s'écrit:

Y zt{{a{z)ya + b(z)y' + c(z))d/dy' - z* z d/dz} q' q-t

a{z) -l-J2 ßt+lz\ b(z) J2 St+l z* c(z) J2
i=\ i=\ i=\

Soit N(y') le nuage de points de Y(y')/zt et A(y') le polygone de Newton de

N(y')U{(q', 1)}. Le premier sommet de A(y') est (0,2) et si —l/d(y') est sa pente,
alors d(y') < q'. En suivant une méthode de préparation inspirée d'Hironaka [H12],

nous dirons que la coordonnée y' est équilibrée si l'une des propriétés suivantes
arrive:
i) Le deuxième sommet du premier côté est (d(y!), 1) ou d(y') (Ë Z.

ii) La pente d d(y') G Z, le deuxième sommet est (2d, 0), le point (d, 1) (Ë N(y')
et il n'existe pas A G M tel que si y'* y' + Xzd, alors soit d{y'*) > d{y'), soit la
longueur du premier segment décroît strictement.
Le changement y' 1—> y'* correspond à y 1—> y + Xxzd qui est algébrique et
conserve le caractère adapté des coordonnées. Après un nombre fini de changements
de ce type, on peut suposer que y' est équilibrée. Montrons que les coordonnées
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choisies sont déjà bonnes Elles possèdent déjà la propriété suivante de contact
maximal

"Soit p' po l'origine de la carte (y',z) de D, alors po € Sing C et do

d{y') > 1 Eclatons po et soit p\ le point qui correspond au transformé strict
de y' 0 On a des coordonnées (y[ y'/z, z) en p\ Alors la coordonnée y[ est

équilibrée par rapport au transformé Y\ de Y De plus d(y[) d(y') — l,q[ q' — l
et le nouveau polygone A(y'1) s'obtient en appliquant la transformation linéaire
(m, v) i—> (u + v-2,v) à A(y')"
En itérant cette procédure on voit que le cas i) n'arrive pas sinon on a une singularité

simple sur le transformé strict d'une courbe du type y'2 — z2d+^ 0 ou sur
le transformé strict de y' 0, ce qui contredit (**) Etudions le cas u) en posant
f(x,y,z) xX(y)-yX(x),

f{x,y, z) {a(z)y2 + b(z)yx + c(z)x2 + z"'+1(xX(y) - yX{x))} zf

Comme l'ordre de xX(y) — yX(x) est > 3 en x,y, pour montrer que f(x,y,z)
garde un signe constant sur la région qui nous intéresse, il suffit de montrer que
le discriminant A{z) b{z)2 — Aa{z)c{z) est strictement négatif pour 0 < z « 1

Comme y' est équilibrée, on sait que v{b{z)) > d et que A{z) ~fz2d + z2d+1(
où 7 < 0 si d < q' et 7 < —q' si d q' On a toujours 7 < 0 et A(z) < 0 pour
0 < z « 1 Ceci termine la démonstration D
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