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Oscillation, spiralement, tourbillonnement
F. Cano, R. Moussu and F. Sanz

A René Thom

Résumé. La dynamique oscillante d’un champ de vecteurs analytique en dimension trois s’orga-
nise autour d’un nombre fini d’axes de tourbillonnement lorsqu’elle ne se délocalise pas par des
éclatements de point.

Abstract. The oscillating dynamics of an analytic vector field in dimension three is organized
around a finite number of twister axis when it is localisable by point blowing-ups.

Mathematics Subject Classification (2000). 34Cxxm, 32B20.

Introduction

Soit X un champ vecteurs analytique sur une variété M et soit ¢ — ~(¢) une
courbe intégrale de X dont I'ensemble w-limite w(y) est un point singulier p de X.
Dans ce travail nous étudions la question suivante: comment, d’un point de vue
analytique, v peut-elle tendre vers p 7 C’est une question classique déja étudiée
& la fin du 19°™€ sidcle par Poincaré [Po] et Lyapunov [Ly|]. En dimension 2,
leurs travaux apportent une réponse satisfaisante a cette question: + possede une
tangente en p ou -y spirale autour de p et alors p est un foyer monodromique. Pour
décrire le comportement analytique de v en dimension > 2 nous utiliserons les
concepts d’oscillation, de tangentes itérées et de spiralement axial en dimension 3.
Donnons brievement leur définition.

La courbe v : [0,00[— M est non oscillante si toute hypersurface analytique
qui ne la contient pas la coupe un nombre fini de fois seulement. Soit 71 : My — M
I’éclatement de M de centre p. La courbe v posséde (par définition) une tangente
en p si son relevé v = 7r1_1 o~ possede un unique point w-limite p; = w(vy1). S’il
existe une suite d’éclatements

M=My<~ My &My - — M, 1 <=M, -

de centres respectifs p = pg, p1,...,Pn_1,..- tels que, pour tout n, le relevé ~, =
71 04,1 posséde un unique point w-limite p, = w(vyy,). On dit alors que ~
possede des tangentes itérées en p et on écrit T'I(v) = {p,}. On voit que si ~ est
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non oscillante alors T'I(v) existe. La réciproque est vraie en dimension 2. Cette
dichotomie osciller-tangentes itérées est propre a la dimension 2. En dimension 3,
il faut la remplacer par le spiralement axial comme le montre le théoreme suivant.

Théoréme 1. Si TI(v) existe et si vy est oscillante alors «y spirale autour d’un
aze analytique T invariant par X.

La définition générale du spiralement axial étant un peu technique (voir 1.4), nous
allons seulement en donner une propriété caractéristique lorsque I' est lisse: ~
spirale autour de I" lisse il existe des coordonnées analytiques (z,y, z) en p telles
que I'={z =y =0, z >0} et telles que si y(¢t) = (z(¢), y(t), 2(¢)) la courbe ¢ —
(x(t), y(t)) spirale autour de 0 dans le plan réel et tlirglo (z2(t) 4+ y2(t)z(t) ™™ =0
pour tout n. L’hypothese I' lisse n’est pas essentielle. En effet par une suite finie
d’éclatements ponctuels on se rameéne & ce cas.

Nous dirons qu'une demi-courbe analytique (ouverte) I' est un aze de tour-
billonnement de X §’il existe un voisinage semi analytique V de I', positivement
invariant par X tel que I' soit un axe de spiralement pour toute courbe intégrale
de X issue d'un point de V. Il est dit non dégénéré si I' n’est pas contenu dans
I’ensemble Sing X des points fixes de X. Ce concept doit étre rapproché de celui
de foyer monodromique en dimension 2 comme le montre le théoreme suivant.

Théoréme 2. Un arxe de spiralement non dégénéré I' pour v est un are de tour-
billonnement de X.

Ces axes sont des “centres organisateurs” de la dynamique de X au sens de R.
Thom. Ils possédent la propriété de finitude que l'on exige en général de tels
objets.

Corollaire. Tout point p de M posséde un voisinage qui ne contient qu’un nombre
fini d’azes de tourbillonnemment non dégénérés.

La motivation initiale de ce travail était I’étude de la dynamique d’un champ
de gradient, X = Vf, ou f est une fonction analytique. S. Lojasiewicz a montré
[Loi] qu’une courbe intégrale v de Vf a au plus un point w-limite w(vy) = p et
R. Thom [Thy] a proposé la conjecture du gradient: v possede une tangente en p.
Cette conjecture1 est vraie en dimension 2 et dans certains cas en dimension plus
grande [Hu]. On peut aussi proposer la conjecture forte du gradient: v n’est pas
oscillante. Cette conjecture est encore vraie en dimension 2. Elle I'est aussi en
dimension 3 lorsque la hessienne de f en p n’est pas nulle [Sa]. De plus, on peut
montrer qu’'un champ de gradient ne possede pas d’axe de tourbillonnement non
dégénéré lisse [Fo—Sal. Signalons enfin que dans un travail récent [Br|, M. Brunella
montre que tout champ de vecteurs analytique en dimension trois, a singularité

1 Récemment K. Kurdyka, T. Mostowski et A. Parusifiski ont prouvé cette conjecture.
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isolée, possede une courbe intégrale ayant la propriété des tangentes itérées. Ainsi,
les deux théoremes précédents s’appliquent & ces champs de vecteurs.

Ce travail comporte deux parties. Dans la premiere partie, on étudie tout
d’abord les relations entre les concepts oscillation, tangentes itérées et spiralement
pour une courbe analytique quelconque v : [0,00[— M telle que tlgglo ~(t) = p.
Ensuite on précise ces résultats lorsque v est une courbe intégrale et on prouve
le théoreme 1. La deuxieme partie est essentiellement consacrée a la preuve du
théoreme 2 et de son corollaire.

Les trois auteurs remercient vivement la C.E.E. pour le support financier qu’elle
leur a apporté pendant la préparation de ce travail, par I'intermédiaire du réseau
T.M.R..

I. Tangentes itérées, oscillation, spiralement

Dans tout ce chapitre M désigne une variété analytique (non singuliere) de dimen-

sion m et v désigne une application analytique non constante de Rt dans M qui

possede un unique point w-limite p = tlim ~(t). Pour décrire le comportement
—00

analytique de | v |, 'image de v, au voisinage de p nous utilisons quatre concepts:
tangentes itérées, contact plat, oscillation et spiralement. Dans la partie 1 de ce
chapitre, nous étudions les relations qui les lient dans le cas général et dans la par-
tie 2 nous précisons ces résultats lorsque ~ est une courbe intégrale d’un champ
de vecteurs analytique réel.

1. Courbes paramétrées

Les définitions que nous allons donner dans ce paragraphe reposent sur les éclate-
ments ponctuels et sur quelques propriétés classiques des ensembles semi-analyti-
ques que I’on peut trouver dans [Hiy], [Losg].

1.1. Eclatement ponctuel et tangentes itérées. Précisons tout d’abord
quelques notations et définitions. Une carte affine centrée en un point p de M
est un difféomorphisme analytique z = (1,22, - ,z;) d’un voisinage U de p
sur R™ tel que z(p) = 0 (on dit “affine” pour rappeller que I'image de la carte
est R™, quoique les changements de cartes ne seront pas linéaires). Un diviseur d
croisements normauz ¥ de M est une union finie d’hypersurfaces analytiques lisses
vérifiant: en tout point p de M, il existe une carte affine centrée en p et un entier
v > 0 telle que ENU = {z129 -z, = 0}. Une orientation de M en p adaptée o £
est le (choix du) germe M1 en p d’une composante connexe de U\ E. Rappelons
que l’éclatement de centre p de M est un morphisme analytique, surjectif, propre
7 My — M dont la restriction & M\x~1{p} est un isomorphisme sur M\{p}
possédant la propriété suivante. En tout point py de 7r*1(p) il existe une carte
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affine ((z,2),U1), z = (x1,29, -+ ,Z;,_1) centrée en py et une carte affine centrée
en p telles que
w(z,2) = (23,2) , Upn7(p)={z=0}

Notons que la restriction de m & U; = R™ est un morphisme algébrique sur U =
R™ et que le diviseur exceptionnel 7r*1(p) peut étre identifié & ’espace projectif
RP(m—1). Si E est un diviseur & croisements normaux de M, By = 7~ {(EU{p})
est un diviseur & croisements normaux de M. Une orientation Mfr de Mi en un
point p1 de Fj adaptée & Fy est dite compatible avec une orientation Mt de M
en p adaptée & F si 7T(M1+) c Mt

Soit v : RT = [0, 00[— M\ EU{p} une application analytique dont I’ensemble
w-limite est le point p, c’est-a-dire:

p=w(y)= lim ~(t) = 7({t ).

t—o0
t>0

Soit y1 = 71 o le relevé de v par 7 I'éclatement de centre p, i.e w(v1(t)) = ~(t)
pour t > 0. Si y1 possede un seul point w-limite p; = w(y1) on dit (naturellement)
que v posséde une tangente en p et que p; € RP(m — 1) est la (direction de la)
tangente & v en p. Posons Mo=M ,po=p, Eg=0, 7 = 7.

Définition. On dit que v a (la propriété) des tangentes itérées s’il eriste une
suite:
My & My & My — oo My & M, —

d’éclatements m, de centres p,_1 telle que le relevé ~, = ﬂgl 0 Yp_1 posséde un
unique point w-limite p, = w(vy,). La swite TI(v) = {pn} est la suite des points
infiniment proches de v = ~g. Notons, pour n > 1, By, = 7, Y (Ep_1 U {pn_1}) et
M¥ Uorientation de M, adaptée o E, telle que M, contient le germe de | v, |
en pn. La suite TIT(y) = {(pn, M)} est la suite orientée des points infiniment
proches de . (Notons que lorsque p €| v |=image de v et que w(vy) = {p}, alors le
germe en p de | v | coincide avec “I'image du germe” en ¢ = oo de ).

1.2. Oscillation. Dans tout ce paragraphe v désigne encore une application
analytique de Rt dans M\ {p} telle que w(vy) = p.

Définition. Soit H une hypersurface semi-analytique de M. On dit que v est
oscillante en p par rapport a H si |~ | n'est pas contenu dans H et si |~y | NH est
un ensemble infini. S’il n’existe pas une telle hypersurface nous dirons que | v |
est non oscillante en p.

Ce concept d’oscillation d’une courbe est étudié quantitativement dans le cadre
global par D. Novikov et S. Yakovenko dans [No-Ya].

Proposition. Si | v | est non oscillante en p, elle posséde la propriété des tan-
gentes itérées en p.
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Figure 0.

La proposition réciproque n’est pas vraie en général. Par exemple la courbe
t — (1/t, exp (—t)sin t) possede des tangentes itérées en (0,0) et est oscillante par
rapport a la droite y = 0. Dans la deuxiéme partie de ce chapitre nous étudierons
cette réciproque lorsque v est une courbe intégrale d’'un champ de vecteurs analy-
tique.

Preuve. Nous allons montrer la proposition contraposée. Posons Mg = M, pg = p,
v0 = < et supposons qu’il existe une suite d’éclatements 7y: My — My | pour
k =1,2,...,n de centres p;_1, telle que, pour k = 1,2, ..., n — 1, le relevé v, =
7rk_1 07,1 de ;1 posséde un unique point w-limite pr, = w(yx) et telle que
Yo =T, 1 0,1 posséde au moins deux points w-limites distincts pl,, pir. Puisqu’il
s’agit de prouver un résultat local nous pouvons supposer que My = R™ et que les
deux points pl,, p/ sont contenus dans une méme carte affine z : U — R™ telle
que T{ OMQ O -+ 0Ty O 21 soit une application polynomiale. D’apres le théoreme
de Tarski-Seidenberg [Ta] sur les projections d’ensembles semi-algébriques, il suffit
de construire une hypersurface algébrique H, dans U = R" non contenue dans
le diviseur telle que # H,N | v, |= o0 et | v | Hy, . En effet, sa projection
par m om0 ++- 0 Ty, O 21 sera une hypersurface semi-algébrique H telle que
# HnNvy=ocet|~|Z H. Soient (z1,z9, -+ ,Zm_1,2) des coordonnées affines
sur U telles que:

{z:O}zwgl(pn,l) et pl, pZEB:{x%+x%+~~+x?n_1+z2<1}.

Si | v» | coupe une infinité de fois la sphere 9B on prend H,, = dB. Si ce n’est pas le
cas, soit H,, un hyperplan f(zq, - ,zy,_1,2) = o121+ -+ am_1Zm_1+5 = 0 tel
que f(pl).f(p2) < 0. Les points pl,, pll appartenant & deux composantes connexes
distinctes de B\H,, | v | coupe une infinité de fois leur “frontiere commune”
BNH,. O

Remarque. Le concept “osciller” est stable par éclatement. Si v est oscillante
par rapport & H, alors 71 o v = 41 est oscillante par rapport a 7T71(H) =
Hj. Par contre, il ne I’est pas, & priori, par effondrement puisque I'image directe
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par éclatement ponctuel d’'une hypersurface analytique n’est pas en général semi-
analytique [Log|, [Hij]. Dans la preuve précédente, on contourne cette difficulté
en travaillant dans des cartes affines pour se placer dans le cadre algébrique. Nous
aurions pu faire une théorie semblable dans le cadre sous-analytique. Les deux
théories ne sont pas équivalentes. 1l nous semble qu’elles coincident lorsqu’il s’agit
de trajectoires de champs de vecteurs (mais nous ne I'avons pas démontré).

1.3. Contact plat avec une demi-branche analytique. Soit ¢ une applica-
tion analytique non constante de R dans M et soit E un diviseur & croisements
normaux. Le germe I' de ¢(]0,¢[), € > 0, en p = ¢(0) est appelé une demi-branche
analytique en p. Elle est dite adaptée a E siI'N E = 0. On dit que I' est lisse

relativement o E s’il existe une carte affine ((gcl7 . - z)7U> centrée en p
telle que

F:{x1:x2:~~~:xm_1:07 z>0} et ENU ={z=0}.

Soit 71 : M1 — M = My I’éclatement de centre p = pg. On sait que ¢ possede un
unique reléevement ¢1 par m, ¢(s) = wocy(s). La contre-image I'y = wfl(P0)7 avec
I'g = I, est la demi-branche analytique en p; = ¢1(0) adaptée & Ey = 7~ H(EU{p})
qui est le germe de ¢1(]0,¢[) en py. En itérant cette construction, on obtient une
suite d’éclatements:

Mo < My &2 My - — M, 1 <=M, -

de centre des points p,,_1 et une suite de demi-branches analytiques I';,, n > 0,
aux points p, adaptées aux diviseurs E, = 7 1(F,_1). La suite {p,}, n > 1 est
la suite des points infiniment proches au sens de 1.1 de la courbe o: ¢ — ¢(1/t),
t > 0 et nous écrirons:

TIT)=TI(0) = {pa} et TIT(L)=TI%(o)={(pn,M;)}.

Rappelons ([Los], [Hij]) les propriétés suivantes des demi-branches analytiques qui
sont bien connues:

i) Il existe ng tel que, pour n > ng, I';, soit lisse relativement a F,,.

ii) Si I est une demi-branche analytique telle que 711 (T") = TIH(T) alors T =
I.

iii) Soit A un sous-ensemble semi-analytique de M. Alors I' est contenu dans A

si et seulement si p,, appartient & ’adhérence de <7Tl oMgo0 -0 7rn> (A) N M.+
pour tout n > 0.

Dans toute la suite de ce paragraphe, v désigne une application analytique de RT
dans M\{p} telle que w(v) = p.
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Définition. Soit I' une demi-branche analytique en p. On dit que v a un contact
plat avec I' si vy a la propriété des tangentes itérées et si T1T(y) = T1T(T).

Par définition, ce concept est stable par éclatement et par effondrement.

Proposition (propriété caractéristique). Soit I' une demi-branche analytique lisse
enp adaptée ¢ E, t.e. ' ={x1=--- =2, 1=0, 2>0}, ENU = {2 =0} dans
une carte affine U centrée en p. Alors v a un contact plat avec I' si et seulement
st on a:

lim 2(8) =0 , 2(t)>0 et lim 12Ol

t—00 t—o0 z(t)n

=0 pour n2>0,

en écrivant y(t) = (z(t), 2(t)), |z|> =23 + 2%+ - +a22_,.
L’existence des tangentes itérées n’implique pas le contact plat comme le montre
Pexemple v : ¢ — (¢~ t7*), A e RM\Q. En effet TI(7) contient un nombre infini
de “coins” du diviseur déterminés par le développement en fraction continue de A.

Preuve. Soit TI(I') = {p,} la suite de points infiniment proches de I' et soit {m,}
la suite d’éclatements de centre les points p,,_1. 1l existe une carte affine en p,,
((U’?Z)? Un)7 U= (UI, COPRN 7um71) telle que:

T om0 0Ty (u,2) = (2"u, 2).

Soit vy, = 7, Loy, 1 le relevé de v = ~g par cette composition d’éclatements.
En écrivant v, (t) = (u(t), 2(t)) la proposition est une conséquence immédiate des
définitions et de 1'égalité z(t) = z(¢t)"u(t). O
1.4. Spiralement. Le concept de “spiraler autour de...” en dimension 2 et 3
fait partie du langage courant, nous allons le préciser. Dans tout ce paragraphe
~ est, comme dans les paragraphes précédents, une application analytique de Rt
dans M\{p} telle que w(v) = p. Nous dirons qu’une hypersurface semi-analytique
T est transversalement orientée par v si 1" est connexe, lisse, orientable et si v
coupe transversalement 7" une infinité de fois toujours dans le méme sens pour ¢
assez grand. C’est-a-dire que 1" possede un voisinage ouvert connexe U dans M
tel que U\T a deux composantes connexes U1, U~ et tel que pour ¢ assez grand
et y(t) €T ona~(t+e)eUT et y(t —g,) € U™ pour g > 0 assez petit.

Spiralement en dimension 2. Sim = dim M = 2 on dit que v spirale autour
de {p} si toute demi-branche analytique T en p est transversalement orientée par

v (figure 1).

Soit (z1,z2) une carte affine centrée en p et soient (r,0) les coordonnées polaires
correspondantes. Si v spirale autour de p, 'angle 6(t) = fvl[o ) df tend vers plus
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Figure 1.

ou moins 'infini si ¢ tend vers 'infini. Cette derniere propriété n’implique pas en
général que ~y spirale autour de p. Cependant, nous verrons dans 1.2 que c’est le
cas lorsque «y est une courbe intégrale d’un champ de vecteurs analytique.

Spiralement en dimension 3. En dimension 2, la définition de spiralement
repose sur la notion de demi-branche analytique transversalement orientée par ~.
En dimension 3 elle va reposer sur la notion de triangle analytique transversalement
orienté par v de c6té une demi-branche analytique. Soit I' une demi-branche
analytique en un point p et soit ¢ :]0,e[— M3 un représentant de I' olt ¢ est une
application analytique de R dans M3. Un triangle semi-analytique de coté I' est
un couple (7, W) oli:

i) W est un voisinage tubulaire ouvert semi-analytique de ¢(]0,£[). C’est-a-dire
que W est un ouvert semi-analytique image de 0, £[><IR2 par un plongement ana-
lytique 7 tel que 5(¢,0) = ¢(t).

ii) T est une surface semi-analytique lisse, connexe contenue dans W\¢(]0,<[) telle
que le triplet (W,T,c(]0,e[)) soit homéomorphe & (]O,E[XRQ, 10,e[xRT x {0},

10, [x {0} x {0}).

Deux triangles semi-analytiques (T, W1), (To, W3) sont dits compatibles si Wi =
Wo = W et soit T1 = Th soit il existe un homéomorphisme de (W7 T1,T9, ([0, E]))

sur (]075[XR2, 10,£[xR+, 10, £[xR ", 0, [x {0} x {0}).

Compte tenu de la structure conique [Log] des ensembles semi-analytiques, les
propriétés i), ii) de (T, W) se germifient en p et dans leurs énoncés nous pouvons
remplacer ¢(]0,e[) par I'. Ceci justifie I’expression triangle analytique de coté I'.
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T

Figure 2.

Définition. Supposons dim M = 3 et soit I' une demi-branche analytique en p.
On dit que ~y spirale autour de I' (T' est un axe de spiralement pour ) si pour tout
triangle analytique (T, W) de c6té I', on a les propriétés: T est transversalement
orienté par v et y(t) appartient @ W pour t assez grand (figure 2).

Supposons que I' soit un axe de spiralement lisse de v. Soit ((x,z), U) une carte
affine centrée en p telle que I' = {z; = 29 = 0, z > 0}. Notons v(t) = (z1(¢),
x9(t), 2(t)) et soit vg : t — (z1(t), z2(t)) la projection de v sur z = 0. A toute
demi-branche analytique Tp C {z = 0} au point p correspond le triangle analytique
(W, T) défini par

W = {(z1,29,2): 2§ +23 <1,2>0} et T ={(a1,79,2) €W : (w1,22) € To}.

Ainsi, Ty est transversalement orienté par vg et w(yg) = p, la projection vg de ~
spirale autour de p. La réciproque n’est pas vraie en général, par exemple lorsque
| v | est contenu dans le cone z2 4 y? = 22.

Dans le cas général (axe de spiralement I non nécessairement lisse) la définition
du spiralement axial n’est pertinente que s'il existe “beaucoup” de triangles ana-
Iytiques de coté une demi-branche analytique I' fixée. Le lemme suivant montre
que c’est le cas.

Lemme. Soit I' une demi-branche analytique en p = pg € M? et soit:
Mot My &2 My — .-
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Wy

Figure 3.

la suite d’éclatements de centre py et les points p1, p2,... de TI(T'). Il existe une
suite d’ouverts semi-analytiques {W,, } de My qui posséde les propriétés suivantes:
i) Pour tout n le germe de Wy, en p contient I, p nappartient pas ¢ W, et W, 11 C
W

ii) Si A est un ensemble semi-analytique tel que ANT =0, alors ANW,, = 0 pour
n assez grand.

1) Soit A un ensemble semi-analytique de dimension 2 tel que ANT = () et
I' C A. Il existe ng tel que, S, So,-- -, S, désignant les composantes connexes de
ANWy,, les (S; "W, W,,) sont des triangles semi-analytiques de coté I' deuz a
deux compatibles pour i =1,2,...,7r et n > ng.

i) Soient Wy, 1, et Iy, les images réciproques de Wy, et I' par myomgo...omy,. Etant
donnén > 0, il existe ko, n' > n et une carte affine (U, (x1,x2,2)) en py, tels que:

Wk WU ={2>0} , Thpy={z1=22=0, 2>0}, Wy x,N{z=0} = {px, }.

Ce lemme est une conséquence de ’existence de triangulations semi-analytiques
des ensembles semi-analytiques [Log], [Hij]. Il peut étre aussi prouvé de fagon plus
élémentaire. Les assertions i), ii), iv) sont évidentes. L’assertion iii) se montre en
utilisant les équations de A. En fait, lorsque I' est désingularisée par un morphisme
T nous pouvons essentiellement supposer que les W,, sont les projections par 7 des
W! = {22 +y2 < 22,0 < z < 1/n}.

D’aprés iv), si v : Rt — R3, 4(0) = p est une courbe analytique ayant un
contact plat avec I, alors, quelque soit n, il existe #,, tel que v(t) appartient a W,,
pour ¢ > t,. La proposition suivante précise le concept de spiralement axial.
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Proposition. Si v spirale autour d’une demi-branche analytique I' en p, alors ~
a un contact plat avec I.

Preuve. Raisonnons par ’absurde en reprennant les notations du lemme ci-dessus.
Si v n’a pas un contact plat avec I', il existe k tel que ensemble w-limite, w(vy)

-1
de v, = <7r1 OMg0---0 7Tk) (v) contienne un point ¢ # py. D’apres 1'assertion
iv) du lemme précédent il existe n et une suite {¢,,} tendant vers l'infini telle que
v (tm) n'appartient pas & W,,. Ainsi «(¢) ne peut pas appartenir & W,, pour ¢
assez grand. |

Remarque. La définition que nous avons donnée du spiralement axial est tres
restrictive. Il est possible de I'affaiblir, par exemple en supprimant la condition
“y(t) € W pour t assez grand”, ou en remplagant “pour tout (7,W)---” par “l
existe un (1',W)---7. Nous verrons, dans la suite, que toutes ces définitions sont
équivalentes lorsque « est une courbe intégrale d’un champ de vecteurs analytique
en dimension 3.

2. Courbes intégrales

Dans toute cette partie X désigne un champ de vecteurs analytique sur M™ dont
p est un point singulier et v désigne une demi-courbe intégrale, v : ¢t — ~(¢),
t > 0 telle que p = w(v). Nous allons essentiellement étudier comment sont alors
reliés les concepts: tangentes itérées, oscillation, spiralement en dimension 2 et 3.
Auparavant, nous allons montrer des propriétés du contact plat qui sont vraies en
toute dimension.

2.1. Contact plat entre une courbe intégrale et une demi-branche ana-
lytique. Les résultats énoncés dans les deux propositions suivantes sont peut-étre
déja (bien) connus. Par exemple, celui de la premiere proposition peut certaine-
ment se déduire d’un théoreme classique de Borel [Bo], celui de la deuxieme parait
aussi classique, mais nous ne 'avons pas trouvé dans la littérature usuelle. Les
démonstrations que nous en proposons sont géométriques. Elles utilisent essen-
tiellement la “désingularisation” des demi-branches analytiques. La proposition
2.1.1. est un outil essentiel dans la preuve du théoreme 1 et la proposition 2.1.2.
dans la preuve du théoreme 2.

2.1.1. Proposition. Soil v une demi-courbe intégrale d’un champ de vecteurs
analytique X. Si~y a un contact plat en p avec une demi-branche analytique T,
alors I est une courbe invariante par X.

Avant d’aborder la preuve de cette proposition, précisons quelques notations qui
seront utiles dans toute la suite. Soit M = My L My 22 My «—— --- la suite
d’éclatements de centre pg = p, p1,... ot TI(I') = {p,}. Pour k > 1 il existe un



Vol. 75 (2000) Oscillation, spiralement, tourbillonnement 295

unique champ de vecteurs analytique Xy sur My, relié a X;_1 par 7, avec Xg = X.
On dit que X}, est le relevé de Xy, 1 par . Le diviseur By, = (myomg - - ‘o7rk)71(po)
est invariant par Xy. Une application v,_1 : RT — M1\ Ep_1, t+— v_1(t) ,
est une courbe intégrale de X;_1 si et seulement si son relevé vy, = m, - o~y,_1 est
une courbe intégrale de Xj.

Preuve. Supposons TIT(I') = TIt(y). Puisque les propriétés tangentes itérées,
contact plat sont invariantes par éclatements, effondrements et que I est 'image
d’une demi-branche orientée lisse par le composé d’un nombre fini d’effondrements,
on peut supposer que I' = {1 =29 = -+ =z, 1 =0,z > 0} et que Ey = {z = 0}
est invariant par le champ de vecteurs X. C’est-a-dire que

m—1 m—1 P 5
X = ; (ai(z) -+ Jz:; T ai’j(x’z))a_xi + za(z,z) 5 -

les a, a;, a;; étant analytiques au voisinage de 0 € R™. Si a; = 0 pour ¢ = 1,
2,---,m — 1, la demi-branche I' est invariante par X. Supposons que ce ne soit
pas le cas. Il existe n > 0 tel que 'on ait pour chaque :

ai(z) = 2"b;i(2) , B b2(0)£0 , bi(z) € R{z}.
Il existe une carte (y, z) centrée en p,, telle que:
(y,z):(znx,z) ’ y:(y17y27"' 7ym71)'

Le relevé X,, de X = X s’écrit dans ces coordonnées:

m—1 m—1

i=1 j=1

ol les b; ; sont analytiques au voisinage de 0. On a alors:

m—1 9
Xalon) = Xn(0) = Y :(0) 5~ #0 ,
=1 Yi
ce qui est incompatible avec ’hypothese w(vy,) = pn. O

2.1.2. Proposition. Soient X un champ de vecteurs analytique sur M™ singulier
en p, I' une demi-branche analytique en p invariante par X et soit v(I") un vecteur
tangent 6 I' en p. Alors, v(I') est un vecteur propre de la partie linéaire DX (p).
De plus, la valeur propre p(I') correspondant ¢ v(I') est nulle s’il existe une demi-
courbe intégrale positive de X distincte de I' ayant un contact plat avec I' en p.
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Preuve. Lapremiere assertion de la proposition est une conséquence de la remarque
suivante. Si w1 : M1 — M est ’éclatement de centre p, alors un point g € Fq =
Wfl(p) = RP(m — 1) est un point fixe de X le relevé de X si et seulement
si ¢ € RP(n — 1) est une direction propre de DX (p). En effet, p; est un point
singulier de X1 si p1 est la direction de la tangente a [' en p. La preuve de la
seconde partie de la proposition repose essentiellement sur 1’étude de 1’évolution
du spectre de DX (p) par éclatement. Elle est décrite par I'assertion suivante.

Assertion. Soit {u1, p2,...,pin_1, p(I)} le spectire de DX(p) ot u(T') est la

)
valeur propre correspondant ¢ un vecteur v(T') tangent ¢ T en p, i.e py = [v(I")] €
RP(m — 1). Alors By = n~X(p) est invariant par X1 et on a:

Spec (DX1(p1)) = {m1 — pll), - m—1 — p(I'), (I}
= Spee (DX1(p1) |, ) U{u(D)}-

De plus si H est une hypersurface lisse invariante par X, si v(I") est tangent & H
et si 1 correspond o un vecteur propre transverse a H, alors X1 est tangent au
transformé strict Hy de H par w1 et on a:

Spec (DX1(p1)) = {p1 — w(I')} USpec (DX1(p1) |m,)-

Pour prouver cette assertion choisissons des coordonnées (z,z), z = (z1, z2, -,
Zy—1) en p telles que v(I") soit tangent a ’axe z = 0. On écrit

X:Z << a;,x > +fz(x,z)> aii + (u(F)z+ <bz> +> %

oll - - - désigne des termes d’ordre > 2 et <, > désigne le produit scalaire canonique
sur R™ 1. Dans ces coordonnées on a:

DX@):(‘;‘ M(Or)> —

a; = (ai,17ai,27 e 7ai,m71)

b= (blabQ) 7bm71)

et A = (a;;). Solent (a/,z) des coordonnées en p; telles que z = za’. Dans ces
coordonnées on a

_(A-p(D)py e 1%,
DXl(p1)7< 0 M(D) aVeC  Cmi =3 5 (0,0).

Ceci prouve la premiere partie de I'assertion. Pour prouver la deuxieme partie
choisissons des coordonnées (z, z) tels que H = {x1 = 0}. Alors {x1 = 0} étant



Vol. 75 (2000) Oscillation, spiralement, tourbillonnement 297

invariant par X on a a1 = 0 et fy est divisible par z1, en particulier ¢,, 1 = 0. On
en déduit:

Spec (DX1(p1)) = (u1 — p(I)) USpec (DX1(p1) lge;=03);
ce qui prouve 'assertion puisque {x)] = 0} est le transformé strict Hy de H.

Fin de la preuve de la proposition. Cette preuve se fait par récurrence sur m
la dimension de M et par l'absurde. C’est-a-dire que nous allons monter que
1(T") # 0 est incompatible avec I'hypothese v, I sont des demi-courbes intégrales
de X ayant un contact plat et | v |#£ I'. Lorsque m = 1, cette contradiction est
évidente puisque la condition w(v) = w(I) implique v =T.

Supposons m > 1 et p(I") # 0, alors p(I') < 0 puisque p = w(v). Les courbes
| v |, I sont tangentes & W*(X,p), la variété stable de X en p. Ainsi | v | et I'
sont contenues dans W#(X,p) qui est analytique lisse ([Po], [Ha]). Si W*(X,p)
n’est pas de dimension m on aboutit & une contradiction d’aprés I’hypothese de
récurrence. Ainsi on peut supposer que toutes les valeurs propres de DX (p) ont
une partie réelle négative.

Notons 7 : My — Mj_1 la suite d’éclatements de centres les points pg €
TI(I") et posons I' = T'g, v = v, [k = W;l(rk,1)7 vr = 7 Y(~), Puisque T} est
invariante par Xy, le relevé de Xj_1, sa tangente 7(I';) en pj, est une direction
propre de DXy (pi) de valeur propre p(I'y). En fait pr4q est le point de W,;l(pk) =
RP(m — 1) correspondant a 7(I';) et de plus I'g, v, ont encore un contact plat.
Distinguons deux cas:

1°" cas, T' est lisse. En choisissant des coordonnées (x("“>,z) en py telles que
I'v = {z(¥) = 0}, on a, d’apres Passertion précédente (et avec les mémes notations)

Spec (DX(pr)) = {1 — k(D) -+ -1 — k(D) } U {(D) }.

Ainsi, p(I') étant strictement négatif, pour k assez grand les p; — ku(I') ont tous
des parties réelles positives. La variété stable W*( Xy, py) est de dimension 1. On
termine par récurrence.

Fme e T singuliére. Notons tout d’abord que u(I'y) ne peut pas rester stricte-
ment négatif pour tout k. En effet, pour k assez grand, I'y, est lisse et si p(I'y) <0
pour tout k on retombe dans le cas précédent. Ainsi, il existe £ tel que p(T'p_1) <0
et p(I'¢) = 0. De plus, d’apres le premier cas, on peut choisir ¢ tel que p(I';) =0
pour j > €. D’apres ’assertion on a:

Spec (DXe(pe)) = {u(le-1)} U Spec (DXe(pe) )

ot By = 71 (py_1). Puisque p(T¢) = 0, la tangente 7(T';) est tangente en py & Ep.
Pour tout indice 7 > £ on a d’apres 'assertion

Spec (DX¢(pe)) = Spec (DX;(p;)) = {p(L'e—1)} U Spec (DX;(p;) |r;)
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oll I est le transformé strict de Fy par mjom;_10...0meyq. Alors I'; est tangent
a I'; pour 5 > £ et ainsi I'y est contenu dans . Ce qui est absurde.

2.2. Foyer monodromique. Supposons dim M = 2. On dit que p est un foy-
er monodromique contractant de X s'il existe une demi-branche analytique I' =
¢(]0,2[), ol ¢ est une application analytique avec ¢(0) = p, telle que, toute orbite
positive v : Rt — M de X issue d’un point ¢(s), 0 < s < &, recoupe I' une pre-
miere fois en un point ¢(s1) avec s1 < s. L’application ¢(s) — ¢(s1) est Uapplication
premier retour de Poincaré de p évaluée sur I' pour X. Le résultat suivant est bien
connu. Ses preuves classiques reposent sur le théoreme de désingularisation des
champs de vecteurs en dimension 2 [Se| ou encore sur un argument de Khovan-
ski [Kh]. Celle que nous proposons utilise de facon essentielle la proposition du
paragraphe 1.2.

Théoréme. Supposons que p soit un point singulier de X et soit v une demi-
courbe intégrale de X telle que w(y) = p. Les propriétés suivantes sont équivalentes:
i) v ne posséde pas de tangente en p.

i) v ne posséde pas la propriété des tangentes itérées en p.

iii) v est oscillante en p par rapport d une demi-branche analytique T

w) vy spirale autour de p.

v) p est un foyer monodromique coniractant.

vi) Il existe un voisinage V' (semi-analytique) de p positivement invariant par X
tel que toute demi-courbe intégrale de X issue d’un point de V' spirale autour de

p.

Preuve. 11 est clair que vi) implique i), que i) implique ii) et ii) implique iii)
d’apres la proposition de 1.2. Prouvons que iii) implique iv). Soit ¢ une application
analytique de R dans M telle que ¢(0) = p, ¢(]0,£]) = I'. L’ensemble des s > 0
tels que X(c(s)) et (s) soient colinéaires est un sous-ensemble analytique strict
de R puisque | v |Z I'. On peut le supposer vide en prenant £ > 0 assez petit.
En particulier, I' est transversalement orientée par ~, ce qui prouve iv). Montrons
que iv) (ou iii) implique v). On sait déja que toutes les demi-courbes intégrales
de X coupent I' transversalement et toujours dans le méme sens. Soit go = ¢(so),
q1 = ¢(s1) deux points d’intersection consécutifs de | v | avec I' et soit K le
compact de bord la réunion des arcs qg ¢q1 sur I' et | v | . L’argument classique
utilisé dans la preuve du théoreme de Poincaré-Bendixson appliqué a K montre
que toute demi-courbe intégrale de X issue d'un point ¢(sj) de I' avec s < sg
recoupe I' en un point s} avec 5§ < sy (figure 4). Ceci prouve clairement les
assertions v) et vi) en prenant V = int K. O

2.3. Tangentes itérées, oscillation et spiralement axial. Dans tout ce
paragraphe on suppose dim M = 3 et v désigne une demi-courbe intégrale d’un
champ de vecteurs analytique X sur M telle que w(y) = p est un point singulier
(non nécessairement isolé) de X. Nous avons vu dans le paragraphe précédent
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Figure 4.

qu’en dimension 2 les propriétés v “oscille”, “y possede des tangentes itérées” sont
incompatibles. Cette dichotomie est propre a la dimension 2. En dimension 3, il
faut la remplacer par le spiralement axial comme le montre le théoreme suivant.

Théoréme 1. Soit v une courbe intégrale d’un champ de vecteurs analytique sur
une variété de dimension 3. Alors v spirale autour d’une demi-branche analytique
I enp si et seulement siy a la propriélé des tangentes itérées en p et est oscillante
en p par rapport ¢ une surface semi-analytique S.

Preuve. Si I est un axe de spiralement pour «, nous avons déja vu avec la propo-
sition de 1.4 que v a un contact plat avec I'. De plus, v est oscillante par rapport
a toute surface semi-analytique S telle que I' C W d’apres le lemme de 1.4 et
la définition de spiralement axial. Supposons que ~ possede des tangentes itérées
orientées TI1(v) et que v est oscillante par rapport & une surface semi-analytique
S. Montrons que ~ spirale autour d’une demi-branche I'.

1°r¢ étape, v a un contact plat avec une demi-branche analytique I'.
Quitte & compléter S en une surface analytique et & prendre une composante
irréductible, nous pouvons supposer que S est irréductible et qu’il existe une carte
affine (U, (z,y,z)) centrée en p = w(vy) et une fonction analytique f sur U telle
que

Sing f C {f =0}, dim (Sing f) <1, S=Un{f=0}.

De plus quitte & éclater une fois, on peut aussi supposer que | v |C UT = {z > 0}.
Remarquons tout d’abord que «y coupe une infinité de fois S’ = S\Sing f. En effet,
si ce n’est pas le cas, v coupe une infinité de fois une demi-branche analytique I’
en p contenue dans SNSing f. Les courbes v et I' ont les mémes tangentes itérées.
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D’apres la proposition 2.1, I" est une demi-courbe intégrale de X. Ainsi | v | est
contenue dans S et v n’est pas oscillante par rapport a S.
Soit Z = SN {df(X) = 0} ’ensemble des points de “tangence généralisés” de
X et de S. Montrons tout d’abord que dim Z < 1. En effet, S étant irréductible,
sidim Z = 2 on a Z = S. La partie lisse S’ de S est invariante par X. Puisque
~ coupe S’, | v | est contenu dans S et ainsi v n’est pas oscillante par rapport
a 5. Quitte a prendre une nouvelle carte affine centrée en p on peut supposer
que ZNUY = Z1 est une union finie, éventuellement vide, de demi-branches
analytiques. Montrons qu'une de ces branches a un contact plat avec ~. Si ce n’est
pas le cas et si TI(vy) = {p,} 1l existe £ tel que p, n"appartienne pas a la réunion
des tangentes itérées de ces branches. Soit # = 7wy omg 0+ o7y le composé de
la suite d’éclatements de centres p, p1,---,pe—1. 1l existe une carte affine (Up),
centrée en py telle que si U, Zr est la composante connexe de Ug\wfl(p) contenant
e =7n"(v) on ait Z, = U} na=1(Z) = 0. Posons Sy = n~1(S) , fe=fomet
soit Xy le relevé de X par 7. La restriction de 7 a U, Zr étant un isomorphisme sur
son image, on a:
Sen{dfe(Xe) =0} N UZL = ZZF = 0.

Ainsi, en oubliant I'indice £ et en identifiant une carte affine avec R37 nous sommes
dans la situation suivante: f est une fonction analytique sur R%, X un champ de
vecteurs analytique sur R3, v une demi-courbe intégrale de X avec w(v) = {0} et
nous devons prouver que les deux conditions:

#orton |y Ut =co , {df(X)=0rnftO)nUT =0

sont incompatibles, ot U1 est une composante connexe du complémentaire de
2°1yf2z = 0 avec £1, £9 égaux & 0 ou 1 telle que | v |C UT. Soit Sy une composante
connexe de f*I(O) N UT qui est coupée une infinité de fois par v. D’apres la
deuxi®dme condition, S1 est une hypersurface fermée de UT et UT\S; a deux
composantes connexes. Puisque df(X) |g,7# 0 toute demi-orbite positive de X
issue d’un point de Sy et contenue dans U1 est contenue dans une de ces deux
composantes connexes ; ceci contredit la condition # |+ | NSt = co.

2. Fin de la preuve. D’apres les arguments développés dans la premiere partie,
'ensemble Z1 des points de tangence de X avec ST = f=1(0)n{z > 0} est la
réunion de I', une demi-branche analytique ayant un contact plat avec ~, et d’'un
nombre fini de demi-branches analytiques parasites. D’apres le lemme de 1.4, et
en repprenant ses notations, il existe ng tel que, pour n > ng, W, N Zt =T
et, S1, S, ,S, désignant les composantes connexes de ST N W, \I', les couples
(W, NS;, Wy,) sont des triangles de coté I'. Ainsi, il existe £y tel que, pour n > ng,
R, = W, N 8, soit transversalement orienté par v. De plus, puisque v a un
contact plat avec I', on sait que v(t) € W,, pour ¢ assez grand. Nous avons ainsi
déja montré que les triangles (R,,, W,,), pour n > ng, satisfont aux conditions de
la définition “vy spirale autour de I'”.



Vol. 75 (2000) Oscillation, spiralement, tourbillonnement 301

Figure 5.

Montrons que ces conditions sont vérifiées pour tout triangle de coté I'. Soit
(T, W) un tel triangle. D’apres le lemme de 1.4, il existe ny et une composante
connexe T de W, NT telle que pour n > ny le couple (I1 N W,,, W) soit un
triangle de c6té I" compatible avec (R, W,,). L’ensemble des points de tangence
de X avec T7 est d’apres les arguments développés dans la premiere partie, un
ensemble semi-analytique Z; de dimension au plus 1. D’aprés I’assertion ii) du
lemme de 1.4, il existe ny tel que, pour n > ng, on ait Z1 N W,, = 0 ; c’est-a-dire
que Ty N'W,,, est transverse & X.

Montrons, pour achever la preuve, que v coupe une infinité de fois Th N W,
pour n > n9 lorsque T) N W, est différent de R,,. Soient ~(¢g), v(¢1) avec tg <
t1 deux points d’intersection consécutifs de v avec R,,. Les triangles (R,, W,,),
(Th NW,, W,,) étant compatibles, le complémentaire de 77 UT" dans W,\R,, a
deux composantes connexes. Puisque v([tg,1]) relie deux composantes connexes
distinctes du bord de W,\R,,, il existe ¢ty < to < t1 tel que y(t2) appartient &
TINW,. O

Corollaire 1. La propriété de spiralement arial est invariante par éclatement et
effondrement pour les courbes intégrales d’un champ de vecteurs analytique réel.

Preuve. Soit m : M1 — M Déclatement de centre p € M et soit 4 une courbe
analytique de X tel que w(y) = p. Supposons que v spirale autour d’une demi-
branche I'. Alors v possede des tangentes itérées et oscille par rapport & une
surface S. La courbe v = 7rf1 o~ possede des tangentes itérées et oscille par
rapport a 51 = Wfl (S). D’apres le théoreme, v spirale autour d’une demi-branche

analytique.
Supposons que ) = 7 o« spirale autour de I'y. Alors w(I'1) = I' est une
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demi-branche analytique qui a un contact plat avec v. Si S est une surface semi-
analytique telle que I' C S\I', d’apres la définition du spiralement on sait que:

# oSN l= # Sn|y|=ce.
Ainsi v spirale autour de I' d’aprés le théoreme. O

Corollaire 2. (Propriété caractéristique du spiralement azxial). Soit v une courbe
intégrale de X telle w(y) = p et soit I' une demi-branche analytique en p. Alors v
spirale autour de I' si et seulement si pour toule surface semi-analytique S de M3
on a Uéquivalence suivante:/ SN |y |=o00 <= T'C S\I'.

Preuve. Supposons que « spirale autour de I' et soit S une surface. Si I' C
S\I', d’aprés le lemme de 1.4 (existence de triangle analytique) et la définition du
spiralement ~ est oscillante par rapport & S. Si ' S\I' = 0, d’apres le lemme
1.4, il existe un voisinage ouvert W,, de T' tel que SNW,, = 0 et «(t) € W,, pour
t assez grand.

Supposons que ’équivalence soit vraie pour tout S de M 3._L’argument utilisé
ci-dessus montre que l'implication #5N | v |= co = I" C S\I" entraine que ~
a un contact plat avec I'. La deuxieme implication entraine que ~ est oscillante.
Ainsi, v spirale autour de I d’apres le théoreme. O

Corollaire 3. Supposons que v (courbe intégrale de X sur M3) ait un contact
plat avec une demi-branche I lisse et soit (x1, x9,2) une carte affine en p = w(v)
telle que:

I={z1=22=0, 2>0} , ~(t) = (21(t),22(t), 2(1)).

Alors v spirale autour de I si et seulement si la projection vo(t) = (z1(t), za(t))
de v sur z = 0 spirale autour de p.

Preuve. On a déja vu dans 1.4 que si v spirale autour de I, alors v spirale autour
de p. Si yg spirale autour de p, il est clair que v est oscillante par rapport au plan
z1 = 0 et ainsi v spirale autour de I' d’apres le théoreme. |

Remarque. Ce corollaire nous incite a comparer le spiralement autour d’un
point en dimension 2 et le spiralement axial en dimension 3. Nous avons vu (avec
le théoreme de 2.2) que dans le premier cas, I'existence d’une courbe intégrale
qui spirale autour de p implique que p est un foyer monodromique, c’est-a-dire
lexistence d'un voisinage (semi-analytique) de p, invariant par X et formé de
courbes intégrales qui spiralent autour de p. En dimension 3, nous savons prouver
ce résultat lorsque I’axe de spiralement n’est pas formé de points fixes. C’est 'objet
essentiel du chapitre suivant.
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II. Axes de tourbillonnement

Soient M une variété analytique réelle de dimension trois et X un champ de
vecteurs analytique sur M.

Définitions. Si I' est une demi-branche analytique en un point p de M nous
dirons que:

i) I' est un aze de spiralement non dégénéré de X si ' est un axe de spiralement
pour une demi-courbe intégrale v et I' n’est pas contenu dans Sing X .

ii) I' est un aze de tourbillonnement de X s’il existe un voisinage ouvert semi
analytique V' de I" qui est positivement invariant par X et tel que I' soit un aze de
spiralement pour toute demi-courbe intégrale positive v d’origine un point de V\I.
Nous dirons alors que V' est un domaine de tourbillonnement pour I'. De plus nous
dirons que ' est un are de tourbillonnement non dégénéré si ' ¢ Sing X.

Le but principal de ce chapitre est de montrer le théoreme suivant.

Théoréme 2. Si ' est un axe de spiralement non dégénéré de X alors I' est un
aze de tourbillonnement de X.

Les axes de tourbillonnement non dégénérés sont clairement des “centres organ-
isateurs” de la dynamique au sens de R. Thom [Thg]. Le résultat suivant montre
que ces axes possedent les propriétés de finitude, d’analyticité que ’on souhaite.

Corollaire. Soit p un point de M. L’ensemble des axes de spiralement en p est
fini. L’ensemble des axes de tourbillonnement non dégénérés est localement fini
en p, c’est-a-dire qu’il existe un voisinage de p qui ne contient qu’un nombre fini
d’azxes de tourbillonnement non dégénérés.

On déduit de ce corollaire que ’ensemble des axes de spiralement de X est contenu
dans un sous-ensemble semi analytique de dimension 1. Ces résultats ne sont pas
entierement satisfaisants. Nous ne savons pas si le nombre d’axes de tourbillon-
nement (éventuellement dégénérés) est fini. En particulier, nous ne savons pas si
la situation suivante peut se présenter pour un champ de vecteurs X analytique
dans le voisinage de 0 € R3: la droite A = {y = z = 0} est contenue dans Sing X
et il existe une suite de points p, = (2,0, 0), 2,41 < 25, tendant vers 0, tel que
le germe de A en p,, soit un axe de tourbillonnement de X (figure 6).

La preuve du théoreme 2 est décomposée en trois étapes. Dans la premiere
nous étudions le spectre de DX (p) lorsque p est un point singulier élémentaire
de X, i.e. lorsque DX (p) n’est pas nilpotente et nous en déduisons le concept
de singularité réduite spiralante. Dans le paragraphe suivant nous montrons que
le théoreme est vrai pour ces singularités. Enfin, dans la derniére étape, nous
montrons tout d’abord qu’il est vrai pour les singularités élémentaires et ensuite
en utilisant des éclatements et des ramifications nous montrons que le cas général
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p .
Axe de tourbillonnement
non dégénéré

Figure 6.

se ramene au cas ¢élémentaire. Le paragraphe suivant est consacré a la preuve du
résultat de finitude, elle repose sur I'uniformisation locale des champs de vecteurs
en dimension 3. Enfin, dans le dernier paragraphe nous étudierons le caractere
“équilibré” des axes de tourbillonnement non dégénérés.

1. Singularités élémentaires. La preuve de la proposition suivante utilise
essentiellement la proposition 2.1.2. du chapitre précédent.

Proposition. Soit p une singularité élémentaire (DX (p) non nilpotente) d’un
champ de vecteurs analytique X sur M. Supposons que ' soit un axe de spiralement
non dégénéré d'une demi-courbe intégrale v de X avec p = w(y). Alors I' est lisse,
sa tangente en p est une direction propre de DX (p) de valeur propre p(I') =0 et
les deuz autres valeurs propres de DX (p) sont conjuguées & partie réelle négative
ou nulle.

Preuve. D’apres le théoreme 1, v a un contact plat avec I' et, d’apres la proposition
2.1.2., la tangente & I" en p est une direction propre de DX (p) de valeur propre
w(I'y = 0. Notons n, : My — M;_1 la suite d’éclatements de centre les points
{pr} de TI(T') avec pg = p, Mg = M et soit £ > 0 le premier entier tel que
I'y= Wzl(l“g,l) soit lisse. D’apres I'assertion de la preuve de proposition 2.1.2.

Spec (DX (p)) = Spec (DXe(pe)).

Ainsi, pour étudier le spectre de DX (p), nous pouvons supposer que I' est lisse.
Choisissons une carte affine en p telle que I' = {z =y =0, 2 > 0}. Soit v/ I'image
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de « par la projection (z,y,z) — (z,y). D’aprés 1.1.4, la demi-courbe +' spirale
autour de p dans le plan z = 0. Soit o : M — M Déclatement de centre la droite
z =y =0 etsoit § =0 Lo~ lerelevé de v par o. Puisque ~' spirale autour de
ponaw®) =o (p)~ S Montrons (par 'absurde) que les valeurs propres j’,
" de DX (p) distinctes de u(T") sont conjuguées, en particulier p/ = " # 0. Si ce
n’est pas le cas, p/, i sont réelles distinctes. On peut choisir les coordonnées z,
y, telles que le jet d’ordre 1 de X en p s’écrive (compte tenu du fait que z =y =0
est invariant)

0 0
I X(p) =p'e — +p'"y —, avecy £0.
ox Ay
Soient (z, ¥, Z) des coordonnées sur M au point p € RP(1) correspondant &
y=z=0tellessquez=2/y ,y=y,2z =z, etsoit X lerelevé de X par o. Alors

la restriction de X & o 1(p) s’écrit dans ces coordonnées
o o
pe / s
X |o-1py= (W' — p")Z Erl

Puisque g/ # p”, pest un point singulier hyperbolique de X lo—1(p) et alors o Lp)
ne peut pas étre un cycle limite de 7, en particulier w(¥) # o (p).

Montrons que I' est lisse. Si ce n’est pas le cas il existe un entier £ > 0 tel que
I';, est tangente au diviseur exceptionnel w,;jl(pk) = Ej. Ainsi p(T';) = 0 est une
valeur propre de la restriction de DX (py) & Fj. D’apres Dassertion de la preuve
de la proposition 2.1.2., ceci est impossible puisque 1'on a:

Spec (DXk(pe) |, ) = Spec (DXp1(ph1) s, ) == Wi} O

Corollaire. Soit p une singularité élémentaire de X. Il existe au plus deur ares
de spiralement non dégénérés en p. De plus, il n'existe pas de suite de points
{gn},gn # p, tendant vers p telle que X posséde un are de spiralement non
dégénéré Iy, au point py,.

Preuve. Soit I' un axe de spiralement en p pour v. La suite de points TI(I") = {ps}
est uniquement déterminée par la condition: le point py € RP(2) = W;jl(pk,l) est
I'image par la projection canonique de R3 sur RP(2) du noyau de DX} 1(pr_1).
Ceci montre la premiere partie du corollaire. Pour prouver la seconde partie,
raisonnons par 'absurde. Supposons qu’il existe une suite {g, } — p et une double
suite {(I'y,,vn)} d’axes de spiralement I',, pour des courbes intégrales «,, de X aux
points ¢,. Puisque les courbes I';,, v, ne rencontrent pas le lieu singulier de X, on
peut supposer (quitte & diviser X par une unité) que dim Sing X = 1. Il existe une
demi-branche A C Sing X contenant une infinité de ¢,. Puisque Ker DX (p) est
de dimension 1, on peut choisir ¢, € A voisin de p tel que Ker DX (g,) soit aussi
de dimension 1 et tel que le germe A,, de A en ¢, soit non singulier. Puisque T},
A, et T, I';, sont contenus dans Ker DX (g, ) on a T, A, =T, I',. En répétant
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cet argument apres éclatement on a T'I(A,,) = TI(I'y). Ainsi I',, = A,, C Sing X
ce qui contredit I’hypothese I',, est un axe de spiralement non dégénéré. O

2. Singularités spiralantes réduites. Dans le paragraphe suivant nous verrons
qu’apres un nombre fini d’éclatements, les singularités élémentaires qui portent des
axes de spiralement non dégénérés satisfont a la définition suivante.

Définition. Un point p de Sing X est une singularité spiralante réduite s’il existe
une carte affine ((x,y,2)),U) en p telle que I' = {x =y = 0, z > 0} soil un aze
de spiralement d’une demi-courbe intégrale vo et telle que

X:Zq: 2 Li+zq+1 (—a2 +V) ouqg>1et

z
i=0

i) Li(z,y) = (ouz + Biy) 82 + (viz + diy) 32 avee Ly non nilpotent.
x y

d d
. + b(z,y, 2) e avec a(0,0,2) = b(0,0,z) = 0.

De telles coordonnées s’appellent des coordonnées adaptées a (X, p).

i) V = a(z,y,2)

17,
La composante de X sur — étant —z971 les demi-courbes intégrales v de X

z
d’origine un point v(0) € {z > 0} sont contenues dans {z > 0} et peuvent
étre paramétrées par z. Plus précisément, ces courbes sont solutions de 1’équation
différentielle dans R? (dépendant du temps z) suivante:

du 1 1 i
= = o (Z z Li(u)) —V(u,z) avec u=(z,y).

i=0

On écrit v(2) = (2(2), y(2), 2) = (u(z), 2) la paramétrisation correspondante de
| v | et on pose r2(z) = ||u(2)]|? = 22(2) + y2(z). Compte tenu de la condition
V(0,2) = 0, on peut supposer que ||V (u, 2)|| < 1 pour z € Cy avec C, = {a2+y? <
1,0< 2z < e}

D’apres la proposition du paragraphe précédent, le spectre de DX (p) = Lg est
du type {0, X\, X}. On dit que (X, p) est asymptotiquement monodromique (resp.
non asymptotiquement monodromique) si A # X (resp. A = X). Pour prouver le
théoreme pour les singularités réduites nous envisageons ces deux cas. Le premier
a déja été étudié dans [Bo-Du] avec une autre approche.

Proposition 2.1. Soit (X,p) une singularité spiralante réduite, asymptotique-
ment monodromique d’axe I'. Alors I' est un aze de tourbillonnement. De plus
dans des coordonnées adaptées bien choisies X est transverse auxr niveauzr des
fonetions z, x> + y? et y/x sur le cylindre C\T.



Vol. 75 (2000) Oscillation, spiralement, tourbillonnement 307

Preuve. Un petit calcul (voir encore [Tak]) montre qu’il existe un changement de
coordonnées dépendant de z du type

u=(z,y) — (Ao + 2A1 + - - - + 294,)(u) , A; € M3s(R)

qui permet d’écrire les L, pour ¢ = 0,1,2,..., ¢, sous la forme:

0 0
Li(z,y) = (uz — Biy) 5 T (Biz + auy) Eo avec [ # 0.

Dans ces coordonnées on peut supposer (compte tenu de la condition V(0,2) = 0)
que:

du dr? r2 g 9

<u, T > s § (a0 +arz+ -+ agz?) +1r7p(u, 2)
avec | p(u,z) |< 1 pour (u,z) € C.. Montrons tout d’abord que ’hypothese, il
existe yp ayant un contact plat avec {z =y = 0, z > 0}, implique l’existence de
je{0,1,---,g—1} tel que oy =0sii < jet a;j < 0. Supposons que ce ne soit
pas le cas et étudions I’équation différentielle vérifiée par r%(z) = x%(z) + yg(z),
ol 7, (2) = (20(2), yo(#), 2) est une réparametrization de yo par la hauteur z. On
a alors trois possibilités

i) ag = a1 = ---a;-1 =0, a; >0 avec j < ¢g. On a alors pour z assez petit,
dr?
—0 () strictement négatif, ce qui contredit w(~p) = 0.

2
1 drd(z
iag=a; == ag-1 =0, ag <0. Pour z assez petit on a ) 02) &
ro(z) dz

a o
— avec a = ——=. On en déduit 73(2) > Az® avec A > 0 et alors 79 n’a pas un

z
contact plat avec I
ili) ag = g = - = g = 0. On voit que ro(z) ne tend pas 0 si z — 0.

Soit & = —a; >0, s = ¢—j > 1. On peut écrire

dr? or?
— = (14 2%(u,z))
. 5 . dr? .
o1 ¥ est bornée sur C. ll existe £, a > O tels que 0 < — < sa -7 d (u,z) €
ZS

C.. Le cylindre C. est positivement invariant par X et pour toute demi-courbe
intégrale v(z) = (2(2), y(2), 2) , r2(2) = 22(2) + y%(z) on a

1 dr?(z) o 58
r2(z)  dz 25t
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On en déduit 72(z) < A exp (—az®). Ainsi w(y) = 0 et v a un contact plat avec
{z =y =0, 2 > 0}. Pour terminer la preuve de la proposition remarquons que
lon a

(«® + %) edy —yda)(X) = 260(1 + 2f (2,9, 2))

oll f est bornée sur Cq. Ainsi pour £ > 0 assez petit toute demi-courbe intégrale
~ d’origine un point de C:\I' coupe transversalement les niveaux de y/z. De plus,
I’équation différentielle ci-dessus montre que la projection de v sur z = 0 spirale
autour de 0. D’apres le corollaire 1.3, I" est un axe de spiralement de . O

Proposition 2.2. Soit (X,p) une singularité spiralante réduite, non asympto-
tiguement monodromique d’axe I' = {x =y =0, 2 > 0}. Alors il existe € > 0 telle
que, dans des coordonnées adaptées (x,y,2), C. = {2% +y? < 1,0 < z < &} soit
un domaine de tourbillonnement de X. De plus X est transverse aux niweaur des
fonctions z2 + y? et z sur CAT.

Preuve. Soit 7o la demi-courbe intégrale de X qui spirale autour de I'. Puisque
w(vo) = {0}, la valeur propre A = X est strictement négative. Quitte & multiplier
X par une constante et & effectuer un changement de coordonnées linéaire en (z,y)
on peut écrire

17 7] 0
L0:_<x%+y8_y)+5x8_y avec 0=0 ou 6=1.

L’équation différentielle vérifiée par r2(z) = 22(z) + y%(2), ol (2) = (z(2), y(2),
z) est la réparametrization d’une courbe intégrale v, s’écrit:

dr? 7
s - gL e(x(2), y(2), 2)

ol 0 < a < p(z,y,2) pour (z,y,2) € C.. Les arguments de la preuve de la
proposition précédente montrent immédiatement que C; est positivement invariant
par X, que toute demi-courbe intégrale v : t — ~(t), avec v(0) € C¢, a un contact
plat avec I' en 0 et que X est transverse aux niveaux de z2 + y2 et de z. Pour
montrer qu’une telle demi-courbe est oscillante considérons I’éclatement polaire de
x =y = 0 avec les notations suivantes:

7 SIXxRxR—=R? n(z,rz)=(rz,2),
D* =r~l({z =y =0}),C: =~ 1(Cy), X* =n7Y(X).

*

Le diviseur D* est une variété centrale globale de X*, le relevé de X par 7.
L’assertion suivante est plus ou moins classique. |

Assertion sur la variété centrale. Soit v* une demi-courbe intégrale positive
de X* (mazimale) d’origine v*(0) € CF. Il existe une unique courbe intégrale
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Figure 7.

mazimale positive o de X* contenue dans D* N CF telle que la distance de v*(t)
a o(t) soit bornée par C exp (—at) pourt >0 ot a,C > 0. On dit alors que o est
la courbe accompagnatrice de ~v*.

Soit maintenant ~g5 = 71 049 oll v spirale autour de T' et soit og sa courbe
accompagnatrice. Un argument de la preuve de la proposition du paragraphe
précédent montre que w(vg) = w(og) = 7 p) ~ S1. Le cercle 71 (p) est un cycle
limite de X* |p+ et w(o) = 7' (p) pour toute courbe intégrale dans C* N D*. Soit
7 tel que v(0) € C., v* = 7~ Lo~ et soit o la courbe accompagnatrice de v*. Alors,
d’apreés Dassertion, w(y*) = w(o) = 7 L(p) et ainsi v est oscillante par rapport au
plan z = 0. On conclut en appliquant le théoreme 1. O

Preuve de Uassertion. Cette preuve reprend des arguments de [Ke] et nous n’en
donnerons que les grandes lignes. Compte tenu de écriture de X dans des coor-
données adaptées on peut écrire (modulo un changement de temps):

X' = (a(g) + Az, r, z)) % + (b(g)r + rB(z, r7z)) % - qurlaiz
ofl les restrictions de A, B & S x {0} x {0} sont nulles et b(z) < by < 0siz e St
Notons que D} = D* N C} est positivement invariant par X*. Plus précisément
toute demi-courbe intégrale o de X* issue d’un point de D} est définie sur [0, 00[
et w(o) est contenu dans D* N {z = 0}. Soient v*, o des demi-courbes intégrales
de X* d’origines respectives (zg,70,20), (£1,0,20). Alors v(t) = v*(t) — o(t) =
(z(t),p(t),0), t > 0 , est solution de I’équation différentielle E sur ST x [0,1],
dépendant du temps obtenue en écrivant v'(¢) = X*(7*(¢)) — X *(o(¢)). En écrivant



310 F. Cano, R. Moussu and F. Sanz CMH

que z(t) < %bl z(t), on peut utiliser la méthode classique d’approximations

dt
successives pour obtenir v(t) comme point fixe de l'opérateur intégro-différentiel
déduit de E. L’existence de la solution o : ¢ +— o(¢) cherchée et de la majoration

associée s’en déduisent. O

3. Fin de la preuve du théoréme 2. Dans tout ce paragraphe, I désigne un axe
de spiralement en p, non dégénéré, pour une demi-courbe intégrale v de X. Nous
prouverons le théoreme en nous ramenant au cas réduit tout d’abord pour une
singularité élémentaire et ensuite dans le cas général en effectuant des éclatements
de points, de courbes et, éventuellement, une ramification. Nous utiliserons le
résultat du paragraphe précédent sous la forme suivante. Si (z,y,z) sont des
coordonnées adaptées a une singularité réduite spiralante (X,p) il existe € > 0 tel
que C; = {x2 +y2 < 1,0 <z <e} soit un domaine de tourbillonnement. De plus
X est transverse aur niveauz de x2 + yQ sur CA\T.

Proposition 3.1. Soit (X,p) une singularité élémentaire qui possede un are
de spiralement I' non dégénéré (pour une courbe intégrale vy) transverse d une
hypersurface lisse D et soit ((xo, yo, 20), U) une carte affine en p telle que D =
{z0 = 0} et I' C {20 > 0}. Alors I est un aze de tourbillonnement de X qui
possede un domaine de tourbillonnement V' semi algébrique dans les coordonnées

(z0, Yo, 20)-

Preuve. D’aprés la proposition du paragraphe 1, Paxe I est lisse et p(I') = 0. 11
existe un changement de coordonnées du type = = zg+¢(2), y = yo+¢(z), 2 = 20
tel que I'={z =y =0, 2 > 0}. Soit ¢+ 1 l'ordre en z de la restriction de X a I.
On a 5 P 5

7o T Mewe) g+ (=2 elay2) o
ol a(0,0,2) = b(0,0,2) = 0, ordre ¢(0,0,2) > g+ 1 et DX(0) n’est pas nilpotente.
SiTI(I") = {p;}, notons 7 le composé des g+ 1 éclatements de centres p, p1 - ,pq
et soit ((2',y',2), U’) une carte affine en p, telle que 2/ = z29t1 ¢/ = y zatL,
Dans ces coordonnées le relevé X’ de X s’écrit

X = a(z,y,2)

q
X/:Z 2 Li+ 29t (h ai +X)
z
=0

ou les L; et X’ sont comme dans la définition des coordonnées adaptées au cas
réduit spiralant et h(0) < 0. Ainsi (z/, 3/, z) sont des coordonnées adaptées au
champ A 1X’. 1l existe £ > 0 tel que C. = {x’Q +y’2 < 1,0 < 2 < &} soit
un domaine de tourbillonnement de X'. De plus X’ est transverse aux cylindres
{2 +y? =72, | 2 |< €} pour r < 1. Si a(z), B(z) sont des fonctions qui ont un
ordre assez élevé en z, il existe & tel que

Cola,B) = {(&' + =) + (¥ + BE)2 <1, 0<z<e}
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soit un domaine de tourbillonnement de (X’,p’). Sa projection
T(Clle, ) = {(@ + 27 a(2))® + (v + 27T15(2)* <221, 0<2 <&}

est un domaine de tourbillonnement de (X,p). Ecrivons ¢(z) = ¢s(2) + fs(z),
P(2) = ¥s(2) + gs(2) ol @5, 15 sont les jets d’ordre s de ¢, ¢. Pour s assez grand

V={(z—fo(2))* +(y—g:s(2))2 < 27T, 0<2<e}

est un domaine de tourbillonnement de (X,p) qui est semi algébrique dans les
coordonnées initiales (xg, yo, 20) puisque z — fs(z) = 20 + ps(2), y — gs(2) =
yo + ws(z)' g

Proposition 3.2. Supposons que I' soit un aze de spiralement non dégénéré en
p pour la demi-courbe intégrale vg de X. Notons TI(I') = {p;}, m; Uéclatement
de centre p;_1, I'; = W{l(Fi,l), et ((x,y,2), U) une carte affine en p. Il existe
k > 0 et des coordonnées (xi, yi, 2r) en pi telles que le relevé de X en py s’écrit
X = 2z X}, avee DX} (pr) £ 0 et T, C {21, > 0} est lisse transverse a {z;, = 0}.
De plus my oy - - - oy, s’écrit algébriquement dans les coordonnées (z,vy,2), (zk,
Yk Zk)

Preuve. Pour i assez grand, I'; est lisse, transverse au diviseur exceptionnel (qui
est lisse en p;). Sa tangente est une direction propre de DX (p;) associée & une
valeur propre p(I';) = 0. On peut (modulo ces ¢ premiers éclatements) choisir des
coordonnées (z',y’, 2') telles que I' = {2’ =y’ =0, 2’ > 0}, i.e que

X:a%eraiy/ + c% avec a(0,0,z") = b(0,0,2") =0

et ¢(0,0,2") est d'ordre d > 1 en 2. Soient (2} = z/2', y1 = y/2', 2] = 2’) des
coordonnées en pq. Alors si DX (p) =0 il existe s1 > 0 tel que X1 = 251X ol

7] d d
£ — —_— —_— —_— / = / =
Xi=a1 = + b 7, +ec 57 avec a1(0,0,21) = 61(0,0,21) =0

et ¢(0,0, z]) est d’ordre di < d. Ainsi, il existe k > 0 et des coordonnées (z),,y},, 2,)
en pi telles que les conclusions de la proposition soient vérifiées. La carte affine
((z,y,2),U) étant fixée, on peut évidemment choisir une carte affine ((zr, yx, 21)),
Uy) en py, telle que 1 omg o - - - o7y, soit algébrique et le diviseur exceptionnel soit
R = 0. O

Si DX/ (pr) n’est pas nilpotente, il existe, d’aprés la proposition 3.1 un domaine
de tourbillonnement Vj, de 'y, pour (Xy, pi;) semi algébrique dans la carte ((zy, yx,
zk), U). D’apres le théoreme de Tarski sa projection par 71 o w9 o - - - 7y, est semi
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algébrique dans les coordonnées (z,y, z). C’est un domaine de tourbillonnement
d’axe I" pour (X, p).

Si DX (pr) est nilpotente, compte tenu de I'algébricité de mj om0+ omy, la
proposition suivante acheve clairement la preuve du théoreme 2.

Proposition 3.3. Supposons que DX (p) £ 0 soit nilpotente, que I' soit un aze
de spiralement en p non dégénéré, lisse, pour une demi-courbe intégrale vg de X
et que ((zo, o, 20), Un) soit une carte affine en p telle que I' C {29 > 0} soit
transverse a {zg = 0}. Alors , I est un aze de tourbillonnement de X qui posséde
un domaine de tourbillonnement semi algébrique dans les coordonnées (xq, yo, 20)-

Preuve. Soient (x,y,z) des coordonnées en p telles que z = zg, z = 20 — (2,
y = yo — P(z), ou I' = {zg = ¢(2), yo = ¥(z), z > 0}. Quitte & effectuer
les éclatements de centres p, pq,---pg € TI(I'), on peut supposer que, dans ces
coordonnées,

d & d
— 2 ) g+l ( _
X yaer;sz(%y)Jrz ( +V)
0 o 0 0
ou Li(z,y) = (auz + Biy) o + (wz + dy) 8_y ,V=a o + b B_y avec

a(0,0,2) = b(0,0, 2) =0 et ¢ > 0 puisque gy a un contact plat avec I'. Distinguons
deux cas.

1°T cas, v1=0. Soit 7 : M' — Uy = R3 Déclatement de centre la droite A =
{y = z = 0}. Notons que A a un sens intrinseque, c’est le lieu singulier de X
dans le diviseur. En particulier c’est une courbe algébrique dans les coordonnées
initiales. Soient TV = 7~ 1(T'), 4 = 7~ o4 et soient (¢/ =z, ¥/ = y/z, 2’ = 2)
des coordonnées au point p’ = w(I''). Dans ces coordonnées si X' est le relevé de

X par won a
q

X — (z/)_lX/ |z': Z Sl L; +Z/q' (_% +V/>
i=0

ou ¢ =¢q—1,les L, V' sont comme plus haut et

Lo(@',y') = (a1 2" +y') 2 + <72$’ + 517/) LA
Ox oy

Puisque T est un axe de spiralement non dégénéré de la courbe intégrale ~ de
X" on a encore ¢’ > 1. Si DX"(p') = DL{(0) n’est pas nilpotente, (X", p’) est
une singularité réduite spiralante et les coordonnées (z/, ¥/, ') lui sont adaptées.
D’apreés les propositions 2.1, 2.2 le cylindre ¢/ = {z2 +¢y2 <1, 0< 2 <¢e}
est un domaine de tourbillonnement d’axe I pour (X", p’). Par le méme argu-
ment que dans la preuve de la proposition 3.1 on montre ’existence d’un domaine
de tourbillonnement V' C C. d’axe I pour (X’,p’) dont la projection par les
morphismes d’éclatement effectués est un domaine de tourbillonnement d’axe I'
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pour (X,p), semi algébrique dans les coordonnées (zq, yo, 20). Si DX"(p’) est
nilpotente on conclut immeédiatement en raisonnant par récurrence sur ¢ puisque
d=q-1>1.

2°Me cas, 41 # 0. Soit 7’ le composé de la ramification (z,y,2') — (z,y, /%) par
Péclatement de centre {y = 2’ = 0}. Posons IV = 7/~ 1(T"), 44 = 7'~ L 0 79 et soient
(' = z,y = y/z"?, 2/) des coordonnées en p’ = w(I”). Si X’ est le relevé de X
par 7 on a

q
) a
—1 § : i 2
X//:(Z/ )X/: - Z/ L7,+Z/ g (—1/25 +V’)
=

3]
" Puisque DX"(p') = DL{(0) n’est pas nilpotente,

(X", p') est une singularité réduite spiralante. On conclut alors comme dans le cas
71 =0. O

d
avec Ly = ¢/ ) + ma'
z

4. Preuve du corollaire de finitude

Soit p un point singulier de X. Nous pouvons clairement supposer que dim Sing
X < 1. Ainsi Sing X\{p} est une union finie de demi-branches analytiques.
L’ensemble des axes de spiralement de X en p contenus dans Sing X est fini. Pour
montrer que ’ensemble des axes de tourbillonnement non dégénérés est localement
fini nous utiliserons un résultat “d’uniformisation locale” des champs vecteurs en
dimension trois démontré dans [Cal. Le résultat s’énonce en termes d’existence
d’une stratégie gagnante pour un jeu & la Hironaka [His] que nous rappelons.

Soit X un germe en p de champ de vecteurs analytique sur une variété de
dimension trois. Deux joueurs A, B jouent au jeu suivant qui comporte deux
étapes:

1) Le joueur A choisit un centre d’éclatement Y qui est soit le point p soit une
(un germe de) courbe lisse en p. On fait I’éclatement 71 : My — Mg = M et on
considere X7 le transformé strict de X (relevé divisé).

2) Le joueur B choisit un point p; € 7 1(p) tel que p; n'est pas une singularité
élémentaire de X1. S’il ne peut pas choisir un tel pq, le jeu s’arréte et le “joueur
A a gagné”. Sinon on germifie la situation en pi et le jeu recommence avec Xj.
Une “stratégie gagnante” pour A est un critére de choix des centres d’éclatement
tel que, toute réalisation du jeu (partie) respectant ce critere soit finie. Le résultat
d’uniformisation s’énonce alors : Il existe une stratégie gagnante pour A et les
longueurs de toutes les réalisations possibles (a partir de (X, p)) sont uniformément
bornées.

Prouvons le corollaire en raisonnant par I'absurde. Supposons qu’il existe une
suite infinie {I',,} d’axes de tourbillonnement non dégénérés pour X tels que la
suite {gn} = {w(T'x)} converge vers p et I'y, # Sing ',y si n #£ »/. Initions le jeu
d’Hironaka avec le choix de Y. Notons que les (I'y,,q,) et (Y, q,) sont distinets
pour n assez grand. En effet, si ce n’est pas le cas, pour n assez grand on a
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Figure 8.

Gn 7 qns €t puisque les ¢, appartiennent & Sing X NY, on a Y C Sing X. Ce
qui contredit 'hypothese I'), ¢ Sing X. Soit alors 71 : My — M 1’éclatement
de centre Y. Notons I',, 1 le transformé strict de I', et g, 1 = w(I'; 1). Puisque
1 est un morphisme propre, quitte & choisir une sous suite des {I',,}, on peut
supposer que {g, 1} converge vers un point p1 € 7~ 1(p). Le joueur B choisit le
point p1. En répétant ce type de choix pour le joueur B un nombre fini de fois on
obtient une singularité élémentaire py qui ne vérifie pas la conclusion du corollaire
du paragraphe II. O

5. Coordonnées adaptées et équilibrées

Soit I un axe de tourbillonnement non dégénéré, lisse de X en un point p. Le but
de ce dernier paragraphe est de montrer que la dynamique de X induite sur un
domaine de tourbillonnement bien choisi V' de I' est équilibrée au sens suivant: il
existe une carte affine ((z,y,2), U) enp telle que Uon ait:

P={z=y=0, 2>0}, V={22+32<2", 0<z<e}

et telle que X soit transverse aur nweauz de x> + y2, = et y/z sur V\I'. En
particulier la “rotation autour de I'” serait strictement monotone autour de I'.

Proposition. Si (X,p) est une singularité réduite spiralante, il existe des coor-
données (x,y,z) adaptées a (X,p) telles que I' = {z = y = 0, z > 0} soit un
aze de tourbillonnement de domaine de tourbillonnement C. et telles que X soit
transverse auz niveauz de 2 + y2, z et y/z sur C.\T.

D’apres les propositions 2.1, 2.2, nous devons seulement prouver que nous pouvons
choisir des coordonnées adaptées (z,y, z) telles que X soit transverse au feuilletage
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\r —

Figure 9.

ydz—zdy = 0 dans le cas non asymptotiquement monodromique. Avant d’aborder
cette preuve, examinons tout d’abord I'exemple suivant:

17 o 17 7] o
X:—(— —) ——(3 9222) = _ ;2 2
xaeryay ty oz yz xz)ay >
Notons tout d’abord que X n’est pas transverse au feuilletage zdy — ydr = 0. En
effet, la fonction (xdy — ydx)(X) s’annule sur les surfaces y = —zz, y = —2zz.

Montrons que I' = {z =y = 0, 2 > 0} est un axe de tourbillonnement. Soient 7
léclatement de centre {x = y = 0} et D son diviseur exceptionnel. Le relevé X’
de X posside un seul point singulier p’ € 7—1(0). Soient =’ = z, y' = y/z, 2’ = 2
des coordonnées centrées en ce point. On a
%) a
Y — X' |h— — 2 23sl4’ 22/2 __Z/Q_.
|p= -y~ + 32"y + )8y/ 5
D’apres la preuve de la proposition 2.2 il suffit de montrer qu’il n’existe pas de
courbe o de Y |r,50y telle que w(o) = {p'}. Or {z = 0} est la seule direction
réelle du cone tangent 3 Y en p’ et en éclatant ce point on obtient le résultat

cherché. Faisons le changement de coordonnées y'* = '+ 3/22’ qui correspond au
changement y* =y + 3/2z2 & l'origine de R3. Le champ Y s’écrit alors

0 i i

ay/* 4 oz

Il est transverse aux niveaux de y’™* = cste lorsque 2’ # 0. On en déduit que X est
transverse au feuilletage y*dz — xdy* = 0.

Y — _{y/*2+5/4 z/Q}

Preuve de la proposition. D’apres la définition des coordonnées adaptées on a

I o ~ -
X:Z; 2 L+ 297! (—5; +X), a>Tetvgy(X) 22
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De plus X n’étant pas asymptotiquement monodromique on a Lg = —R ou Lg =

—R+y Bz e R=z P + 8_y Notons comme dans I’exemple ci-dessus 7

I’éclatement de centre {x = y = 0}, D le diviseur exceptionnel et ¥ = X’ |p .
Puisque I' = {z = y = 0, z > 0} est un axe de tourbillonnement de X on sait
d’apres la preuve de la proposition 2.2 que:
(%) Si o est une courbe intégrale de Y avec o(0) € 7 {z > 0}, on a w(o) =
7 10)=F~ sl
(#x) Les singularités simples obtenues par réduction des singularités du feuilletage
L défini par Y sur D sont des “coins” (points de croisement du diviseur excep-
tionnel) ou des points du transformé strict de F.

Notons ¢ le premier indice i tel que L; # axR. Sit > g, la fibre I’ n’est pas
invariante par L, ce qui contredit (x). Si ¢t = ¢, le feuilletage £ possede une
singularité simple sur I, ce qui contredit encore (). Posons

~ 0 ~ 0
Li=L;—a;R=0y — + (vz+dy) o
ox dy
On peut supposer que L; est écrite sous forme de Jordan. C’est-a-dire que 'on
~ ~ 0 ~ ~ 0 0
a: soit Ly = §; y — avec 0 #£ 0, soit Ly = 3 (y — —x —) avec By # 0, soit
oy oz oy

Et =7 7 Le premier cas contredit () car £ a une singularité simple sur F. Dans

le second cas, £ n’a pas de singularité sur F' et il est clair que X est transverse
. . . ~ 5}

au feuilletage ydx — ydxz = 0. Etudions le troisieme cas, L; = y e Dans les
iz

coordonnées (z,y’ =y/z,z) le champ Y s’écrit:

Y = 2{(a(z)y”? +b()y +c(2))0/dy — 27 2 9/02}, d =q—t

a(z) = —1=" By 2, b(z) =Y di 7', clz) =D myi 2
=1 =1 =1

Soit N(y’) le nuage de points de Y(y')/z" et A(y’) le polygone de Newton de
N(y")U{(q',1)}. Le premier sommet de A(y’) est (0,2) et si —1/d(y’) est sa pente,
alors d(y') < ¢’. En suivant une méthode de préparation inspirée d’"Hironaka [His],
nous dirons que la coordonnée y’ est équilibrée si 'une des propriétés suivantes
arrive:

i) Le deuxieme sommet du premier c6té est (d(y'),1) ou d(y’) & Z.

ii) La pente d = d(y’) € Z, le deuxieéme sommet est (2d,0), le point (d,1) & N(y')
et il n’existe pas A € R tel que si y™* = 3’ + Az¢, alors soit d(y"*) > d(y'), soit la
longueur du premier segment decroit strictement.

Le changement 3’ — y’* correspond & y — y + Azz? qui est algébrique et con-
serve le caractere adapté des coordonnées. Apres un nombre fini de changements
de ce type, on peut suposer que 3’ est équilibrée. Montrons que les coordonnées
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choisies sont déja bonnes. Elles possedent déja la propriété suivante de contact
maximal.

“Soit, p’ = pg lorigine de la carte (y',2) de D, alors pg € Sing £ et dy =
d(y") > 1. Eclatons pg et soit p; le point qui correspond au transformé strict
de ' = 0. On a des coordonnées (y| = y'/z, z) en py. Alors la coordonnée ] est
équilibrée par rapport au transformé Y7 de Y. De plus d(y}) = d(y')—1,¢) = ¢'—1
et le nouveau polygéne A(y)) s’obtient en appliquant la transformation linéaire
(u,v) — (u+v—2,v) & Ay')".

En itérant cette procédure on voit que le cas i) n’arrive pas sinon on a une singu-
larité simple sur le transformé strict d’une courbe du type y’2 — 2241 = 0 ou sur
le transformé strict de y’ = 0, ce qui contredit (xx). Etudions le cas ii) en posant

flz,y,2) = 2 X (y) —yX(z),
fla,y,2) = {a(2)y® + b(2)yz + c(2)2? + 27 T2 X (y) -y X (2))} 2"

Comme l'ordre de x)~((y) - y)?(x) est > 3 en z,y, pour montrer que f(x,y,z)
garde un signe constant sur la région qui nous intéresse, il suffit de montrer que
le discriminant A(z) = b(2)2 — 4a(2)c(z) est strictement négatif pour 0 < z << 1.
Comme 3 est equilibrée, on sait que v(b(z)) > d et que A(z) = v22¢ + 224F1(.)
ol y<0sid< ¢ ety < —¢ sid=gqg. Onatoujours v < 0 et A(z) < 0 pour
0 < z << 1. Ceci termine la démonstration. O
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