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A note on degenerate corank-one singularities of
integrable Hamiltonian systems

Nguyen Tien Zung

Abstract. We prove that, in a neighborhood of a corank-1 singularity of an analytic integrable
Hamiltonian system with n degrees of freedom, there is a locally-free analytic symplectic T™1-
action which preserves the moment map, under some mild conditions. This result allows one
to classify generic degenerate corank-one singularities of integrable Hamiltonian systems. It can
also be applied to the study of (non)integrability of perturbations of integrable systems.

Mathematics Subject Classification (2000). 58F07, 58F14.
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1. Introduction

Let (M?™,w) be areal analytic symplectic manifold, and F = (Fy, ..., F,,) : M?" —
R™ be the moment map of an integrable Hamiltonian system on it. We will always
assume F to be a proper map. By definition of integrability, the map F is regular
almost everywhere. It is well-known that (a connected component of) the preimage
of a regular value of F is an n-dimensional torus (called a Liouville torus), and in
a neighborhood of this torus there is a free symplectic T"-action which preserves
the moment map.

In general, near a singular level set of the moment map, such a T™-action
no longer exists. However, one can hope that there still exists a torus action
of smaller dimension. Indeed, in [9] we have shown, among other things, the
existence of a locally free T? *-action for a corank-k nondegenerate singularity.
Here a singularity is a germ of a tubular neighborhood of a singular level set of the
moment map, and the corank is the maximal corank of the moment map at the
points of the singular level set in question. The nondegeneracy condition is some
natural condition, explained in detail in [9], and satisfied by most singularities
of integrable systems known to us. In [3] we suggested that the existence of a
locally free T"*-action must be also true for degenerate singularities (under some
very mild conditions), and showed how it is related to the (non)integrability of
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perturbations of integrable systems. In the second part of [9] we showed how to
use these torus actions to define characteristic classes, which are global topological
invariants of integrable Hamiltonian systems.

The main aim of this note is to give a proof of the existence of locally-free et
actions for (degenerate) corank-1 singularities of integrable Hamiltonian systems.
Let us now formulate the main theorem. As above, let F = (I, ..., F,,) : M
R™ be a proper analytic moment map, and assume that N = F~1(0) is a connected
compact singular level set of corank 1. It means that the rank of the (differential
of the) map F at any point of N is at least (n — 1), and there is a point z € N
where the rank of F is (n — 1). Since N is preserved by the Poisson R™-action of
the moment map F, and the dimension of each orbit of this action in N is at least
n — 1 because the rank of F is at least n — 1, the dimension of NV is at least n — 1.
Since the rank of F is at least n — 1 everywhere on N, the dimension of N is at
most 2n — (n — 1) = n + 1. We have:

Theorem 1.1. IfdimN =n—1, or dim N = n and N contains a regular point,
then in a neighborhood of N in (M 2", w) there is an analytic locally-free symplectic
T _action which preserves the moment map and which is free on Liouville tori.
If dim N = n and all the points of N are singular, then such a T" 1-action exists
in either a neighborhood of N or a finite covering of a neighborhood of N.

The case dim N = n + 1 is too degenerate, and is ruled out from the above
theorem. For example, consider an integrable system with two degrees of freedom
and assume for example that the isoenergy level set @ = {Iy = 0} is regular.
Then by changing Iy by Fj = F1F», Q becomes a corank-1 singular level set.
On the other hand, according to a result of Fomenko (see e.g. [4]), @ can be any
graph-manifold and does not admit any locally-free Sl action in general.

Theorem 1.1 will follow from the following “local” result. A part of this result
was obtained in collaboration with Alexey Bolsinov.

Theorem 1.2. Let O be a compact orbit of dimension n — 1 of the Poisson R"
action of the analytic moment map F : (M2"7w) — R”™ of an integrable Hamil-
tonian system. Assume that the level set of the moment map which contains this
orbit has dimension at most n. Then in a neighborhood of O there is a locally free
analytic symplectic T 1 action which preserves O and the moment map. If O
is not of nondegenerate elliptic type, then this T -action is also unique, up to
homomorphisms of T" 1.

The nondegenerate ellipticity condition in the above theorem can be formulated
as follows: let D" be a sufficiently small (n+ 1)-dimensional ball in M2" which
intersects O transversally. Then O is called of nondegenerate elliptic type if there
is a system of coordinates (g1, ..., ¢n41) on D7t guch that the moment map F
restricted to D™ can be written as a map of n variables (g1, ..., gn—1, q% + qZJrl)‘
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If O is of nondegenerate elliptic type, then there is not only a Tn_l—action, but
also a T"-action in a neighborhood of O (see [9]).

The rest of this note is organized as follows: In Section 2 we give a lemma about
an interesting property of the automorphisms of complex curve singularities. This
lemma is used in the proof, given in Section 3 and Section 4, of Theorem 1.2
and Theorem 1.1 respectively. In Section 5 we will discuss generic degenerate
singularities of corank 1 of integrable systems.

This note arises partially from some discussions with Alexey Bolsinov about
local circle actions during his visit to Montpellier in May 1996, and I would like
to thank him. I would like to thank the referee for his critical remarks.

2. Automorphisms of curve singularities

Let f : (C2,0) — (C,0) be a germ of a non-zero analytic function of two complex
variables, f(0) = 0. Assume that 0 € C? is a singular point of f, which may be
isolated or not. Let B C €2 be a small ball centered at the origin, in which f is
defined and has 0 as the only critical value. For € € C, ¢ £ 0 but near to 0, denote
by S, the Milnor fiber S = f~1(¢) N B. Let ¢ : (C2,0) — (C2,0) be a germ
of an analytic inversible map which preserves f. Then ¢ maps S! into S, where
5! = B'N f~1(¢), B’ being a ball in C2 such that 0 € B’ € B and ¢(B’') C B.
Since S¢\ S? is a union of cylinders, the map Pls: S! — 5. may be extended to a
map from S, to itself, which is not unique but homotopically unique (for |e| small
enough). We will denote this map by ¢, : Se — Se.

Lemma 2.1. There is a positive integer m such that ¢, the m-time iteration
(i.e. power of order m) of ¢, is homotopic to identity in S, (for |e| small enough).

Proof. We will desingularize the singular fiber Sg = f *1(0) N B by blow-ups. As a
result, B will be changed to B #kCPQ for some natural number k, with an analytic
map f : B#kCPQ — C (which is the pull-back of f) such that the preimage ?71(0)
of 0 consists of the desingularization ?6 of Sp and the exceptional divisors, and

the analytic set 771(0) (without counting multiplicities) contains no other singular
points than the nodes, i.e. double points. Since ¢ preserves f, it may be lifted to
a local automorphism from B;a%k(fP2 to itself which preserves f. Replacing ¢ by
@ for some h € Z if necessary, we can assume that & preserves each exceptional
divisor and each connected component of Sg. Hence ¢ also preserves each double
point of ?71 (0). The Lemma is almost trivial if £~1(0) has only a node singularity
itself, since then S¢ is a cylinder. Assume now that f *1(0) has a more complicated

—1
singularity at 0. Then there is an exceptional divisor D C f ~(0) which contains

]
at least 3 double points of f (_O) An holomorphic automorphism of CP! with
3 fixed points is identity. Thus ¢ is identity on . Consider another exceptional
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divisor D1 in Tﬁl(O), which intersects D at a double point z. The function f near
x can be written in the form f = zPy?, where (z,y) is a local system of complex
coordinates such that + = 0 on D and y = 0 on D1, p and ¢ are multiplicities
of f = 0 on D and on Dj respectively. since ¢ preserves f, D and Di, we have
that ¢(z,y) = (z(a+ ...),y(b+ ...)) with numbers a,b € C such that aPb? = 1.

Since ¢ is identity on D, we have a = 1. By replacing ¢ by ¢, we can assume
that & = 1. In particular, the differential of (some power of) ¢ at z is identity.

Since, beside z, D1 contains at least one other double point of Tﬁl(O)7 which will
be also fixed by ¢, it follows that (a power of) ¢ is identity on Dy. (Recall that if
a holomorphic automorphism ¢ of CP! fixes the points 0, 0o then it will be of the
type ¥(y) = by. If in addition the differential of ¢ at 0 is identity, then b = 1 and

1 is identity). The set of exceptional divisors in 771(0) forms a tree, if we replace
each exceptional divisor by a vertex and each double point by an edge. Hence,
by induction, we obtain that a power of @, say g_bm, is identity on the union of
exceptional divisors, and has differential equal to identity at every double point.

It implies that Ezn is C9-close to iilentity onS. =71 (€), and hence homotopic to
identity, and we are done (since S, is the same as S¢). To see it more clearly, at

each double point z € 771(0) let B, be a small ball at z. Then the spheres 9D,
cut S, into pieces, on each of which Em will be clearly close enough to identity.
In particular, since the differential of Em at double points is identity, Em does not
“mix” the local leaves of the local finite covering of the pieces of S, over punctured
exceptional divisors and punctured components of Sp. O

3. Local construction of the torus action

In this section we will prove Theorem 1.2. Let O be a compact (n— 1)-orbit of the
R”™-Poisson action of the moment map. Then it is well-known that O is an (n—1)-
dimensional torus, since it is a compact quotient of R™ by some subgroup. By a
linear transformation of the moment map F = (F1i,..., F,), we can assume that
the isotropy group of the R™-Poisson action on O consists of the elements of the
type (p1, ..., Pn_1,Trn) Where p.s are integers and x,, is an arbitrary real number. It
means in particular that dF,, = 0 on O, and the actions of the Hamiltonian vector
fields Xp,,...,XF, , of the functions I, ..., F,,_1 are independent and periodic of
period 1 on O.

Without the loss of generality, we can assume that the moment map has value
0 on the orbit @: F(O) = (0, ...,0). Let D"t be a small (n + 1)-dimensional ball
in MQ", intersecting O transversally at a given point € O. Then (Fi,...,F, 1)
restricted to D11 will be a regular map, which divides D"t into an (n — 1)-
dimensional family of 2-dimensional disks D2 = {(Fy, ..., Fy_1) =f = (f1, ..., fu_1)}-
The local symplectic reduction with respect to the Poisson R"l-action generated
by (F1,...,F,,—1) induces on Dl g regular Poisson structure with symplectic

-1
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leaves (D%7 wE).

Fix a non-zero (n — 1)-tuple of integers p = (p{,...,pn_1). The Poisson R*~1-
action (generated by (I, ..., F}, 1)) is identity on O at the multi-time p. It follows
that, for a point y € D™ there is a unique multi-time p(y) close to p and
depending analytically on y, such that the Poisson R 1-flow moves y to a point
z € D™ at multi-time p(y). The (analytic) mapping y — z is called the Poincaré
map for the multi-time p, in analogy with the Poincaré map for a periodic orbit of
a dynamical system. For a fixed (nonzero integral) multi-time p, the Poincaré map
is a germ of an analytic diffeomorphism from (D"Jrl7 x) to itself, which preserves
the moment map F and the Poisson structure of D* 1. Denote this Poincaré map
by ¢p. Recall that the level set of F' which contains O is of dimension at most n
by assumptions. It means that F), is not a constant function on the disk D%.

Lemma 3.1. There is a positive integer m such that ¢f (the m-~time iteration
of ¢p) is the time-1 map of an analytic Hamiltonian vector field on petil (of an
analytic Hamiltonian function G on D”+1, with respect to the induced Poisson
structure), which is tangent to the level sets of the function F,, in Dl O s
not of nondegenerate elliptic type, then this Hamiltonian vector field is also unique
(for each admissible m).

Proof. Complexifying the map F restricted to Dl we get a map F = (Fy, ...,
E, 1, F) Dg'H — C". ¢p becomes a holomorphic automorphism of DE'H
preserving F. Since F), is not identically zero on D%7 Lemma 2.1 implies that there
is a positive integer m such that qu’I'} is homotopic to identity on each Milnor fiber
(i.e. local regular level set of F) Sg . = {F = f1,..., i1 = fo1, I = e}ﬂDgJ“l
(1f1l, s [fn—1l, le| small enough). Let y € S¢ . be a point lying in a Milnor fiber.
By starting at y and following a homotopy from identity to ¢7), we will get a path
Yy from y to ¢F(y), vy C S, We will assume that F, restricted to D2 ={F =
... = F,_1{ = 0} has 0 as the only singular value, and the preimage F-1(0) (on
D%) is a singular curve with a singularity (at point z) which is not a node (i.e.
double-point) singularity. (The case when z is a double point, or a regular point,
is similar and simpler). Then -, has two remarkable properties: 1) It is uniquely
defined up to homotopies rel. y,¢p (y). 2) If y is real, i.e. y € Sg . N D7t then
7y s homotopic rel. y, ¢f(y) to a real path, i.e. to a path lying in S¢ N Dol
Indeed, the fundamental group 7T1(Sf7e) is a free group of at least 2 generators,
and the center of 71(Sg ) is trivial. But if v, and v, are two different paths

obtained by two different homotopies from identity to ¢, then v, 17?’/ lies in the

center of m1(Sg ). Hence v, 1%’/ is homotopically trivial, and ~, is homotopic to
Yy 7€l y, ¢ (y). For the second property, observe that y and ¢ (y) lie in a same
connected component of Sg . N Dntl (or at least we can assume so by taking a
multiple of n). Denote this component by o, and a path connecting y to ¢1'(y)
lying in this component by 3,. If o is closed (the degenerate elliptic case) then it
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gives a simple non-trivial element in 71(S¢ ,y), which commutes with 'yy_lﬁy in
71(St,e,y), because ¢} preserves a and is homotopic to identity. It follows that
Py 1ﬁy is homotopic to a multiple of a.. In particular, v, 1ﬁy is homotopic to a real
path, and so is v, rel. y, ¢ (y). If o is not closed (degenerate hyperbolic case)
then o has two boundary points, say z; and z3. Then ¢} preserves z; and 23,
and the homotopy from identity to ¢ can be chosen so that each element in this
homotopy also preserves z1 and 29. It follows that v, L 3y 1s homotopically trivial
in this case.

Let @ be a real analytic 1-form on D"t such that dfy = ws (the reduced
symplectic form) on each D% ={F| = f1,...Fy_1 = fo_1} N D" where 6 is
the pull-back of 8 to Dg. since ¢ (wg) = wg, we have that d(¢"™*0¢ — 0f) = 0,
and there is an analytic function R(y) such that dR¢(y) = ¢3"0f — O, where
Ry = R|D2' Define (for y lying in a Milnor fiber)

G(y) :/ 0 — R(y)

Y

The properties of the path ~, discussed above imply that G(y) can be extended to
a single-valued holomorphic function in DE+1, which has real value when y is real.
It is not difficult to verify directly that G(y) is the Hamiltonian function giving
the Hamiltonian flow on D"t that we are looking for.

As for the uniqueness, let us suppose that there are two different Hamiltonian
vector fields on D™t! which satisfy the above conditions. Then they must com-
mute, because they are tangent to each other. Their difference will be a non-zero
Hamiltonian vector field, whose time-1 map is identity (i.e. a periodic Hamiltonian
vector field), and it follows that in this case O is of nondegenerate elliptic type. O

We will suppose that O is not of nondegenerate elliptic type (the nondegenerate
elliptic case has been studied in [9]). It is clear that the function G(y) constructed
above is invariant on the level sets of the moment map F on Dt We can assume
that dG(z) = 0 on D*T1. Due to the uniqueness of the Hamiltonian vector field
in the above lemma, G is uniquely defined, modulo a function of I, ..., F, 1.
Notice that the Poincaré maps for different (integral) multitimes commute, and
that gzbg = ¢mp. Due to its uniqueness and the fact that it’s invariant on the
level sets of F,,, @ is invariant under the Poincaré map of any integral multi-time.
Thus we can extend G invariantly (with respect to the Hamiltonian vector fields
Xry ..., XF,_,) to obtain an analytic function in a neighborhood of the orbit O,
which we will denote again by G.

Put Gy =m(p1Fi+ ...+ ppn_1F, 1)+ G (where p = (p1, ..., pn_1) is the multi-
time). Then G is an analytic function in a neighborhood of @, whose Hamiltonian
vector field X, has the following property: the time-1 map of its flow, denoted by
1, has z as a fixed point, and sends any point y € D"t to a point ¢/ near y, whose
projection to D™ via the local integral curves of the vector fields Xp o0 XF,_;
is again y. It follows that ¢ is also the time-1 map of the flow of an analytic vector
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field X1, which is commuting with the Poisson R"-action of the integrable system,
and which is linearly dependent of Xp ..., Xr, 1 X1 =1 Xp +...+crno1Xp, |,
where ¢y, ..., ¢, 1 are analytic functions which vanish at z. The vector field X =
Xg, — Xy will be a periodic Hamiltonian vector field which preserves the moment
map, and on O it coincides with m(p1 Xp, + ... +pr—1Xp,_,). So it gives a locally
free Hamiltonian Sl-action which preserves the moment map.

Take (n—1) linearly independent multi-times. They will give (n—1) commuting
actions of S! by the above process, and together they will form a locally-free
Hamiltonian T 1_action in a neighborhood of @, which preserves the moment
map.

About the uniqueness: if we don’t have the uniqueness of the T" l-action
(up to morphisms of ']I‘”*l), then because of the commutativity, we will have a
Hamiltonian T™-action (which is locally free almost everywhere). It is easy to see
that in this situation O must be of nondegenerate elliptic type. O

4. Proof of Theorem 1.1

Let N = F~1(0) be a connected singular level set of dimension at most n, as in the
assumptions of Theorem 1.1. Due to the analycity and the invariance with respect
to the Poisson action, N has a smooth stratification, whose strata are invariant
under the Poisson R™-action. Since N is a corank-1 singularity, the orbits of the
Poisson action in it have dimension at least n — 1. Thus the strata of N are of
dimension n or n — 1.

There are three possible cases: 1) N is of dimension (n—1); 2) N is of dimension
n and contains a regular point (i.e. a point where the rank of the moment map
is n); 3) NV is of dimension n and does not contain a regular point. In the first
case, where dimN = n — 1, N is smooth since it cannot contain a stratum of
smaller dimension. It follows that N is a compact orbit of dimension (n — 1) of
the Poisson action. The existence of a torus action in a neighborhood of N in this
case is assured by Theorem 1.2.

Consider now the second case, when N contains a regular point z. Let O(x)
denote the orbit via z of the Poisson R™-action. Since z is regular, O(z) is of
dimension n. And since N is singular, O(z) cannot be a closed orbit. It follows
that the boundary of O(z) will contain an orbit of smaller dimension of the Poisson
action, which we will denote by O(y). Since N does not contain strata of dimension
smaller than (n — 1), it follows that O(y) must be closed, of dimension (n — 1),
and is a connected component of the boundary of O(z) in N. In the literature,
O(y) is called a whiskered torus (with O(z) being a part of the whisker). Theorem
1.2 shows that there is a locally free Hamiltonian T L action in a neighborhood
of O(y), which preserves the moment map. We can assume that z is close enough
to O(y) to lie in this neighborhood. The T" l-action is generated by (n — 1)
independent periodic Hamiltonian functions, say Hy, ..., H,. These functions are
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invariant on the level sets of the moment map (in a neighborhood of O(y)). Since
z is a regular point of the moment map, in a small neighborhood of z we have
(Hy,...,H, 1) = H(F}, ..., F},) where H is an analytic function from a domain of
R” to R" 1. But then the formula (Hy,....H, 1) = H(F1, ..., I%,) will give us
(n — 1) analytic functions well-defined in a neighborhood of N. The time-1 maps
of their Hamiltonian vector fields are identity in a neighborhood of O(y), and
hence, by analytic continuation, are identity in a neighborhood of N. Since they
are obviously commuting, they give us a Hamiltonian T L action which preserves
the moment map. The fact that this action is locally-free follows easily from the
non-ellipticity of N. (See e.g. [2] and references therein for Hamiltonian torus
actions).

Consider now the last case, when dim N = n and every point of N is singular.
We divide this case into two subcases:

Subcase 1. N does not contain any compact (n — 1)-dimensional orbit of the
Poisson action. In this case all the level sets of the moment map in a neighborhood
of N (including N itself), are smooth. Indeed, if NV is not smooth then it will
contain a stratum of dimension n — 1, and this stratum will be a compact orbit
of the Poisson action. We will denote by U(N) a sufficiently small neighborhood
of N. At a point z € N, we can assume that dFy A ... AdF,,_1(z) # 0. Then
dFy N ... ANdF,,_1 # 0 everywhere on NNV, since otherwise the set where it vanishes
would contain a compact orbit of the Poisson action. Thus we can assume that
dFy A ... ANdF, 1 # 0 everywhere in U(N). The set of points in U(N), where the
rank of F is (n — 1), is an analytic set which will be denoted by K. The set of
points in K whose local level sets are still smooth is another analytic set, denoted
by K'. We have N C K’ C K, and we want that K/ = K. If K’ # K, then it
is easy to see that there is a projective element (f1 : ... : fn_1) € RP" 1 such
that the set {y € K, Fi(y) : ... : F_1(y) = f1 : ... © fn—1} is an analytic set
of dimension n, not contained in K’, and that N is not a connected component
of this set. Since N is contained in this set, a smooth stratification of this set
will have a stratum lying in N which is not N. And since this stratification is
invariant under the Poisson action, it follows that N contains a closed subset of
smaller dimension, which is invariant under the Poisson R™ action. In particular,
N will contain a compact orbit of dimension (n — 1), which is contradictory to
our assumptions. Thus, in a neighborhood U(N) of N, we have a foliation whose
leaves are smooth analytic sets which are connected components of the level sets
of the moment map. Due to the analycity of the moment map, this foliation is an
analytic foliation (i.e. locally, in a small neighborhood of any point, the moment
map can be changed by a regular analytic map which defines the same level sets).
This foliation has compact leaves (at least near N), and the generic leaf is an n-
dimensional torus. Consider the holonomy of this foliation at a point z € N. This
holonomy preserves the (differential of the) moment map. Since the moment map
hasrank (n—1) at z, it follows easily that the holonomy is either trivial or Zg. If the
case of trivial holonomy, we have a topologically trivial foliation, and the classical
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Arnold-Liouville theorem (or rather the proof of it) gives us a free Hamiltonian
T"-action in a neighborhood of N. In the case of holonomy Za, let U(N) be
the corresponding 2-covering of U(N). U(N) is a topologically trivial foliation
by Lagrangian tori, and we have a Hamiltonian T"-action on it, whose moment
map (which vanishes on the 2-covering of N) will be denoted by (Hy,..., Hy,).
Hy,...,H, are called action variables. The space of variables (Hy,..., Hy,) has
a natural linear structure, and contains a natural integral lattice of dimension n
(the points of this lattice corresponds to Hamiltonian functions whose Hamiltonian
flows preserves the Lagrangian tori and are periodic of period 1/k for some natural
number k). The involution on U(N) induces a linear involution on the space of
action variables (Hy, ..., Hy,), which preserves the integral lattice. The moment
map F can be considered as an analytic map of variables (Hy,..., H,), and at 0
this map is of rank (n —1). The linear part of this map at 0 is also of rank (n —1)
and it preserved by the involution. It follows easily that this involution fixes an
integral sublattice of dimension (n —1). This sublattice will give us a Hamiltonian
T L action in a neighborhood of N.

Subcase 2. Some (or all) orbits of the Poisson R™-action in N are compact
(of dimension n — 1). Theorem 1.2 shows the existence and uniqueness of locally-
free moment-map-preserving Hamiltonian T~ ! actions near these compact orbits.
We want to glue these actions together, and extend them analytically, to obtain a
locally free T"~! action in a neighborhood of N. There are two possible kinds of
obstructions to doing so:

1. Divergence: while trying to extend the action variables (i.e. the moment map
ofaTn1 action) from a neighborhood of a compact orbit in IV to a neighborhood
of N, some action variable may diverge (i.e. cannot be extended analytically)
somewhere. The set of points in N where at least one of the action variables
diverges is closed (due to the uniqueness of the T 1 action wherever it’s defined,
and hence the uniqueness of the action variables up to an affine transformation),
and is of dimension smaller than n in N. This set is also invariant under the
Poisson R™-action. But then this set consists of compact orbits of the Poisson
action, and hence by Theorem 1.2 the T ! action is well-defined there. Thus in
fact there is no divergence.

2. Non-trivial holonomy: We can always assume that the locally-defined (n—1)
action variables above vanish on N. The problem is that, after going around a
homotopically non-trivial path in N, the action variables are changed by a linear
automorphism of R which may be different from identity. We will show that
the holonomy group is finite. Then we can take a corresponding finite covering of
a neighborhood of N to Kkill this holonomy group. When the holonomy group is
trivial, the (n — 1) action variables are well-defined, so their corresponding et
action is well defined in a neighborhood of N. To show that the holonomy group
is finite, we will use the fact that the moment map is proper. Take a point z lying
in a smooth part of N, and let D™ be a small analytic disk transversal to N at z.
Restricting the moment map F to D™, we get a local analytic map F : (D", z) —
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(R™,0). Complexify this map to get a holomorphic map F¢ : (Dg, z) — (C",0).
The number of points in the preimage of F¢ of a generic point close enough to
0 in (C™,0) will be called the multiplicity of F at . Since F is proper, this
multiplicity is a well defined finite positive integer (depending on z). Let v be a
simple piece-wise smooth closed curve in N starting at . Then for each y in Dg
close enough to = there exists a curve I' lying in a small tubular neighborhood
of v of a complexification of M?" (so this curve may contain complex points),
which starts at y and ends at a point 3’ in D, and such that the moment map
F is constant on this curve. This curve I' is not unique in general, but what’s
important is its existence. The (locally-defined) action variables (Hy,..., H, 1)
must be constant on I' too. Therefore the value of (Hy, ..., H, 1) at y, after the
holonomy action of ~, becomes (Hi(y'),..., H,_1(y’)). Since there are a finite
number of points in DE which have the same value of the moment map as y (the
number of points is the multiplicity of F at z), it follows easily that the holonomy
is finite. We suspect that the holonomy is either trivial or Z/27Z because the rank
of F on N is (n — 1), but we don’t have yet a rigorous proof of this fact.

We have shown the existence of a T -action for the different cases of Theorem
1.1. The fact that this action can be made free on Liouville tori follows from
the following simple argument: if it is not free on a Liouville torus, then the
corresponding isotropy group for this torus will also be the isotropy group for all
nearby Liouville tori, and by analytic continuation this isotropy group will act
trivially on a neighborhood of N. Therefore we can Kkill this isotropy group by
taking the corresponding quotient group of T~ 1. Theorem 1.1 is proved. |

It would be nicer if we would not need a finite covering in the last case of The-
orem 1.1. But the following example shows that sometimes it cannot be avoided.

Example. Consider the manifold M? = §1 x D! x 81 x D! (where 5! is a
circle, D! = (—¢, +¢) is a real interval) with coordinates (o, H, 3,Q) (e and 3 are
cyclic coordinates and defined modulo 1), and with a standard symplectic form
w = dH Ada+dQAdS. Let G = G(3,Q) be an analytic function on S x D which
satisfies the following conditions: 1) G is invariant under the involution (3,Q) —
(6+1/2,Q); 2) Q has exactly two critical points (0,0) and (1/2,0), and the value
of @ at these points is 0; 3) the singular level set @ ~1(0) is homeomorphic but not
diffeomorphic to a circle, and the nearby level sets are smooth circles. It is not
difficult to construct such a function explicitly. Put F'j = cos(278)H +G and Fy =
H?2. Then (Fy, ) is the moment map of an integrable system. It is easy to see that
the level set N = {F} = I = 0} is a singular level set, which is a topological torus
but not a smooth torus. dFfy = 0 everywhere on N but dF| # 0 everywhere on N,
so IV is a corank-one singularity. F, F5 and the symplectic structure are invariant
under the following free involution 7 : (o, H, 3, Q) +— (—a, —H, f+1/2,Q). Taking
quotient by this involution, we get an integrable system on M* /7 with the moment
map (F1, Fa). H, the would-be action variable corresponding to a Hamiltonian
Sl—action, will be double-valued there.
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5. Generic degenerate singularities

Let O(z) be a degenerate singular compact orbit of dimension (n — 1) for an inte-
grable system with n degrees of freedom, and let D™+ be a small ball transversal
to O(z) at . The germ of the integrable system at O(z) will be called a local
corank-1 singularity of the integrable system. (The adjective “local” is used be-
cause in general O(z) is only a subset of a singular level set. When we consider
singular level sets, as in [9] or Theorem 1.1, then we drop this adjective). Two local
corank-1 singularities at O(x) and O’ (2') are called smoothly equivalent if there is
a diffeomorphism from a neighborhood of O(z) to a neighborhood of @'(z’) which
preserves the level sets of the moment map.

Let D"! be a small ball transversal to O(z) at =, and let (Hy,..., H, 1) be
the action variables corresponding to the (essentially unique) Hamiltonian e,
action in a neighborhood of O@(z). On D"T! we have a singular dimension-1
foliation by the level sets of the moment map. Since Hy, ..., H, 1 are invariant on
the level sets of the moment map, without the loss of generality we can assume
that this singular foliation on D11 is given by the level sets of (Hi,..., Hpy1, Fy)
where F,, is the last component of the moment map. In other words, without
changing the topology of the integrable system (in a neighborhood of O(z)), we
can change the moment map to (Hy,...,H, 1,F,). D"t can be considered as
an (n — 1)-dimensional family of the level sets of (Hy,..., H, 1). These level sets
are symplectic 2-dimensional disks, with the symplectic structure induced by the
local Marsden-Weinstein reduction with respect to the action of (n—1) commuting
symplectic vector fields Xp,, ..., Xg, ,, and on them we have Hamiltonian systems
with the Hamiltonian function F,,. Recall that the Hamiltonian T L action is
locally free, but it may be free or not. When this action is not free, it induces an
action of a finite group (which is a quotient group of m1(O(z))) on D"t! which
preserves (Hy, ..., H, 1, F,) and the symplectic forms on the disks. It particular
this finite group action preserves the orientation of the disks, and hence it is
conjugate to the standard linear action of a cyclic group Z/mZ, and we have a
surjective homomorphism from 71 (O(z)) = Z" ! to Z/mZ.

The germ of the above (n — 1)-dimensional family of Z/mZ-symmetric Hamil-
tonian systems with one degree of freedom will be called the reduced Hamiltonian
system for the local singularity at O(z). It is essentially the Marsden-Weinstein
reduction (the only difference is that, in case m # 1, the usual Marsden-Weinstein
reduction will give orbifolds which are the quotient of our disks by the cyclic
action). We have the following obvious

Proposition 5.1. The smooth equivalence class of a local degenerate corank-1
singularity is uniquely determined by the smooth equivalent class of its reduced

system and a surjective morphism from Z" to Z/mZ.

In other words, the topological study of local corank-1 singularities is the same
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as the study of families local 2-variables functions which are invariant under the
standard cyclic action of Z/mZ on the disk, or equivalently, the study of defor-
mations of a Z/mZ-invariant singularity of a function of two variables. If the
deformation is versal (see e.g. [1, 7]), then we have a generic singularity. Thus,
for a singularity of a 2-variable function to appear generically in a corank-1 sin-
gularity of an integrable system, the number of degrees of freedom n must be
greater than the dimension of the miniversal deformation of this singularity, and
vice versa. For example, the singularity of type A,  (i.e. function y2 — 2! with
miniversal deformation 32 — z*t1 4 qrz? 1 4 goa 2 4+ . + g, see e.g. [1]) will
appear generically as a codimension 1 singularity whose torus T*~1 action is free
for integrable systems with at least k degrees of freedom. A (partial) classification
of (isolated) singularities of real functions, due to Arnold et al., can be seen for
example in [1]. Here we have simple singularities (A-D-E series), then unimodal,
then bimodal singularities, etc.

The case with nontrivial cyclic action was also studied partially by various
authors. For systems with 2 degrees of freedom, which amount to 1-parameter
families of functions, generic corank-1 singularities have been studied by Golu-
bitsky and Stewart [5], and also Kalashnikov [6]. The list of generic singularities
in this case, taken from [5, 6], is as follows (we will write them in the form of
1-parameter families of functions of two variables):

m = 2 (i.e. Z/2Z action): Fqi(agy) = a2 £ y? 4 g2, (Notice that the case
2% — % + ¢z was omitted in [5], but the sign here really matters, i.e. it will give
different topological pictures).

m = 3: Rz — g2z, where z = z + .

m = 4: (22)2 + yR2? — g2z, Here v is a real modal parameter, y # 0,%1.
Topologically there are 2 different cases, 0 < |y| <1 and 1 < |y| < o0.

m > 5: (22)2 + R2™ — g23.

For more-parameter families of Z/mZ-symmetric functions, we refer to a work
of Wassermann [8].
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