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Surfaces de la classe VII; admettant un champ de vecteurs

Georges Dloussky, Karl Oeljeklaus and Matei Toma

Résumé. Nous montrons qu'une surface de la classe VIIy avec by > 0 sur laquelle existe
un champ de vecteurs non trivial contient exactement bz courbes rationnelles. Il s’ensuit par
un théoréme de I. Nakamura qu’une telle surface se déforme en une surface de Hopf primaire
éclatée. Ce résultat contribue A la classification des surfaces complexes compactes avec champs
de vecteurs.

Abstract. We prove that a compact complex surface of class VIlg with b3 > 0 admitting a non
trivial holomorphic vector field contains exactly by rational curves. A theorem of I. Nakamura
then implies that such a surface is a deformation of a blown-up primary Hopf surface. This result
contributes to the classification of compact complex surfaces with holomorphic vector fields.

Mathematics Subject Classification (2000). 32J15, 32L30, 32M05, 57R30.

Keywords. Surface complexe compacte, Champ de vecteurs holomorphe, Feuilletage holomor-
phe.

0. Introduction et Rappels

Si S est une surface compacte complexe non-kéhlerienne, il est bien connu que son
premier nombre de Betti b1(S) = dimp H(S,R) est impair (voir [1], [3], [16]).
La classification de Kodaira ([1]) est actuellement incompléete pour les surfaces S
non-kihleriennes avec by(S) = 1 et ba(S) > 0 ot by(S) := dimp H2(S,R) désigne
le deuxieme nombre de Betti. Toutes ces surfaces font partie de la classe VII de
Kodaira, c’est-a-dire qui vérifient by = 1. La classe VIlg désigne les surfaces de la
classe VII qui sont minimales. Signalons que le modéle minimal d’une surface de
la classe VII est unique (& un biholomorphisme pres) et s’obtient par contraction
successive des courbes rationnelles de premiere espece. Si une surface de la classe
VII admet un champ de vecteurs holomorphe non trivial, il en sera de méme pour
son modele minimal.

Le but de cet article est d’apporter une contribution a la classification des
surfaces compactes complexes admettant un champ de vecteurs holomorphe non
trivial ou, ce qui est équivalent, une action holomorphe presque effective du groupe
de Lie complexe (C,+). Nous résumons d’abord les résultats connus. Dans [11],
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la classification des surfaces compactes complexes minimales admettant au moins
un champ de vecteurs holomorphe € non trivial est donnée. Le seul cas qui reste
ouvert est le cas des surfaces S de la classe VIIy dont le deuxieme nombre de Betti
ba(.S) est strictement positif. Il est bien connu que la dimension algébrique a(S) de
S vaut 0. La classification des surfaces presque-homogenes (voir [20], [13]) montre
qu’une telle surface a au plus un champ de vecteurs holomorphe non trivial (& une
constante multiplicative non nulle pres). Le flot de € sur S induit alors soit une
action effective de (C*,-), soit une action effective de (C,+). Le fait qu'un champ
de vecteurs non trivial sur S doit s’annuler (voir par exemple [2]) et le théoreme
suivant nous montrent que seul le second cas reste & élucider.

Théoréme 0.1. [13] Soit S une surface compacte complexe minimale admettant
une action holomorphe de (C*,-), qui a au moins un point fize dans S. Alors S
appartient a la liste suivante :

1) Certaines surfaces algébriques.

2) Surfaces de Hopf diagonales presque homogénes.

3) Surfaces d’Inoue paraboliques.

Par conséquent, une surface S de la classe VIl pour laquelle by > 0 et qui
admet une action du groupe (C*,-) est une surface d’Inoue parabolique. Une
telle surface admet exactement by courbes rationnelles (voir Remarque 3.3). Nous
étudions dans ce travail le cas restant, ¢’est-a-dire le cas d’une surface S de la classe
Vlly, pour laquelle b > 0 et admettant une action effective du groupe (C,+).

Nous rappelons que, tandis que la classification des surfaces de la classe VIIg a
ba = 0 est connue (voir [14], [24]), elle reste ouverte dans le cas by > 0. De plus, on
ne sait pas s'il existe des courbes sur de telles surfaces. Les seuls exemples dont on
dispose sont les surfaces S admettant une coquille sphérique globale, c’est-a-dire un
voisinage ouvert U ¢ €2\ {0} de la sphére S3 € C? et une application f : U — S
biholomorphe sur son image, tels que S\ f(U) soit connexe. (Voir [6]). Dans ce
cas le nombre de courbes rationnelles sur S est égal a by(S). Comme sous-classes
remarquables nous mentionons les surfaces d’Inoue-Hirzebruch (voir [15], [7]) et
les surfaces d’Inoue paraboliques (voir [10]).

Dans [19], I. Nakamura introduit la notion de surface spéciale: Une surface
S de la classe VIIg avec by > 0 est dite spéciale, s’il existe au moins by courbes
rationnelles sur S. Dans ce cas, d’aprés un théoreme de Ma. Kato ([18]), il existe
exactement by courbes rationnelles sur S. De plus, le graphe dual des courbes sur S
est le méme que le graphe dual des courbes sur une surface contenant une coquille
sphérique globale ([19]). En particulier, S contient un cycle de courbes rationnelles
(pour la définition voir la section 2) et S est une déformation d’une surface de
Hopf primaire éclatée ([19]). Dans le méme article, I. Nakamura conjecture qu’une
surface spéciale contient une coquille sphérique globale.

Dans [8], les deux premiers auteurs étudient les feuilletages singuliers et les
champs de vecteurs holomorphes sur les surfaces contenant une coquille sphérique



Vol. 75 (2000) Surfaces de la classe VIl 257

globale : Si une telle surface n’est pas d’Inoue-Hirzebruch, alors il existe un unique
feuilletage singulier et, dans certains cas qui sont explicités, ce feuilletage est induit
par une action effective de (C,+). Ici nous démontrons le théoréme suivant.

Théoréme Principal: Soit S une surface de la classe VIl avec by > 0 admettant
une action de (C,+). Alors S est une surface spéciale.

Vu ce résutat, la réponse positive a la conjecture de 1. Nakamura impliquerait
que toute surface de la classe VIl avec champ de vecteurs admet une coquille
sphérique globale.

L’article est organisé comme suit. Dans la premiere section nous rappelons des
résultats récents de E. Ghys et J. Rebelo concernant les singularités des champs
de vecteurs semi-complets.

Dans la deuxieme section nous montrons I'existence d’un cycle de courbes ra-
tionnelles et dans la troisieme section la démonstration du théoreme principal est
achevée.

1. Singularités des flots holomorphes

Dans cette section nous rappelons des résultats récents diis a E. Ghys et J. Rebelo
([21], [12], [22]) concernant les singularités des champs de vecteurs holomorphes
semi-complets en dimension complexe deux. Nous renvoyons le lecteur & [21] ou
[12] pour la définition et remarquons ici seulement que la semi-complétude est une
condition locale nécessaire pour la complétude d’un champ de vecteurs.

Soit F un feuilletage holomorphe défini dans un voisinage de l'origine de C?
ayant 0 comme singularité isolée. On appelle courbe invariante une courbe ~
irréductible contenant 0 telle que ~ \ {0} soit une feuille.

1.1. Champs de vecteurs dont le premier jet en un point singulier isolé
est non nul

Soit & un champ de vecteurs holomorphe sur une surface ayant une singularité isolée
P et dont le premier jet ne s’annule pas. Dans un systeme local de coordonnées
au voisinage de P la matrice M de la partie linéaire de € est de I'un des quatre
types suivants:

1. M a deux valeurs propres nulles i.e. M est nilpotente et on dira que la singu-
larité P est nilpotente ;

2. M aexactement une valeur propre non nulle: on dira que P est une singularité
col-nceud ;

3. M a deux valeurs propres non nulles A\ et Ao telles que % Z N* et % & N*;

4. M a deux valeurs propres non nulles A\ et A9 et f\‘—; € N* ou f\‘—f € N*.
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Les singularités des deux derniers types sont appelées génériques.
Nous faisons maintenant quelques remarques concernant les courbes invariantes
pour ces quatre types.

Proposition 1.1. Soit @ un germe de champ de vecteurs semi-complet au voisi-
nage de Uorigine de C2 et possédant une singularité isolée & origine. On suppose
que le premier jet de 8 est nilpotent non trivial. Alors 0 est conjugué a fY119 ou
fYi23 ou fZ193 ou fP, ou f est une fonction holomorphe ne s’annulant pas a
lorigine et :

(a) Y112 = (2y—22)0/0z +2xyd/dy dont une intégrale premicre est y(y —z?)
et les deuz courbes invariantes sonty =0 et y = x2.

(b) Y193 = (3y—22)0/0x-+4xyd/y dont une intégrale premiére est y(y —x2)?
et les deur courbes invariantes sont y =0 et y = z2.

(¢) Z12,3 = 2yd/0x — 3220/8y dont une intégrale premiére est 3 + y2 et la
courbe invariante est ©° + y2 =0.

(d) P = (y — 222)0/ 8z — 22yd/dy dont une intégrale premiére (méromorphe)
est (y — bfzcg)y*2 et les courbes y — z? = cyz, ¢ € C sont invariantes.

Démonstration: [12] Proposition 3.16 et Remarque 2.4. O

Soit 6 un champ de vecteurs holomorphe au voisinage de l'origine de €2 &
singularité isolée. Désignons par F le feuilletage holomorphe singulier associé & 6.
Ce feuilletage est également défini par une forme différentielle holomorphe w.

Dans le cas d’une singularité col-nceud, d’apres un théoreme de forme normale
de Dulac (voir [9], [17]), il existe un systeme de coordonnées dans lequel w s’écrit

w(z,y) = [2(1 + M) + yR(z,y)] dy — y* T dw
ot A € C, p € N* et l'ordre de R en (0,0) est au moins p + 1. Formellement on
a une forme normale plus simple: il existe un changement formel de coordonnées
(z,y) — (¢(z,y),y) qui permet de conjuguer (en général de fagon non convergente)
w a
wpx = z(1 + Ay )dy — yp+1dx

et A € C, p € N* sont les invariants formels de w. La forme normale convergente
montre que {y = 0} est une courbe invariante, on dira que c’est la variété forte
de w ou du col-neeud. 1l est facile de voir que I'indice de Camacho-Sad (voir [5],
p.592) le long de la variété forte est égal a zéro. Par ailleurs {x = 0} est une
courbe invariante formelle pour wy, », elle sera appelée la vari¢té faible de w ou du
colneeud. En général, elle ne correspond pas & une courbe holomorphe. (En fait
J.Rebelo montre dans [23] que la variété faible converge si et seulement si 6 est
semi-complet. )

Remarque 1.2. Si la variété faible d’'un col-nceud converge, alors le champ de
vecteurs le long de cette courbe invariante s’annule & I'ordre au moins deux au
point singulier P.



Vol. 75 (2000) Surfaces de la classe VIl 259

Démonstration: Sion prend un systeme de coordonnées (z,y) tel que les deux
variétés invariantes soient les axes de coordonnées, alors w s’écrit

w = zA(z,y)dy — yB(z,y)dz,
avec A(0,0) #£ 0 et B(0,0) = 0. O

Pour le type (3), il y a exactement deux courbes invariantes. Elles sont lisses
et tangentes aux espaces propres Iy, Ey, de M. Leurs indices de Camacho-Sad

sont % et i—; respectivement. Cela se voit en utilisant la forme normale de Dulac
w= MzA(z,y)dy — Aoy B(z,y)dx

avec A(0,0) = B(0,0) = 1.
Enfin pour le dernier type, il existe une forme normale de Dulac (voir [17])

w = (nz + py")dy — ydx

avec n € N*. On voit alors que {y = 0} est une courbe invariante dont 'indice de
Camacho-Sad est égal a % Lorsque g #£ 0, la variété {y = 0} est la seule courbe
invariante. Sinon il y en a une infinité donnée par les équations z = cy™, ¢ € C.

1.2. Champs de vecteurs avec point singulier isolé dont le premier jet
s’annule

Théoréme 1.3. (Théoreme B, [12]) Soit 0 un champ de vecteurs holomorphe sur
une surface complexe compacte S. Si 0 posséde une singularité isolée ou le premier
jet de 0 s’annule, alors S est isomorphe o Uune des surfaces de Hirzebruch I,
n > 0. De plus, a automorphisme de F,, prés, le champ 0 est unique et donné en
coordonnées locales autour de la singularité par

220/0x — y(nz — (n+ 1)y)d/dy.

1.3. Champs de vecteurs avec point singulier non isolé

Théoréme 1.4. ([22], Théoreme A) Soit @ un germe de champ de vecteurs holo-
morphe défini et semi-complet au voisinage de Uorigine de C2. Supposons que
lorigine ne soit pas une singularité isolée de 0 et que le feuilletage F associé soil
singulier. Alors, a4 changement de coordonnées prés, 6 est de l'une des formes
suvantes :

Cas A: L'origine est une singularité isolée de F d’ordre 2.
1. 0= f(z,y)[zy(z - y)];[w(x —2y)0/ 0z + y(y — 22)0/dy| ;
2. 0= f(z,y)[zy(z — y)°|*fx(z — 3y)0/ 0z + y(y — 32)0/dy| ;
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3. 0= f(z,y)lay*(z — y)3]°[e(2z — 5y)d/0x + y(y — 42)0/ Ay
ot £(0,0) £0 et a € N*.

Cas B: L'origine est une singularité isolée de F d’ordre 1 avec partie linéaire
nilpotente non triviale.
1.0 = f(z,y)la® +y?|*[290/ 0z — 3220/ dy) ;
2. 0= f(z,y)ly(y — =*)|"[(2y — 22)8/ 0z + 2xyd/dy) ;
3. 0= f(z,y)ly(y — 2%)*)*((3y — 2°)9/ Bz + 4ayd/ dy)
ot £(0,0) £0 et a € N*.

Cas C: Liorigine est une singularité isolée de F d’ordre 1 avec deux valeurs

propres non nulles.

1. 0= f(z,y)x"y™0 ou O est un champ dont la partie linéaire s’écrit mzd/Ox —
nyd/dy, (0,0) #£0 et m,n € N*;

2. 0 = 220 f(x,y)[mxd/dx — nyd/dy], avec m,n € N*, £(0,0) £ 0 et am — bn =
+1;

3. 0 =af(z,y)[xz0/0x + nyd/dy], avec n € N* et £(0,0) £ 0.

4. 0= (zy)(x —y)f(z,y)[x8/0x —yB/y]|, avec I >0 et £(0,0) £ 0.

2. Champs de vecteurs sur les surfaces de la classe VI

On suppose dans la suite que S est une surface compacte complexe minimale telle
que les nombres de Betti vérifient les conditions b1(S) = 1 et bo(S) > 1. Pour
une telle surface, l'espace vectoriel des champs de vecteurs holomorphes est de
dimension au plus 1. En outre, s’il existe un champ non trivial dont le flot induit
une C*-action, alors S est une surface d’Inoue parabolique (voir [13]). Comme
ces surfaces sont bien connues, on suppose dans la suite qu’un champ de
vecteurs non trivial sur S induit une action effective de (C,+).
On rappelle d’abord la

Définition 2.1. Un diviseur I' sur une surface S est appelé un cycle de courbes
rationnelles, si ' = Zf;ol D;, ou D;, 1=0,....,p—1 est une courbe rationnelle et
sip=1: Dg a un point double ordinaire,

sip=2: Dq, D1 sont régulieres et Dg.D1 = 2,

sip > 3: Dy est réguliecre, Dg.Dy = D1.Dg = ... = D, 1.Dg =1 et D;.D; =0
dans les autres cas.

2.1. Singularités isolées

Lemme 2.2. Soit 8 un champ de vecteurs holomorphe non trivial sur S, F
le feuilletage (réduit) associé et P € S wn point singulier (isolé) de F. Alors
pour toute courbe invariante v de F dans un voisinage de P, il existe une courbe
rationnelle C de S invariante pour F contenant .
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Démonstration: Soit ® : C x S — S le flot associé & . On note I(z) C C le
groupe d’isotropie d’un point z. On remarque que les groupes d’isotropie de deux
points d’une méme orbite sont égaux. Soit z € ~.

1) Supposons d’abord que 6 s’annule sur . Soit C la courbe irréductible qui
contient v. D’apres [18], (2.2.2), la courbe C est soit une courbe rationnelle non
singuliere, soit une courbe rationnelle avec un point double ordinaire, soit une
courbe elliptique réguliere. Or, si C' est elliptique, S est une surface d’Inoue
parabolique ([18], (10.2)) et S admet une action de C* ([13]), ce qui a été exclu.
2) Si @ n’est pas identiquement nul sur y on a I = I(z2) # C.

Nous avons les trois cas suivants:

a) I = I(z) est réduit & l'identité. L’orbite C(z) est isomorphe & C et donc
C = C(z) U{P} est une courbe rationnelle réguliere.

b) I est isomorphe & Z. L’ensemble des points fixes {y € S | Vu € I, u(y) = y} est
un sous-ensemble analytique de S qui est propre puisque S n’admet pas d’action
de C*, ce qui prouve comme précédemment, le résultat.

¢) I est isomorphe & Z2, C(z) est une courbe elliptique ce qui est impossible. [

Nous allons voir dans la suite que 8 n’admet pas de point singulier isolé. Nous
commencons par montrer que si des singularités isolées existent ce sont les sin-
gularités d’un cycle de courbes rationnelles. D’apres le résultat principal de [21],
nous savons que le jet d’ordre 2 de € en P est non nul. D’apres le théoreme 1.3
s’il existe sur S un point singulier isolé de # ou le premier jet s’annule, alors S est
une surface de Hirzebruch F,, ou n > 0. Nous pouvons donc supposer dans
la suite que le jet d’ordre 1 est non nul.

Lemme 2.3. Supposons que le point P soit une singularité isolée de 6. Alors le
premier jet de 8 en P n’est pas nilpotent.

Démonstration: Considérons un champs ¢ dont le premier jet est nilpotent. La
Proposition 1.1 nous permet de supposer que € est donné localement par une des
quatre formes normales que nous allons successivement exclure :

(a), (b) et (d): Les deux courbes invariantes y; = {y = 0} et v = {y =
z*} sont tangentes, donc d’apres le Lemme 2.2, il existerait sur S deux courbes
rationnelles tangentes, ce qui est impossible par [18] (2.2.4).

(¢) La courbe invariante y = {z° 4+ y2 = 0} et donc la courbe rationnelle de S
contenant v admettraient une singularité que ’on ne peut trouver sur une courbe
d’une surface de la classe VIl ([18] (2.2.2)). O

On rappelle que le support d’un diviseur A = > §;D;, noté Supp(A), est le sous-
ensemble analytique réduit de S qui est la réunion des composantes D; dont le
coefficient 9; est non nul. Dans la suite on notera Dy le diviseur effectif associé a

0.
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Lemme 2.4. Supposons Dy # 0. Soit P € Supp(Dp) un point singulier de F.
S’il existe en P une courbe invariante C ¢ Supp(Dp), alors la restriction de 6
a C a un point singulier d’ordre 2 en P. Fn outre, P est un point réqulier de
Supp(Dy) et F n’a aucune autre singularité sur C.

Démonstration: Soit f = 0 I’équation locale définissant Dy en P. Au voisinage
de P,on a = ff. Comme P est une singularité de F, 6/(P) = 0, donc le champ
0 tangent a C, s’annule a 'ordre au moins deux en P. On rappelle qu'un champ de
vecteurs non-trivial sur une courbe rationnelle a au plus deux zéros en comptant
les multiplicités. Par hypothese la restriction de € & C est non identiquement nulle,
donc elle s’annule exactement & l'ordre deux en P et n’a pas d’autres zéros. En
plus il s’ensuit que f est de multiplicité 1 en P, donc P est un point régulier de
Dy. O

Proposition 2.5. 1) Si P est une singularité isolée d’un champ de vecteurs 6 sur
S, alors le premier jet a deux valeurs propres non nulles dont aucun des rapports
n’est un entier positif.

2) Si 0 a des singularités isolées elles sont exactement les singularités d'un cycle
de courbes rationnelles.

Démonstration: 1) Nous avons déja prouvé dans le Lemme 2.3 qu’il n’existe
pas de singularité isolée nilpotente. S’il existe une singularité col-nceud ou une
singularité avec deux valeurs propres non nulles dont I'un des rapports est un
entier positif, on la note P;. Si Py est un col-nceud, on note C sa variété forte. Si
Py est une singularité de type (4), on note par C1 la seule courbe invariante passant
par Pp. (Voir section 1.1. et noter que le cas d’une infinité de courbes invariantes
est exclu d’apres le Lemme 2.2.) Dans les deux cas on a CS(F,Cq, P) > 0 (voir
section 1.1) et C7 admet une deuxieme singularité Py £ Pj du feuilletage, d’apres
la formule de Camacho-Sad, qui affirme que la somme des indices de Camacho-
Sad le long d’une courbe compacte est égale a I'auto-intersection de cette courbe.
D’apres le Lemme 2.4, P, n’appartient pas & Supp(Dy), ¢’est-d-dire Py est encore
une singularité isolée de 6. D’apres la formule de Camacho-Sad

(+) CS(F,C1,Py) = C = CS(F,C1, Py) < —1.

Le point P> n’est pas une singularité col-nceud, sinon ' serait sa courbe in-
variante faible et celle-la n’admet qu’une singularité de multiplicité deux, d’apres
la Remarque 1.2. Donc, en utilisant le Lemme 2.3 on voit qu’en Py le jet d’ordre
1 a deux valeurs propres non nulles A\; et Ag. D’apres (x) et la section 1.1, les
rapports % et %ﬁﬂ sont strictement négatifs, en particulier ne sont pas dans N*.
On en déduit qu’en Py existe une seconde courbe invariante Cy et

1
CS(F,Cq, Py) = CSZ. O €] —-1,0[.
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Par conséquent on a un seul autre point singulier Ps sur Co et CS(F,Co, P3) =
C’% — CS(F,Cy, Py) < —1, donc le premier jet en P3 admet deux valeurs propres
non nulles et on obtient par récurrence une suite infinie de courbes C; avec deux
singularités P; et P,11 # P1, chacune ayant deux valeurs propres non nulles avec
des rapports strictement négatifs pour ¢ > 2. Comme il ne peut exister sur S qu'un
nombre fini de courbes, nous obtenons une contradiction. Cela montre que les sin-
gularités isolées du champ 6 sont toutes du type (3), ce qu’il fallait démontrer.
2) On vient de voir que les singularités isolées sont toutes du type (3). Les courbes
invariantes passant par ces singularités ne rencontrent pas Dy (d’apres le Lemme
2.4). Elles doivent donc se refermer en un cycle (d’une ou plusieurs courbes ra-
tionnelles), puisque chacune d’elles admet exactement deux zéros simples de 6.
|

Corollaire 2.6. Soit 8 un champ de vecteurs holomorphe non trivial sur une
surface minimale S avec b1(S) =1 et ba(S) > 0. On suppose que Uaction induite
par 0 est une action effective de (C,+). Alors, il existe sur S au moins une courbe
rationnelle sur laquelle 6 s’annulle.

Démonstration: Si toutes les singularités de € sont isolées, elles sont toutes
génériques, d’apres la Proposition 2.5. D’apres [4], S serait rationnelle ce qui est
contraire & I’hypothese. Donc il existe une courbe C sur laquelle € s’annule. Cette
courbe est rationnelle ou elliptique et dans le second cas la surface S est une surface
d’Inoue parabolique (voir [18]). Une telle surface n’admet pas d’action effective
de (C,+) (cf. Théoreme 0.1). O

2.2. Singularités non-isolées

Lemme 2.7. Soit C une courbe rationnelle de S. Alors il existe une feuille L de

F telle que C = L.

Démonstration: Si la restriction de € sur C n’est pas identiquement nulle, € est
tangent a C': sinon il y aurait une infinité de translatées de C sur 5, ce qui n’est
pas le cas.

Supposons alors que € s’annule sur C. Soit P € C' un point qui ne soit ni un
point singulier de F ni un point singulier de C. Supposons que la feuille Lp de F
passant par P soit transverse a C. Il existe alors au voisinage de P un systeme
de coordonnées dans lequel C = {y =0}, Lp = {x =0}, 0 = yf(z,y)0/y et les
feuilles ont pour équation z = constante. Comme z ne divise pas f, 'action de
C sur toutes les feuilles Lpr proches de Lp est non triviale. On montrerait alors
comme dans le lemme 2.2 qu’il existe une infinité de courbes compactes. O

Lemme 2.8. Soit @ un champ de vecteurs sur S et F le feuilletage réduit associé.
Alors les singularités de F sur Dy ont toutes deux valeurs propres non nulles dont
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les quotients sont des rationnels strictement négatifs. Par une telle singularité
passent localement exactement deur courbes invariantes.

Démonstration: Le Théoréeme 1.4 nous donne les formes normales du champ 6 au
voisinage d’une singularité située sur Dy. On donne trois arguments qui écartent
le cas A:

i) Le champ € s’annule sur trois courbes invariantes transverses ce qui donne une
courbe rationnelle avec un point double et une courbe rationelle réguliere, ou trois
courbes rationnelles régulieres se coupant au méme point. Cela est impossible sur
une surface de la classe VIIg ([18], (2.2.4)).

i) D’apres le Lemme 2.7, il y aurait trois courbes invariantes du feuilletage, ce qui
est impossible vu les formes explicites données.

iii) D’apres [22] Lemme 5.2, il y aurait sur S une infinité de courbes.

Le cas B est également écarté par [18] puisque les courbes d’une surface de la classe
VIIp n’ont pas de point de rebroussement et ne sont pas tangentes entre elles.
Cas C: 3) est exclu car le feuilletage est défini par le champ 6’ = z8/0zx + nyd/dy
dont le flot est ®,(x,y) = (e'z,e™y). On aurait alors une infinité de courbes
invariantes ce qui est exclu.

4) Dans ce cas, le champ admet trois courbes invariantes, ce qui est exclu ([18],
(2.2.4)). Restent les deux formes normales qui correspondent & la situation an-
noncée. O

Lemme 2.9. Si 0 s’annule sur une courbe irréductible C, le feuilletage F admet
sur C au moins une singularité.

Démonstration: D’apres le Lemme 2.7 la courbe C' est invariante pour le feuil-
letage F. Si C est singuliere, sa singularité est une singularité de F. Sinon on
a C? < —2 (voir [18]). Par la formule de Camacho-Sad, on en déduit I'existence
d’au moins une singularité de F sur C. |

Proposition 2.10. Chaque composante connexre du support de Dy contient un
cycle de courbes rationnelles.

Démonstration: Considérons une composante connexe ['g de Dy et appelons I’
la composante connexe du diviseur maximal de S contenant I'g. D’apres le Lemme
2.4, les points singuliers du feuilletage F sur I' se trouvent déja sur I'g et un cycle
contenu dans I' est déja contenu dans ['g.

Supposons maintenant I' sans cycle. On va en déduire une contradiction.
D’apres [18] (2.2.2), cette composante ne contient que des courbes rationnelles
régulieres et deux courbes ne se coupent qu’en un point au plus. On va construire
un Q-diviseur positif Z tel que pour toute courbe C de S, on ait Z.C = 0. En
particulier pour un entier m convenable tel que Z/ = mZ soit un diviseur on aura
(Z")2 = 0. D’apres [10], S contiendra exactement un cycle de courbes rationnelles
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avec ba(S) courbes, ce qui donne une contradiction. Pour construire Z on com-
mence par choisir une courbe irréductible Cy de I' et on pose a1 = 1. D’apres les
Lemmes 2.9 et 2.8, C doit couper (au moins) une autre courbe; choisissons en
une Cy et soit Py = C) N Cy. D’aprés le Lemme 2.8, si A} et \j sont les deux
valeurs propres en la singularité P;, leurs rapports sont des rationnels strictement
négatifs, donc l'indice de Camacho-Sad [5] du feuilletage au point Py le long de
Cy vérifie CS(F, Py,Cq) < 0. On pose

ag = —a1CS(F, Py, Cy).

Supposons C',...,C; et ay, ... ,a; > 0 déja définis. On choisit une courbe C; 1
qui rencontre une des courbes C; (1 < j <) en exactement un point P;;1 et on
pose

ai+1 == —ajC'S(]:7Pi+17C'j).

Si I' ne contient aucun cycle on peut définir par récurrence (finie) les coefficients
a; pour toutes les courbes de I'. On pose Z = ZZ a;C;. Si C n’est pas une courbe
de I', on a évidemment Z.C = 0. Si Cj est 'une des courbes de T',

Z.Oj = ZaZC’ij = ajC’jg + Z a;
i 75,0500 #0

2 G
= (CF+ > =
i#§,050Cs#0 )

=a; |CZ— ) CS(F,PR,C)
i75,03NC 70
=0
d’apres la formule de Camacho-Sad. O

3. Surfaces spéciales

La définition suivante a été introduite par I. Nakamura. Un théoreme di a
Ma.Kato ([18], (3.4)) affirme que lorsque bo(S) > 0, le nombre de courbes ra-
tionnelles sur une surface de la classe VIlg est au plus égal & bo(S). 1l y a égalité
pour les surfaces contenant une coquille sphérique globale (voir [6]).

Définition 3.1. ([19]) Soit S une surface compacte minimale telle que by (S) =1
et ba(S) > 0. On dira que S est une surface spéciale si S contient exactement
ba(S) courbes rationnelles.

Théoréme 3.2. Soit S une surface compacte de la classe VIl et by = ba(S) > 0.
On suppose qu’il existe sur S une action holomorphe effective de (C,+) induite par
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un champs de vecteurs 0. Alors S est une surface spéciale, le champ de vecteurs 0
n’a aucun point singulier isolé et les singularités du feuilletage induit sont eracte-
ment les by singularités du diviseur mazimal.

Démonstration: On a vu a la Proposition 2.5 que si # a des singularités isolées
il existe un cycle de courbes rationnelles. De plus, il existe au moins un cycle
de courbes rationnelles dans Supp(Dy) (Proposition 2.10). S’il existe deux cycles,
S est une surface d’Inoue-Hirzebruch ([18] (8.1)) (lorsque une surface d’Inoue-
Hirzebruch a deux cycles, 1. Nakamura Pappelle surface d’Inoue hyperbolique).
On sait que ces surfaces n’admettent aucun champ de vecteurs non trivial ([7],
(2.5)). Donc # n’a aucun point singulier isolé, le support de Dy est connexe
et contient exactement un cycle de courbes rationnelles. On note N le nombre
de courbes rationnelles sur S. D’apres le Lemme 2.8, chaque singularité de F
est située sur exactement deux courbes (locales) invariantes. De plus, si € ne
s’annule pas identiquement sur une courbe rationnelle, alors d’apres le Lemme
2.4 elle ne porte qu'une singularité (cette courbe rationnelle est le sommet d’un
arbre). On en déduit que le feuilletage F a exactement N singularités. On note
Do,...,Dxn_1 les N courbes rationnelles, D = " D; le diviseur maximal et M (S)
la matrice d’intersection de D. La matrice M(S) est définie négative: Sinon il
existe un diviseur effectif D’ avec (D’)2 = 0. D’aprés [10] (Main Theorem et
la démonstration de la Proposition 8.5, (8.6)), S est une surface admettant une
coquille sphérique globale de trace non nulle (voir [6], Thm. 1.3.33, p.45). Encore
d’apres [6] (Thm. I1.1.31, p.77), les seules surfaces de trace non nulle avec un
champ de vecteurs non trivial sont les surfaces d’Inoue paraboliques et ce champ
induit une action de (C*,-). Ce cas est exclu.

Par conséquent le systeme linéaire

M(S)(k:) D2 +2 —29(Dy))

0<i<N—1 ( 0<i<N—1

ot g(D;) est le genre de D;, admet une solution rationnelle. Le Q-diviseur

o P Z kD,
0<i<N-1

vérifie d’apres la formule d’adjonction
D g Dj=—-K.D;, pourtout0<j5<N—1.
Assertion 1: Le diviseur Do = > g, 1 LiDs vérifie

t0 2 —29(Do) — Z(Dg, F)
us | 4 2| 2-2m00- 20005

ty_1 2-29(Dn_1) — Z(Dn_1,F)
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ot
2 — Card{Sing(F)N D;} si D; est réguliere

2-29(D;)—-Z(D;, F) = . . IR
9(Ds) ( ) { 1 — Card{Sing(F)ND;} si D; est singuliere

Démonstration de 1’assertion 1: Soit C une courbe invariante compacte de
F, P € C une singularité de F et Y un champ de vecteurs, avec une singularité
isolée en P, qui définit F. Dans [2], Brunella définit un indice Z(P,C,F). Si C est
réguliere, cet indice coincide avec 'ordre d’annulation en P € C de la restriction
Yie.
Soit,
ZC,Fy= > ZPC,F)
PeSing(F)NC
et
x(C) = —KC - C? =2 —2¢(C)

la caracteristique d’Euler. Alors, d’apres [2], on a
c1(NF) C=C*+Z(C,F) et c1(TF) -C=x(C)—Z(C,F).

a) D’apres le Lemme 2.8, pour une courbe rationnelle réguliere C, le champ de
vecteurs Y définissant F dans un voisinage de P = 0 est de la forme Y(z,y) =
x% | /\ya%, avec A #£ 0.

Alors Z(P,C,F)=1et

(%) c1(Ty) - C =2 — Card{Sing(F)N C}

b) Si C est une courbe rationnelle avec un point double P, on éclate une fois
en P et en utilisant le cas a) on trouve

() c1(Tr) - C =1- Card{Sing(F)NC}
La formule de Brunella avec (%), (%) et le fait que T = [Dy] impliquent
l'assertion 1. O

Assertion 2 : On a
i) Dp.D =0
et
m) D =Dy + D.

Démonstration de 'assertion 2:
i) Se vérifie en utilisant ’assertion 1.
ii) La matrice M(S) est définie négative et

D2+ Z(Dy,F)=D-D;
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pourt=20,--- ,n—1.
Les deux systemes de Cramer donnent pour ¢ =0,--- ,n—1
D ... Do-D ... DoDp_1
DoDy ... Di-D ... D1D,
det M(S)(/@l == tl‘) = d@t " .
DoDn 1 ... Dy,y-D ... D2,
= det M (),

oll (D;.D)o<j<n—1 est la i-ieme colonne.
Donc k; —t; = 1 pour tout ¢ =0,... ,n— 1. O

Par conséquent D_y = Dy + D est également un diviseur effectif, qu’on appel-
era le diviseur numériquement anticanonique. On en déduit

K.Dg+ D? = (—D_xg).Dg + DI = —(Dg + D).Dy + D2 = —D.Dy = 0.

Ici le fibré linéaire tangent au feuilletage est T'r = [Dy]; en appliquant I'une des
formules de Baum-Bott (voir [2], Proposition 1) on obtient,

N = Det(F) = ca(S) — e1(TF)e1(S) + er(Tr)? = ea(S) + KDy + Dj
= ca(5) = ba(S). a

Remarque 3.3. Si un champ de vecteurs # sur une surface de la classe VIl
induit une action de C*, alors S est une surface d’Inoue parabolique ([13]). Une
telle surface contient une coquille sphérique globale et elle est donc une surface
spéciale. Nous avons alors le théoreme suivant.

Théoréme 3.4. Soit S une surface minimale de la classe VIIy avec by > 0
admettant une action de (C,4). Alors il existe une déformation holomorphe de S
en une surface de Hopf primaire éclatée by fois.

Démonstration: D’apres la proposition 2.10 et le théoreme (1.5) de [19], on a le
résultat. O
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