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Surfaces de la classe VIIo admettant un champ de vecteurs

Georges Dloussky, Karl Oeljeklaus and Matei Toma

Résumé. Nous montrons qu'une surface de la classe VIIo avec 62 > 0 sur laquelle existe
un champ de vecteurs non trivial contient exactement 62 courbes rationnelles II s'ensuit par
un théorème de I Nakamura qu'une telle surface se deforme en une surface de Hopf primaire
éclatée Ce résultat contribue a la classification des surfaces complexes compactes avec champs
de vecteurs

Abstract. We prove that a compact complex surface of class VIIo with 62 > 0 admitting a non
trivial holomorphic vector field contains exactly 62 rational curves A theorem of I Nakamura
then implies that such a surface is a deformation of a blown-up primary Hopf surface This result
contributes to the classification of compact complex surfaces with holomorphic vector fields

Mathematics Subject Classification (2000). 32J15, 32L30, 32M05, 57R30
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0. Introduction et Rappels

Si S est une surface compacte complexe non-kahlenenne, il est bien connu que son

premier nombre de Betti b\(S) diiriR H^(S,M) est impair (voir [1], [3], [16])
La classification de Kodaira ([1]) est actuellement incomplète pour les surfaces S
non-kahlenennes avec b\(S) 1 et b2(S) > 0 où b2(S) dim« H^(S,M) désigne
le deuxième nombre de Betti Toutes ces surfaces font partie de la classe VII de

Kodaira, c'est-à-dire qui vérifient èi 1 La classe VIIo désigne les surfaces de la
classe VII qui sont minimales Signalons que le modèle minimal d'une surface de

la classe VII est unique (à un biholomorphisine près) et s'obtient par contraction
successive des courbes rationnelles de première espèce Si une surface de la classe

VII admet un champ de vecteurs holomorphe non trivial, il en sera de même pour
son modèle minimal

Le but de cet article est d'apporter une contribution à la classification des

surfaces compactes complexes admettant un champ de vecteurs holomorphe non
trivial ou, ce qui est équivalent, une action holomorphe presque effective du groupe
de Lie complexe (C,+) Nous résumons d'abord les résultats connus Dans [11],
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la classification des surfaces compactes complexes minimales admettant au moins
un champ de vecteurs holomorphe 9 non trivial est donnée. Le seul cas qui reste
ouvert est le cas des surfaces S de la classe VIIo dont le deuxième nombre de Betti
62(5*) est strictement positif. Il est bien connu que la dimension algébrique a(S) de
S vaut 0. La classification des surfaces presque-homogènes (voir [20], [13]) montre
qu'une telle surface a au plus un champ de vecteurs holomorphe non trivial (à une
constante multiplicative non nulle près). Le flot de 9 sur S induit alors soit une
action effective de (C*, •), soit une action effective de (C,+). Le fait qu'un champ
de vecteurs non trivial sur S doit s'annuler (voir par exemple [2]) et le théorème
suivant nous montrent que seul le second cas reste à élucider.

Théorème 0.1. [13] Soit S une surface compacte complexe minimale admettant
une action holomorphe de (C*, •), qui a au moins un point fixe dans S. Alors S

appartient à la liste suivante :
1) Certaines surfaces algébriques.
2) Surfaces de Hopf diagonales presque homogènes.
3) Surfaces d'Inoue paraboliques.

Par conséquent, une surface S de la classe VIIo pour laquelle 62 > 0 et qui
admet une action du groupe (C*,-) est une surface d'Inoue parabolique. Une
telle surface admet exactement 62 courbes rationnelles (voir Remarque 3.3). Nous
étudions dans ce travail le cas restant, c'est-à-dire le cas d'une surface S de la classe

VIIo, pour laquelle 62 > 0 et admettant une action effective du groupe (C,+).
Nous rappelons que, tandis que la classification des surfaces de la classe VIIo à

&2 0 est connue (voir [14], [24]), elle reste ouverte dans le cas 62 > 0. De plus, on
ne sait pas s'il existe des courbes sur de telles surfaces. Les seuls exemples dont on
dispose sont les surfaces S admettant une coquille sphérique globale, c'est-à-dire un
voisinage ouvert U C C2 \ {0} de la sphère S*3 C C2 et une application / : U —s- S

biholomorphe sur son image, tels que S \ f(U) soit connexe. (Voir [6]). Dans ce

cas le nombre de courbes rationnelles sur S est égal à b^iS). Comme sous-classes

remarquables nous mentionons les surfaces d'Inoue-Hirzebruch (voir [15], [7]) et
les surfaces d'Inoue paraboliques (voir [10]).

Dans [19], I. Nakamura introduit la notion de surface spéciale: Une surface
S de la classe VIIo avec &2 > 0 est dite spéciale, s'il existe au moins 62 courbes
rationnelles sur S. Dans ce cas, d'après un théorème de Ma. Kato ([18]), il existe
exactement 62 courbes rationnelles sur S. De plus, le graphe dual des courbes sur S
est le même que le graphe dual des courbes sur une surface contenant une coquille
sphérique globale ([19]). En particulier, S contient un cycle de courbes rationnelles
(pour la définition voir la section 2) et S est une déformation d'une surface de

Hopf primaire éclatée ([19]). Dans le même article, I. Nakamura conjecture qu'une
surface spéciale contient une coquille sphérique globale.

Dans [8], les deux premiers auteurs étudient les feuilletages singuliers et les

champs de vecteurs holomorphes sur les surfaces contenant une coquille sphérique
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globale : Si une telle surface n'est pas d'Inoue-Hirzebruch, alors il existe un unique
feuilletage singulier et, dans certains cas qui sont explicités, ce feuilletage est induit
par une action effective de (C,+). Ici nous démontrons le théorème suivant.

Théorème Principal: Soit S une surface de la classe VIIq avec b% > 0 admettant
une action de (C,+). Alors S est une surface spéciale.

Vu ce résutat, la réponse positive à la conjecture de I. Nakamura impliquerait
que toute surface de la classe VIIo avec champ de vecteurs admet une coquille
sphérique globale.

L'article est organisé comme suit. Dans la première section nous rappelons des

résultats récents de E. Ghys et J. Rebelo concernant les singularités des champs
de vecteurs semi-complets.

Dans la deuxième section nous montrons l'existence d'un cycle de courbes
rationnelles et dans la troisième section la démonstration du théorème principal est
achevée.

1. Singularités des flots holomorphes

Dans cette section nous rappelons des résultats récents dûs à E. Ghys et J. Rebelo
([21], [12], [22]) concernant les singularités des champs de vecteurs holomorphes
semi-complets en dimension complexe deux. Nous renvoyons le lecteur à [21] ou
[12] pour la définition et remarquons ici seulement que la semi-complétude est une
condition locale nécessaire pour la complétude d'un champ de vecteurs.

Soit T un feuilletage holomorphe défini dans un voisinage de l'origine de C
ayant 0 comme singularité isolée. On appelle courbe invariante une courbe 7
irréductible contenant 0 telle que 7 \ {0} soit une feuille.

1.1. Champs de vecteurs dont le premier jet en un point singulier isolé
est non nul

Soit 9 un champ de vecteurs holomorphe sur une surface ayant une singularité isolée

P et dont le premier jet ne s'annule pas. Dans un système local de coordonnées

au voisinage de P la matrice M de la partie linéaire de 9 est de l'un des quatre
types suivants :

1. M a deux valeurs propres nulles i.e. M est nilpotente et on dira que la singularité

P est nilpotente ;

2. Ma exactement une valeur propre non nulle : on dira que P est une singularité
col-nœud ;

3. M a deux valeurs propres non nulles Ai et A2 telles que j1 (Ë N* et j2- (Ë N* ;

4. M a deux valeurs propres non nulles Ai et A2 et j1 G N* ou j2- G N*.
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Les singularités des deux derniers types sont appelées génériques.
Nous faisons maintenant quelques remarques concernant les courbes invariantes

pour ces quatre types.

Proposition 1.1. Soit 9 un germe de champ de vecteurs semi-complet au voisinage

de l'origine de C2 et possédant une singularité isolée à l'origine. On suppose
que le premier jet de 9 est mlpotent non trivial. Alors 9 est conjugué à fY\\ß ou

/Yî 2,3 ou fZi 2,3 ou fP> ou f est une fonction holomorphe ne s'annulant pas à

l'origine et:
(a)Y\\<2 (2y — x )d/dx-\-2xyd/dy dont une intégrale première est y(y — x

et les deux courbes invariantes sont y 0 et y x
(b) ^i 2,3 C&y — x)d/dx-\-Axyd/dy dont une intégrale première esty(y — x)

et les deux courbes invariantes sont y 0 et y x2.

(c) ^1,2,3 2yd/dx — 3x2<9/<9y dont une intégrale première est x3 + y2 et la
courbe invariante est x3 + y2 =0.

(d) P {y — 2x2)<9/<9x — 2xyd/dy dont une intégrale première (méromorphe)
est (y — x2)y~2 et les courbes y — x2 cy1, c G C sont invariantes.

Démonstration: [12] Proposition 3.16 et Remarque 2.4. D

Soit 9 un champ de vecteurs holomorphe au voisinage de l'origine de C2 à

singularité isolée. Désignons par T le feuilletage holomorphe singulier associé à 9.

Ce feuilletage est également défini par une forme différentielle holomorphe lu.
Dans le cas d'une singularité col-nœud, d'après un théorème de forme normale

de Dulac (voir [9], [17]), il existe un système de coordonnées dans lequel lu s'écrit

u{x, y) [x(l + XyP) + yR(x,y)} dy - y^ldx
où A G C, p G N* et l'ordre de R en (0,0) est au moins p + 1. Formellement on
a une forme normale plus simple : il existe un changement formel de coordonnées

(x, y) —s- (4>(x, y), y) qui permet de conjuguer (en général de façon non convergente)
Lu à

LJPtX x(l + \yP)dy - yP+1dx

et A G C, p G N* sont les invariants formels de lu. La forme normale convergente
montre que {y 0} est une courbe invariante, on dira que c'est la variété forte
de lu ou du col-nœud. Il est facile de voir que l'indice de Camacho-Sad (voir [5],

p.592) le long de la variété forte est égal à zéro. Par ailleurs {x 0} est une
courbe invariante formelle pour lüp,\, elle sera appelée la variété faible de lu ou du
col-nœud. En général, elle ne correspond pas à une courbe holomorphe. (En fait
J.Rebelo montre dans [23] que la variété faible converge si et seulement si 9 est

semi-complet.)

Remarque 1.2. Si la variété faible d'un col-nœud converge, alors le champ de

vecteurs le long de cette courbe invariante s'annule à l'ordre au moins deux au
point singulier P.
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Démonstration: Si on prend un système de coordonnées (x, y) tel que les deux
variétés invariantes soient les axes de coordonnées, alors lu s'écrit

uj xA(x, y)dy - yB(x, y)dx,

avec A(0,0) ^ 0 et 5(0,0) 0. D

Pour le type (3), il y a exactement deux courbes invariantes. Elles sont lisses

et tangentes aux espaces propres E\x, E\2 de M. Leurs indices de Camacho-Sad

sont j2- et j1 respectivement. Cela se voit en utilisant la forme normale de Dulac

lu XixA(x,y)dy - XiyB{x1y)dx

avec A(0,0) =5(0,0) 1.

Enfin pour le dernier type, il existe une forme normale de Dulac (voir [17])

lu (nx + nyn)dy — ydx

avec neN*. On voit alors que {y 0} est une courbe invariante dont l'indice de

Camacho-Sad est égal à ^. Lorsque /x =/= 0, la variété {y 0} est la seule courbe
invariante. Sinon il y en a une infinité donnée par les équations x cyn, c G C.

1.2. Champs de vecteurs avec point singulier isolé dont le premier jet
s'annule

Théorème 1.3. (Théorème B, [12]) Soit 9 un champ de vecteurs holomorphe sur
une surface complexe compacte S. Si 9 possède une singularité isolée où le premier
jet de 9 s'annule, alors S est isomorphe à l'une des surfaces de Hirzehruch Fn,
n > 0. De plus, à automorphisme de Fn près, le champ 9 est unique et donné en
coordonnées locales autour de la singularité par

x d/dx — y(nx — (n + l)y)d/dy.

1.3. Champs de vecteurs avec point singulier non isolé

Théorème 1.4. ([22], Théorème A) Soit 9 un germe de champ de vecteurs
holomorphe défini et semi-complet au voisinage de l'origine de C Supposons que
l'origine ne soit pas une singularité isolée de 9 et que le feuilletage T associé soit
singulier. Alors, à changement de coordonnées près, 9 est de l'une des formes
suivantes :

Cas A: L'origine est une singularité isolée de T d'ordre 2.

1. e f(x,y) [xy{x - y)]a[x{x - 2y)d/dx + y (y - 2x)d/dy] ;
2. 9 f(x,y)[xy(x - yff[x(x - 3y)d/dx + y (y - 3x)d/dy] ;
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3. 9 f(x,y)[xy2(x - yf]a[x(2x - 5y)d/dx + y (y - 4x)d/dy]
où f (0,0) ^0 eta£ N*.

Cas B: L'origine est une singularité isolée de T d'ordre 1 avec partie linéaire
nilpotente non triviale.
1. 9 f(x,y)[x3 + y2]a[2yd/dx - 3x2d/dy] ;
2. 9 f(x,y)[y(y - x2)]a[(2y - x2)d/dx + 2xyd/dy] ;
3. 9 f(x,y)[y(y - x2)2}a[(3y - x2)d/dx + Axyd/dy]

où f (0,0) ^OetaeN*.
Cas C : L'origine est une singularité isolée de T d'ordre 1 avec deux valeurs

propres non nulles.
1. 9 f(x,y)xnym6 où 9 est un champ dont la partie linéaire s'écrit mxd/dx —

nyd/dy, /(0,0) ^ 0 et m, n G N* ;
2. 0 xaybf(x,y)[mxd/dx-nyd/dy}, avec m,ne N*, /(0,0) ^0 et am - bn

±i;
3. 6 xf(x,y)[xd/dx + nyd/dy], avec n G N* et /(0,0) + 0.

4. 0= (xy)l(x-y)f(x,y)[xd/dx-yd/dy\, avec l >0 et f (0,0) ^ 0.

2. Champs de vecteurs sur les surfaces de la classe VIIo

On suppose dans la suite que S est une surface compacte complexe minimale telle

que les nombres de Betti vérifient les conditions b\(S) 1 et b<2(S) > 1. Pour
une telle surface, l'espace vectoriel des champs de vecteurs holomorphes est de

dimension au plus 1. En outre, s'il existe un champ non trivial dont le flot induit
une C*-action, alors S est une surface d'Inoue parabolique (voir [13]). Comme
ces surfaces sont bien connues, on suppose dans la suite qu'un champ de
vecteurs non trivial sur S induit une action effective de (C,+).

On rappelle d'abord la

Définition 2.1. Un diviseur T sur une surface S est appelé un cycle de courbes

rationnelles, si T X]f=O ^i, où Dt, i 0, ...,p — 1 est une courbe rationnelle et

si p 1 : Dq a un point double ordinaire,
si p 2 : Dq, D\ sont régulières et Dq.D\ 2,

sip>3: A est régulière, Dq.D\ D1.D2 ¦¦¦ Dp_\.Dq 1 et D%.DJ 0

dans les autres cas.

2.1. Singularités isolées

Lemme 2.2. Soit 9 un champ de vecteurs holomorphe non trivial sur S, T
le feuilletage (réduit) associé et P G S un point singulier (isolé) de J-'. Alors

pour toute courbe invariante 7 de J- dans un voisinage de P, il existe une courbe
rationnelle C de S invariante pour T contenant 7.
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Démonstration: Soit $ : C x S —> S le flot associé à 9. On note I{z) C C le

groupe d'isotropie d'un point z. On remarque que les groupes d'isotropie de deux
points d'une même orbite sont égaux. Soit z G 7.
1) Supposons d'abord que 9 s'annule sur 7. Soit C la courbe irréductible qui
contient 7. D'après [18], (2.2.2), la courbe C est soit une courbe rationnelle non
singulière, soit une courbe rationnelle avec un point double ordinaire, soit une
courbe elliptique régulière. Or, si C est elliptique, S est une surface d'Inoue
parabolique ([18], (10.2)) et S admet une action de C* ([13]), ce qui a été exclu.
2) Si 9 n'est pas identiquement nul sur 7 on a / I{z) ^ C.
Nous avons les trois cas suivants :

a) / I{z) est réduit à l'identité. L'orbite <C(z) est isomorphe à C et donc
C <C(z) U {P} est une courbe rationnelle régulière.
b) / est isomorphe à Z. L'ensemble des points fixes {y G S | Vm g /, u(y) y} est

un sous-ensemble analytique de S qui est propre puisque S n'admet pas d'action
de C*, ce qui prouve comme précédemment le résultat.
c) / est isomorphe à Z2, C{z) est une courbe elliptique ce qui est impossible. D

Nous allons voir dans la suite que 9 n'admet pas de point singulier isolé. Nous

commençons par montrer que si des singularités isolées existent ce sont les

singularités d'un cycle de courbes rationnelles. D'après le résultat principal de [21],

nous savons que le jet d'ordre 2 de 9 en P est non nul. D'après le théorème 1.3

s'il existe sur S un point singulier isolé de 9 où le premier jet s'annule, alors S est

une surface de Hirzebruch Fn où n > 0. Nous pouvons donc supposer dans
la suite que le jet d'ordre 1 est non nul.

Lemme 2.3. Supposons que le point P soit une singularité isolée de 9. Alors le

premier jet de 9 en P n'est pas mlpotent.

Démonstration: Considérons un champs 9 dont le premier jet est nilpotent. La
Proposition 1.1 nous permet de supposer que 9 est donné localement par une des

quatre formes normales que nous allons successivement exclure :

(a), (b) et (d) : Les deux courbes invariantes 71 {y 0} et 72 {y
x2} sont tangentes, donc d'après le Lemme 2.2, il existerait sur S deux courbes
rationnelles tangentes, ce qui est impossible par [18] (2.2.4).

(c) La courbe invariante 7 {x3 + y2 0} et donc la courbe rationnelle de S
contenant 7 admettraient une singularité que l'on ne peut trouver sur une courbe
d'une surface de la classe VII0 ([18] (2.2.2)). D

On rappelle que le support d'un diviseur A J2ôtDt, noté Supp(A), est le sous-
ensemble analytique réduit de S qui est la réunion des composantes D% dont le

coefficient St est non nul. Dans la suite on notera Dg le diviseur effectif associé à
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Lemme 2.4. Supposons Dg =/= 0. Sott P € Supp(Dg) un point singulier de J-'.

S'il existe en P une courbe invariante C (jL Supp(Dg), alors la restriction de 9

à C a un point singulier d'ordre 2 en P. En outre, P est un point régulier de

Supp(Dg) et T n'a aucune autre singularité sur C.

Démonstration: Soit / 0 l'équation locale définissant Dg en P. Au voisinage
de P, on a 9 j9'. Comme P est une singularité de J7, 9'(P) 0, donc le champ
9 tangent à C, s'annule à l'ordre au moins deux en P. On rappelle qu'un champ de

vecteurs non-trivial sur une courbe rationnelle a au plus deux zéros en comptant
les multiplicités. Par hypothèse la restriction de 9 à C est non identiquement nulle,
donc elle s'annule exactement à l'ordre deux en P et n'a pas d'autres zéros. En
plus il s'ensuit que / est de multiplicité 1 en P, donc P est un point régulier de

Dg. D

Proposition 2.5. 1) Si P est une singularité isolée d'un champ de vecteurs 9 sur
S, alors le premier jet a deux valeurs propres non nulles dont aucun des rapports
n'est un entier positif.
2) Si 9 a des singularités isolées elles sont exactement les singularités d'un cycle
de courbes rationnelles.

Démonstration: 1) Nous avons déjà prouvé dans le Lemme 2.3 qu'il n'existe

pas de singularité isolée nilpotente. S'il existe une singularité col-nœud ou une
singularité avec deux valeurs propres non nulles dont l'un des rapports est un
entier positif, on la note P\. Si P\ est un col-nœud, on note C\ sa variété forte. Si

P\ est une singularité de type (4), on note par C\ la seule courbe invariante passant
par P\. (Voir section 1.1. et noter que le cas d'une infinité de courbes invariantes
est exclu d'après le Lemme 2.2.) Dans les deux cas on a CS(!F,C\,P\) > 0 (voir
section 1.1) et C\ admet une deuxième singularité Pi ^ P\ du feuilletage, d'après
la formule de Camacho-Sad, qui affirme que la somme des indices de Camacho-
Sad le long d'une courbe compacte est égale à l'auto-intersection de cette courbe.
D'après le Lemme 2.4, Pi n'appartient pas à Supp(Dg), c'est-à-dire Pi est encore
une singularité isolée de 9. D'après la formule de Camacho-Sad

\ \,P\) < -1.

Le point Pi n'est pas une singularité col-nœud, sinon C\ serait sa courbe
invariante faible et celle-là n'admet qu'une singularité de multiplicité deux, d'après
la Remarque 1.2. Donc, en utilisant le Lemme 2.3 on voit qu'en Pi le jet d'ordre
1 a deux valeurs propres non nulles Ai et A2. D'après (*) et la section 1.1, les

rapports y1 et y2- sont strictement négatifs, en particulier ne sont pas dans N*.
On en déduit qu'en Pi existe une seconde courbe invariante Ci et
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Par conséquent on a un seul autre point singulier P3 sur Ci et CS{?', C%, -P3)

C| — CSi^T, Ci^Pi) < — 1, donc le premier jet en P3 admet deux valeurs propres
non nulles et on obtient par récurrence une suite infinie de courbes Ct avec deux
singularités Pt et Pt-\-\ ^ P\, chacune ayant deux valeurs propres non nulles avec
des rapports strictement négatifs pour i > 2. Comme il ne peut exister sur S qu'un
nombre fini de courbes, nous obtenons une contradiction. Cela montre que les

singularités isolées du champ 9 sont toutes du type (3), ce qu'il fallait démontrer.
2) On vient de voir que les singularités isolées sont toutes du type (3). Les courbes
invariantes passant par ces singularités ne rencontrent pas De (d'après le Lemme
2.4). Elles doivent donc se refermer en un cycle (d'une ou plusieurs courbes
rationnelles), puisque chacune d'elles admet exactement deux zéros simples de 9.

D

Corollaire 2.6. Soit 9 un champ de vecteurs holomorphe non trivial sur une
surface minimale S avec b\(S) 1 et bi(S) > 0. On suppose que l'action induite

par 9 est une action effective de (C, +). Alors, il existe sur S au moins une courbe
rationnelle sur laquelle 9 s'annulle.

Démonstration: Si toutes les singularités de 9 sont isolées, elles sont toutes
génériques, d'après la Proposition 2.5. D'après [4], S serait rationnelle ce qui est

contraire à l'hypothèse. Donc il existe une courbe C sur laquelle 9 s'annule. Cette
courbe est rationnelle ou elliptique et dans le second cas la surface S est une surface
d'Inoue parabolique (voir [18]). Une telle surface n'admet pas d'action effective
de (C,+) (cf. Théorème 0.1). D

2.2. Singularités non-isolées

Lemme 2.7. Soit C une courbe rationnelle de S. Alors il existe une feuille L de

J- telle que C L.

Démonstration: Si la restriction de 9 sur C n'est pas identiquement nulle, 9 est

tangent à C : sinon il y aurait une infinité de translatées de C sur S, ce qui n'est

pas le cas.

Supposons alors que 9 s'annule sur C. Soit P G C un point qui ne soit ni un
point singulier de T ni un point singulier de C. Supposons que la feuille Lp de T
passant par P soit transverse à C. Il existe alors au voisinage de P un système
de coordonnées dans lequel C {y 0}, Lp {x 0}, 9 yf(x,y)d/dy et les

feuilles ont pour équation x constante. Comme x ne divise pas /, l'action de

C sur toutes les feuilles Lp> proches de Lp est non triviale. On montrerait alors

comme dans le lemme 2.2 qu'il existe une infinité de courbes compactes. D

Lemme 2.8. Soit 9 un champ de vecteurs sur S et J- le feuilletage réduit associé.
Alors les singularités de T sur Dg ont toutes deux valeurs propres non nulles dont
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les quotients sont des rationnels strictement négatifs. Par une telle singularité
passent localement exactement deux courbes invariantes.

Démonstration: Le Théorème 1.4 nous donne les formes normales du champ 9 au
voisinage d'une singularité située sur Dg. On donne trois arguments qui écartent
le cas A :

i) Le champ 9 s'annule sur trois courbes invariantes transverses ce qui donne une
courbe rationnelle avec un point double et une courbe rationelle régulière, ou trois
courbes rationnelles régulières se coupant au même point. Cela est impossible sur
une surface de la classe VII0 ([18], (2.2.4)).
ii) D'après le Lemme 2.7, il y aurait trois courbes invariantes du feuilletage, ce qui
est impossible vu les formes explicites données.

iii) D'après [22] Lemme 5.2, il y aurait sur S une infinité de courbes.
Le cas B est également écarté par [18] puisque les courbes d'une surface de la classe

VIIo n'ont pas de point de rebroussement et ne sont pas tangentes entre elles.
Cas C : 3) est exclu car le feuilletage est défini par le champ 9' xd/dx + nyd/dy
dont le flot est $t(x,y) (etx,enty). On aurait alors une infinité de courbes
invariantes ce qui est exclu.
4) Dans ce cas, le champ admet trois courbes invariantes, ce qui est exclu ([18],
(2.2.4)). Restent les deux formes normales qui correspondent à la situation
annoncée. D

Lemme 2.9. Si 9 s'annule sur une courbe irréductible C, le feuilletage T admet
sur C au moins une singularité.

Démonstration: D'après le Lemme 2.7 la courbe C est invariante pour le

feuilletage T. Si C est singulière, sa singularité est une singularité de T. Sinon on
a C2 < —2 (voir [18]). Par la formule de Camacho-Sad, on en déduit l'existence
d'au moins une singularité de T sur C. D

Proposition 2.10. Chaque composante connexe du support de Dg contient un
cycle de courbes rationnelles.

Démonstration: Considérons une composante connexe Fo de Dg et appelons F
la composante connexe du diviseur maximal de S contenant Fo- D'après le Lemme
2.4, les points singuliers du feuilletage T sur F se trouvent déjà sur Fo et un cycle
contenu dans F est déjà contenu dans Fo-

Supposons maintenant F sans cycle. On va en déduire une contradiction.
D'après [18] (2.2.2), cette composante ne contient que des courbes rationnelles
régulières et deux courbes ne se coupent qu'en un point au plus. On va construire
un Q-diviseur positif Z tel que pour toute courbe C de S, on ait Z.C 0. En
particulier pour un entier m convenable tel que Z' mZ soit un diviseur on aura
(Z')2 0. D'après [10], S contiendra exactement un cycle de courbes rationnelles
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avec 62(5*) courbes, ce qui donne une contradiction. Pour construire Z on
commence par choisir une courbe irréductible C\ de F et on pose a\ 1. D'après les

Lemmes 2.9 et 2.8, C\ doit couper (au moins) une autre courbe; choisissons en

une C*2 et soit P% C\ n C%. D'après le Lemme 2.8, si \\ et A2 sont les deux
valeurs propres en la singularité Pt, leurs rapports sont des rationnels strictement
négatifs, donc l'indice de Camacho-Sad [5] du feuilletage au point P% le long de

Ci vérifie CS>(Jr,P2,C<l) < 0. On pose

Supposons Ci,... Ct et ai,... ,at > 0 déjà définis. On choisit une courbe C%^\
qui rencontre une des courbes C3 (f < j < i) en exactement un point P%jr\ et on
pose

Si F ne contient aucun cycle on peut définir par récurrence (finie) les coefficients
at pour toutes les courbes de F. On pose Z J^ atCt. Si C n'est pas une courbe
de F, on a évidemment Z.C 0. Si C3 est l'une des courbes de F,

0

d'après la formule de Camacho-Sad. D

3. Surfaces spéciales

La définition suivante a été introduite par I. Nakamura. Un théorème dû à

Ma.Kato ([18], (3.4)) affirme que lorsque b^iS) > 0, le nombre de courbes
rationnelles sur une surface de la classe VIIo est au plus égal à b^iS). Il y a égalité
pour les surfaces contenant une coquille sphérique globale (voir [6]).

Définition 3.1. ([19]) Soit S une surface compacte minimale telle que b\(S) 1

et 62(5*) > 0. On dira que S est une surface spéciale si S contient exactement
62(5*) courbes rationnelles.

Théorème 3.2. Soit S une surface compacte de la classe VIIo et &2 b2(S) > 0.

On suppose qu'il existe sur S une action holomorphe effective de (C, +) induite par
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un champs de vecteurs 9. Alors S est une surface spéciale, le champ de vecteurs 9

n'a aucun point singulier isolé et les singularités du feuilletage induit sont exactement

les &2 singularités du diviseur maximal.

Démonstration: On a vu à la Proposition 2.5 que si 9 a des singularités isolées

il existe un cycle de courbes rationnelles. De plus, il existe au moins un cycle
de courbes rationnelles dans Supp(Dg) (Proposition 2.10). S'il existe deux cycles,
S est une surface d'Inoue-Hirzebruch ([18] (8.1)) (lorsque une surface d'Inoue-
Hirzebruch a deux cycles, I. Nakamura l'appelle surface d'Inoue hyperbolique).
On sait que ces surfaces n'admettent aucun champ de vecteurs non trivial ([7],
(2.5)). Donc 9 n'a aucun point singulier isolé, le support de Dg est connexe
et contient exactement un cycle de courbes rationnelles. On note N le nombre
de courbes rationnelles sur S. D'après le Lemme 2.8, chaque singularité de T
est située sur exactement deux courbes (locales) invariantes. De plus, si 9 ne
s'annule pas identiquement sur une courbe rationnelle, alors d'après le Lemme
2.4 elle ne porte qu'une singularité (cette courbe rationnelle est le sommet d'un
arbre). On en déduit que le feuilletage T a exactement N singularités. On note
-Do,... -Djv-1 les N courbes rationnelles, D Y^ Dt le diviseur maximal et M(S)
la matrice d'intersection de D. La matrice M(S) est définie négative: Sinon il
existe un diviseur effectif D' avec (-D')2 0. D'après [10] (Main Theorem et
la démonstration de la Proposition 8.5, (8.6)), S est une surface admettant une
coquille sphérique globale de trace non nulle (voir [6], Thm. 1.3.33, p.45). Encore
d'après [6] (Thm. IL 1.31, p.77), les seules surfaces de trace non nulle avec un
champ de vecteurs non trivial sont les surfaces d'Inoue paraboliques et ce champ
induit une action de (C*, •). Ce cas est exclu.

Par conséquent le système linéaire

où g{Dl) est le genre de D%, admet une solution rationnelle. Le Q-diviseur

0<î<AT-1

vérifie d'après la formule d'adjonction

D-k.Dj -K.Dj, pour tout 0 < j < N - 1.

Assertion 1: Le diviseur Dg X^o<»<Ar-l ^»-^» vérifie

t0 \ / 2-2ff(A))-.Z(A),-F) \

M(S) 2-2g(Dt)-Z(Dt,F)

\2-2g(DN-1)-Z(DN-1,F)J
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o o /n\ v/n t\ 2 ~ Card{Sing{F) n A} si A est régulière
2 — 2g{Dl) — Z{ül, J-) <

1 — Card{Sing(!F) n A} si A est singulière

Démonstration de l'assertion 1: Soit C une courbe invariante compacte de

J7, P G C une singularité de T et Y un champ de vecteurs, avec une singularité
isolée en P, qui définit T. Dans [2], Brunella définit un indice Z(P, C,!F). Si C est

régulière, cet indice coïncide avec l'ordre d'annulation en P G C de la restriction
Y\o-

Soit
Z(C, F)= Y, Z(P' c> J7)

PeSmg(T)c\C

et

X(C) := -KC -C2=2- 2g(C)

la caractéristique d'Euler. Alors, d'après [2], on a

cl(Nr)-C C2 + Z(C,T) et cx{TT) ¦ C X{C) - Z{C^).
a) D'après le Lemme 2.8, pour une courbe rationnelle régulière C, le champ de

vecteurs Y définissant T dans un voisinage de P 0 est de la forme Y(x, y)

Alors Z(P, C,T) \ et

(*) ci (ï>) • C 2 - CardlSm^C-T) n C}

b) Si C est une courbe rationnelle avec un point double P, on éclate une fois

en P et en utilisant le cas a) on trouve

(**) ci (ï>) • C 1 - CardlSm^C-T) n C}

La formule de Brunella avec (*), (**) et le fait que Tjr [De] impliquent
l'assertion 1. D

Assertion 2 : On a

i) De.D 0

et

ii) D_K Dg + D.

Démonstration de l'assertion 2 :

i) Se vérifie en utilisant l'assertion 1.

ii) La matrice M(S) est définie négative et
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pour i 0, • • • n — 1.

Les deux systèmes de Cramer donnent pour i 0, • • • n — 1

'_ Do ¦ D

det M (S)(kt -tt) =det

detM(5),

où (-Dj._D)o<j<n-i est la i-ième colonne.
Donc kt — tt 1 pour tout i 0,... n — 1. D

Par conséquent D-k Dg + D est également un diviseur effectif, qu'on appel-
era le diviseur numériquement anticanonique. On en déduit

K.De + DJ {-D_K).De + DJ -{De + D).De + DJ -D.De 0.

Ici le fibre linéaire tangent au feuilletage est Tjr [De] ; en appliquant l'une des

formules de Baum-Bott (voir [2], Proposition f) on obtient,

N Det{T) c2(S) - ci(TT)ci(S) + ci(TTy c2{S) + KDe + D;
c2(S) b2(S). D

Remarque 3.3. Si un champ de vecteurs 9 sur une surface de la classe VIIo
induit une action de C*, alors S est une surface d'Inoue parabolique ([13]). Une
telle surface contient une coquille sphérique globale et elle est donc une surface
spéciale. Nous avons alors le théorème suivant.

Théorème 3.4. Soit S une surface minimale de la classe VIIq avec b2 > 0

admettant une action de (C,+). Alors il existe une déformation holomorphe de S

en une surface de Hopf primaire éclatée b2 fois.

Démonstration: D'après la proposition 2.10 et le théorème (1.5) de [19], on a le

résultat. D
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