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Compact minimal hypersurfaces with index one in the real
projective space

Manfredo do Carmo, Manuel Ritoré and Antonio Ros

Abstract. Let M"™ be a compact (two-sided) minimal hypersurface in a Riemannian manifold

T ttis a simple fact that if M has positive Ricci curvature then M cannot be stable (i. e.

its Jacobi operator L has index at least one). If M = 5" is the unit sphere and L has index
one, then it is known that M must be a totally geodesic equator.

We prove that if M is the real projective space P71 = Sn+1/{+}, obtained as a metric
quotient of the unit sphere, and the Jacobi operator of M has index one, then M is either a totally
geodesic sphere or the quotient to the projective space of the hypersurface S™1(R;1) x S™2(Rg) C
S7F1 obtained as the product of two spheres of dimensions ni,n2 and radius Ri, Rz, with
ni +ng =n, R% + R% =1and an% = ngR%.

Mathematics Subject Classification (2000). Primary 53A10; Secondary 53A05, 53C42.

Introduction

Given a compact minimal hypersurface (without boundary) M in a compact Rie-

mannian manifold MnJrl, the second variation formula for the area determines
on the normal bundle of M a selfadjoint elliptic operator L called the Jacobi
operator of M. If the normal bundle of M is trivial or, in other words, if M
has a globally defined unit normal vector field N, then we say that M is two-
sided. When M is orientable, this property is equivalent to the orientability of
M. In the two-sided case the Jacobi operator acts on functions and it is given by
Lu = Au+ (Ric(N) + |o]?)u, for any u € C®(M), where A is the Laplacian of M,
Ric(N) is the Ricci curvature of M in the direction of the normal vector N and
|o| is the length of the second fundamental form of the immersion. The indezx of
M is defined as the number of negative eigenvalues of L. If the index is zero, then
M is said to be stable. Although stability play an important role in the theory of
minimal hypersurfaces it is easy to see that some manifolds M admit no two-sided
stable compact hypersurfaces: this holds, for instance, if the Ricci curvature of M
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is positive. On the other hand, Pitts [11] has proved that any compact Rieman-
nian manifold M admits an embedded compact minimal hypersurface with index
less than or equal to one (which is free of singularities when n < 7). Also Pitts
and Rubinstein [12] have produced, by minimax method a certain number of index
one examples in three-manifolds. Ross [16] has proved that the classical Schwarz
surface has index one in the cubic flat three torus.

If the ambient manifold has nonnegative Ricci curvature it is natural to hope
that the family of two-sided compact index one minimal hypersurfaces has specific
nice properties. In particular complete classifications of these hypersurfaces seems
to be possible for ambient spaces M simple enough. The constant curvature case,
i. e., when M is a flat or elliptic space form, is of special interest. At the present
there are few classifying results, even for simple three manifolds. We have the
following results: Simons [17] proved that index one minimal surfaces in the sphere
are totally geodesic. Lépez and Ros [9], using results by Fischer-Colbrie [7], showed
that the only complete minimal surfaces with index one are the Catenoid and
Enneper surface. Previously do Carmo and Peng [6] and Fischer-Colbrie and
Schoen [8] had shown that the only stable (index zero) complete minimal surface
is the plane. From the work by Ritoré and Ros [14] a classification of index
one minimal surfaces in P3 can be obtained: it must be a two-fold covering of
a linear subvariety or a tube of certain radius around a line. These authors [15]
also obtained a compactness result for the space of index one minimal surfaces in
flat three tori. They prove that the set of flat three tori that admit embedded
orientable compact minimal surfaces with index one is a compact subset in the
moduli space. Ritoré ([13]) made a study of index one minimal surfaces in flat
three space forms. For general 3-dimensional ambient space some partial results
are known. The interested reader can consult [14] and the references there.

In this paper we treat compact two-sided index one minimal hypersurfaces in
the real projective space P*t1. Our main result, Theorem 3, is

The only compact two-sided minimal hypersurfaces with inder one in the
real projective space P*1 are the totally geodesic spheres and the minimal
Clifford hypersurfaces.

The first ones are the twofold covering of the linear hypersurfaces (which are
one-sided) while the Clifford hypersurfaces are embedded. These hypersurfaces
are simply the quotient to Pt of the product of two spheres of right dimension
and radii that lie in S* 1, They are defined in section 1.

Recall that a constant mean curvature hypersurface in an (n + 1)-dimensional
manifold is volume preserving stable if the second derivative of the n-volume is
nonnegative for variations preserving the (n+1)-volume enclosed ([1]). An impor-
tant remark is that the boundary of the isoperimetric domains of M are volume
preserving stable. Using this fact Ritoré and Ros give in [14] a complete solu-
tion of the isoperimetric problem in the three dimensional projective space. As a
consequence of Theorem 3 we obtain in Theorem 4 a classification of the volume
preserving stable two-sided hypersurfaces in P! which are minimal.
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The only compact two-sided minimal hypersurfaces which are volume pre-
serving stable in the real projective space Pt are the totally geodesic
spheres and the minimal Clifford hypersurfaces.
We have organized this paper into two sections. In the first one we define and
study Clifford hypersurfaces. In the second one we state and prove our results.
The first author wishes to thank the warm hospitality of the Department of
Geometry and Topology of the University of Granada where this paper was writ-
ten.

1. Clifford hypersurfaces

In this section we review the basic properties of a simple family of hypersurfaces
in the unit sphere $"t1 ¢ R**2. Given two positive integers ny and ng with
n1 + no = n and two positive real numbers R; and R9 such that R% + R% = 1,
the product S™ (Ry) x $"2(Ry) of the spheres $™(R;) = {p; € R™*t1: |p;| = R},
1 = 1,2, is a compact homogeneous hypersurface of the sphere sl usually called
a Clifford hypersurface.

If p = (p1,p2) is a point in M = S™"(R1) x S"2(R9), then a unit vector normal
to M at this point is given by

Ry Ry
N = | =225, =L, .

Therefore the principal curvatures of M are %’ with multiplicity nq, and —%,
which has multiplicity ng. In particular,

M minimal <= an% = ngR%
Now we assume that M is a minimal Clifford hypersurface. Note that there is

just one of such hypersurfaces for any choice of n{ and ny. The square length of
the second fundamental form of M is given by

2 9
2 RQ Rl

ol =m “+ n9 =n.
lo TR

As the Ricei curvature of S"1 is equal to n, it follows that the Jacobi operator of
M is simply L = A + 2n. The eigenvalues of the Laplacian of M are known to be

ki(k1+n1—1)  kalks +ng—1)
Rt R3 7

(1)

where k1 and ko are nonnegative integers, see [3].
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The hypersurface M is invariant under the antipodal map and, so, it induces
an embedded minimal hypersurface M/{£} in the real projective space P*+1 —
SnHl /141 which we will also call a Clifford hypersurface. The Jacobi operator
of M/{£} is given again by L = A + 2n, but the eigenvalues of the Laplacian
in the quotient hypersurface are only those in (1) for which k1 + kg is even. In
particular, the first non zero eigenvalue of the Laplacian of M/{%} corresponds
to k1 = ko = 1 (the other candidates are obtained for (k1,ko) = (2,0), (0,2), but
it can be checked directly that they give bigger eigenvalues) and its value is

>t Hr = 2
2 2 2 2
Rj Rj Ry Ry

ny o R} + R3 g R} + R R3 R?

— 2 -
7n1+n2+n1R—%+n2R—%72n.

Therefore it follows that for any minimal Clifford hypersurface M in S"t!, the
induced hypersurface in the projective space, M/{=£}, has index one.

2. Results

Let f: M — S"t1! be an orientable compact minimal hypersurface of the sphere
and N its unit normal vector field. These maps verify the differential equations

Af+nf=0 and AN +|o]?N =0, (2)

where o] is the length of the second fundamental form of the immersion. The
Jacobi operator of M is given by L = A + |a|2 + n and its associated quadratic
form is

Q(u,u):—/MuLudV:/M{|Vu|2—(|a|2+n)u2}dV,

for any smooth function v on M.
Given a, b € R"*2 we consider the vector valued function bapb M — R 2
defined by
pap = (f,a) f+ (N, a) N+ (f,b) N. (3)

Lemma 1. The value of the Jacobi operator when applied to the function ¢, y, is
given by
~Lap = (n—|o|*)({F,8) F — (N, a) N) + X,

where X : M — R™"2 s g vector field tangent to M.

Proof. Each one of the summands of ¢, 1, is a product of two functions, say u and
v. The lemma follows by combining the formula A(uv) = vAu+uAv+2 (Vu, Vo)
with equations (2) and using the fact that, in our case, the terms which correspond
to the product of gradients are always tangent to M. O
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Lemma 2. Given a, b € R"2 we have

/ (Jo|> = n) (N, a) (f,b) dV = 0.
M

Proof. Using (2) and Green’s theorem we get

/M<|a|2 — ) (N, a) (f,b) dV = / ((N,a) A(f,b) — (f,b) A (N,a))dV =0,

M

as we claimed. O

As remarked in the introduction, there are no stable two-sided hypersurfaces
in P*t! since its Ricei curvature is strictly positive. Examples of compact two-
sided hypersurfaces with index one in P*t1 are the totally geodesic immersions of
S in Prtl (twofold coverings of embedded totally geodesic P™) and the Clifford
hypersurfaces in Pt Let us see that they the only examples.

Theorem 3. The only compact two-sided minimal hypersurfaces with indexr one
in the real projective space P are the totally geodesic spheres and the minimal
Clifford hypersurfaces.

Moreover the only embedded ones are the Clifford hypersurfaces.

Proof. Let ]7: M — P be a two-sided index one compact minimal hypersurface.
By using locally constant test functions we conclude from the index one assumption
that M must be connected. If f lifts to an immersion of M to the sphere sl
then M is an orientable index one minimal hypersurface of the sphere. It follows
from [17] that, in this case, M is a totally geodesic sphere.

Henceforth we assume that the above lift does not exist. Therefore there is
a connected twofold covering M — M and a isometric minimal immersion f :
M — $"H Jocally congruent to f and such that, if we denote by s : M — M the
isometric involution induced by the covering, then f is odd, that is fos = —f.
Moreover, the two-sidedness of M implies that M is orientable and that its unit
normal vector field N : M — $™t1 also verifies N o s = —N. In particular the
functions ¢, , above are even with respect to s, i. e., ¢51, 05 = ¢y . Observe
that the first eigenfunction ¢ of the Jacobi operator L of M is also even: this
follows because the associated eigenspace is one dimensional, s is an isometry and
p>0o0on M.

Our index one hypothesis, when translated to M, says that Q(u,u) > 0 for
any smooth function v on M such that v o s = u and fM uw dV = 0. Moreover, if
for a function u as above we have Q(u,u) = 0, then u is a Jacobi function, that is
Lu=0on M.

In our argument we will use as test functions the maps ¢, 1, which are even
and that, under suitable choice of the parameters a, b in R"™t2 will be orthogonal
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to ¢. From Lemmae 1 and 2 we obtain

ke oy = /M(" — o B)((f, 22 - (N, a)®) . (4)

Note that the expression above does not depend on b. Consider the linear map
F:R"t2  R"*2 defined, for any b € R"*2, by

Fb) = [ etrbNav

Claim. F is a linear isomorphism.

Proof. To prove this claim assume, reasoning by contradiction, that there is b £
0 such that F'(b) = 0. Taking ¢ = ¢gp = (f,b) N, we have from (4) that
Q(¢,¢) = 0. Thus Ly = 0. On the other hand, Lemma 1 says that L¢ is
a certain tangent vector field X along M. Explicit computation gives, in this
special case, that X = —Ab?, where A is the second fundamental form of M,
viewed as an endomorphism, and b? is the tangent part of b along M. Thus we
have that Ab? = 0 on M, which is the same to say that the function (N, b) is
constant. As NN is an odd function, this constant must be zero. From that we see
that the Hessian of the linear function v = {(f,b) is given by — {,)u. If u Z 0,
then Obata’s theorem ([3]) asserts that M is isometric to a unit sphere. In this
case the Gauss equation implies that M is totally geodesic in s"tl Thus M is
either a linear hypersurface in the projective space (which cannot hold because
these hypersurfaces are one-sided) or a totally geodesic sphere covering twice a
linear hypersurface (which is again not possible because this immersion lifts to the
(n + 1)-dimensional sphere). If u = 0, then we conclude, now in a trivial way,
that M is again totally geodesic which is impossible as above. This contradiction
proves the claim. |

Take an orthonormal basis aj,... ,a, 49 in R*t2 Foranys=1,...,n+2
we can find, using the claim above, a vector b; € R™*+2 such that the function
i = Pa; b, 18 L?-orthogonal to ¢. Therefore Q(¢;, ;) > 0 and from (4) we get

n+2

n— o ai2_ o = n— |o|? R % =0.
0<;/M< o) {(f,a0)® — (N, a) 2}V /M< o) — IN[2) v =0

This implies that L¢; =0 fori=1,... ,n+ 2 and so, using lemma 1 we conclude
that (n — |o|?) (f,a;) = 0 for any ¢, which is possible only if n — |o|2 = 0 on
M. Now the result of Chern, do Carmo and Kobayashi [5] says that M is locally
congruent to a Clifford minimal hypersurface. Thus M is congruent either to the
Clifford hypersurface ™ (Ry) x S"2(Rg) C S"H! (with ny R} = naR?) itself or to
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a nontrivial finite covering of it. We discard the second case (which, of course, is
possible only if either ny or ng are equal to one) because its index is bigger than
one. We can see that by checking explicitly the eigenvalues of the Laplacian, as in
(1). This proves the theorem. O

A compact constant mean curvature hypersurface M™ immersed in MnJrl is
volume preserving stable if the second derivative of the n-volume is nonnegative
for any variation keeping constant the (n + 1)-volume. If M =Pt and M is
two-sided then volume preserving stability is equivalent to

—/ w(Au+ (lo])? +n)u)dV >0,
M

for any smooth function u on M with mean zero, where || is the square of the norm
of the second fundamental form o of M. A complete classification of compact two-
sided volume preserving stable surfaces in P? is given in [14]. As a consequence,
the isoperimetric domains in P? are found.

If M is volume preserving stable then the operator A+ |a|2 +mn has index zero or
one (none or one negative eigenvalues). As 0|2 +n > 0 then it cannot have index
zero. So a compact minimal hypersurface which is two-sided and volume preserving
stable has index one. By Theorem 3, M must be a totally geodesic sphere or a
Clifford hypersurface. Since |a|2 + n is constant for these hypersurfaces, checking
volume preserving stability is reduced to an eigenvalue comparison as in section 1
([1]). So we have

Theorem 4. The only compact two-sided minimal hypersurfaces which are volume
preserving stable in the real projective space Pt are the totally geodesic spheres
and the minimal Clifford hypersurfaces.

It is expected that, as in the three dimensional case, the isoperimetric domains
in P! are some geodesic balls and their complementary domains, and the do-
mains enclosed by some Clifford hypersurfaces, see Berger [2, pp. 141-142] and
Burago and Zalgaller [4, 10.2.3].

The main results in this paper remain valid if we allow a singular set of zero
s-dimensional Hausdorff measure, with s > n — 2 (for instance for solutions to the
isoperimetric problem), see [10].
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