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The decomposition of 3-dimensional Poincaré complexes

John Crisp

Abstract. We show that if the fundamental group of an orientable PD3-complex has infinitely
many ends then it is either a proper free product or virtually free of finite rank. It follows that
every PD3-complex is finitely covered by one which is homotopy equivalent to a connected sum
of aspherical PD3-complexes and copies of S1 x $2. Furthermore, it is shown that any torsion
element of the fundamental group of an orientable PD3-complex has finite centraliser.
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1. Introduction

An n-dimensional Poincaré complex, or PD"-complex, is a connected finitely dom-
inated CW-complex P with a homomorphism w : m1(P) — {£1} which exhibits
the equivariant Poincaré duality of a closed n-dimensional manifold with orienta-
tion class w. (See [15] or [16] for more details). We may regard Poincaré complexes
as natural homotopy analogues of closed manifolds. In dimension 3, one has a com-
pletely algebraic characterisation of the class of Poincaré complexes due to Turaev
[15], and PD3-complexes are distinguished up to homotopy equivalence by their
fundamental group, orientation class, and fundamental class [6]. The most inter-
esting and challenging problem in this area is to determine which PD3—complexes
are homotopy equivalent to 3-manifolds. With this in mind, we focus in this paper
on the connected-sum decomposition of PD3-complexes.

Let P denote an arbitrary 3-dimensional Poincaré complex with fundamental
group m = w1 (P). It is known (see Wall [16]) that if = has 0, 1, or 2 ends then P
has universal cover P homotopy equivalent to 53, is aspherical (]3 contractible),
or is homotopy equivalent to one of RP3*#RP3, S x RP2, 81 x 52 or S1%5?,
respectively. Otherwise, 7 has infinitely many ends, and in this case Wall posed
the following questions: firstly, whether it follows (for P orientable, i.e: w trivial)
that 7 is a proper free product, and secondly, whether such a decomposition of
the group 7 would imply a corresponding connected sum decomposition of the
complex P, whereby one might obtain a decomposition theorem for orientable
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PD3-complexes analogous to that for 3-manifolds. Turaev [15] has since answered
the second of these questions by showing that if 7 is a proper free product then P
is a nontrivial connected sum of PD3-complexes.

In the present paper we approach the first question, and show (Theorem 14)
that, for P orientable, if = has infinitely many ends then it is either a proper free
product or virtually free. Thus the hoped for decomposition into a connected sum
of PDS—complexes P; with 1’5z ~ 53, S2 or contractible is at least true of some finite
cover of any PD3—complex. In particular, every 3-dimensional Poincaré complex
has virtually torsion free fundamental group. Theorem 14 also reduces the question
of whether every PD3-complex is virtually homotopy equivalent to a 3-manifold,
to the case of aspherical PD3-complexes, namely the problem of realising all PD3-
groups as (virtual) 3-manifold groups. Various partial results in this direction were
given by Hillman [7], [8], and Thomas [14] in the mid 80’s. An analogue of the
torus theorem has been given by Kropholler [11], and very recently Bowditch [1]
has proved a version of the Seifert Conjecture, namely that a PD?-group which
contains an infinite cyclic normal subgroup is the fundamental group of a closed
Seifert fibred 3-manifold. However, the problem as stated remains open. We note
that there are examples of PD3—complexes which are not homotopy equivalent
to manifolds, but these all have finite fundamental group. (Groups with periodic
cohomology of period 4 are the fundamental groups of PD3—complexes [16], but
Milnor has shown that many of these are not 3-manifold groups, the simplest
example being Ss, the symmetric group on three elements).

To completely settle Wall’s question one needs to resolve the case that the fun-
damental group 7 is virtually free. In Theorem 17 we show that if P is orientable
then any torsion element of 7 has finite centraliser in 7. Thus, for example, the
free product of two finite groups amalgamated over a common normal subgroup
which is proper in each group, while being virtually free, cannot be the funda-
mental group of an orientable PD?’—complex‘ However, this does not resolve every
case. For example, the question raised in [9] as to whether S3 ¢, S3 may be the
fundamental group of an orientable PD3-complex remains unanswered.

Our approach in this paper is motivated by ideas in Hillman’s paper [9]. There
the groups H,(C, H (7, Zr)), for C a cyclic subgroup of 7, are known by duality
and a spectral sequence argument. Here we show, on the other hand, that these
homology groups may be calculated independently of any duality properties. In
Section 2 we do this in the general setting of groups acting on trees, where one
uses a coefficient module which is “presented” by the tree. In Section 3 we relate
this coefficient module to the module H 1(7T,Z7T) via the accessibility of w, and
Chiswell’s Mayer-Vietoris sequence for graphs of groups. Comparing the indepen-
dent calculations leads to the main results in Section 4, where we also recover the
main result of [9] as Corollary 18. Finally, in Section 5, we give an extension of
our theorems to finite Poincaré pairs.
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2. Trees with co-vertices

In this section we introduce the notion of a module II being presented by a tree
X with co-vertices, and proceed to calculate the homology groups H,(C,1I) of a
prime order cyclic group C acting by automorphisms on X. These turn out to be
precisely determined by properties of the subtree of fixed points of X under the
action of C.

Following [3], we define a graph X to be the disjoint union of a pair of sets
FX and VX, called the edge and vertex sets respectively, together with a pair of
functions o,t : FX — VX which specify for each edge € an original vertex o(¢), and
a terminal vertex ¢(¢). In practice, however, we shall think of X as an oriented 1-
dimensional simplicial complex realised as a topological space. A nonempty graph
X is called a tree if it is connected and contains no closed loops, that is if it is
simply-connected as a topological space. Let G be a group. A tree X together
with a left action of G by orientation respecting simplicial automorphisms of X
shall be called a G-tree. Explicitly, each element g € GG acts via a bijection of X
such that g(EX) = EX, ¢g(VX) = VX, and, for e € EX, o(g(e)) = g(o(e)) and
t(g(e)) = g(t(e)). Note that any tree shall be considered by default to be a G-tree
with G the trivial group if not otherwise specified.

Definition 1. By a G-tree with oco-vertices we shall mean a G-tree X with a
distinguished G-invariant subset V;X C VX consisting of vertices with finite
valence (i.e: with finitely many adjacent edges). Vertices which do not lie in VX
are said to be oco-vertices. (Note that an co-vertex need not have infinite valence).
Henceforth we shall assume that every G-tree X has this extra structure. We shall
also assume that the co-vertex structure of any subtree of X is the one naturally
inherited from X by restriction of the set V;X.

To any tree X with oo-vertices we may associate a Z-module I1[X], which is
said to be presented by the tree X, as follows. Let Z[V;X] and Z[EX] denote the
free Z-modules with bases V; X and EX respectively. Then I1[X] is defined to be
the cokernel of the map A : Z[V;X]| — Z[EX] defined for each v € V;X by the

formula
Alv) = Z € — Z €.

{elt(e)=v} {elo(e)=v}

Furthermore, if X is a G-tree then II[X] naturally inherits a left ZG-module

structure. We write [¢]x to denote the element of II[X] represented by an edge
ec FX.

Example 2. Let X be a G-tree, with finite quotient G\ X, and whose edge
stabilizers are finite and vertex stabilizers have at most one end. Take V;X to
be the set of vertices with finite stabilizer under the action of G. Then TI[X] is
isomorphic as a ZG-module to H'(G,ZG) (this is shown in Section 3). Such a
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G-tree exists for any (almost) finitely presented group (see [3], Theorem VI.6.3)
and in particular for G the fundamental group of a PDS—complex‘

Note that the module II[X] depends (up to isomorphism) only on the unori-
ented simplicial complex X (together with the G-action), the choice of orientation
corresponding simply to a choice of canonical generators +[e| x, for each e € X.

Definition 3. Let X be a tree. We define a geodesic segment, a geodesic ray,
and a geodesic line in X to be any subcomplex of X homeomorphic, respectively,
to a real closed interval [0,z] for z > 0, a real half-line [0,00), and the real line
R. These sets correspond to finite, half-infinite and infinite edge paths which are
geodesic in the sense of no backtracking. The fact that a tree contains no circuits
ensures that the collection of all geodesic segments rays and lines, together with
the empty set, is closed under taking finite intersections.

Define the set, £X, of ends of X to be the set of equivalence classes of geodesic
rays where two rays v and +/ are said to be equivalent if v N+’ is also a geodesic
ray.

We make the following observations based on the above definitions and the
basic properties of a tree. There is a unique geodesic segment between any pair of
vertices a,b in X (that is, having boundary set {a, b}). There is a unique geodesic
ray with given boundary vertex v, and representing a given end &, and which
we call the geodesic ray from v to . Finally, between any pair of distinct ends
g,¢’ € £X there is a unique geodesic line which is the union of a (non-unique) pair
of rays belonging to ¢ and ¢’ respectively.

Let ¢(X) = |£X| denote the number of ends of X, and co(X) = |[VX \ V; X|
the number of co-vertices, each of which may be an infinite number. Finally write

§(X) = e(X) +oo(X) - 1.

Theorem 4. Let X be a tree with co-vertices. Then I1[X] is free, as a Z-module,
with infinite rank whenever (X)) is infinite, and finite rank equal to max{£(X),0}
otherwise.

Proof. Choose an arbitrary vertex vg in X. Without loss of generality we may
suppose that X is oriented such that, for every edge ¢, o(€) lies on the geodesic
segment between g and t(e). In other words, ¢(¢) is always further from vg than
o(e). For v € VX write v, for the geodesic segment between vy and v, and write
X, for the subtree of X spanned by the set of vertices v/ for which «,, passes
through v. Finally, write E} for the set of edges ¢ € EX with o(e) = v. That is
E} contains those edges in X,, which are adjacent to v.

Define X’ to be the subgraph of X spanned by 1y and those vertices v for
which X, is either infinite or contains an oo-vertex. If v is a vertex of X’ other
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than v then v, C X’ since, for each v/ in «,,, X,» contains X, and so is also either
infinite or contains an oco-vertex. Thus X’ is connected and hence a subtree of
X. Note also that the edges of X’ are precisely those ¢ for which Xt(e) is either
infinite or has an oco-vertex. Thus, if e € EX \ EX’, then Xi(e) 1s a finite tree with
no oo-vertices and one may easily check that

€= Z A(v), as an element of Z[FX],
I/EVXt(e)

and hence [¢]x = 0 in [1[X]. It follows, easily, that TT[X] = IT[X"].

Note that if X = X, is finite with no oco-vertices then £(X) = —1, while X’
is trivial (consisting only of the vertex vg) and so II[X] = 0. Hence the theorem
holds in this case, and we may assume henceforth that X, is either infinite or
contains an oco-vertex, as is already the case for every other vertex in X'.

If v € VX' is not an co-vertex then I} is a finite set of edges €1, .., ¢, in EX,
and EX'NE;S must be non-empty, for if each X 1(e;) Were finite with no co-vertices
then the same would be true of X, a contradiction. For each v € V; X’ make an
arbitrary choice of edge in EX’N E;l and denote this succ(v). Now define the set
G=EX'"\ {succ(v) |v e Ve X'}.

We claim that TI[X'] is freely generated as a Z-module by the subset G of EX'.
Consider TI[X'] as the Z-module presented by the generating set EX’ and the
relations A’(v) = 0 for each v € V; X', where A’ is defined as in Definition 1 but
with respect to the tree X’. The claim follows immediately from the observation
that each relation A’(v) = 0 may be replaced by an equivalent relation which
expresses succ(v) as equal to a Z-linear combination of edges in G. This is clearly
true if v = 1p. Otherwise v = t(€) for some € € EX’, and the relation A’(v) =0
expresses succ(v) as a Z-linear combination of elements of G and the edge ¢ which
is either in G itself, or may be assumed, by induction on the length of Yi(e)» tO be
otherwise expressed as a Z-linear combination of elements of G.

Finally, it suffices to show that |G| and £(X) are either equal (and finite) or
both infinite. (We have already dealt with the case where £(X) = —1). Define P
to be the union of the set of all geodesic rays with boundary vertex vg and the
set of all geodesic segments between vy and some oo-vertex. It is clear that P
corresponds bijectively to the set £X U{oo-vertices in X}, so that |P| = £(X) +1.
(Note that every segment or ray belonging to P is contained in X'. It will follow
from the next step that in fact X’ is precisely the union of the elements of P).
When v is an co-vertex every edge of Ej N EX’ lies in G, and, when v € V3 X/,
all but one (namely suce(r)). Thus, given any vertex vy of X/, there is a unique
maximal subcomplex of X', which we call p,,, which is a geodesic segment or ray
containing the segment ,, , with 19 as a boundary vertex, but not containing any
edges of G other than those already in «,,. In fact, the set p,, is an element of P.

Let G° = GU {0} and define the function 7 : GO — P such that =(e) = Py(e) for
e € G and 7(0) = p,,. Note that, amongst the edges in 7(€) which belong to G, € is
distinguished as the furthest from v, while 7(0) contains no edge belonging to G.
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It follows that 7 is injective. Moreover, when |G| is finite, 7 is also surjective, for
then, given any v € P, there are only finitely many edges of G in v and v = 7 (e)
where ¢ is the furthest of these from v, or v = w(0) if there are no such edges.
Hence if |G| is infinite then so is £(X ), and otherwise |G| is finite and the bijection
gives |G| = &(X). O

Note that when |G| is infinite it need not have the same cardinality as £(X). For
example, the infinite tree of valence 3 has countably many edges but uncountably
many ends, so that in this case |G| would be countable but £(X) uncountable.

Suppose now that X is a C-tree, where C' = (g) denotes a finite cyclic group
of prime order p, and write II = II[X] for the ZC-module presented by X. Note
that the set X© of fixed points of X under the action of C is a subtree of X (see
[13], 1.6.1) and so a tree with oo-vertices where we set V; X = V; X N XY, At
this point we recall the following standard notation, that, for M a ZG-module,
one writes M and M respectively for the invariant submodule and coinvariant
quotient module of M. In order to compute the homology H,(C,II), for ¢ > 0,
one defines the norm map N : o — I with respect to C, which is induced by
the map N : II — II€ such that N(z) =z + g(z) + ... + g* () for = € II. The
homology groups H,(C,11), ¢ > 0, are given by the kernel and cokernel of N when
q is even and odd respectively. These will now be computed purely in terms of the
fixed subtree X¢.

Let A denote the set of edges of X which are not in X but which have a
vertex in X¢. So € € A precisely if one, but not both, of o(e) or ¢(e) lie in X©.
Note that each connected component of X \ X¢ contains the interior of a unique
element of A. For each ¢ € A write X, for the tree (with co-vertices) obtained from
the component of X \ X¢ containing int(e) by replacing the missing vertex of ¢
with an co-vertex. Define the ZC-module B = @ II[X ] with a natural C-action

ecA
induced by the action of €' on X. Since g(II[X.]) = II[X (] with g(e) # € for
each ¢ € A, and moreover, by Theorem 4, each 11[X] is a free Z-module, it follows
that B is a free ZC-module.

We may think of B as the module presented by the edges and vertices of
X which lie outside X¢. Indeed II is simply the quotient of the ZC-module
B @ Z[EXC] obtained by imposing the remaining relations due to the vertices of
Vi X, Namely, IT = coker(A : Z[V; X — B @ Z[EX®]) where

Av)= > & - > & ad &=

{ € ifee EXY,
{elt(e)=v} {elo(e)=v}

[6]){6 ifeec A.

Let i& : B® Z|EXC] — I denote the corresponding quotient map, and write D
for A(Z[V; X ©]) which is the kernel of this map. Significantly, each element of D

is fixed by the group C, since g(A(v)) = A(g(v)) = A(v) for each v € V; X¢.
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Define the map A on B @ Z[EXC] by N(z) = = + g(z) + .. + g (z) for
z € B® Z[EXC], and observe that, since ¢ is a ZC-homomorphism, ¢ o N* =
N o ¢. Also since B is a free ZC-module, while Z[EX®] is a direct sum of copies
of the augmentation module Z, we have that ker ' = (g — 1)B and imN =
BY @ pZ|EXC).

Lemma 5. Let K denote the submodule of 11 generated by those edges which do
not lie in X©, that is K = ¢(B). Then KNII¢ Cim N.

Proof Suppose that @ € B represents an element ¢(z) of KNII®. Then z—g(z) =
7 where nn € D and so must be fixed by g. Thus

pn=n+gm) + ..+ g" 1) =Nz —glx)) =0,

and, since B is free, it follows that 7 = 0. Thus z € B¢ C im N, and consequently
¢(z) € iIm N. O

Lemma 6. The norm map N : llg — 11 has cokernel (Z/pZ)®, where R =
max{(£(X),0} for &(XC) finite, and R is infinite otherwise.

Proof. Write Il for the quotient module II/K and let ¢ : 11 — II denote the
canonical projection. Note that Il =~ M[X €] which, by Theorem 4, is free as a
Z-module with rank R. Now, one has II = K + II. So the restriction ¥ of
¥ to I1¢ is clearly surjective and has kernel K¢ = K NI1¢. It now follows that
coker N = coker N = coker()° o N), since, by Lemma, 5, one has that K¢ C im V.
Moreover, since K is a ZC-submodule, one has N(K) C K¢ and hence a well-
defined map N : 11 — I such that ]\Afozp = %o N. Thus coker(y) o N) = coker N
and, since im N = pﬁ, the Lemma is proven. |

Lemma 7. The kernel of the norm map N : Oy — TIC s Z/pZ in the case that
£(XY) = —1, and is trivial otherwise.

Proof. Consider the following commuting square in which 7 denotes the canonical
projection of II onto the C-coinvariant module.

Ba@ Z|EXC] A, im A

Tog d)/ Blima

e e

Note that D+(g—1)B C ker(wrog¢). Conversely, if ¢(z) € ker m = (g—1)II then
#(z) = (g—1)¢p(y) = ¢((g—1)y) for some y € BOZ[EXC], andso z € D+(g—1)B.
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Hence ker(m o ¢) = D + (g — 1)B = D + ker A/ and therefore 7 o ¢ induces a
surjective map ¢’ : imAN — Ilg, as in the diagram, with kernel A'(D) or simply
p.D since elements of D are fixed by ¢g. It now follows from the diagram that
ker N = ¢'(ker ¢|im ar) = ¢'(D Nim A') which may be identified with the quotient
(DNimAN)/p.D.

Take any element @ € ker N with representative « € D NimAN which we may

assume to have the form ¢ = > n,A(v) where 0 < n, < p and n, is zero
veVXe

except for finitely many v € V; X . Each e € EX? will have coefficient Mg(e) —Mo(e)

in this expression, and since a is also an element of imA = B® @ p.Z|EX ] this

coefficient must be a multiple of p. Since we chose each n, < p it follows that

No(e) = My(e) and, by the connectedness of X . the coefficients n,, take a constant

value n over the whole set VX of fixed vertices. Now n can be nonzero (that is @

nontrivial) only if X is finite and has no co-vertices, that is only if £(X°) = —1,
in which case putting n = 1 gives a nontrivial element @ of order p which clearly
generates the whole of ker V. |

Given that the homology of C' with coefficients in a ZC-module may be cal-
culated from the kernel and cokernel of the norm map, the next theorem follows
immediately from Lemmas 6 and 7 combined.

Theorem 8. Suppose that the finite cyclic group C of prime order p acts on the
tree with oo-vertices X, and let 11 = TI[X] be the left ZC-module presented by X .
Then

(Z/pZ) R+ for i odd,

H;(C1I) = { (Z/pZ)R‘ for ¢ >0 even,

where Ry = max{¢(X),0} if £(XC) is finite, and is infinite otherwise, and
R_ = max{—¢(X%),0}. O

3. HYG,ZG) for accessible groups

A G-tree X is said to be terminal (see [3]) if each edge stabilizer is finite and
each vertex stabilizer has at most one end. A group G is said to be accessible if
there exists a terminal G-tree. When G is a finitely generated accessible group we
may assume, by [3], VI.7.4, that there is a terminal G-tree X with quotient graph
G\ X finite, and in this case we shall adopt the convention of considering X as a
tree with oco-vertices by taking V; X to be precisely the set of vertices with finite
stabilizers. For a group G we shall consider the group cohomology H 1(G7 ZG)
as a left ZG-module with action defined in terms of the natural right action by
gx=xg ! for ge Gand z e HY(G,ZA).

Theorem 9. Let G be an accessible group, and X a terminal G-tree with G\X
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finite. Then the module T1[X] presented by X is isomorphic to HY(G,ZG) as a
left ZG-module.

Proof. Since the statement is evidently true for G finite (in which case X is
a finite tree with no oo-vertices), we may assume in what follows that G is an
infinite group. Recall that a graph of groups (G,Y) consists of a graph Y together
with a collection G of groups Gy, for each v € VY, and subgroups G C G,.), for
each e € FY, with injective homomorphisms ¢, : G. — Gt(s). Fixing a choice of
maximal subtree T' of Y, one defines the fundamental group of (G,Y) to be the
group with presentation

(te, Gy |1el Gy, toat,! = ¢o(a) forae G, , to=1forec ET)

noting that up to isomorphism this group is independent of the choice of T

Let X be a terminal G-tree with finite quotient, as in the statement. By the
Bass-Serre structure theorem ([13], 1.5.4 Theorem 13) G is the fundamental group
of a finite graph of groups (G,Y) where Y = G\ X and the edge and vertex groups
of (G,Y) are isomorphic to the corresponding edge and vertex stabilizers of X
respectively. Furthermore, X is isomorphic to the G-tree X defined with vertex
and edge sets

vX= 11 ¢/c,. BX=1] ¢/c.,
vEVY eCEY

such that o(¢gG.) = 9G () and t(gG.) = gteGyy for g € G and e € EY, and
with G acting by left multiplication on cosets. Since X is a terminal G-tree the
vertex groups of Y have at most one end, so that the cohomology Mayer-Vietoris
sequence of Chiswell [2] (see also [13], I1.2.8 Proposition 13) gives rise to a short
exact sequence of right ZG-modules

A,
0— P za,\61=> P zlc.\6l — HY(G,26) -0,
’UEVfY ec BY

where V;Y = {v € VY | G, finite} or just the set G\Vf)?. If we choose to consider
this as a sequence of left ZG-modules and left ZG-maps (via the anti-isomorphism
g — g~ 1 of G), then the first two modules are naturally isomorphic to Z[Vf)N( | and
Z[E)?] respectively (by taking the coset G,g to g~ 1@, etc..) and one can check

that A, becomes exactly the map A : Z[Vf)?] — Z[EX] of Definition 1. Thus X,
or equivalently X, presents H1(G,ZG) as a left ZG-module. O

Corollary 10. If G is an infinite group and X a terminal G-tree with G\ X finite
then e(X) + oo(X) = 1, 2 or is infinite according as to whether G has 1, 2 or
infinitely many ends, respectively.

Proof. This follows immediately from Theorem 9 and Theorem 4, and the fact
that rkz(H'(G,ZQA)) + 1 measures the number of ends of G. O
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4. Results on PD3-complexes

Let 7 be a group equipped with a homomorphism w : # — {£1}. We have
in mind, of course, the fundamental group = of a PD3-complex with orientation
character w. If I1is a left (resp. right) Zm-module, denote by TI the left Zm-module
with the same underlying abelian group, and action given by g.z = w(g)gz (resp.
w(g)xgil) for all g € w, z € II. The only consequence of Poincaré duality which
we shall use is the following.

Lemma 11. (Hillman, [9]) Let P be a PD>-complex with infinite fundamen-
tal group w. If C is a finite cyclic subgroup of m then there are isomorphisms

Hy(C,H ' (n,Zn)) = H,13(C,Z) for all s > 1.

Proof. This follows from the spectral sequence for the projection of the universal
cover P onto ﬁ/C’ given that Hq(ﬁ; Z) =17, O,ﬁl(ﬂ,Zﬂ),O, ... which follows from
the duality isomorphisms, the fact that P is simply connected and the assumption

that 7 is infinite. (We may assume, without loss, that P is a 3-dimensional CW-
complex). O

The thrust of the earlier Sections 2 and 3 was to be able to calculate these
homology groups independently of Lemma 11 (in fact without using duality). This
is achieved, for prime order cyclic subgroups, by taking Theorem 8 together with
the following lemma.

Lemma 12. Given a group ™ and homomorphism w : m — {£1}, let 11 be a left
Zrm-module and 11 as above. If C = {(g) is a cyclic subgroup of w of prime order p
then

— { H;(C, 1) ifi >0 and w(g) =1,

H;(C,II) =
( ) H;1(C,10) if i >0 and w(g) = —1.

Proof. The case for w(g) = 1 is easy since then Tl = I1 as ZC-modules. In the
case w(g) = —1 (and p = 2 necessarily), II and II are distinguished as ZC-modules
only by the action of g, whereby the homology, H,(C,II), of the complex

— 1- — 14 —_ 1- —
. — II g 11 g I g 11 0,
is just that of the complex
1+g 1—g 1+g
— I IT II II 0,

The lemma now follows by comparing this with the complex for H,(C,II). O
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Remark 13. Given a PD3—compleX P with infinite fundamental group 7, then
since 7 is finitely presentable, it is accessible by Theorem VI.6.3 of [3], and there
exists a terminal m-tree X, as in Theorem 9, which presents I1 =2 H1(7T7 Zr) as a
left Zm-module. It is now clear, by Lemmas 11, 12 and Theorem 8, that if ¢ is
an element of 7w of prime order then exactly one of the following two cases must
hold. Either w(g) = 1 and £(X%9) = —1, or w(g) = —1 and &(X9) = 1. We
shall apply this to prove the following two theorems.

Theorem 14. Let P be an orientable PD3-complex with # = w((P). Then w
either has one end, is a proper free product, or is virtually free of finite rank. That
is to say that P is either an aspherical complex, a nontrivial connected sum (by
Turaev [15]), or finitely covered by some P~ #5(81 x §2), k > 0.

Proof. Clearly we may assume that 7 is infinite, since a finite group is virtually
free of rank 0. Let X be the m-tree of Remark 13 and (G,Y") the associated graph
of groups, which may be assumed to be finite since = is finitely generated ([3],
VIL.7.4). Assume that 7 is not a proper free product, and hence that the edge
groups of (G,Y) are all nontrivial. It now suffices to show that either the vertex
groups of (G,Y) are all finite, for then m must be virtually free of finite rank (see
[10], also [13], I1.2.6), or 7 has one end.

Suppose that (G,Y) has an infinite vertex group. Then either there are no edge
groups and 7 has one end, or one of G () or G, is infinite for some edge e € E'Y".
But in the latter case we show that both these groups are finite thus reaching
a contradiction. Since G, is nontrivial and finite, we may choose a nontrivial
g€ Ge C GO<6> of prime order. Now, since P is orientable, w(g) = 1 and Remark

13 shows that £(X (') = —1 in this case. That is X9 is finite with no oo-vertices,
and hence has finite vertex stabilizers. But GU(E) is the stabilizer of some vertex
of X which, since g € Gy, must lie in X9, Thus G, (e) must be a finite group.
Finally take g € ¢¢(Ge) C Gy(,) to show similarly that G, is finite. O

Corollary 15. Let P be an orientable PD3-complex. Then P is homotopy equiv-
alent to a connected sum V#P1#..# Py, where each P;, for i = 1,..,m, is an
aspherical PD?’—complex and V is a PD3—compl69: with 71(V) wvirtually free of
finite rank.

Proof. This follows from Theorem 14 by Turaev’s theorem ([15], Theorem 1) and
the fact that 71 (P) is finitely presented, and by observing that A x B is a virtually
free group of finite rank if both A and B are. This last observation follows from
the theorem of [10] which states that a group is virtually free of finite rank if and
only if it is the fundamental group of a finite graph of groups with every vertex
group finite. O

Corollary 16. Let P be an arbitrary PD3-complexr. Then 71(P) is virtually
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torsion free. Indeed, P is finitely covered by an orientable PDS—complex which is
homotopy equivalent to a (possibly empty) connected sum of finitely many aspher-
ical PD®-complexes and copies of St x S2.

Proof. By considering the decomposition of Corollary 15 it is clear that the ori-
entation cover of P, and hence P itself, is finitely covered by such a connected
sum. Since aspherical PD3-complexes have torsion free fundamental groups, it
now follows that 71 (P) is virtually torsion free. (It is well known of course that
A x B is torsion free if and only if both A and B are. See [12] for instance). [

Theorem 17. Let P be a PD?-complex with 7 = m1(P). If g € 7 is a nontrivial
element of prime order p such that Cr(g) is infinite, then p = 2, w(g) = —1 and
Cr(g) has 2 ends.

Proof. Again let X be the m-tree with finite edge stabilizers of Remark 13. Note
that Cx(g) acts on the subtree X (%), also with finite edge stabilizers. (If z € C(g),
e € X9 then g(xe) = x(ge) = ze implies that ze € X9 also). If (X)) = —1
then X% is a finite graph with finite vertex stabilizers in 7 and so in Cr(g).
This contradicts C(g) being infinite. Thus £(X () > 0. It now follows from the
Remark 13 that w(g) = —1, p = 2 (necessarily) and £(X{9) = 1. Thus the set
EX 9 U {oo-vertices in X9} contains exactly two elements and there is a unique
geodesic segment, ray, or line v joining them in X9 . Since Cr(g) respects the
set of co-vertices and also acts on EX(9 | it must preserve the set ~. In fact, some
subgroup H of index at worst 2 in Cr(g) must fix each end or co-vertex. If there
is some oco-vertex involved then the infinite group H stabilizes every edge in ~
which is a contradiction. Thus v is a geodesic line joining two ends and H acts
by translations. For any edge € in « the quotient H/stabp(¢) must be Z. But any
surjection H — Z splits, and since stabg(¢) is finite, H must be virtually Z and
have two ends. Hence Cr(g) is also 2-ended as required. O

It follows that if P is an orientable PD3—complex then any torsion element of
71(P) has finite centraliser. Thus, for example 7 = G'1* 4G9 is not the fundamental
group of an orientable P D3-complex if A is finite and a proper subgroup of both
N¢,(A) and Ng, (A), since then N (A) is infinite, and hence so is Cy(a) for a € A.
As a corollary to this theorem we may also restate the main theorem of [9], which
also has application in that paper to 2-knot groups.

Corollary 18. (Hillman, [9]) Let P be a PD3-complex, with infinite fundamen-
tal group w. If w has a nontrivial finite normal subgroup N, then P ~ Sl x RP2.

Proof. In this case N contains a nontrivial element g of prime order p where
Cr(g) is a subgroup of finite index in w. Thus, applying Theorem 17, P is non-
orientable, g has order 2, and 7 in fact has two ends. So, by Theorem 4.4 of [16],
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P~ slx rP2. O

Ideally we should like to improve Theorem 14 by reducing the case that = is
virtually free. Beyond applying Theorem 17 as per the examples given, it appears
that some other approach is needed to eliminate the cases where 7 is the funda-
mental group of a graph of groups with finite vertex groups and some nontrivial
edge groups. Turaev ([15], Theorem 5) gives an explicit algebraic characterisation
of the pair (7((X),w(X)) of a PD3-complex X, but it is not clear how to apply
this in general, let alone to decide whether the minimal example Sz, S3 proposed
in [9] is or is not the fundamental group of an orientable PD3-complex.

5. Extension to Poincaré pairs

Let P be a connected finitely dominated CW-complex and @ a subcomplex of
P which is a (not necessarily connected) P D" l-complex with orientation class
induced (under inclusion) by a homomorphism w : 71(P) — {£1}. Then the pair
(P, Q) is said to be an n-dimensional Poincaré pair if it exhibits the equivariant
Lefschetz duality of an n-dimensional manifold with boundary (See [16] for details).
A “weak loop theorem” due to C.B. Thomas [14] allows us to extend our main
results to apply to the fundamental groups of finite Poincaré pairs. However,
it is not immediately clear how to extend Turaev’s work and deduce topological
decompositions in this setting.

Theorem 19. Let (P,Q) be a finite orientable 3-dimensional Poincaré pair with
Sfundamental group w. Then 7 either has one end, is a proper free product, or
is virtually free of finite rank. Furthermore, any torsion element of ™ has finite
centraliser in .

Proof. Since it is known ([4], [5]) that every PD?-complex is homotopy equivalent
to a closed surface we may suppose (by attaching mapping cylinders if necessary)
that @ is a disjoint union of closed orientable surfaces ); and has a collar neigh-
bourhood @ x[0,1) in P. By the weak loop theorem of [14], one may find a disjoint
collection of simple closed curves in each ‘boundary’ component Q); which represent
a set of generators whose normal closure is the kernel of the map 71(Q;) — 71 (P)
induced by inclusion. One may then modify P by attaching a copy of DxI along
a neighbourhood of each of these closed curves to obtain a different Poincaré pair
with the same fundamental group as P. In this way one reduces to the case where
each Q; is mi-injective and, by capping off each spherical boundary component
with a 3-ball, we may assume moreover that each Q); is aspherical. In this case the
conclusion of Lemma 11 is still valid, and the theorem now follows by precisely the
same arguments as used to prove Theorems 14 and 17, since these are otherwise
independent of duality properties.
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To see that Lemma 11 holds in this context, note that, since each Q); maps
mi-injectively into P, the universal cover (P,Q) of the pair (P,Q) has simply

connected boundary components. Thus H1(Q) = 0. Moreover, since each @; is

aspherical, Ho(Q) = 0 and therefore the relative exact sequence gives an isomor-
phism HQ(JS) = HQ(?7@) Now, by Lefschetz duality, HQ(IS,@) & ﬁl(w,Zw)
and, since P is simply-connected and 7 is infinite and we may suppose that P is
a 3-dimensional complex, we have

H,(P;Z) = 2,0, (x,Zn),0, ...

as required for the proof of Lemma 11. O
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