Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 75 (2000)

Artikel: Wallls for Giesecker semistability and the Mumford-Thaddeus principle
for moduli spaces of sheaves over higher dimensional bases

Autor: Schmitt, Alexander

DOl: https://doi.org/10.5169/seals-56616

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 06.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-56616
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

© 2000 Birkh&user Verlag, Basel
Comment. Math. Helv. 75 (2000) 216-230

0010-2571/00/020216-15 $ 1.504-0.20/0 Commentarii Mathematici Helvetici

Walls for Gieseker semistability and the
Mumford-Thaddeus principle for moduli spaces of sheaves
over higher dimensional bases

Alexander Schmitt

Abstract. Let X be a projective manifold over C. Fix two ample line bundles Hy and H; on X.
It is the aim of this note to study the variation of the moduli spaces of Gieseker semistable sheaves
for polarizations lying in the cone spanned by Hg and Hi. We attempt a new definition of walls
which naturally describes the behaviour of Gieseker semistability. By means of an example, we
establish the possibility of non-rational walls which is a substantially new phenomenon compared
to the surface case. Using the approach by Ellingsrud and Goéttsche via parabolic sheaves, we
were able to show that the moduli spaces undergo a sequence of GIT flips while passing a rational
wall. We hope that our results will be helpful in the study of the birational geometry of moduli
spaces over higher dimensional bases.

Mathematics Subject Classification (2000). 14J60, 14D20.
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Introduction

Fix an n-dimensional smooth projective manifold X over the complex numbers
as well as a function p: Num(X) — Z, called Hilbert form. Define N(é(X) =
Num(X) ®z Q and similarly N (X), and finally let Ampg(X) and Ampg(X) be
the cones in N(é(X ) and NH{{(X ), resp., spanned by the classes of ample line bundles.
Assuming that H is the class of an ample line bundle, we define Py (€) as the poly-
nomial such that Py (E)(n) = x(€ ® H®™) for any natural number n. The sheaf
€ is then called Gieseker H-(semi)stable (or just H-(semi)stable) if and only if
every non-zero proper subsheaf F of £ satisfies Py (F)/tkF (<) Pu(€)/rké.
There is a projective moduli space My = Mpg(p) of S-equivalence classes of
Gieseker H-semistable torsion free coherent sheaves £ with Hilbert form p, i.e.,
p([D]) = x(E®Ox (D)) for all [D] € Num(X). Note that this determines the rank
of &£, henceforth denoted by r, the numerical equivalence class of ¢1&, henceforth
denoted by c¢1, and € as a linear form on the subvectorspace of H2"*4(X7 Q)
spanned by (n — 2)-fold intersections of divisors, as such it is called cs. By its
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very definition, the space My depends on the chosen polarization, and it is an
interesting and important problem to compare My, to My, for different polar-
izations Ho and Hy € Ampg(X). For surfaces, this problem has been thoroughly
studied. A brief discussion of this topic and appropriate references can be found
in [5]. The most general result in this direction has been obtained in [7] where it
is shown that the moduli spaces are related by a sequence of GIT flips. A similar
result can be obtained using moduli spaces of parabolic sheaves as mentioned in
the paper [3]. In this note we aim at a generalization of the results of [7] to higher
dimensions, using the approach of [3]. However, there arise new problems due to
the appearance of walls which do not lie in N(é(X ). Our result is summarized in
the following

Main Theorem. Given two polarizations Hg and Hy, there is a finite subset
w of A = {(1 =XNHo+ XHy | A € [0,1] } such that the notion of Gieseker
(semi)stability remains constant within each connected component of A\ w. If the
polarization passes through a wall of w N Né(X), then the moduli spaces undergo
a sequence of C*-flips.

In the case of crossing a real wall, one cannot expect such a result, because
it would yield an algebro geometric construction of a moduli space of Gieseker
semistable sheaves w.r.t. a real polarization which seems most unlikely in my eyes.
However, in this case, some suitable fibre spaces over the moduli spaces can be
obtained by a sequence of C*-flips from the same Quot scheme. This will be
explained in Section 3.

In general, the hope is that M g, and Mg, will be — under suitable assump-
tions — birational to each other, although other results indicate that moduli spaces
over higher dimensional bases are not at all well-behaved, e.g., they can have ar-
bitrarily many components ([2], [1]). The flips between the moduli spaces can be
very helpful in this context. In fact, one should be able to obtain quite explicit
descriptions of the exceptional sets of the flips. Then, one is left with estimating
the dimension of these exceptional sets, and this might be the hard part.

In the case of crossing a rational wall, our construction gives the following:
There is a quasi-projective scheme X, an ample line bundle £ on X, and a C*-
action on X together with two linearizations og and o of this action in £ such
that X/, ,C* = Mp,,. Let X;, i = 1,...,t, be the irreducible components of
X. Since C* is irreducible, the action preserves those components. So, the M6,1
will be the irreducible components of My, ,, 7 =1,...,t. By general properties of
C*-actions (e.g. [11], [8]) one gets

Corollary. Under the above hypotheses, if forig € {1,...,t} both ./\/16O and ./\/lilo
are non-empty, then they are birationally equivalent.
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1. Preparations
1.1. Walls for slope semistability

For technical reasons, we will have to consider the notion of slope semistability
for all H € Ampy(X). So, let us fix such an H. For a torsion free coherent sheaf
&, define its H-slope as pug& = c1 & H" 1/ rk & and call £ slope H-(semi)stable if
upF (<) pp€ for any non-zero proper subsheaf F of £.

Example 1.1.1. Let X C Py x Py be a smooth hypersurface in |[O(1,1)]. The
nef cone of X is spanned by Hy = 7{Op,(1) and Hy = 75O0p,(1). Set Hy =
(1 = N)Ho + AHy. We have H3 = 0 = H} and HZ2.H; = 1 = Ho.H?. Define
E:=0(2,-1)® O(—2,1). This bundle will be slope Hy-semistable if and only if

0 = O2,-1).H} = -XN4t4ar-1.

This equation has the (irrational) solutions Ay := 2 + /3. Note that \_ gives a
real class in the ample cone. Hence, F is semistable only with respect to a single
real class! Thus, the study of sheaves which are slope semistable w.r.t. a real class
cannot necessesarily be reduced to the study of vector bundles which are slope
semistable for some rational class.

Fix two polarizations Hy and Hy in Ame(X ) and denote the line segment
joining them by A. In this section, H stands for the polarization (1 —X\)Hy+AH1,
A € [0,1]. We are interested in the family F(A) of isomorphy classes of torsion free
coherent sheaves £ with Hilbert form p for which there exists a rational polarization
HeAn N(é(X) w.r.t. which £ is slope semistable.

For any sheaf £ and any non-zero proper subsheaf 7 C & define {r ¢ =
[c1F/rkF — c1/r]. We begin with the following observation.

Lemma 1.1.2. Let Ap € [0,1)NQ and Ay € (No,1). Denote the family of
isomorphy classes of slope Hy,-semistable torsion free coherent sheaves with Hilbert
form p by §(Hx,). Then there is a constant C such that for any £ with [£] €

§(Hx,) and any non-zero proper subsheaf F of £ the condition fﬁg‘Hfo_l <C
implies € g H™1 < 0 for all A € [\, A1].

n—1 )
Proof. We may assume \g = 0. Then H2~! = 3> ("-hya—nyia——1giap-1-.
Since §(Hp) is a bounded family, there are constants Ky, ..., K,,_9 such that
£f7g.HéH?*1’l < K;, i =0,...,n—2, for all £ with [£] € F(Hp) and all sub-
sheaves 0 # F C £. Setting

n—2
K := max{ Z <n z_ 1) {1 — i | e, 1],
i=0
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we conclude that, for X € [0, \], £ with [£] € F(Hop), and all subsheaves 0 # F C &,
0 < EreHy ' < Q-N"YreHy '+ K < (L-M)" reHy '+ K
implies ffyg.H()‘*l > —K/(1-X1)" !, and we are done. O

As important consequence, we note

Proposition 1.1.3. Let £ be a torsion free coherent sheaf such that [£] € F(A).
Suppose that £ is slope semistable w.r.t. Hy, with Ao # 1 and that for any subsheaf
F C & there is an open neighborhood U C [0,1] of Ag, such that 5}"}5.H§71 <0
for all xe U. Then
e cither £ is slope Hx-semistable for every A € [Ao, 1],
o or there exists a number A\ > Ao such that
1. & is slope Hx-semistable for every A € [Ag, A4,
2. there exists a saturated non-zero proper subsheaf Fy C £ with HH, Fipe=
MHM(‘: such that

(tk Fy — 1) A3Fy — 2rkf+@f+)ﬂ;;2 < 0,
and, for Gy = E/F4,
(kG4 — 1)efGy — 21k GreaGy) HY 2 < 0,
3. & is not slope Hx-semistable for X > Ay close enough.

Remark 1.1.4. i) Likewise, one can construct under the assumption Ag # 0 a
number A_ < Ag and a subsheaf F_ with the respective properties.

ii) The need for this proposition arises from the fact that I don’t know if the
Bogomolov inequality continues to hold for real polarizations.

Proof. We may suppose that £ is not slope H,, -semistable for some rational
A1 > Ag. If a subsheaf F slope desemistabilizes £ for some Hy with A € [Ag, A1],
then we must have fﬁg.Hfgl > C, by Lemma 1.1.2. The set € of saturated

subsheaves F of £ with Egg.H;L(;l > C'is bounded ([5], Lem. 1.7.9). In particular,
there are only finitely many elements £ in (1/7!) Num(X) of the form &7 ¢ for which
there is a A € [Ag, A1] with f.H;%l > 0. Denote these elements by £1,...,&, and
set fi(A\) = &}H;fl. Let A4 be the smallest number in (Ag,A1] at which one of
the polynomial functions f;(\) undergoes a change of sign. Then, by construction,
£ is slope semistable for all Hy with A € [A\g, A4 ), properly slope H)  -semistable,
and slope unstable for values A > Ay, close enough.

Moreover, for every inclusion 0 C Fy C Fa C &£ occuring among subsheaves
in €, we have a function gfz/flyg/fl.H;_l. These are again only finitely many
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functions. Call them g1(X), ..., g, (). We can now choose a number X close to Ay
in such a way that none of the functions f;(X), fi(A\) — f;(A), 4,7 =1,...,v, and
(), gi(A) —g;(N), 4,5 =1, ..., u, changes its sign in (A, N'). We let

OCcFHiC---CFHCE

be the slope Harder-Narasimhan filtration of £ w.r.t. the polarization Hy,. One
has pg,, Fi > pu,, € for i = 1,...,t, so that the functions f}'hg‘H;lil are among
the functions f;(A\), 2 = 1,...,». By our choice of X, the above filtration is also
the slope Harder-Narasimhan filtration of £ w.r.t. to all the polarizations Hj,
X € (A, X). We choose Fy := F,. Then, G := £/F is slope Hy-semistable
w.r.t. all polarizations A € [Ay, X'], and the Bogomolov Theorem ([5], Thm. 7.3.1)
implies
(kG4 —1)3G4 — 21k GeaGy) . HY 2 <0

for all A € [Ay,N']. We claim that we also have
(0k F — i F; — 21k Fyep %) HE 2 <0

fort=1,...,t. For F it follows from the fact that this sheaf is slope Hy-semistable
for all A € [A\y,N]. Suppose now that we have established the above inequality
for F;. Write

D(F) := (tk F — 1) F — 21k Fea F)

for every coherent sheaf 7. We have an exact sequence 0 — F; — F; 1| —
Fit1/Fi — 0. The sheaf F,1/F; is again slope Hy-semistable for all A € [A, N'],
so that D(]—}Jrl/ﬂ»).H;"Q <0 for all X € [A4, N']. One has the equality

D(Fi) _ D) DFEW/F) | tkFirkFi o

rk Fi1 rk F; rtk Fip1/F; rk Fip1/F; FoFir:

Since ffi’fi+1.H;;1 = 0, the Hodge-Riemann bilinear relations ([4], p. 123) for
the Kéhler class Hx, imply &‘%}EH.H;LJQ <0, and we are done. O

Example 1.1.5. This time, we consider a smooth hypersurface X C Py x P2 in
the linear system |O(3,3)|. Using notations analogous to those in Example 1.1.1,
we have generators Hg and Hi of the nef cone of X with Hg’ =0 = H13 and
Hg.Hl = 3= HO.H%. The space X is a Calabi-Yau threefold with co(X) =
3H§ + 3H12 +9HoH1. First, we check that there is a non-split extension

0— 0x(3,0) — F — O0x(0,1) — 0.
Such extensions are parametrized by

Ext!(0x(0,1),0x(3,0)) = HY(Ox(3,-1)).
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Observe h0(Ox(3,—1)) = 0 = h9(Ox(—3,1)) = h3(Ox(3,—1)), so that Riemann-
Roch gives

—h1(O(@3,-1)) < (1/6)(3Ho—H1)>+(1/12)(3Ho—H1).(3H3+3H3+9HoH ) = —3.

Besides subsheaves of O(3,0), E could have subsheaves of the form O(—k, 1) with
k > 1, because the extension does not split. Subsheaves of the latter form do
not destabilize if &1 1) 5-Hy < 0 where o115 = —(5/2)Ho + (1/2)H.
One checks that this is fulfilled for all A > \* := (5/4) — (v/21/4). Thus, for
A > A*, the middle term F of such a non-split extension is slope Hx-(semi)stable
if and only if Ox(3,0) does not de(semi)stabilize . We have £ := o, (30),5 =
(3/2)Hy — (1/2)Hy, and the equation &. HZ(<)0 reads

g(—zﬁ +6r-1) () o

Thus, F is slope stable for all polarizations Hy with A\* < X < (3/2) — (1/2)V/7,
properly slope semistable for H (3/2)—(1/2VT and not semistable for any polariza-

tion Hy with A > (3/2) — (1/2)V7.

Remark 1.1.6. This example exhibits an interesting phenomenon. Although our
set-up is completely algebro-geometric, we naturally encounter objects which are
not readily accessible by algebraic methods. In particular, it becomes clear that in
order to completely solve our problem we have to find the right notion of Gieseker
semistability w.r.t. an arbitrary Kahler class and to construct moduli spaces for
them. As Andrei Teleman informed me, this problem has been raised by Tyurin.

Local definition of no future importance. We will say that a pair (F, ), consisting
of a torsion free coherent sheaf £ and a saturated non-zero proper subsheaf F,
satisfies the condition (x), if
1. [£] € F(A),
2. there exists a polarization H € A such that

(a) pr(F) = pu(€), and

(b)

(Ck F — 1)} F — 21k Fea F).H" 2 <0
and (kG — 1)¢G — 21k GeaG).H* 2 <0, G :=E&/F.

Lemma 1.1.7. W .= {z € (1/m)Num(X) | 3 (F,E) satisfying (x) 1z =Ere}
is a finite set.

Proof. This is an easy adaptation of the proof of Thm. 1.3 in [7]: Let = be in wt,
Choose a pair (F, ) satisfying (x) with z = £ ¢. Define

hi=max{(s—1)/2s+ (r—s—1)/2(r—s)) | s=1,..,r}, L= -1)/(2r),
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k1 := max{ cp.H" 2| He A}, ko := min{ c%H"’2 |He A}

Then exactly as in [7], p. 105, one shows that
0< —22. H" 2 < r?(ky — lky)/(1 — k) =: N.
Observe that N depends only on r, ¢1, and cg. So, it suffices to show that
{ze(/mMNum(X)|IHeA: «H"1=0 A —22H"2<N}

is a finite set. Again, this can be proved in the same manner as Lemma 1.5 in [7].
Indeed, the bilinear form (.,.)g with (x,y)g = x.y.H" 2 depends continuously
on H, and, since H is supposed to be a Kéhler class, it has signature (1, p(X)—1),
by the Hodge-Riemann bilinear relations ([4], p. 123). O

1.2. A boundedness result
The basis of our investigations is the following
Proposition 1.2.1. The set F(A) is bounded.

Proof. Denote by W1* the set of elements € W1 such that z. H" 1 = 0 for
only finitely many polarizations H € A. For each such z, let w!(z) be the set of
H such that . H" ! is zero. We set w! = | — wl(z). Let [£] be in F(A),
such that &£ is slope Hj,-semistable, \g € Q, but fails to fulfill the assumptions
of Proposition 1.1.3. Then it is easy to check that Hy, lies in wl. Let Uy, ...,Us
be the connected components of A\ w!. Pick polarizations 4; € U; N Né(X),
i =1,...,s, and denote by As41,..., A; those elements in w! which are rational.
By Proposition 1.1.3, the concept of slope (semi)stability remains constant within
each U;. So, any &€ with [£] € F(A) will be slope semistable w.r.t. one of the
polarizations Ay, ..., A;. |

2. Passing through a rational wall

2.1. Riemann-Roch

For any torsion free coherent sheaf £ on X, we have its Chern character ch(€) €
A*(X). We will denote its homogeneous component of degree d by chy(€). We

denote by td. the degree e part of the Todd character of the tangent bundle of X.
Then, the Riemann-Roch theorem asserts
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For any line bundle £ on X, we know that ch(€ ® £) = ch(€).ch(L) so that

1

o 1)!£n71,(ch1(5) +rtdy) + - - + x(E).

1
x(E®L) = grﬁnJr

In particular, the Hilbert polynomial of £ w.r.t. the ample line bundle H is

Pu(e) - (%rm) o 4 <ﬁﬂn*1.(chl(5) +rtd1)> 2L (E).

Define hilby(€) := chy(E)+chy 1(E).td1+- - -+rtd, for d =1, ...,n. To abbreviate
notation, for a subsheaf 7 C £ and 0 < d < n, we define

hilbg(£)  hilba(F)

hilba(F,€) = —= 7

2.2. More walls

We have already defined a set of walls wl, such that the concept of slope (se-
mi)stability remains constant between these walls. Define w? as follows: The
set of isomorphy classes of sheaves F which are saturated subsheaves of sheaves
in the family §(A), such that [(c;F/rk F) — (ey/r)].H* 1 = 0 for all polariza-
tions in A is bounded, so that they provide us with a finite set of equations
hilb; (F,&).H™* = 0. We consider only those equations which are non-trivial and
let w? be set of the respective solutions. Set w := wl Uw?. By the very defi-
nition of w, the concept of Gieseker (semi)stability remains constant within each
connected component of A\ w.

Remark 2.2.1. i) The walls in w\ w! do not affect the concept of slope stability,
i.e., the moduli spaces for two polarizations separated only by a wall in w\w1 will
be isomorphic at least over the open subsets parametrizing slope stable sheaves.

i) As we have seen in Example 1.1.5, it is possible that w contains points which
do not lie in N(é(X ). In this case the methods presented in this section break down
and have only the weak results of Section 3. However, the reader may check that
on some simple manifolds such as Py x P,,, all the walls are rational. In those cases,
our results completely describe the situation, at least from an abstract viewpoint.
The phenomenon of real walls might explain the difficulties encountered by Qin in
the definition of walls for higher dimensional varieties [9].

2.3. The crucial lemma
Suppose that Hyg and Hj lie in neighbouring connected components of A\ w which

are separated by a rational polarization A. We can furthermore assume that there
is an effective Q-divisor D such that Hy = A+ D and Hy = A—D. If X is a surface,
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then in both [7] and [3] the result is based on the fact that there is an integer lg
such that &£ is Gieseker Hi- (Hp-)(semi)stable if and only if £(lgD) (£(—lpD))
is Gieseker A-(semi)stable. This result allows one to explore some parameter
dependent (semi)stability concept w.r.t. the polarization A such that for different
choices of the parameter one obtains Mpg,, Mg, , and M4, respectively. Now,
this choice of parameter corresponds in a suitable construction to the choice of
a linearization of a group action. The variation of the quotients in the latter
setting is well understood. Indeed, this problem can be appropriately dealt with
in the context of master spaces. In the abstract GIT setting, the construction of
master spaces is carried out in [11]. Examples of master spaces which solve moduli
problems can be found in [8] and [10].

Lemma 2.3.1. There is an integer lg such that for every | > lg and every torsion
free coherent sheaf £ with Hilbert form p the following conditions are equivalent.
1. & is Gieseker Hi-(semi)stable (Hp-(semi)stable).

2. E(ID) (E(—ID)) is Gieseker A-(semi)stable.

Proof. We will explain the proof for Hq in the semistable case. It is our task to
compare the Hilbert polynomials Py, (€) and P4(£(ID)). Let £ be a torsion free
coherent sheaf with Hilbert form p, and let F C £ be a non-zero proper subsheaf.
One computes

5(F,&,1)(m) = X(g(lDz ® A™) x(f(li) ;@ A™)

— B,_1hilby (F,&). A" tmn—1
T (B;,QA”—Q.hﬂbg(ﬁg) + B2_,1A"2.D hilby (F, 5)) m=2y

n (B,ll,iA”_i.hilbi(]-‘7 E) 4 -+ Bi_ It At Di~1 hilby (F, 5)) mnig

+ Bjhilb, (F,€) + - - -+ B3I D" L hilby (F, £).
The Bg are just some positive constants of no importance. The coefficient of m™~*
in 6(F, E,1) will be denoted by 6;(F,&,1).

Assume & is Gieseker Hi-semistable. First, we know by the Hi-semistability
of £ and our assumptions on the walls that £ is at least slope A-semistable. If
F is a non-zero proper subsheaf of £ with hilbq(F, 5).A"’1 > 0, then we see
that F(ID) won't A-desemistabilize £(ID) for any [. Thus, we can assume that
hilby (F,&).A"~1 = 0. But the family of all sheaves F such that there is a Gieseker
A-semistable sheaf £ containing F as a non-zero proper saturated subsheaf and
hilby (F, <€).AT“1 = 0 is bounded. This is important to keep in mind for the rest of
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the proof, because it shows that the number of equations arising in the following
is indeed finite, and therefore one can find an /g working for all of them. Now,
suppose we have a subsheaf F of £ such that 6;(F,€,l) =0 for: = 1,...,5. By
induction we know that then we must have hilb;(F,£). A" =0 fori =1,...,,and
hilbi(]-",é’).H;“i =0fori=1,..,5—1and every Hy := A+ XD with A € [0,1]. If
hilb, (F,&).HY " = 0 for all Hy, A € [0,1], then obviously A" . D*~% hilb;(F, &) =
0 for « =4, ...,n. Therefore,

S41(F, &) =Bl A" L hilby 1 (F,€) + B2_,_IA™ -1 D.hilb;(F, ).

e
If we assume hilb;(F, 5).H{l7j > 0, then our assumption on the walls implies that
hilb; (F, S).H;L_j > 0 for all A € (0,1]. One checks, by choosing A very small, that
this forces A”_j_l.D.hﬂbj(]:, &) > 0. But then for large [, §,1(F,&,1) > 0, and
we don’t have to care about F any more. If, on the other hand, hilb;(F, 5)‘H?7j =
0, then our assumption on the walls shows that hilb,(F, 5).H;L_j = 0 for all
A € [0,1]. The H-semistability of £ implies in this case hilb, 1 (F, S).Hf7j71 >0.
Again using the assumption on the walls, we will also have hilb; 1 (F, £).Ar—-1 >
0. In the present circumstances hilb;q(F, E). A" 771 > (=) 0 is equivalent to
d;41(F,&,1) > (=) 0. Either we can stop, or we go on with our induction.

Now, let £(ID) be A-semistable for all { sufficiently large. First of all, we
remark that this implies that £ is slope A-semistable. For any subsheaf F C &
with hilby (F,E&).A"1 > 0, we will also have hilbl(f75).Hf_1 > 0. Hence, only
the saturated subsheaves with hilby(F,&).A”~1 = 0 are of interest. But these
sheaves live again in a bounded family. Suppose we have a subsheaf F C £ such
that hilb;(F, S).H{“i =0fori=1,..,7—1 (5 =1 is allowed). Then, of course,
hilb; (F,&).HY " =0fori=1,...,5—1and every A € [0,1]. Moreover, §;(F, &,1) =
0 for i =1,...,7 — 1 in this case, and §;(F,&,l) = B}lfjA”*j.hﬂbj(}"ﬁ). Again,
9;(F,€,1) > 0 implies H{Lij.hﬂbj(]:f) > 0, so only the case §;(F,&E,l) =0
matters. If j = n, we get (x(€)/r) — (x(F)/rkF) = 0, whence F does not
H{-desemistabilize £. Otherwise, we look at

8i41(F, &) =B}, A" 97 hilby 1 (F,€) +1B2_,; A" ~L D hilb;(F,€).

1t H 97 hilby(F, &) < 0, then HY 7~ L hilby(F,€) < 0 for all A € (0,1]. For
small A this means A"~ 1 D.hilb;(F,&) < 0. In this case di41(F,&E,1) < 0 for
large [, contradicting our assumptions on &. O

2.4. Flips between moduli spaces of parabolic sheaves
As for dim X = 1 [11], one can describe the variation of moduli spaces of parabolic

sheaves in terms of GIT flips. Furthermore, they can be flipped to the correspond-
ing Gieseker moduli space. This will be worked out in the present section.
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Parabolic sheaves. Let X be as before, let A be an ample line bundle on X, and
D C X an effective divisor. Fix polynomials P, Pi,....P;. Let a = (aog,..., )
be a weight vector with rational entries 0 < g < -+ < ag < 1. A parabolic
sheaf of weight o is a filtration £ = Fg D F1 D -+ D Fr O Fr1 = E(—=D). To
shorten notation, we just denote it by £. Define its (parabolic) Hilbert polynomial
as PS(E) = Pa(€) — Zfill e, Pa(E/F;), where g, = o — o1, © = 0,..,k,
o1 = 1. Given a parabolic sheaf £ of weight «, every subsheaf F of £ can
be viewed as a parabolic sheaf of weight o . We say that a parabolic sheaf of
weight o is (semi)stable if for every non-zero proper subsheaf F the condition
PF(F)/ 1k F (<) PF(£)/ k€ holds. Of course, one can also define the parabolic
slope M% of £ and speak of slope semistability.

We restrict our attention to parabolic sheaves € = Fo D F1 D - D Fp D
Fig1 = E(—D) of weight o where P4(€) = P and P(E/F;) =P;,i=1,....,k. The
moduli space for S-equivalence classes of semistable parabolic sheaves of weight o
was constructed in [6] and [12]. Let us denote it by MY (P, Py, ..., Py;a). Below,
we will briefly review the construction.

Theorem 2.4.1. Let P, P1,...,Py be as before. Suppose we are given two weight
vectors @ = (ap, ...,ap) and o = (af), ..., ), and let M 4(P) be the moduli space
of S-equivalence classes of Gieseker A-semistable torsion free coherent sheaves with
Hilbert polynomial P.

Then the spaces Ma(P), MY (P, Py, ..., Py;a), and MY (P, Py, ..., Py; )
can be all constructed via GIT out of the same quasi-projective scheme, i.e., there
exists a quasi-projective scheme X with an ample line bundle £ on it, a natural
(C*k+1—action, and there are linearizations oo, o, and o’ of this c**H action in
£ such that

X/ 0oC ! = Ma(P),
X)) ,CH L — MEE(P Py Py a),
X)) T = MB(P Py, Pisd).

Thus, by the Mumford-Thaddeus principle ([11], [8], Part 1), these spaces are
related by a sequence of C*k+1—ﬂips.

Some useful semistability criteria. Let Wy, ..., W} be finite dimensional C-vector
spaces. Define W .= Wy @ --- @ Wy, and let C** act on W in the following way:
The 4-th factor of C** acts by scalar multiplication on W; and trivially on all
other summands, ¢ =1, ..., k. In this way, we obtain a linearized action of C** on
P(WW). By means of an induction, one derives the following observation from [§],
Example 1.2.5.

Lemma 2.4.2. Considering all possible linearizations of the above C**_action on
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P(W), one obtains the following polarized quotients

((]P’(WLl) x - x P(W,.)), [O(a1, ...7%)]).

Here, {i1,...,15 } can be any subset of {0,...k}, and (ay,...,as) any tuple of
positive integers.

Consider a reductive algebraic group G and representations p;: G — GL(W,),
i =0,...,k. The direct sum of these representations defines an Op(y(1)-linearized
action of G on P(W). We also have Opyy,)(1)-linearized actions of G on P(W;),
1 =0,...,k, and for a point [v;] € P(W;) and a one parameter subgroup \: C* — G
we let p;([v;],A) be minus the weight of the induced C*-action on the fibre of
Op(w,)(1) over the point lim, .0 A(2) - [vi].

Proposition 2.4.3. Let w = vy, ...,v;] € P(W) be a point, and let (v1,...,v,) be

the indices with v, # 0, 7 =1,...,u. Then the following conditions are equivalent:

1. w is G-semistable w.r.t. given linearization.

2. There erist non-negative integers ly,, ..., 1,,, not all zero, such that for any one
parameter subgroup \:C* — G

ZV1NV1([UV1]7)‘)+"'+IVHNVM([UVH]7)\) > 0.

Remark 2.4.4. In view of Lemma 2.4.2, the second condition means that we find
a linearization of the C**action such that the image of w in the corresponding
polarized quotient is G-semistable w.r.t. the induced linearization.

Proof. We observe that the hypothesis that G have no characters in Section 1.2.
of [8] only assures that the linearization of G is unique. In the proofs, this as-
sumptions is never used. So, we can apply [8], Thm. 1.4.1, to prove the assertion
by induction. The details are left to the reader. O

A 7baby” master space construction. In this section, we explain the proof of
Theorem 2.4.1. To avoid excessive indices and formulas, we will only treat the
case k = 0 which is the only one we will need for our applications. Using the
semistability criteria given above, the reader will have no difficulty to extend the
proof to the case of arbitrary k. We need to fix a Poincaré sheaf 8 on Pic X x X.
First of all, we may choose an integer mq such that for every m > mq and every

torsion free coherent sheaf £ which is either slope A-semistable or which appears
in a parabolic sheaf of either weight o or o/

o Hi(X,E(mA) =0fori=1,..,n.

o £(mA) is generated by global sections.

o The same holds for & p(mA).
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Moreover, let 21 C Pic X be the union of all components containing elements of
the form [det &].
e Then L{rmA) is globally generated and without higher cohomology for every
[£] e .
As usual, we consider the Quot scheme § of equivalence classes of quotients ¢: V ®
Ox(—mA) — & where £ is a coherent Ox-module with Hilbert polynomial P.
Furthermore, there is a universal flag

V®7T;(Ox(—mA) — &z — Qf;ﬂgXD

over § x X. Let Uy be the set of points [¢:V ® Ox(—mA) — & — & p] for
which £ is Gieseker A-semistable, let U, and U, be the sets for which & > £(—D)
is a semistable parabolic sheaf of WeiglrE a and_g/, resp., and U = UgUU, UUy.
The sheaf 73, (€z ® 75 Ox(mA)) is locally free of rank P(m), and the sheaf
Wg*<€3‘ng ® w4 Ox (mA)) is locally free of rank, say, R. The scheme U can the
be mapped SL(V )-equivariantly to

r R
IP’(M(/\V ® O, 7ot (P ®7r}}(9x(mA))v) X ]P(/\(V ® HO(OX(mA)))V).

Let Pg be the first factor of this product, and Pg the second. Choose some ample
sheaf g on A, so that Ly = Op, (1) ® 75 Ha is ample. The sheaf Wﬁmﬁga ®
75, Opp(b) on Py x Pr will be denoted by O(a, b). Denote by U} the set of SL(V)-
semistable points w.r.t. the linearization in O(1,0). Then Uy is mapped injectively
and properly to U}, and for suitable choices of (a,b) and (a’,b’), the sets U, and
Uy get immersed into the sets U), and U/, of points which are SL(V)-semistable
w.r.t. the linearization in O(a,b) and (D(at b'), respectively. Altogether, we obtain
an injective and proper map of U to U’ := Uj U U, UU.,. It is now clear that
the moduli spaces we are interested in are obtained from U by dividing out SL(V)
for different linearizations. To understand the assertion about the C*-flips, we
proceed as follows. Define R as the projective bundle over £ associated to the
vector bundle

R
W@,FM(det(@g ® T Ox (mA)), (det xidx)*qs) o \(V ® H(Ox(mA))) ® 0,

det: § — 2 being associated with the family &z, and & the projective bundle

r R
P(@(/\V ® Oy, (P ® 75 Ox(mA)))" @ A\ (V ® HO(Ox(mA))" ® om)

over 2. One has the natural morphism t: 98 — & (compare [8], Section 2.4).
There are natural (SL(V') x C*)-actions on R and &, and t is equivariant. The
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SL(V)-action is canonically linearized, and we can choose linearizations sg, s, and
s1 of the C*-action such that the polarized quotients are

6//5C" = (Pa, [Lal);
&//sC* = (Py x Pg, [O(a,b)]);
8/ C* = (Py x Pg,[0(d,1)]).

Let U, U}, and U/ be the respective sets of (SL(V) x C*)-semistable points,
and let U" be their union. Their preimages U/, U!, and U/, under t coincide with
the preimages of U, Uy, and Uy under the bundle map R — F. Thus, the union
U" of these sets maps finitely to U”'. By general properties of good quotients, the
quotient = U" / SL(V') is an open subset of the projective scheme &/ SL(V),
and X := U” )/ SL(V) maps finitely to ); call the corresponding map 3. Both, X
and 2) inherit C*-actions, and 3 is equivariant w.r.t. them. By construction and the
” commutation principle” (e.g., [8], Sect. 1.3.1), the C*-action on ) is linearized in
an ample line bundle £g) such that suitable manipulations of this linearization will
yield &//,,(SL(V) x C*) and so on as quotients. Pulling back these linearizations
to X gives us £, 0qg, o, and o’ as asserted. |

2.5. The proof of the Main Theorem

We return to the setting of Section 2.3 and choose some [ for which Lemma 2.3.1
holds. For a torsion free coherent sheaf £ and 3 € [0,1], we set Pfi(é’) =(1-
B)YPa(E(—ID))+BP4(E(ID)), and call £ B-(semi)stable, if and only if Pf(]—")/rk}"
(<) Pf(é’)/ rk& for any non-trivial proper subsheaf F. In Lemma 2.3.1, we
have seen that a torsion free coherent sheaf & with Hilbert form p is Hi-(Hp-)
(semi)stable if and only if £ is 1-(0-)(semi)stable. But as the proof of Lemma 2.3.1
shows, we can choose (31 close to one and 32 close to zero, so that we will also
have that & is Hyi-(Hp-)(semi)stable if and only if £ is 81-(5p-)(semi)stable. As a
corollary to the existence of moduli of parabolic bundles (the réle of £ is the last
section will now be played by £(ID) and that of D by 2{D), for any g € (0, 1), there
exists a projective moduli scheme Mi(p) of S-equivalence classes of S-semistable
torsion free coherent sheaves with Hilbert form p, and as we have seen in 2.3.1
M%(p) ~ My, (p), for i = 0,1. Therefore, the main theorem is a direct conse-
quence of Theorem 2.4.1. O

3. Passing through an arbitrary wall

Let Hp and Hj be two polarizations, and F(Hg) and F(H1) be the set of isomorphy
classes of torsion free coherent sheaves which are slope Hp-semistable and slope

Hi-semistable, respectively. Let H be an arbitrary polarization and write Ox(m)
for Ox(mH). Since both F(Hp) and F(H1) are bounded, we can find a complex
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vector space V and an integer mg such that any sheaf £ whose isomorphy class
belongs to either §(Hp) or F(H1) can be embedded into V@ Ox (m) for all m > my.
We denote by Q the Quot scheme of all submodules of V ® Ox (mg) with Hilbert
form p. Strictly speaking, this is a fine moduli space of d-stable pairs (£, ),
¢ € Hom(E,V ® Ox(mg)), for some large polynomial . But as its universal
property shows, it is isomorphic to a Quot scheme and, in particular, does not
depend on the choice of a polarization.

Fix a Poincaré sheafl B on Pic X x X, and let My /01 /100 (mg) (P) be the mas-
ter space of S-equivalence classes of semistable PB-oriented pairs (£, ¢, ¢) [8] where
€ is a torsion free coherent sheaf with Hilbert polynomial Py, (n) = p(H"), for
all n € N, e:det & — P jget £y x 15 @ homomorphism, and ¢ € Hom(&,V ®
Ox(mg)), ¢ = 1,2. As proved in [8], there are natural C*-actions on these mas-
ter spaces. Suitably linearized, these C*-actions give rise to sequences of C*-
flips which begin with a fibration 7;: 0 — Mg, (p) and end in £. The fi-
bre of m;:9M; — Mupy,(p) over the isomorphy class of a stable sheaf £ is just
P(Hom(&,V ® Ox(mg))Y). Therefore, we have shown that the fibrations mo: 0
— Mp,(p) and m1: Y — Mg, (p) can be created by means of C*-flips out of
the Quot scheme Q.
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