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A geometric characteristic splitting in all dimensions

Bernhard Leeb* and Peter Scott^

Abstract. We prove the existence of a geometric characteristic submamfold for non-positively
curved manifolds of any dimension greater than or equal to three In dimension three, our result
is a geometric version of the topological characteristic submamfold theorem due to Jaco, Shalen
and Johannson
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0. Introduction

In the 1970's, Jaco and Shalen [JS] and Johannson [J] showed that a closed
orientable Haken 3-manifold M has a canonical family of disjoint embedded
incompressible ton, no two of which are parallel, such that the complementary pieces of
M are either Seifert fibre spaces or are atoroidal They defined the characteristic
submamfold V(M) of M to be essentially the union of the Seifert manifold pieces
of M Further, they showed that any essential map of the torus into M is homo-

topic into V(M) Johannson called this last property the Enclosing Property For

brevity, we will refer to these results as the JSJ results
In this paper, we show that if M is a closed manifold of dimension three or

more, and if M has a Riemanman metric of non-positive curvature, then either
the metric on M is flat or there is a precisely analogous decomposition of M along
codimension one submamfolds Further these submamfolds are totally geodesic in
M and are flat in the metric induced from M Note that in dimension three, a flat
manifold must be a Seifert fibre space, so that, in particular, our arguments give
a new proof of the JSJ results for the special case when M is assumed to have a
metric of non-positive curvature In dimension four or more, a flat manifold need
not be a Seifert manifold, see the example near the end of section 1, so this case

really is different in higher dimensions We also prove that essentially the same
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results hold if M is non-onentable and if the boundary of M is non-empty, on the
assumption that the boundary is convex

At the time when Jaco and Shalen and Johannson proved their results, the
methods seemed very special to dimension three and no one even asked whether
this result had any generalization to higher dimensions Several years later in
1990, Kropholler [Kr] published an algebraic analogue of their results He considered

Pomcaré duality groups of dimension three (P_D3-groups) The fundamental
group of any closed asphencal 3-manifold is automatically a P_D3-group, but it
is not known whether the converse holds Note, however, that P_D2-groups are
known to be fundamental groups of closed surfaces, so it is not unreasonable
to hope that every P_D3-group is the fundamental group of an asphencal closed
3-manifold There is a natural analogue, in the context of P_D3-groups, of an
embedded incompressible surface One considers a P_D3-group G and a subgroup H
such that H is a P_D2-group and G splits over H, 1 e G can be expressed as A*h,
or as A*h B with A ^ H ^ B Kropholler showed that the natural analogue of the
JSJ splitting result holds for P_D3-groups Surprisingly, he also showed that his

algebraic result had a generalization to P_Dn-groups in all dimensions greater than
three This raised the question of whether the topological results of Jaco, Shalen
and Johannson also generalized to higher dimensions As Haken manifolds are
asphencal and Kropholler's results correspond to results about asphencal manifolds,
it seems possible that the JSJ results might generalise to asphencal manifolds but
not to all manifolds Note that a Riemanman manifold of non-positive curvature

with convex boundary is asphencal, so our results show that the JSJ results
generalize to asphencal manifolds in the special case of non-positive curvature

Jaco and Shalen [JS] and Johannson [J] also considered non-closed manifolds
and defined a characteristic submamfold V(M) for any orientable Haken 3-manifold
M with incompressible boundary They showed that such a manifold M has a
canonical family of disjoint properly embedded incompressible ton and annuh, no
two of which are parallel They defined the characteristic submamfold V(M) of
M to be essentially the union of the Seifert manifold pieces of M together with
some pieces which are homeomorphic to /-bundles Further, they showed that any
essential map of the torus or annulus into M is homotopic into V(M) In this
paper, we give analogous results for compact manifolds with non-empty boundary
in any dimension greater than or equal to three, but we assume that M has a
metric of non-positive curvature and that the boundary of M is totally geodesic

The results in this paper were proved by the authors independently in 1992 At
about the same time, Sela [S] announced some algebraic results which are closely
related to all the preceding discussion Sela's results were for negatively curved

groups and were the precise analogue of the JSJ results for the case of 3-manifolds
with no incompressible ton This is because a negatively curved group cannot
have a subgroup lsomorphic to Z x Z The topological picture is of a 3-mamfold
with a canonical family of disjoint embedded annuh, and Sela's picture is of a

group which splits over several different infinite cyclic subgroups Sela's Enclosing
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Property is the analogue of the JSJ Enclosing Property for embedded annuli only.
More recently, Rips and Sela [RS] have announced a generalization of Sela's results
to cover all finitely presented groups. Thus again we are left with the question of
whether the results in this paper can be generalised to manifolds which need not
have non-positive curvature.

As we pointed out earlier, a Riemannian manifold M of non-positive sectional
curvature with convex boundary is aspherical and so its homotopy type is
determined by its fundamental group. It is well-known that various algebraic properties
of tti(M) have strong implications for the geometry of M. The most basic example,

due to Gromoll-Wolf [GW] and Lawson-Yau [LY], is that an abelian subgroup
of tti(M) is carried by a totally-geodesically immersed flat torus. In this paper, we
obtain information about the geometric structure of non-positively curved manifolds

from the intersection pattern of the closed flat totally-geodesic hypersurfaces.
Our main results are geometric versions of the topological decomposition theorem
in dimension three due to Jaco, Shalen [JS] and Johannson [J].

Geometric Decomposition Theorem in Dimension Three. Let M be a

compact connected, non-positively curved, 3-manifold which has convex boundary.
Then either M is closed and has a flat metric, or M can be canonically decomposed
along finitely many totally-geodesically embedded flat 2-ton and, Klein bottles. The

resulting pieces are Seifert or atoroidal. Further any Ti\-injective 'map of the torus
or Klein bottle into M can be homotoped, to a totally geodesic flat immersion, and,

any such immersion must he in one of the Seifert pieces or be homotopic to a

cover of one of the decomposing surfaces.

Note that some of the decomposing surfaces may be one-sided. In particular,
no piece in the decomposition of M will be an interval bundle over a flat surface
unless M itself is an interval bundle over a flat surface. If M is a twisted interval
bundle over a flat surface F then our construction splits M along the one-sided
surface F.

The Seifert pieces of M admit a Seifert fibration by closed geodesies and they
are rigid in the sense that they split locally as a Riemannian product, the fiber
being the one-dimensional factor. Note that if M is flat, it is also Seifert fibered
in the three dimensional case. The proof of our theorem readily applies to all
dimensions. See the end of section 1 for the définitions.

Geometric Decomposition Theorem. Let M be a compact connected non-
positively curved manifold of dimension n > 3, which has convex boundary. Then
either M is closed and has a flat metric, or M can be canonically decomposed along
finitely many totally-geodesically embedded flat closed submanifolds of codimension
one. The resulting pieces are Seifert fibered or codimension-one atoroidal. Further
any essential map of a closed flat (n — l)-manifold into M can be homotoped to
a totally geodesic flat immersion, and any such immersion must lie in one of the



204 B. Leeb and P. Scott CMH

Seifert pieces or he homotopic to a cover of one of the decomposing hypersurfaces.

As in the three-dimensional case, some of the decomposing hypersurfaces may
be one-sided. There is also a more general version of this result which corresponds
to the full JSJ splitting of an orientable compact 3-manifold along annuli as well
as tori. We leave the statement to section 4.

This paper is organized as follows: In section 2 we prove that there is an
upper bound for the number of mutually non-parallel, disjoint, totally-geodesically
embedded, closed hypersurfaces in a compact non-positively curved manifold M
with convex boundary. In section 3, we study the pattern S of totally-geodesically
immersed, flat, closed hypersurfaces in M. We show that intersecting hypersurfaces

span a geometric Seifert submanifold. The desired decomposition of M is

obtained by cutting along hypersurfaces in S which are isolated, in the sense that
they do not intersect any other surface in S. In section 4, we discuss how to prove
the most general version of our results.

1. Preliminaries

Non-positive curvature. We start by recalling a few well-known facts from
the geometry of nonpositively curved manifolds, for more details the reader may
consult e.g. [ChE]. In this paper, we consider smooth Riemannian manifolds of
non-positive sectional curvature. We will always assume that they are complete
as metric spaces and that their boundaries are convex, i.e. each geodesic touching
the boundary must already be contained in the boundary. A simply-connected
manifold X of this kind has the fundamental property that its distance function
d : X x X —> R is convex, that is, for any two geodesies c\,c<i '¦ [a,b] —> X the
function t —> d{c\{t), C2(t)) is convex. In particular, the distance d{-,C) from a

convex subset C C X is a convex function. The convexity of d implies that any two
points in X can be connected by a unique geodesic. This has strong topological
implications: X is contractible so that any manifold M covered by X is aspherical,
i.e. M is a K(ir, l)-space.

A smooth submanifold Y Ç X, possibly with boundary, is called totally-
geodesic if each geodesic in X tangent to an interior point of Y belongs locally
to Y. We call Y (geodesically) complete if each geodesic in Y is extendable ad
inflnitum. If Y\ and Y% are complete totally-geodesic submanifolds of X which
have bounded distance from each other, then the distance functions d(-,Yt) \y3 are
constant by convexity and completeness. This implies that the submanifolds Yt

are parallel, i.e. there is a totally-geodesic submanifold in X which splits metrically
as Y x [ai, a<2\ so that Yt Y x {a,}.

For an isometry </> of X, denote by MIN(</>) the set where the displacement
function d,p : x —> d{x,<f>x) assumes its inflmum. Since d is convex, MIN(</>) is a
closed convex subset of X. An isometry </> is called non-parabolic or semisimple
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if MIN(</>) is non-empty. In this case, </> is elliptic if the minimum of d^, equals
zero and loxodromic if it is strictly positive. The set of minimal displacement for
a loxodromic isometry splits metrically as

MIN(</>)=RxY (1)

where the lines R x {y} are the <f>-axes, i.e. geodesies preserved by </>, and 7 is a
simply-connected manifold of nonpositive curvature with convex boundary. Isome-
tries of X commuting with </> preserve the splitting (1). It follows by induction
that any abelian subgroup A of the isometry group of X preserves a flat in X
where a flat is defined to be a convex subset isometric to a Euclidean space. More
precisely, the intersection of minimal sets p| £>1MIN(7) =: MIN (.A) is non-empty
and splits metrically as

MIN(A) ExY (2)

where E is a Euclidean space (possibly of dimension zero) and Y is a simply-
connected manifold of nonpositive curvature with convex boundary. The layers
E x {y} are the minimal A-invariant flats and the induced action of A on E is

cocompact.
Suppose that F is a group which acts properly-discontinuously and cocompactly

by isometries on X, such as the group of deck-transformations corresponding to a

compact Riemannian manifold covered by X. Let A C F be an abelian subgroup
(which is necessarily finitely generated as X is non-positively curved) and denote
by C(A) its centraliser and by N(A) its normaliser. The action of N(A) on X
preserves MIN(A) and the splitting (2).

Lemma 1.1. The action ofC(A) on MIN (.A) is cocompact.

Proof. Let (pn) be a sequence of points in MIN (A). Since F acts cocompactly
on X, there exist isometries 7„ G F so that the sequence (7„p„) is bounded. Let

a\,... ,ar denote a basis of A. For each value of the index i, the points

form a bounded sequence too, because d(atpn,pn) equals the minimal displacement
of the isometry at. Since the action of F is properly discontinuous, the elements
7na»7I^1 are contained in a finite subset of F. By passing to a subsequence r times,
we can assume that, for each i, "fnat~f~^ is a fixed element of F for all values of
n. Let 7n denote 7^" 7„ which must lie in C{A). Then the sequence (7^Pn) is

bounded, as it is obtained from the bounded sequence (7„p„) by applying 7f •

Since (pn) C MIN (A) was chosen arbitrarily, we conclude that there is a bounded
fundamental domain for the action of C(A) on MIN (A). D

The following auxiliary result will be needed later:
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Lemma 1.2. Let X\ and X2 be simply-connected Riemanman manifolds of non-
positwe curvature (metrically complete and with convex boundary). If F C X\ XX2
is a totally-geodesically embedded flat submamfold, then the images of F under the

projections pt : X\ X X% —> Xt on the factors are also flat.

Proof. Let c and d be geodesic segments in F so that their distance function
d(t) := d(c(t), c'(t)) is constant. Denote by dt the distance function of the projected
segmentsp,oc andp,oc'. Then d? df + d^. Since the dt are convex, d? can only
be constant if the dt are constant. Hence pt maps parallel segments to parallel
segments and the claim follows. D

Topology. We explain the notions necessary to state the topological decomposition

theorem due to Jaco, Shalen and Johannson. We work in the smooth category.
Let M be a compact orientable 3-manifold, possibly with boundary, which is

irreducible, i.e. every embedded 2-sphere bounds an embedded 3-ball, and has infinité
fundamental group. We consider connected, two-sided, embedded surfaces S in
M which are not homeomorphic to the 2-sphere. We will also require that S be

properly embedded in M or be embedded in the boundary of M. Such a
surface S is called incompressible if there is no disc D embedded in M such that
D n S dD and 3D is a non-contractible curve in E. If M contains a properly
embedded incompressible surface, then M is a Haken manifold. The following
decomposition theorem has been proven for Haken manifolds by Jaco, Shalen [JS]
and Johannson [J]. The non-Haken case follows from the fact that if a compact
orientable irreducible 3-manifold admits a 7ri-injective map of the torus but does

not admit such an embedding, then it must be a Seifert fibre space. This result
requires the work of several authors and the proof was completed independently
by Casson and Jungreis [CJ] and Gabai [Ga].

Topological Decomposition Theorem. A compact orientable irreducible 3-

manifold with infinite fundamental group and incompressible boundary can be cut
along finitely many disjoint incompressible 2-ton into atoroidal and Seifert pieces,
and any ii\-injective 'map of the 2-torus into the manifold is homotopic into one
of the Seifert pieces or to a covering of one of the decomposing ton. Moreover, a

minimal such decomposition is unique up to isotopy.

It remains to explain the types of pieces which occur: These are compact
3-manifolds N with boundary. A 3-manifold N is atoroidal if any 7ri-injective
map of the torus into N is homotopic into the boundary of N. It is a Seifert
manifold if it admits a Seifert flbration, i.e. if it can be expressed as a disjoint
union of embedded circles, the fibres, so that the following is true: Every fibre
has a neighborhood which is isomorphic, as a fibred space, to a fibred solid torus
or Klein bottle. A fibred solid torus is a quotient of the trivially fibred product
_D2 x R by a diffeomorphism (</>, t) where </> is an isometry of finite order of the
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unit disc _D2 and r is a translation on the real line.
We also need to define what is meant by the terms Seifert manifold and

atoroidal in higher dimensions. In dimension three, a Seifert manifold is a Seifert
bundle over a 2-dimensional orbifold with fiber the circle. In the context of this
paper, we define a Seifert manifold N of dimension n to be a Seifert bundle over
a 2-dimensional orbifold with fiber a flat (n — 2)-manifold. This means that N is

foliated by (n — 2)-dimensional closed flat manifolds so that each leaf has a foliated
neighborhood which has a finite cover whose induced foliation is a product F x _D2.

A manifold M of dimension n is codtmenston-one atorotdal if any 7ri-injective map
of a flat (n — l)-torus into M is homotopic into the boundary of M.

2. Immersed totally-geodesic submanifolds

From now on, M will denote a compact connected Riemannian manifold M of non-
positive curvature with convex boundary. We denote by tt : M —> M the universal
covering map and think of ir\{M) =: F as the group of deck transformations acting
on M.

Fet <f> : S —s- M be a totally-geodesic Riemannian immersion of a closed
connected non-positively curved manifold S into M. Every lifting to a map of
universal covers is a totally-geodesic embedding <j> : Ê ^-s- M and induces an injective
homomorphism tti(E) ^-> F tti(M) of fundamental groups. Different lifts yield
conjugate subgroups of F. Note that Ê is geodesically complete.

2.1. Intersections

Lemma 2.1. Let C\,C<i C M be closed subsets so that the stabiliser Tt :=
Stab-p(Ct) acts cocompactly on Ct. Then T\ (~\ T2 acts cocompactly on C\ PI C^-

Proof. The natural map (FinF2)\F2 —? Fi\F is injective and the corresponding
immersion (Fi n F2)\C2 —> T\\M is therefore proper. Hence the inverse image
under this immersion of the compact subset Fi\Ci is compact. As this inverse
image equals (Fi n F2)\(Ci n C2), the lemma follows. D

Note that the lemma holds more generally for properly discontinuous group
actions on locally-compact topological spaces.

Corollary 2.2. Let Si and £2 be closed non-positively curved Riemannian
manifolds and suppose that <f>\ :Yj\ —> M and <f>2 '¦ £2 —y M are totally-geodesic
Riemannian immersions. Then </>i(£i)n</>2(£2) %s a finite union of totally-geodesically
immersed closed non-positively curved Riemannian manifolds.

Proof. The immersion <f>% lifts to an embedding of universal covers with image
a closed convex subset Yt C M. By the previous lemma, the totally-geodesic
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submanifolds 71 • Y\ n 72 • Y%, 71,72 € F, have cocompact stabilisers in F. The
corollary follows because, by compactness, </>i(£i) n ^2(^2) is the projection of
finitely many submanifolds 71 • Y\ n 72 • Y%. D

2.2. Finiteness for disjoint non-parallel totally-geodesic hypersurfaces

Definition 2.3. We call two totally-geodesic Riemannian immersions 4>\ : Si —s-

M and <f>2 '¦ ^2 —>¦ M of closed non-positwely curved manifolds into M parallel
if there are a totally-geodesic embedding $ : Si X [«1,02] ^ M and Riemannian

covering maps pt : Si X {at} —s- S^ such that (pt o pt it o $ |g, x

If we have two totally-geodesic Riemannian immersions of S into M which
are homotopic, then there will be totally-geodesic submanifolds Y and Y' in M
covering these immersions and lying a bounded distance apart. Thus Y and Y'
are parallel, and hence so are the two immersions of S into M.

Our aim is to prove the following result.

Proposition 2.4. Let M he a compact non-positively curved Riemannian 'manifold

with convex boundary. Then there is an upper hound to the number of disjoint,
closed, totally-geodesically embedded hypersurfaces in M so that no two of them
are parallel.

As discussed above, any such hypersurface is 7ri-injective and if two such
hypersurfaces are homotopic, they must be parallel. Now in the topological setting
in dimension three, it is a standard result [H] that, in any compact 3-manifold
M, there is an upper bound to the number of disjoint, embedded, 7ri-injective
closed surfaces in M which are pairwise non-parallel, where two surfaces S and S'
are parallel if they together bound a submanifold homeomorphic to S x /. This

upper bound is called the Haken number of M. In higher dimensions, there is no
such result in the general topological setting, but there is an algebraic analogue
due to Dunwoody [D], which discusses splittings of PDn-groups over PD{n — 1)-
subgroups. This implies that if one considers a closed aspherical manifold M, there
is an upper bound to the number of disjoint closed aspherical 7ri-injective embedded

codimension-one submanifolds in M such that no two are homotopic. Clearly
this result will also apply to any aspherical compact manifold with boundary so

long as the boundary is also 7ri-injective and aspherical. Now the hypotheses of the
above proposition imply that M is aspherical and that its boundary is 7ri-injective
and aspherical. Thus one can prove this proposition in dimension three by using
the Haken number, and can prove it in any dimension by using Dunwoody's result.
However, we will give a direct geometric proof.

Proof of Proposition 2.4- Let Si,... Sn be such a family of hypersurfaces. It
is possible that some of these hypersurfaces are components of dM. Consider a
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component N of M\ U"=1Sj. Identify the universal cover N with a component of

tt~^(N) C M. We will use dN to denote the boundary of N as a manifold. Then
dN consists of a union of components of dM and of totally geodesic hypersurfaces
in M each of which covers one of the surfaces E4. Also dN consists of at least
two components. For otherwise, N would have infinité diameter contradicting the
compactness of M.

Consider the case that dN has exactly two components Y\ and Y%. At least one
of them, say Y\, covers a hypersurface which we denote Si. The distance function
d{-,Y\) is bounded on Y%, and vice versa, because the subgroup of F preserving N
and Y\ also preserves Y% and acts cocompactly on N. Thus Y\ and Y% are parallel
and N is isometric to a product Y\ x [—a, a]. If also Y% covers a hypersurface S^,

then Sj is parallel to Si and hence S^ Si by our assumption. If N projects
onto M, then n 1. Otherwise the image of N is a twisted interval bundle over
the hypersurface S^ covered by Y\ x {0}. In this case, we replace Si by S^. If
Y% covers no hypersurface S^ and hence Y% C dM, then we remove N from M.
In both cases, this reduces by one the number of components of M \ U"=1Sj and
does not alter the number of hypersurfaces E4. By repeating these steps, we may
assume that for all pieces N, the universal cover N has at least three boundary
components. The pieces then have a certain minimal size:

Lemma 2.5. Each component N of M\ U"=^Sj contains a point p at distance at
least po from the boundary ON, where po is a positive constant only depending on
the lower sectional curvature bound of M.

Proof. We re-scale so that the sectional curvature of M is bounded by — 1 < Km <
0. Fet p G N be a point at maximal distance p from dN. The ball B of radius

p centered at p touches three components Y\,Y2,Y% of dN in respective points
Pi,P2,P3- Let vt be the unit vector in p pointing in the direction of pt. Among
the vectors v\,V2,V3 at least two, say v\ and V2, enclose an angle Z(v\,V2) < §tt.
Consider the arc in the unit sphere in TpM joining v\ and v%. It contains a

vector v such that the geodesic ray r : [0,oo) —s- M emanating from p in the
direction of v intersects neither Y\ nor Y%. We assume without loss of generality
that /_(y,v\) < -jTT. The angles of the triangles pp\r(t) satisfy for all t > 0:

Zp~(pi,r(t)) <-7T, Zh(p,r(t)) < -n

Consider comparison triangles with the same side lengths in the hyperbolic plane
H2. By Toponogov's triangle comparison theorem [K], the angles in the comparison
triangles are not greater than the corresponding angles in the triangles pp\r(t).
So they satisfy analogous inequalities. Since t may be arbitrarily large, we can
bound p from below by a positive constant po, namely by the finite sidelength of
the triangle in H2 with angles 0, -jTt, ^tt and one ideal vertex. D
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Denote by c{n) the number of components of M \ U"=1Sj. According to Lemma

2.5, there is a 2/Oo-net in M with one point in each component of M\ U"=1Sj.
By compactness of M, c(n) stabilizes as n tends to infinity. More precisely, it can
be bounded above in terms of the lower curvature bound and the volume of M.
If c(n\) c(n2) for n\ < ny, then we can choose for each n with n\ < n < n^
a closed smooth path o.n which does not intersect Si,..., £n_i but intersects Sn
once transversally. Looking at the intersection numbers modulo 2 of the paths o.n
with the surfaces Sn, we see that the an represent linearly independent homology
classes in H\(M, Z/2Z). Since M is compact, we conclude that n<i —n\ is bounded
in terms of the topology of M. This completes the proof of Proposition 2.4. D

3. Geometric decomposition along closed submanifolds

In this section, M will always denote a compact, connected, non-positively curved
Riemannian manifold of dimension at least 3 which has convex boundary. We

investigate how the pattern of closed totally-geodesic flat hypersurfaces in M is

organized to yield a canonical geometric decomposition. In dimension three this
is a geometric realization of the canonical topological decomposition due to Jaco,
Shalen and Johannson. The decomposition of M will be obtained by cutting along
hypersurfaces of the following kind (see section 3.2):

Definition 3.1. A totally-geodesically immersed, closed, flat hypersurface in M
is called, isolated if it does not intersect any such hypersurface transversally.

Note that the définition also excludes self-intersections. It is immediate that
isolated closed flat hypersurfaces cover embedded hypersurfaces and the images of
two of them must coincide or be disjoint.

Denote by F the fundamental group of M thought of as a group of deck
transformations acting on M. Closed flat hypersurfaces in M are covered by (n —l)-fiats
in M which are periodic in the sense of:

Definition 3.2. A F-periodic flat or F-flat is a flat F in M such thai the

subgroup Yp of F preserving F acts cocompactly on F. We call F isolated if it
intersects no other T-flat transversally.

Unless explicitly stated otherwise, all flats considerd in this section will be

(n — l)-dimensional. A totally-geodesically immersed closed flat hypersurface is

isolated if and only if it is covered by isolated F-fiats in M.

3.1. Seifert fibred submanifolds

From now on we will assume that M is not closed and flat. We prove in this
section that intersecting, totally-geodesically immersed, closed, flat hypersurfaces
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in M span a submanifold which is foliated by parallel closed flat submanifolds of
codimension two. In dimension three, this foliation is a Seifert fibration by closed
geodesies. Our arguments are closely related to those in Casson's proof of the
Torus Theorem in dimension three [C], but are simpler because of the curvature
assumption which we are imposing on the metric of M.

Let A C F be a free abelian subgroup of rank n — 2. Recall from section
1 that the normaliser N(A) of A in F acts cocompactly on the set of minimal
displacement MIN(.A) and preserves its metric splitting (2). The induced action
of A on E is cocompact, so E is Euclidean space of dimension n — 2.

Now let Ha denote the closed convex hull of the union of all A-invariant F-
flats. Ha is A-invariant and hence has the form HA Z xRÇY xR MÏN(A)
for a closed convex subset Z of Y. Furthermore Ha is preserved by N(A) and
Lemma 1.1 implies that the action of N(A) on Ha is cocompact. Note that it is

possible that Ha consists of a single A-invariant F-flat and so has empty interior.
In this case it will be convenient to write OHa Ha-

Lemma 3.3. The boundary OHa is a disjoint union of T-flats.

Proof. Each A-invariant F-flat projects to a complete geodesic in Y. Let Z denote
the closed convex hull of the family T of all such geodesies, so that Z is either a

geodesic or a convex subset of Y with non-empty interior whose boundary dZ is

a union of disjoint complete geodesies. Consequently, 8Ha is a disjoint union of
A-invariant (n — l)-flats lying above dZ. According to Lemma 1.1 the quotient
manifold N(A)\Ha is compact and therefore also its closed subset d(N(A)\Ha)
N(A)\dHa- Hence the components of OHa are F-flats. D

Next we consider how codimension-one flats in M can meet MIN (A).

Lemma 3.4. Suppose that MIN (.A) contains two non-parallel A-mvanant T-flats.
Then any codimension-one flat intersecting MIN (.A) is also A-mvanant and so is
completely contained in MIN (A).

Proof of Lemma 3.4. Let F be a (n - l)-flat in M and denote by U C Y the
image ofFfl MIN(A) under the canonical projection MIN(A) E xY —>¦ Y.
U is a convex subset with the property that every geodesic segment a C Y which
intersects U in more than one point is contained in U. If F intersects MIN(7)
and is not A-invariant then F intersects some A-flat E x {y} transversally. Hence
U G Y has non-empty interior and therefore U Y. Lemma 1.2 implies that
Y is flat. By our assumptions, Y contains two complete non-parallel geodesies.
Therefore Y is isometric to the Euclidean plane and M is isometric to Euclidean

n-space. This implies that M is closed and flat which contradicts the assumption
made at the beginning of this section. D
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The above result is a key step in our argument, and a very similar result appears
in Casson's proof of the Torus Theorem in the 3-dimensional case [C]. In Casson's

argument, no assumption is made about the metric on M. Instead of considering a

totally geodesic immersion of the torus in M, he considers a least area immersion.
This means that in the universal cover of M, he considers area minimizing planes
rather than flats. Any two such planes must be disjoint or intersect transversely in
a single line. Again this situation is very similar to that in this paper, but double
lines of area minimising planes need not be geodesies. Call two of these double
lines weakly parallel if there is a non-trivial element of ir\{M) which stabilises both
of them. The analogue of our lemma is his result that either ir\{M) contains the
free abelian group of rank three, so that M is closed and must admit a fiat metric,
or that all the double lines are weakly parallel.

This result shows that under the hypotheses of 3.4, no F-flat can cross OHa
transversally, as such a fiat would have to be A-invariant and so be completely
contained in Ha- With Lemma 3.3, we obtain:

Proposition 3.5. If MIN (A) contains two non-parallel A-mvariant T-flats, then
Ha has non-empty interior and the boundary OHa is a disjoint union of isolated
A-mvanant T-flats.

The quotient of Ha by N(A) is a Seifert fibred manifold Sa with fibres being
closed flat manifolds of dimension n — 2, and the fibres form a totally geodesic
foliation of Sa- (The definition of Seifert fibered manifolds in arbitrary dimension
is given at the end of section 1.) In dimension three, this is a foliation by closed

geodesies.

3.2. The decomposition

We continue to assume that M is not a closed fiat manifold. By Proposition 2.4,
there are finitely many families of parallel isolated fiat closed hypersurfaces in M.
In order to avoid unnecessary fiat pieces (which are topologically interval bundles
over closed fiat (n — l)-manifolds) in the decomposition of M obtained below, we
choose in each family of parallel hypersurfaces a canonical one as follows: For a
F-flat F C M the set of all F-flats parallel to F splits as a product F x I where /
is a closed connected subset of R. Since M is assumed not to be flat, / is isometric
to a compact interval [—a,a].

Definition 3.6. We call the T-flat Fx{0} and the immersed, hypersurface which it
coveres central. We call the isolated T-flat F G M and the embedded hypersurface
covered by it in M preferred if either F C dM or F is central and F C Int(M).

A preferred F-fiat F has the useful property that every (n— l)-flat F' parallel to
F satisfies Stab-p(F') Ç Stab-p(F). Accordingly, each isolated closed hypersurface
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can be homotoped to the unique preferred hypersurface parallel to it.
We now consider the finite collection T of all preferred isolated hypersurfaces

in M. They are disjoint, embedded and pairwise non-parallel. They decompose
M into finitely many pieces which are compact non-flat manifolds with convex
boundary. Let N be a piece of the decomposition and denote its fundamental group
by F' := tv\ (N). N has the property that all its preferred isolated fiat hypersurfaces
are contained in the boundary and hence every isolated, closed flat hypersurface
can be homotoped into the boundary. We have the following dichotomy:

• All immersed closed fiat hypersurfaces are isolated and can be homotoped into
the boundary.

• N contains non-isolated closed fiat immersed hypersurfaces.

This dichotomy corresponds to the two types of pieces occurring in the topo-
logical decomposition theorem in the three-dimensional case, compare section 1.

The pieces of the first kind are codimension-one atoroidal. (See section 1 for a

definition; in dimension three this is equivalent to being atoroidal.) Assume that
N is a piece of the second kind. Then N contains two F-flats F\ and F% which
intersect transversally in a (n — 2)-flat L. Stab-pz(Fi) nS>ta6p/(i72) acts cocompactly
on L by Lemma 2.1, and it contains an abelian subgroup A of finite index and
rank n — 2. According to 3.5, the corresponding Seifert fibered manifold Sa has

non-empty interior. Each boundary component of Sa is an isolated fiat hypersurface

and can hence be homotoped into dN. By the construction of Sa it follows
that OSa Q dN and therefore Sa N. Thus N is a geometric Seifert piece. This
concludes the proof of the following result:

Geometric Decomposition Theorem 3.7. Let M be a compact connected non-
posihvely curved, manifold which has convex boundary. Then either M is closed
and, flat or the following holds.

Let J- be the family of all preferred isolated totally-geodesic closed flat codimen-

sion-one submanifolds of M. Then J- is a finite collection of disjoint, mutually
non-parallel, embedded hypersurfaces and decomposes M into compact manifolds
with convex boundary which are Seifert or atoroidal. The Seifert components are
foliated by codimension-two totally geodesic closed flat submanifolds and the
foliation is locally a Riemannian product foliation. Further any Tv\-injective map of
a closed flat (n — \)-mamfold into M can be homotoped to a totally geodesic flat
immersion, and any such immersion must lie in one of the Seifert pieces or be

parallel to a hypersurface of T.
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4. Splitting along submanifolds with boundary

In this section we will state and prove our most general result which corresponds
to the full JSJ decomposition of a compact 3-manifold with boundary.

If a Riemannian manifold S has totally geodesic boundary, we will abbreviate
this to say that S has TGB. A proper map into an n- manifold M of a compact
flat (n — l)-manifold with TGB is essential if it is 7ri-injective and not properly
homotopic into the boundary of M. We will say that M is simple if it does not
admit an essential map of a compact flat (n — 1)-manifold with TGB.

In order to prove our general decomposition theorem, we will consider a compact

connected non-positively curved manifold M of dimension n > 3, which has

TGB. This assumption on the boundary means that we can double M along its
boundary to obtain a closed connected non-positively curved manifold DM of
dimension n. If M is not flat, neither is DM and we can apply our main
geometric decomposition theorem from the preceding section to obtain the canonical
decomposition of DM by finitely many totally-geodesic flat closed submanifolds
of codimension one. The fact that this splitting is canonical means that it is

invariant under the involution t which interchanges the two copies of M in DM.
Thus the intersection with M of the canonical family of totally geodesic flat closed
codimension-one submanifolds of DM yields the required canonical splitting of M.
The non-simple pieces of M are obtained from the Seifert manifold pieces of DM
by intersecting them with M. Thus these pieces of M are either Seifert manifolds
themselves or they are "half a Seifert manifold". This second case occurs when a
Seifert piece S of DM is r-invariant, so that the intersection of S with M consists
of half of £. The restriction of t to S is itself an isometry and it fixes S n dM
pointwise. Thus, for each component Q of Sfl dM, this isometry of S lifts to an
isometry of the universal cover of S which fixes pointwise a copy II of the universal
cover of Q. Recall that the universal cover of S is metrically a product Z x E,
where Z is some 2-dimensional space and E is isometric to Euclidean space of
dimension n — 2. Also recall that II is part of a flat in the universal cover of DM
and hence is a flat in Z x E. It follows that II is of the form P x Q, where P is

some subset of Z and Q is some subset of E. Hence S n dM is either vertical or
horizontal in S, where (as in dimension three) a codimension-one submanifold is

vertical if it is a union of fibers of the Seifert structure, and is horizontal if it is

transverse to every fibre. In the vertical case, SnMis again a Seifert fiber space.
In the horizontal case, SnM must be the product (or twisted product) of £n<9M
with an interval.

General Geometric Decomposition Theorem. Let M he a compact connected

non-positively curved manifold of dimension n > 3, which has TGB. Then either
the metric on M is flat, or M can he canomcally decomposed, along finitely many
totally-geodesically properly emhedded flat compact submanifolds of codimension
one with TGB. The resulting pieces are simple or Seifert fibered or are bundles
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with fibre an interval over a compact (n — l)-mamfold with TGB Further any
essential map into M of a compact flat (n — l)-mamfold with TGB can he properly
homotoped to a totally geodesic flat immersion, and any such immersion must he

in one of the non-simple pieces or be parallel to one of the canonical surfaces
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