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Improper actions and higher connectivity at infinity

Kenneth S. Brown and John Meier*

Abstract. Given an improper action (= cell stabilizers are infinite) of a group G on a CW-
complex X, we present criteria, based on connectivity at infinity properties of the cell stabilizers
under the action of G that imply connectivity at infinity properties for G. A refinement of
this idea yields information on the topology at infinity of Artin groups, and it gives significant
progress on the question of which Artin groups are duality groups.

Mathematics Subject Classification (1991). 57M07, 20F65, 20F36.

Keywords. Connectivity at infinity, Artin groups, duality groups.

1. Introduction

A locally finite, m-connected CW complex X is m-connected at infinity if, roughly
speaking, k-spheres near infinity can be filled by (k + 1)-balls near infinity for
—1 <k <m. A group G is said to be m-connected at infinity if G acts freely
and cocompactly on an m-connected complex X which is m-connected at infinity.
This is a group theoretic property in that it is independent of the choice of locally
finite space on which G acts freely and with finite quotient. The condition (—1)-
connected at infinity is a fancy way of saying G is infinite; O-connected at infinity
is commonly referred to as “one-ended”; the group Z™ is (m — 2)-connected
at infinity. As Bestvina and Feighn point out [3], it is often possible to consider
cocompact, proper (but not necessarily free) actions: A virtually torsion free group
G is m-connected at infinity if and only if it admits a cocompact, proper (= finite
cell stabilizers) action on a locally finite, m-connected CW-complex which is m-
connected at infinity. Also, important results about connectivity at infinity have
been achieved starting with actions that are not cocompact: Bestvina and Feighn
accomplish this for Out(F},) [3]; Borel and Serre did the same for torsion free
arithmetic groups [6]. This leaves open the question of what one can say about G
when G acts improperly (= cell stabilizers are infinite) on a given complex X.

*Meier thanks Cornell University for hosting him while on leave from Lafayette College, and
the NSF for the support of an RUI grant, DMS 9705007.
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The only previous result along these lines is due to Jackson: If G is the fun-
damental group of a finite graph of groups where the vertex stabilizers are 1-
connected at infinity and the edge stabilizers are one-ended, then G is 1-connected
at infinity [19]. Theorem A generalizes Jackson’s result primarily in terms of mov-
ing beyond actions on trees to actions on cell complexes. Throughout this paper,
a G-complex X is a combinatorial CW complex on which G acts by permuting
the cells. (For background on combinatorial complexes see [17].) We denote the
isotropy group of a cell 0 C X by G,. The action of G on X is rigid if every
induced action of an isotropy group G, on its associated cell ¢ is trivial.

Theorem A. Let X be a rigid G-compler with G\X(m+1) finite.

(i) If XY s meacyclic, and for each cell o C X, Gy is FP,_|s/41 and
(m — |o|)-acyclic at infinity, then G is m-acyclic at infinity.

(i) Assume X2 s 1-connected, and: the verter stabilizers are finitely pre-
sented and 1-connected at infinity; the edge stabilizers are finitely generated and
one-ended; and the face stabilizers are infinite. Then G is 1-connected at infinity.

(i) If (in addition to the hypotheses of (i)) each vertex stabilizer G, is finitely
presented and 1-connected at infinity, and X is 1-connected, then G is m-connected
at infinity.

(The topology at infinity terminology will be formally defined in the next section;
we note that the condition k-acyclic at infinity for k < —1 is vacuous.)

We note that our conditions on X are very mild; it does not have to be locally
finite, or have any connectivity at infinity properties. For example, X could be a
tree where each vertex has countably infinite valence.

The “base case” of Theorem A states a known fact: If G acts on a connected
graph with compact quotient, where the vertex stabilizers are finitely generated
and one-ended, and the edge stabilizers are infinite, then G is one-ended. Because
of the close connection between connectivity at infinity and duality properties of
groups, we also get the following result.

Corollary. Let G act on a contractible compler X with G\X finite. If the cell
stabilizers G, are duality groups of dimension d — |o|, then G is a duality group
of dimension d.

The most simple case of this Corollary occurs when G decomposes as a free
product with amalgamation, G = A xo B. Here the Corollary states that if A
and B are duality groups of dimension d, and C is a duality group of dimension
(d — 1), then G is a duality group of dimension d. This result was noted by
Bieri, and his proof uses a Mayer-Vietoris sequence [4]. It seems appropriate that
the proof of part (i) of Theorem A uses a spectral sequence argument, and this
spectral sequence immediately establishes the Corollary. The proof of part (ii)
is very geometric and borrows tools from the theory of complexes of groups. For
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those familiar with the terminology, our results could be stated in those terms. For
example, part (ii) of Theorem A could be stated as: Let G be the fundamental group
of a finite, developable 2-complex of groups where: the verter groups are finitely
presented and 1-connected at infinity; the edge groups are finitely generated and
one-ended; and the face groups are infinite. Then G is 1-connected at infinity.

Because there is a pro-Hurewicz Theorem, stating that a complex which is m-
acyclic at infinity and 1-connected at infinity is m-connected at infinity (see [20]
or [15]), parts (i) and (ii) imply part (iii) of Theorem A.

In the last sections we outline how one can use these techniques to discuss
connectivity at infinity properties of Artin groups. Given a finite simplicial graph
G, with edges labelled by integers greater than one, the associated Artin group,
denoted Ag, has a finite presentation with generators corresponding to the vertices
of G, and relations

aba... — bab
N—— SN——

n letters n letters

where {a, b} is an edge of G labelled n. (References include [1], [10], [14] and [25].)

Given any Artin group Ag there is an associated Coxeter group Cg which is
the quotient of Ag formed by adding the relations v? = 1 for each generator v.
An Artin group is of finite type if its associated Coxeter group is finite. Let QA be
the simplicial complex formed by attaching a simplex ¢ of appropriate dimension
to each complete subgraph C C G for which A¢ is an Artin group of finite type.

Charney and Davis describe a “modified Deligne complex” ®g on which Ag
acts with the cone of G as fundamental domain [10]. The action is improper;
cell stabilizers are Artin groups of finite type. By modifying the arguments given
for Theorem A, and applying them to this action, we establish the following two
results.

Theorem B. Let Ag be an Artin group, let G be the complex described above, and
assume that G is not a single vertex or edge. If G is 1-connected and contains no
cut vertex, then Ag is 1-connected at infinity.

Theorem C. Let Ag be an Artin group and assume ®g is contractible. If G\ 18
Cohen-Macaulay, then Ag is a duality group.

Charney and Davis give general conditions implying that ®¢g is contractible,
and they conjecture that ®¢ is always contractible (Conjecture 2 of [10]). We also
note that these results partially extend work in [7] which completely determines
connectivity at infinity and duality properties for right-angled Artin groups; there
is also a strong parallel with Davis’s results on duality for Coxeter groups [12].
Theorem C gives substantial progress toward resolving a question of Mike Davis
about which Artin groups are duality groups (see Question 2 in [7]).
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2. Definitions & background

A group G is F,, if there is a K(G, 1) with finite m-skeleton; G is F'P,, if there is a
projective resolution of Z as a trivial ZG-module that’s finite through dimension
m. The action of G on the universal cover of a K (G, 1) provides a free resolution
of Z, so F,,, = FP,,, but the converse is false for m > 1 [2]. A group is of type
F'P if there is a finite projective resolution of Z as a trivial ZG-module.

Let G be F,,4+1 and let Y be the (m + 1)-skeleton of the universal cover of a
K(G,1). The group G is m-connected at infinity if given any compact set C C Y
there is a compact subcomplex D C ) such that any map ¢ : S* — Y — D extends
to a map gg cBFHL Ly O for =1 < k < m. We call D the m-connectivity
subcomplex associated to C. We note that our condition “I-connected at infinity” is
stronger than what some authors term “simply connected at infinity” ; although the
literature is not consistent on terminology, some would consider finitely generated
free groups to be simply connected at infinity.

If G is of type FP, 1 and H¥G,ZG) = 0 for —1 < k < m + 1 and
H™2(GQ, ZQ) is Z-torsion free, then G is m-acyclic at infinity. This definition
can be made more geometrically intuitive in the presence of stronger finiteness
conditions. When G is F,, 1, one can say that G is m-acyclic at infinity if any
k-cycle supported in Y — D is the boundary of a (k+ 1)-chain supported in Y —C.
In particular, one has the following result (see §4.3 and §5.5 in [15]).

Proposition 2.1. Let X be a K(G,1) complex with Xt fnite, and let {K;}
be a nested, erhaustive sequence of compact subcomplezres of XD Then the
following are equivalent.
(1) G is m-acyclic at infinity;
(ii) The sequences of reduced homology groups ﬁk()?(erl) — K;; Z) are pro-
trivial for —1 < k <m; and
(i) HY(G, ZG) =0 for =1 <k <m+1 and H" (G, Z Q) is Z-torsion free.

According to our definitions, in order for a group to be m-acyclic at infinity,
it must be F'P, 1. Hence it is natural that in Theorem A we have finiteness
conditions along with connectivity at infinity conditions on our isotropy groups.
But in order for Theorem A to even make sense we would need G to be FP,, 41
or Fp, 41, which we did not explicitly require. However, this follows from our
hypotheses by the following result.

Theorem 2.2. ([9]) If G acts on an m-acyclic complex X with G\X™TY finite,
and for each cell o C X, Gy is FP,,_|s|, then G is F'Py,. Further, if the verter
stabilizers are finitely presented, and X is simply connected, then G is Fpy,.

In our proof of Theorem A we use the technology of complexes of groups. In
particular, we focus on the following two-dimensional case. Say X is a 1-connected,
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rigid G-2-complex with G\ X’ finite. Then there is a free G-2-complex ) and a G-
equivariant cellular projection 7 : Y—X which we’ll describe below. Because of
our conditions, G\ is finite, so to establish part (ii) of Theorem A it suffices to
show that ) is 1-connected at infinity.

The space )Y and the projection 7 : Y—X have a number of useful properties:

(i) The fibres over vertices, 7~ 1(v), are Cayley complexes for the isotropy
groups G,.

(ii) The subspace 7 1(¢), ¢ being an open edge, has a product structure.
The fibre over the barycenter b, of e is a Cayley graph for G., and 7r*1(e) o~
7 1(be) % (0,1). The closure of 7~ 1(e), 7=1(e), looks like a product 7! (b.) x
[0,1] where 7~ (b.) x {0} is a copy of the Cayley graph 7~ 1(b,) inside of the
Cayley complex 7*1(4(6)); such a copy exists because G, injects into GL(E)'

Similarly, 7= 1(b.) x {1} is a copy of 7~ 1(b.) in 7~ 1(7(e)).

(iii) For any open 2-cell f € X, #~1(f) is Gy x B where B is an open 2-
cell. Given an element g € Gy, gy X B is attached to an edge path circuit
as follows. Let f be an n-gon, with bounding edges {e1,...,e,}, where
v; = t(e;), and let 9B be divided into 2n pieces labelled {1, €1,...,0n,en}.
Each €; attaches to the edge in Wﬁl(ei) corresponding to the image of g
in G, induced by Gy — G;; the edges v; are sent to paths in 7 HGy,)
connecting the end vertex of €;_1 to the initial vertex of €;.

The construction of the complex ) and projection 7 is very similar to the Scott
and Wall “ball-and-stick” construction for groups acting on simplicial trees [24].
For details on the construction in dimension two, see [11], [16] and [23]. Note:
This construction can be carried out in any dimension (see [16]), however we only
require it in dimension two.

In [5], Bieri and Eckmann introduce the idea of a duality group, general-
izing Poincaré duality groups. An FP group G is a duality group if there is
an integer n and a G-module D (the dualizing module) such that H*(G,M)
~ H, ;(G,D & M) for all integers ¢ and G-modules M. Equivalently, it’s a
duality group if its cohomology with group ring coefficients is torsion free and
concentrated in dimension n; in this case the dualizing module D is H"(G, ZG).
So once one knows that an F'P group G has cohomological dimension n, one only
needs to establish that G is (n — 2)-acyclic at infinity in order to show that G is
a duality group. (See [4], [8], and [13] for further information.)

3. Homology at infinity

In establishing part (i) of Theorem A, we use the following lemma, which may
be well known. While cohomology commutes with direct sums in the presence of
strong finiteness conditions — such as the F'P condition — Theorem A (i) only
assumes G has more limited finiteness properties, such as the F'P,, property.
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Lemma 3.1. Let G be a group of type F'Pp,, and let {M;} be a collection of

G-modules.
(i) The canonical map @Hm(G,Mi) — H’%G,@Mi) is an isomorphism.

In particular, if H™(G,M;) = 0 for all i, then Hm(G7@Mi) =0.

(i) If M; and H™ NG, M;) are Z-torsion free for all i, then H™ (G, @ M;)

is Z -torsion free.

Proof. (i) By hypothesis there is a partial free resolution
Fn—=F,1—-  —=FN—-FkK—>%Z—0

where each Fj is a finitely generated free ZG-module. Let K = im{F,,, — F,,,_1}.
Then an m-cocycle of G with coefficients in a G-module M can be identified with
a G-module homomorphism » : K — M, and u is a coboundary if and only if =
extends to a map F,,, 1 — M (see the proof of Lemma VIII.2.1 in [8]). In other
words, H™ (G, M) is the cokernel of the restriction map

Homg(Fpn_1, M) — Homg (K, M).

Since F,,_1 and K are finitely generated, it follows that H™ (G, —) preserves direct
sums, whence (i).
(ii) Let L = ker{F,, — F,,_1}. As above, H"t1(G M) is the cokernel of

Homg(Fy,M) — Homg(L, M).

Let w: L — @Ml represent a torsion element of Herl(G?@Z\[i). Then some

K2

multiple k - u (k # 0) extends to a map F,, — @MZ Since F}, is finitely

generated, all but finitely many components of this mlap are trivial, so the same is
true of k - u and hence of u. (This last assertion uses our assumption that M; is
Z-torsion free.)

There is then a family of cocycles u; : L — M; such that almost all are
trivial and all represent torsion elements of H™T1(G, M;). Since the latter is
torsion free, we may extend u; to u; : F,, — M;, taking u; = 0 for almost all <.
These u;’s give an extension « : F,, — @M, of w. Thus u represents the trivial

K2

element of H™+1(@, GD M;). m|

Proof of part (i) of Theorem A. By Proposition 2.1, we need to establish that
H{G, ZG) =0 for 0 <i<m+1and H""2(GQ, ZG) is Z-torsion free. We use
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the well-known spectral sequence

B = ] HYG,, ZG) = H"'(G, ZG)
o€,

where ¥, is a set of representatives for the G-orbits of p-cells. (See for instance
§VILT7 of [8].) If o € ¥, our hypothesis says that G, is F'P,_,y1 and that
HY(G,, ZG,) vanishes for ¢ < m —p+ 1 and is Z-torsion free for ¢ = m —p+ 2.
Now ZG, as a G,-module, is a direct sum of copies of ZG,; so Lemma 3.1
implies that E¥? vanishes for p+¢ < m+1 and is Z-torsion free for p+q =m+2.
The same is therefore true of E24, so H* (G, ZG) vanishes for i < m + 1 and is
Z-torsion free for ¢ = m + 2. |

We note that in the proof of this homological version of Theorem A, the
only place we used the fact that the action of G on X+l g cocompact is in
establishing finiteness properties of G; if one already knows that G is F'P,, 1 then
the hypothesis that the quotient is finite can be dropped.

4. Simple connectivity at infinity

Let X be a 1-connected G-2-complex, where X and the G-action satisfy the condi-
tions of part (ii) of Theorem A. Let ) be the free G-2-complex and let 7 : Y)—X be
the G-equivariant surjection (briefly) described in §2. The space Y is 1-connected
with G\ finite, so our goal is to show that ) is 1-connected at infinity. That it
is one-ended follows from part (i) of Theorem A.

Start with a finite subcomplex C C ). Recall that for each v € X (0)7
71 (v) is 1-connected at infinity. Let C, = C N7 (w). If C, is empty, set
D, = 0. Otherwise let D, be the 1-connectivity at infinity subcomplex in 7 1(v)
that is associated with C,. For convenience we will assume D, is sufficiently large
so that 7~ 1(v) — D, is connected. Set ¢’ = C U ( U D,).

veX (0

For any edge e C X, m—1(e) is the product of a Cayley graph for G, with
[0,1]. Let C’ be C'Nim—1(e) and set D’, to be the empty set when C” is empty. If C’
is not empty, then the projection from 7—1(e) onto 7 (b.) describes a subgraph
66 of the Cayley graph =1 (be). Let ﬁe be the 0-connectivity at infinity subgraph

of 7~ 1(b,) corresponding to C., and let D! be the union of 2-cells in 7—1(e) given

by the product of D, with [0,1]. Finally, set D = €’ U ( U D.). We will show
ecx@)

that any edge path circuit p C Y — D is null-homotopic in Y — C. It suffices

to consider simple edge path circuits, and we restrict ourselves to that case. We

note that if the image of p in X, 7(p), is a single vertex v then p is contained in

7~ (w) — D,, and hence it is null-homotopic in 7~ (v) — C, by our choice of D,.
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)
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£

Figure 1. Joining the edges ¢y and €7.

In the arguments which follow we will be subdividing the path p according
to which m-preimages it runs through. A local subpath of p is a maximal subpath
of p that is contained in the mpreimage of a single vertex in X. The path p can
be viewed as the union of its local subpaths, where each pair of consecutive local
subpaths are joined by a single edge contained in the m-preimage of an edge in X.

Lemma 4.1. It suffices to consider only those simple edge path circuits p C Y — D
where w(p) C X is also a simple edge path circuit.

Proof. Assume first that some subpath p’ of p projects onto a simple circuit in
X that is a proper subset of the entire image. Let the vertices of this subpath p’
be {a,b,...,z}. Since the image of p’ is a simple circuit, m(a) = 7(z) = v. But
7r*1(v) is one-ended, hence by our choice of the subcomplex D,, there is a path
p"” in 7~ 1(v) — D, connecting a to z. Thus p’ Up” is a simple circuit in J — D
projecting onto a simple circuit in X, and (p —p’) Up” is a simple circuit in ) — D
projecting onto a graph in X containing one fewer simple sub-circuit.

This process reduces us to the case where 7(p) is a simple circuit, or a tree.
It remains then to resolve the possibility that w(p) is a tree. Let v € w(p) be a
vertex of valence 1 in w(p), let “¢” be the edge in w(p) which is attached to v,
and let w be the other vertex of e. Then in p there is a subpath p’ consisting of
an edge g followed by a local subpath v, and concluding with an edge £1, where
m(¢;) = e and 7(v) = v. The barycenters of the edges ¢; correspond to vertices in
the Cayley graph of G, that are outside of ﬁe. By our choice of ﬁe, there is a path
pe connecting b, to b, in 7r*1(b5) —ﬁe. The induced collection of 2-cells in 7—1(e)
connects the edges €9 and ¢1 in ) — D. The path p. (in the Cayley graph of G.)
projects to paths p, and p,, contained in the m-preimages of v and w respectively.
Combining p, with v gives a circuit in 7T71(U) — D, that by hypothesis can be
filled outside of 7~ !(v) — C,. Using this filling, along with the 2-cells in 71 (e)
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induced by pe, allows us to replace the subpath p’ (= g9 Ur Ue1) by the path p,,.
Thus it remains to find a filling for an edge path circuit whose image in X is a
tree with one less edge — the edge connecting w to v having been removed — and
this we can do by induction. O

Proof of Theorem A (ii). Our proof is highly geometric, so we strongly recommend
that the reader sketch several pictures of their own as they work through this proof.

Because X is 1-connected, there is a cellular 2-disk K and a combinatorial
map ¢ : (K,0K) — (X,n(p)). We use K as a guide to constructing a cellular
2-disk K and a map & : (f(ﬁf() — (¥, p), where 4?([?) C Y — C. In particular,
we construct a cellular projection w : K—K such that the following diagram
commutes:

E 2 vy

| w |
B 2

The disk K is essentially a complex formed by expanding all the vertices and edges
of K to polygons, and then attaching these polygons to each other in a manner
prescribed by the intersections in K. We describe this “blowing up” process in
detail below.

Islands: For each n-gon f C K, let Iy be a (2n)-gon, which we will refer to
as an island. Because ¢ : K — X is combinatorial, we think of f as a cell
in X. So @f can be thought of as an edge path determined by a sequence of
vertices {v1,va,...v,} C X©); let ¢; be the edge [v;,v;41] (with indices taken
modulo n). Label the edges of the island Iy by the sequence of vertices and edges
{¥1,€1,02,€2,...,0n,€,}. Then the map w is defined on Iy by sending the edges
€; to the edges e; and collapsing the edges ¥; to the vertices v;.

Bridges: Let e be an edge in K; associate to it a rectangle B, = [0,1] x [0,1]
which we call a bridge in K. If e is contained in the boundaries of two n-gons
f and f’, then B, will join I; and Iy by attaching {0} % [0,1] to the edge of I¢
labelled ‘€’ and {1} x [0, 1] to the edge of I} also labelled ‘¢’. The map w collapses
the bridge B. by sending {a} x [0, 1] homeomorphically onto e for every a € [0, 1].

If e is on the boundary of K, let f be the single n-gon whose boundary
contains e. We attach the bridge B. to Iy by sending {0} x [0, 1] to the edge of I¢
labelled ‘e’. Again w is defined on B, by sending {a} x [0, 1] homeomorphically
onto e. In either case, label the sides [0,1] x {0} and [0,1] X {1} by the vertices
they map onto under w.

Moats: For each vertex v we construct an associated 2-cell M, which we call a
moat. First, let v be a vertex in the interior of K, let {f1,..., fm} be the circuit
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Figure 2. The image of a path, and a filling disk in K.

of faces surrounding v, and let {ey,..., e} be the sequence of edges attached to
v where f; N f;11 D e;. Then in the union of bridges and islands there is a circuit
formed by the edges labelled v in the islands Iy, and the bridges B.,. For every
such v let M, be a 2m-gon filling the corresponding circuit.

Now let v be a vertex on the boundary of K. Again, v is surrounded by
faces {f1,..., fm} and is attached to edges {e1,...,em_1} Where f; N fi41 D e;.
Let eg and e, be the edges on K which are attached to v. For each such vertex,
add to the union of islands, bridges and moats formed so far, an edge connecting
the terminal vertex (1,1) of B, to the initial vertex (1,0) of B, . Finally, attach
the moat M, (a (2m+ 2)-gon) to the circuit formed by the edges labelled ¥ in the
islands Iy, and the bridges B, and this additional edge we have just attached.

The map w : K—K collapses the moat M, to the vertex v. _

The union of these islands, bridges, and moats is our cellular 2-disk K. Note
that the boundary of K consists of edges labelled v; and €; where the v;’s and e;’s
are the vertices and edges of OK. If it helps, consider a specific example, where
7(p) is the boundary of four cells as in Figure 2.

Each of the 2-cells will be covered by octagons in K , the edges are covered
by rectangles, and the vertices are covered by a variety of n-gons (see Figure 3).

We begin to define 5 : K — Y by describing the image of the boundary.
For each 4, send the edge of K which is labelled €; to the edge in p projecting
to e; in w(p). The edges of K labelled by vertices ¥; are then sent to the edge
paths of p contained in 7r*1(v). Thus we have a well-defined map (;NS: GIN(—»p and
we need to extend this to a map 5: [~(~—> y-C.

For each island I; C K, define ¢(I;) to be any 2-disk in 7~ '(4(f)) whose
closure does not intersect D. (This is always possible since D is compact, and
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/I_l

Figure 3. The corresponding collection K.

7 1(4(f)) is a countably infinite number of disjoint disks.)

Now consider a bridge B, in K. The g—image of two sides of this bridge are
already determined; {0} x [0,1] and {1} x [0, 1] are the two sides of the bridge that
either connect two islands (if e is an interior edge) or an island to the boundary of
K (if e is on the boundary of K). The barycenters of these two edges are mapped
by qg to vertices in the Cayley graph wfl(bqﬁ(e)) which lie outside of ﬁ¢(e>. By our
choice of ﬁ¢ o) there is a path in 7r*1(b¢ o) — ﬁ¢ ¢) connecting these two vertices.
Send the bridge B. to the collection of 2-cells induced by this path.

At this stage the </}1mages of the boundaries of the moats have been deter-
mined by where ¢ sends the boundary of K _the islands and the bridges. If @

maps the moat M, to a vertex v € K, then ¢(3M y € m(p(v)) — Dy But
the m-pre-images of vertices in X" are 1- connected at mﬁnlty, so one can extend
the map ¢|ans, to a map ¢|a, where ¢(M,) C = L(p(v)) — Cptuy- a

5. Background on Artin groups

Artin groups are a vexing collection of groups. Artin groups of finite type (those
whose Coxeter quotients are finite) arise naturally in topology as fundamental
groups of complex hyperplane complements and as fundamental groups of (2,n)-
torus link complements. The Braid groups are Artin groups of finite type with
Coxeter quotient the symmetric groups. While much is known about Artin groups
of finite type, little is known about Artin groups in general. Charney and Davis
have introduced a promising approach to the study of arbitrary Artin groups,
viewing them as products — in a wvery vague sense outlined below — of Artin
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groups of finite type.

Let Ag be an Artin group with defining graph G. In [10], Charney and
Davis describe a complex ®¢ on which Ag acts. Let S be the poset of complete
subgraphs of G which correspond to Artin groups of finite type, ordered by inclu-
sion. The empty subgraph is included in S7, hence the geometric realization of S
is the cone over the barycentric subdivision of G where the cone point corresponds
to 0. Let

@g:{aAc | aEAg,CESf}

be the geometric realization of the poset of indicated cosets, ordered by inclusion.
Clearly Ag acts on ®¢ on the left with a copy of S as fundamental domain. The
stabilizers of the cells of ®g under this action are conjugates of the Artin groups
of finite type corresponding to {C € S'}.

Using work of Haefliger on complexes of groups, Charney and Davis establish
that &g is 1-connected. The complex ¢ has a natural cubical structure, and so
it inherits a piecewise Euclidean metric such that each cube isometric to the unit
Fuclidean cube of the appropriate dimension. If for each complete subgraphC C G,
the associated Artin group Ac is of finite type, then Ag is said to be of FC type.
The “FC” stands for “flag complex”; the geometric realization of Sf is a flag
complex if and only if Ag is of FC type. In Theorem 4.3.5 of [10], Charney and
Davis show that &g with its piecewise cubical metric is CAT(0) if and only if Ag
is of FC type. In this case it follows that ®g is contractible; Charney and Davis
conjecture that ®¢ is always contractible (Conjecture 2 in [10]).

Our arguments exploit the fact that the cell stabilizers for the action of Ag
on $g are Artin groups of finite type. The connectivity at infinity properties of
finite type Artin groups are understood by work of Squier and Bestvina (see [25]
and [1]). Let |G| be the rank of G, that is, the number of vertices in G.

Theorem 5.1. Let Ag be an Artin group of finite type. Then Ag is a duality
group of dimension |G| and is (|G| — 2)-connected at infinity.

Squier’s (little known) work in [25] only establishes duality, hence only homological
connectivity at infinity; the homotopy at infinity result is done by Bestvina [25]
using an insightful geometric argument.

One might hope that Theorem A could be applied to the action of Ag on
®g to establish connectivity at infinity properties for Artin groups. Regrettably
this is not the case. The essential difficulty is that the stabilizers are not well
behaved. For example, the isotropy groups for the cone points in $g are trivial,
not infinite; the isotropy groups of the other vertices of ®¢g are Artin groups of
dimensions 1,2,3, ... up to dim(S7). Because the vertex stabilizers are not always
top dimensional, nor are edge stabilizers of codimension one, etc., the spectral
sequence used in §3 doesn’t have zeros below the critical diagonal. To avoid this
difficulty, we use a different Ag-equivariant filtration of ®g other than by skeleta,
and this filtration induces a more tractable spectral sequence.
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Let dim(®g) = n. We reserve the letter C for subgraphs in Sf; so Ac
will always denote an Artin group of finite type contained in Ag. Let <I>8 be the
geometric realization of the poset of cosets {aAc | |C| = n}; this is a discrete
collection of points that will fill the role of a O-skeleton. In general, @ig is the
geometric realization of the poset {aAc¢ | |C| > n —4}. At the final stage we add
the cone points forming ®¢ = ®¢. Equivalently one can think of the complex <I>ig
as the union of the fixed point sets of the conjugates of {A¢ | [C| > n —4}. From
this point of view one can talk about the rank of a cell as being the rank of the
isotropy group of the cell, and one sees that our filtration is given by “corank.”

Following Charney and Davis, we let Sic denote the subposet {C' € ST |C' D

C} C 8’. The fundamental domain for the action of Ag on DL is U Séc
[Cl=n—1i
let S/, be the subposet {¢’ € ST | ¢’ > C} C S.

6. Simple connectivity at infinity for Artin groups

In this section we outline how the techniques of §4 can be modified to prove
Theorem B.

Theorem B. Let Ag be an Artin group, let g be the complex described above, and
assume that G is not a single vertexr or edge. If G is 1-connected and contains no
cut vertex, then Ag is 1-connected at infinity.

Our argument will use the action of Ag on a subcomplex of its modified
Deligne complex. Assuming we are in the situation described in Theorem B, the
link of any cone point in ®¢g is simply-connected. Hence removing all the cone
points from ®¢ leaves a simply-connected space. Similarly the link of any vertex
of rank 4 or higher is simply-connected (see Lemma 4.3.1 in [10]), so they may also
be removed. The resulting space deformation retracts onto the simply-connected
subcomplex of ®¢g consisting of cells of rank 1,2 and 3. We denote this complex
dg.

Let Vg be the space covering ®g on which Ag acts freely; as before let
7 : Yg—»®¢ be the Ag-equivariant cellular projection. In our proof of Theorem B
we use the following fact from [7].

Lemma 6.1. Given the conditions of Theorem B, Lkv, g) is connected for any
vertez v € G, and Lk(e, Q) is non-empty for any edge ¢ € G.

Given a compact set C C )g, we find the 1-connectivity subcomplex D O C
as in §4 by adding appropriate subcomplexes in the pre-images of cells in $g.

Any edge in $g connects vertices of different ranks. An edge path in $g
is standard if it never passes through a vertex of rank 1. Standard edge paths
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most closely match the intuition of previous sections as they never contain an
edge whose stabilizer is not one ended, and every other vertex of a standard edge
path has rank 3. Thus, in a standard edge path, every other vertex is stabilized
by a group which is simply connected at infinity.

Lemma 6.2. Let C be a compact set in Yg, D the associated compact set contain-
ing C, and let p be an edge path in Yg — D. Then p can be homotoped in Yg — C

to an edge path p' where w(p’) is a standard edge path in Pg.

Proof. 1f w(p) passes through a rank 1 vertex v, it must arrive and depart through
vertices of higher rank. Because v is a rank 1 vertex, its stabilizer is Z, generated
by a conjugate of the generator corresponding to some v € G. The portion of the
link of 7(v) C ®g consisting of cells of rank > 1 is combinatorially isomorphic to
Lk(v, QA) = Si,,. By Lemma 6.1, this is connected, so the portion of the link of
m(v) consisting of cells of rank > 1 is also connected. Because quotient maps are
continuous, 7} (Lk(v,®g)) is also connected. So we can homotope p to a path
which avoids v and only passes through vertices of higher rank. O

Proof of Theorem B. By Lemma 6.2 we may assume that the path 7(p) C ®g is
a standard edge path. We use essentially the same argument as in Lemma 4.1 to
reduce ourselves to the case where m(p) is a simple edge path circuit in Bg. The
case where 7(p) is a tree is the only sticky situation. If a valence 1 vertex v € m(p)
is of rank 2, then 7771(1}) is O-connected at infinity, but not 1-connected at infinity.
This is a problem since in the proof of Lemma 4.1 we created a loop in 7r*1(v) -D
which we filled in 7! (v) —C. (This situation is illustrated in Figure 1.) However,
a rank 2 vertex in ®g corresponds to the barycenter of an edge e in @ . By Lemma
6.1, e is contained in the boundary of some 2-simplex ¢ C G. Let w be a vertex
adjacent to v in ®¢g corresponding to the barycenter of o. Because 7r*1(v) injects
into 71 (w), which is 1-connected at infinity, the loop we create in 7! (v) can be
freely homotoped into 71 (w) where it can be filled outside of C.

We may now assume that 7(p) is a standard, simple edge path circuit, and
because ®¢ is simply connected, 7 (p) can be filled in $g. That is to say, there is
a combinatorial disk K and a combinatorial map ¢ : (K, 0K) — (®g, 7(p)).

At this stage we apply the techniques from §4 to the current situation.
That is, we construct K by blowing up the cells of K, and then construct a map
w: (K,0K) — (Yg,p). We start by identifying the “islands”; recall that in the
original argument islands were 2-cells stabilized by —1-connected at infinity groups.
We say the rank of any vertex v € K is the rank of its ¢-image in ®g. Every 2-cell
in ®¢ contains a vertex v of rank 1; thus there is a copy of Z stabilizing the closed
star of v in ®g. The role of islands is played by the stars of the rank 1 vertices in
K. These stars are combinatorial disks, and their images in $¢ are stabilized by
copies of Z. Thus to construct K and a map (Z: (I~(78I~() — (Yg,p) we begin by
choosing one of the countably many disks in 7 (¢(St(v))) which misses D.
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Next we join the islands by bridges, where the brides correspond to edge
pairs with the three vertices of ranks 3, 2 and 3 respectively. The isotropy group
of the edge pair is a finite type Artin group of rank 2, hence it’s one ended. This
allows us to connect the lifts of adjoining islands by paths outside of D.

Finally, the moats correspond to rank 3 vertices in K, whose images in
Pg are stabilized by Artin groups that are simply connected at infinity. The
moats fill edge path circuits formed in K by the bridges and islands; because the
vertex groups involved are simply connected at infinity, we can map these moats
to embedded disks in simply connected at infinity subcomplexes of )g. O

This same technique can be applied to graph products of groups; we quickly
outline the approach to this situation. Let G be a finite simplicial graph with
groups G, associated to the vertices v € GO The graph product Gg is the
free product of the G,’s modulo relations implying that adjacent vertex groups
commute. In this situation, we let G be the flag complex induced by G.

Theorem 6.3. Let Gg be a graph product of finitely presented infinite groups.
If Q is 1-connected, and if G, is 1-ended for any cut vertex v € g then Gg is
1-connected at infinity.

The argument begins by noting that the direct sum of three infinite, finitely
presented groups is simply connected at infinity [18]. Next one constructs an
(improper) action of the graph product on a cell complex, similar to the action
of an Artin group on its modified Deligne complex; this construction is a minor
modiﬁcation of the techniques of Moussong-Charney-Davis and is written down

n [21]. If G has no cut vertex, one then proceeds as in the argument above. If
g has a cut vertex v, then Q can be expressed as the union of simply connected
components which share the common vertex v. An inductive argument shows that
G¢ decomposes as the fundamental group of a graph of groups. The vertex groups
correspond to subgroups associated with subgraphs G’ C G where G’ does not
contain cut vertices and G’ is simply connected. The edge groups in the graph
of groups decomposition consist of the G,’s where v is a cut vertex. (See the
argument in §5 in [22].) The argument above establishes that each vertex group in
the arboreal decomposition is simply connected at infinity; because the edge groups
in this decomposition correspond to one-ended groups, G¢ is simply connected at
infinity by Theorem A.
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7. Which Artin groups are duality groups?
Here we prove

Theorem C. Let Ag be an Artin group whose modified Deligne compler ®¢g is
contractible. If G is an (n — 1)-dimensional Cohen-Macaulay compler, then Ag is
a duality group of dimension n with Z-free dualizing module.

Recall that an n-dimensional simplicial complex Gis Cohen-Macaulay if its
reduced homology is concentrated in dimension n, and for each simplex o C §,
the reduced homology of Lk(o, G ) is concentrated in dimension n — |o| — 1.

The fact that the dualizing module is Z-free (and not just Z-torsion free)
will follow from the fact that the dualizing module for Artin groups of finite type
is Z-free. (See Squier’s comments in the paragraph following Lemma 8.4 of [25].)

Proof. Because Artin groups of finite type are F'P, and ®¢ is assumed to be
contractible, Ag is F'P. Thus it suffices to establish that the cohomology of Ag
with Z Ag coefficients is concentrated in top dimension and is Z-free.

We express H*(Ag, ZAg) in terms of the equivariant cohomology for the
action of Ag on ®g, H} (®g). Recall that our filtration of ®¢ is by Ag-equivariant
subcomplexes, but not by skeleta, so we need to analyze the spectral sequence
induced by this filtration.

The relative chains C(®%, ®f~ 1) can be expressed in terms of induced mod-

ules based at the fundamental domain: @ C (SZC7S>C) TAC.
IC|=n—p
Let F' be a finite free resolution of Z as a Z Ag-module. Then

Hom, (F Homy (C(®%, o5 1), zAg))

= @ Homy,, <F7 Hom (C’ (S>C7Sf ) TiinAG)>

|Cl=n—p
@ Hom 4, (F, Hom gy (C’ (S>C7S>c) ZAQ))
[Cl=n—p
It follows that

-1
BV =mire, ot = P HYUSLe. Sl = @D HU(Ac, HP(SLe,SLe))
|Cl=n—p |Cl=n—

where we’ve suppressed the Z Ag-coefficients to avoid notational clutter. The pair
(S>C7S£C) is a cone over the link of the simplex described by C in the defining

complex Q Because Q is Cohen-Macaulay, (S>C7 S>C) has the homology of a wedge
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of spheres of dimension p, so the relative homology is trivial except in dimension
p where it’s free abelian. Thus

HP (8L, S8L¢), Z Ag) = Hom(Hy (SL¢,8Lc), # Ag) = D Z Ag

So
P Z-free g=n—p
1 s
0 otherwise

and therefore the entire spectral sequence lies in total degree p + ¢ = n. Because
all the entries below the ntM-diagonal are zero, Hi(Ag,Z Ag) = 0 up to dimension
n; since each A¢ is an F'P group, cohomology commutes with direct sums, hence
H"(Ag, Z Ag) is Z-free. [m|

Corollary 7.1. If Ag is an Artin group of FC-type, and G is Cohen-Macaulay,
then Ag is a duality group.

We note that the spectral sequence constructed in the proof of Theorem C
works with any coefficients. In particular, in combination with Squier’s results on
the integral cohomology of Artin groups of finite type [25], it might prove useful
for computing the integral cohomology of Artin groups of infinite type. We also
mention that our proof establishes that if $¢ is contractible, and if the n-skeleton
of G is Cohen-Macaulay, then Ag is (n — 1)-acyclic at infinity (even if Ag might
not be a duality group).
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