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Spherical minimal immersions of the 3-sphere

Gabor Toth and Wolfgang Ziller*

Abstract. In 1966 Takahashi [11] proved that a minimal isometric immersion / Sm(l) —>

SN (r) of round spheres exists iff r y/m/Xp, where Xp is the p-th eigenvalue of the Laplacian
on Sm, in this case, the components of / are spherical harmonics on Sm of order p This
immersion is unique up to congruence on the range and agrees with the generalized Veronese

map if m 2 as was shown in 1967 by Calabi [1] In 1971 DoCarmo and Wallach [3] proved
that the same rigidity holds for p 2, 3 The main aim of their work, however, was to show

that, for m > 3 and p > 4, unicity fails, and, indeed, the set of (congruence classes of) minimal
isometric immersions / Sm —> SN(y/m/Xp) can be parametrized by a moduli space Mm> a

compact convex body in a representation space T^n of SO(m-\- 1) of dimension > 18 In 1994,
the first author [14] determined the exact dimension of the moduli, and with Gauchman [5] in
1996, revealed intricate connections beween the irreducible components of T^ and the geometry
of the immersions these components represent The purpose of the present paper is to provide a

complete geometric description of the fine details of the (boundary of the) 18-dimensional space
_M|, the first nontnvial moduli This is made possible by several reductions that make use of the
splitting SO (4) SU (2) SU (2)' as well as rely on the structure of SU (2) equivanant minimal
isometric immersions treated in the work of DeTurck and the second author [2] in 1992 The
equivanant imbedding theorem [14] asserts that the structure of _M| reappears in the moduli
Mm for m > 3 and p > 4

Mathematics Subject Classification (1991). Primary 53C42

Keywords. Spherical minimal immersion, special unitary group

Minimal isometric immersions of round spheres into round spheres form an
interesting subject that has been studied by a number of authors, see e g [2,3,11,12]
We can write such maps either as isometric minimal immersions / Sm(l) —>

SN(r) as was done in [2], or as we do here and as was done in [12], as minimal
immersions / Sm(l) —> SN(1) with homothety 1/r2 (which we call spherical minimal

immersions) The components of such an immersion must be eigenfunctions
of the Laplacian on Sm(l) which are hence harmonic homogeneous polynomials of
degree p with eigenvalue Xp p(p + m — 1), in which case the homothety is equal
to Xp/m As is well known, if m 2, or if m > 3 and p 2,3, the immersion is

unique up to congruence and agrees with the generalized Veronese immersion But
for to > 3 and p > 4, there are many such immersions, and for a fixed degree p the

*With partial support from the National Science Foundation
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congruence classes of such minimal immersions form a convex compact body in a

vector space of high dimension The dimension of this convex body was computed
explicitly in [14] In particular, if m 3 and p 4, it is equal to 18 (see also [9]

for this special case) and the dimension quickly grows with m and p
The mam purpose of the present paper is to examine this convex body in detail

in the special case of m 3, p 4, although some of the results also apply to the
general case In this special case we are able to describe the structure of the convex
body and its boundary completely with a number of interesting consequences This
is due to the fact that this low degree is the only case where the full convex body
can be reconstructed in a certain way from the special subclass of equivanant
minimal isometric immersions studied in more detail in [2,5,6] This structure is
also important for higher degrees and higher domain dimensions, since, according
to the equivanant embedding theorem [14], the moduli space for degree four and
domain dimension three can be equivanantly embedded into that for any degree
> 4 and domain dimension > 3 In particular, using the examples developed here
and in [2], a variety of spherical minimal immersions can be explicitly constructed
from any domain of dimension > 4 and any degree > 3

Before we describe our results, we set up some notation If / is a spherical
minimal immersion / Sm(l) —> SN(1) C Rw+1 V which uses degree p
homogeneous harmonic polynomials, we denote by M.f the set of all spherical minimal
immersions /' A o / with A Rw+1 —> RN +1 any linear map (in other words,
the components of/' G Aif are linear combinations of the components of/) Aif
is a compact convex body in a linear subspace Tj C S^V parametrized by ATA—I
The points on the boundary of A4 f consist of spherical minimal immersions with
ambient dimension less than N If fp is the standard spherical minimal immersion
of Sm, consisting, up to homothety, of an orthonormal basis of the set Hp of all
homogeneous harmonic polynomials of degree p, then ¦Mfp= -Mp is by definition
the set of all spherical minimal immersions of degree p For / G A4P, A4f forms a
linear slice in A4P If / lies in the interior of A4P, A4j is of course equal to A4P

But if / lies on the boundary of A4P, then A4j is a linear slice contained in the
boundary of A4P We call / linearly rigid if Aif {/} The linearly rigid spherical

minimal immersions are precisely the extremal points of A4P in the sense of
convex geometry (by the connecting lemma in Section 1 1) By the Krem-Milman
theorem, a convex set is the convex hull of its subset of extremal points, so that
A4P is the convex hull of the linearly rigid spherical minimal immersions

SO(m+l) acts on Mp via precomposition / —s- foA,f G Mp,A G SO(m+l),
which makes Tp a linear 5*0(771+1) representation space A group G is the isotropy
group of that action at a point / iff / is equivanant under G We will say that /
is full if the image of / spans all of V

What is special about m 3 is that SO (4) SU(2) SU{2)' with each SU(2)
acting transitively on S*3 Hence we can consider the SU(2) and SU(2)' equivanant
spherical minimal immersions, which can also be viewed as the fixed point set

^ or {Mp)SJJW We will show that for p 4, and this is what makes



86 G. Toth and W. Ziller CMH

m 3,p 4 so special, that T4 (T4)su(2) © (_F4)S(7(2)', each one being a
9 dimensional linear subspace of JF4. As an 50(4) representation, this splitting
is Rg © i?8 where SU(2) acts trivially on Rg and via the unique 9 dimensional
irreducible representation on Rg and in a reversed role for SU(2)'. Furthermore,
we show that each point in clM4 lies on a straight line in JF4 connecting a point
/l G d(M4)su(-^ with a point /2 G <9(A44)S(7(2)'. This straight line consists of
the immersions (1/^1/1,1/^2/2) with c\ > 0,C2 > O,ci + c2 1. An orientation
reversing isometry of S*3 will interchange R'8 and i?s and hence <9(A/f4)s(7(-2-1 with
9(A/t4)s(7(-2-1 Thus the boundary immersions clM4 are completely determined

by the equivariant boundary immersions in <9(A/f4)s(7(-2-1. Equivariant immersions
in (A/t4)s(7(-2-1 have ambient dimension N + 1 5,10,15,20 or 25, and one can
easily exclude N + 1 5. This will enable us to completely determine all ambient
dimensions:

Theorem A. If f : S —> SN is a full degree 4 spherical minimal immersion, then
the only possible ambient dimensions are N + 1 10,15,16, or 19 — 25, and each

one occurs.

Furthermore, it will follow that the spherical minimal immersions with N+l
10,15, or 20 consist only of SU(2) or SU(2)' equivariant ones. Combining this
with Proposition 1 in [2], p.449, yields the following uniqueness result for the
lowest possible ambient dimension:

Theorem B. There exists a degree 4 spherical minimal immersion T : S —> S
such that if f : S —> S is any degree 4 spherical minimal immersion, then there
exist isometnes A G O(10) and B G O(4) such that f AoloB. Furthermorel
is SU(2) equivariant with image an embedded space form S^/D^, where D^ is the

quaternion group {±1, ±i, ±j, ±k}.

One can easily describe I : S*3 —s- S*9 explicitly:

,w) ((1/V2)(z4 -w4),VGz2w'

z2w2), (1/V2)(\z\4 -

Here z and w are complex with |z|2+|w|2 1. Notice that the first four coordinates
are complex, the fifth is purely imaginary and the sixth is real so that I maps into
R10 and one easily checks that it maps into the unit sphere in R10. Also notice
that the map is invariant under (z,w) —> (iz,iw) and (z,w) —> {\flw, —Viz) which
generate a group isomorphic to D^- It will follow that I is an embedding of S*3/'D^
into Sg.
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Finally we describe the equivariant boundary immersions in („A/f4)s(7(-2-1 C .F4.

They naturally divide into 3 subsets, denoted by I, II, and III, depending on if
the ambient dimension is N + 1 10,15, or 20. Notice that the action of SO {A)

reduces to an SU(2)' action on („A/f4)s(7(-2-1 and hence each set is the union of
SU(2)' orbits. We will show:

Theorem C. d(MA)su^ I Uli Ulli and one has:

a) I is a single SU{2)' orbit (the SU{2)' orbit of I) and is an octahedral manifold

S /O* embedded minimally in a sphere in Rg (J- )su^- ', the embedding

given by a degree 8 equivariant minimal isometric immersion.
b) II IIoUlIi where Ho is a 6 dimensional connected set consisting of linearly

rigid immersions, and Hi is the 4 dimensional set SU(2)' ¦ int T> where T> is a flat
2-dimensional disk with boundary circle on the octahedral manifold I. Furthermore
T> Aij, where J is the unique U(2) equivariant minimal immersion in II.

c) III is dense, open and connected in the 8 dimensional boundary d(A4 )su^ '.
The opposite J° of J on the boundary d(A4 )su^ ' is of type III. A4jo is 6

dimensional and

III SU(2)! • mtMJo.

The U(2) equivariant map J : S3 —> S*14, is given explicitly as follows:

J{z,w) (l/V2)(z4 ,w4,2VZz2w2,2z3w,2zw3,

— 4|z| w -\- w

J is invariant under (z,w) —> (iz,iw) and the image is an embedded lens space
S3/Z4. J is at the center of the disk V Mj and the center of U(2) acts as a
rotation on this disk and hence SU(2)' ¦ T> SU(2)' ¦ Aij is 4-dimensional. This
gives an explicit description to all elements in Hi.

There exists only a 1-dimensional space of U(2) equivariant immersions in
(A/f4)s(7(-2-1 and hence only two U(2) equivariant elements in 9(A/t4)s(7(-2-1, one of
which is J and the other one the antipodal point Jo (which lies in III). The orbit
SU{2)'J (and hence also SU(2)''Jo) is a minimally embedded HP2 in a sphere in
R'g which is in fact the standard rigid minimal isometric immersion for m 2 and

It is more difficult to find explicit examples in the 6-dimensional set of linearly
rigid elements in Ho. One explicit example in Ho is To, the antipodal to the
immersion I in Theorem B. Since the components of I are orthogonal of equal
length, one can easily write down To explicitly by choosing such a basis for the
orthogonal complement of the subspace spanned by the components of I in W4.

In particular To : S3 —> S*14 and we will show that Io is linearly rigid.
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By Theorem C, the only exremal points m („A/f4)s(7(-2-1 are the elements in I and

IIo Hence (A/t4)s(7(-2-1 is the convex hull of such immersions As a consequence,
all of M4 is the convex hull of I, II0 and the images I', IIq in d{Mi)su^'

Also, notice that if we connect a linear slice Aif in III with a corresponding
linear slice in d{M. )su( ' we obtain a 13 dimensional linear slice in dM which
is the largest dimensional linear slice in the 17-dnnensional boundary

Another interesting question that one can ask, is about the image /(S*3) Are
they embeddmgs or immersions of a quotient S3/G and what quotients can arise7
For interior points of M.p, it was observed in [18] that they are always embedded
spheres or projective spaces, depending on if p is odd or even But on dßAp

many other images can occur It is still an open problem whether all space forms
can arise In [2] it was shown that every homogeneous space form admits an
equivanant minimal isometric embedding and in [4] an example was constructed
of an mhomogeneous lens space with a minimal isometric immersion into 5*190 with
degree 32 polynomials It follows from [2] that for the equivanant maps in A44:,

the images are embedded homogeneous space forms S^/D^, lens spaces S^/Z^,
or projective spaces (the generic case) It also follows that there exist many non
equivanant minimal isometric embeddmgs of the homogeneous space forms S*3 /D^
and S3/Z4

For m 3 and p > 4 there are corresponding results, but they only describe a

portion of the moduli space which are not sufficient to prove analogues of Theorems
A and B See Theorems 4 and 5 for details This is due to the fact that Tv splits
into many irreducible summands under SO {A) (see Theorem 3) and our methods
apply to only some of those summands

It is interesting to compare the results in this paper with some of the results in
[15] One can formulate the above mentioned connecting lemma, by saying that
A44 is the convex hull of its slices by the two irreducible components in .F4 For

p 6 (and m 3) the moduli space of SU(2) equivanant immersions („A/f 6)s(7(-2-1

has two irreducible components and in [15] it is shown that a minimal immersion
in each component has ambient dimension N + 1 > 14 The degree 6 minimal
immersion / S3 ^ S^ constructed in [2] cannot he in either component and
not in the convex hull of the linear slices with each component either Thus for
larger degrees, the moduli space is not any more the convex hull of its linear
irreducible slices, which shows that the structure of the moduli space gets much
more complicated for p > 4

In section 1 we collect several preparatory results that hold in the general case
Section 2 describes some results about the SU(2) equivanant minimal maps of S
but any degree p and in section 3 we prove the above results for m 3 and p 4
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1. General theory

1.1. Eigenmaps

A spherical harmonic of order p on Sm is, by definition, an eigenfunction of
the Laplacian A on Sm with eigenvalue Xp p(p + m — 1), or equivalently,
the restriction (to Sm) of a harmonic homogeneous polynomial in the variables

(xo,... ,xTO) G Rm+1. The linear space of spherical harmonics is denoted by
TLP Hfn- (Unless important, we suppress the source dimension m.) In a similar
vein, a p-eigenmap f : Sm —s- S'y, where V is a Euclidean vector space with S'y,
the unit sphere in V, is a map whose components a o /, a G V*, are spherical
harmonics of order p on Sm, or equivalently, a harmonic p-homogeneous spherical
polynomial map / : Rm+1 —s- V. Spherical means that / maps Sm into Sy and,
in this case, we identify / : Rm+1 -> V with its restriction / : Sm -> 5y.

/ : Sm —> Sy is /«// if it has no zero component. In this case, precomposition
with /, a —> a o /, a G V^*, gives a linear embedding y* —> 7YP whose image; the

space of components of /, is denoted by Vf. Since V is Euclidean, we have the
isomorphisms

V V* Vf C Wp.

In what follows, V, V* and Vf will be identified under these isomorphisms.
Two p-eigenmaps f\ : Sm -^ Sy1 and fy : Sm -^ Sy2 are said to be congruent

if fi U o fi for some isometry U : V\ -^V^-
Let / : Sm -^ Sy and /' : Sm -^- Sy/ be full p-eigenmaps. /' is said to be

derived, from /, written as /' ^- /, if there exists a linear map A : V —s- y such
that Ao f f. Since / is full, A is uniquely determined. Since /' is also full, A
is onto.

Let / : Sm —s- Sy be a full p-eigenmap. Let 5^ C S2V^ denote the orthogonal
complement of

Wf span {/(x) © /(x) | x G Sm}

in S2y. Let
£f {Ce£f\C + I>0},

where I Iy identity of V and '>' means 'positive semidefinite'. Clearly, Cf
is a convex body in £f and the origin of £f is contained in the interior of Cf. A
DoCarmo-Wallach type argument gives the following:

Theorem 1. Given a full p-eigenmap f : Sm —> Sy, the set of congruence classes

of full eigenmaps f : Sm —> Sy' that are derived, from f can be parametrized, by
the convex body Cf. The parametnzation is given by associating to the congruence
class off the endomorphism

(/')/ =AT-A-IeS2V,
where f Ao f and, T denotes transpose.
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Remark. For (all) spherical minimal immersions this is due to DoCarmo-Wallach
[3,17]. The present relative version is taken from [12].

The convex body Cf of £/(C S^V) is called the 'moduli space associated to the
full p-eigenmap / : Sm —s- S'y. / corresponds to the origin 0 (/}/). The interior
int£/ parametrizes those full p-eigenmaps /' : Sm —> Sv> for which / -<— /', or
equivalently, /' A o f with A : V —> V invertible. As A is onto, this holds
iff dim V dim V. Thus the boundary dCf corresponds to those p-eigenmaps

/' : Sm -> Sv> for which /' ^- / and dimV < (YimV.
Since J— is a transitive relation, for /' J— /, Cf can be embedded into Cf. The

image is an affine slice (that is, the intersection of Cf with an affine subspace).
More precisely, let / : Sm -> Sv and /' : Sm -> Sv> with /' ^- /, i.e. /' A o /,
and define

t : 5V - SV
by

l(C) At-C -A+{f)f AT ¦ {C' + Iv) -A-Iv.
Then, as easy computation shows, i maps £f> injectively into £f and

From now on, we identify Cf with its image in Cf.
Up to scaling the components of an orthonormal basis in TLV with respect to

the L2-scalar product give rise to the standard p-eigenmap fp : Sm —> Sup ¦ For

/ fp, we denote Cp Cpm Cfp, £p £^ £fp etc. We call Cp the standard
moduli space. Since all p-eigenmaps are derived from fp, Cp parametrizes the

congruence classes of all full p-eigenmaps / : Sm —> S'y. For simplicity, we set

(f)fp (/)• We say that a full p-eigenmap / : Sm -^ Sy is of boundary type
if dim V < dimHp, or equivalently, if (/} G dCp. Also, for any full p-eigenmap

/ : Sm —s- Sv, Cf is an affine slice of Cp. Integrating the condition of sphericality
for /, we see [3,17] that £p consists of traceless endomorphisms of S^{TLP). We
thus have:

Corollary. Cp and (hence) Cf are compact.

Let / : Sm —s- Sy and /' : Sm —> Sv> be full p-eigenmaps and assume that /' J— f
with /' Ao/, where A : V —s- y is linear and onto. Then V^/ is contained in Vf
and the inclusion Vf C V/ is given by sending a' o /', a' G (V)*, to (a' o A) o f.
Connecting Lemma. Let fi : Sm —> S1-^ and f^ : Sm -^- Sy2 be full p-eigenmaps
and assume that they are mcongruent. Let c\,c<2 > 0 with c\ + c% 1. Then the

point
e Cp

on the segment connecting (f\) and (f^) is represented by the p-eigenmap f : Sm —>

Sv, V V\ xV-2, defined by f (i/cT/i, 1/C2/2) and made full. In particular,



Vol. 74 (1999) Spherical minimal immersions of the 3-sphere 91

f ^ h,h and

Vf=Vh+Vf2
so that

dim Vf dim Vfl + dim Vh - dim(Vfl Ç\Vf2).

Proof. Setting /i A1ofp and /2 A2 ofp with Ai : ?#> -> Vi and A2 : W -> V2

linear and onto, we have

{h)=AjA1-I and {f2)=A2TA2-I.

By definition, / {^/c\A\, ^/c^A^) o fp so that

(f) (c1AjA1+c2A2TA2)-I
c1(AjA1-I) + c2(A2TA2-I)

ci(fi) + c2(f2)

since c\ + c2 1. The rest is clear.
Given a full p-eigenmap / : Sm —> Sy of boundary type, (/} G <9£p, the

line R • (/} intersects dCp in (/} and another point called the antipodal of (/}.
A representative fo : Sm —> Syo of the antipodal of (/} is called the antipodal
p-eigenmap of /. (fo is unique up to congruence.)

The connection between / and fo is subtle. A related (and again subtle)
problem has been posed by R.T.Smith in his Thesis [10]: Given a p-eigenmap

/ : Sm —s- S'y, does there exist a p-eigenmap /' : Sm —> Sy' such that Vf is the
orthogonal complement of Vf in Wl The following observation will be useful:

Antipodal Lemma. Let f : Sm —> Sy be a full p-eigenmap of boundary type
and assume that, relative to an orthonormal basis in V, the components of f are
orthogonal in Tip and have the same norm. Then the antipodal fo : Sm —> Syo of
f has the same property and

vf e vfo w
is an orthogonal direct sum.

Proof. Relative to an orthonormal basis in V and up to a constant multiple, the
components of / give an orthonormal basis V in Vf G W. Select an orthonormal
basis Vo from Vf- C Tip. Let fo : Rm+1 —s- Vo be a full harmonic p-homogeneous
polynomial map whose components, relative to an orthonormal basis in Vo, are the
elements of Vo- Since V|J Vo (suitably normalized) gives the components of fp,
up to a constant multiple, fo is spherical so that it restricts to a full p-eigenmap
fo : Sm —s- Syo- By construction, fp {cf,cofo) for some constants c,co > 0.

Taking norms, we have c2 + c?o 1 so that the connecting lemma applies. We
obtain that the origin is on the segment connecting (/} and (/o). Since both /
and fo are of boundary type, fo is the antipodal of /.
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Let / : Sm —s- S'y be a p-eigenmap and assume that / is equivariant with
respect to a homomorphism pj : G —s- SO{V), where G C SO(m + 1) is a closed

subgroup. Equivariance means that

/ °g Pf{g)° f,
for ail g & G. pj defines an orthogonal G-module structure on V and therefore on
V*. Under the isomorphism V* Vf C HP, V becomes a G-submodule of Hp\g-
Indeed, since g G G acts onV* as g ¦ a a o pf(g)~^, a G V*, we have

(g-a)of (ao Pf(g)-1) o f (a o /) o g'1.

The G-module structure on V extends to that of S^V given by

g-C pf{g)-C-pf{g)-\
£f is clearly a G-submodule of S^V. In fact, Cf is (^-invariant since, for /' J— /,
we have

9-(f')f (f'og-1)f.
Given a closed subgroup G' C G, a p-eigenmap /' : S*™ -^- Sv>, /' -1— /, is

equivariant with respect to a homomorphism p^/ : G" —> S'O(\//) iff (/'}/ is left
fixed by G". Thus the congruence classes of full p-eigenmaps that are equivariant
with group G' are parametrized by the linear slice

Remark. Let / : Sm —> S'y be a full p-eigenmap and assume that, relative to an
orthonormal basis of V, the components of / in HP form an orthogonal basis V
with the same norm. Then, the isotropy group at (/} G CP can be written as

SO(m + l)(/) {g G SO(m + 1) | V> Vfog}. (1)

Indeed, for g G SO(m+ 1), U G SO(V) with Uof fog exists iff Vf Vfog and
is the transfer matrix between V and Vog obtained by precomposing the elements
of V with g.

The following lemma is contained in [12] (pp.24-25).

Transversality Lemma. Let f : Sm —> Sy he a full p-eigenmap that is equivariant
with respect to a homomorphism pf : G —s- SO(V), where G C SO(m + 1) is a

closed subgroup. Let f : Sm —s- Sy' be a full p-eigenmap such that (/'}/ G int£/.
If a : R. —> G is a 1-parameter subgroup such that the orbit t t-^ a(t) ¦ (/'}/? t € R,
m tangent to intCf at t 0 i/iera «i «s entirely contained, in intCf.

The standard p-eigenmap /p : Sm -^- S-^p is equivariant with respect to the
homomorphism pp : SO(m+ 1) —> SO(HP) that is just the orthogonal SO(m+ 1)-
module structure on HP given by precomposing spherical harmonics by the inverse
of linear isometries on Sm. Thus £p is an SO{m + l)-submodule of S2(HP). A
result of Calabi [1] asserts that £| is trivial for any p > 2. As we will see below
£pn is nontrivial for m > 3 and p > 2.
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1.2. Spherical minimal immersions

A spherical minimal immersion is a conformai p-eigenmap / : Sm —> Sy- The con-
formality factor is then Xp/m. We say that / : Sm —s- S'y is a minimal immersion
with homothety Xp/m. The condition of homothety can be written as

for all vector fields X and Y on Sm.
Let / : Sm —> S'y be a full homothetic minimal immersion with homothety Xp/m.
We define

Tj span{/»(X)-©/»(y)-|X,y e TiS™)}1- c S2V,

where " denotes translation of vectors to the origin. (Here and in what follows it is

understood that X and Y belong to the same tangent space of Sm.)
Let

A result of Takahashi [11] implies that

(cf. [12]). The defining relation for Cf in £j is the same as for Mf in Tf. Thus,
the inclusion above gives

Mf =JrfnCf,
as a linear slice of Cf. In particular, Mf is a compact convex body in Tf.

Theorem 2. Given a full homothetic minimal immersion f : Sm —s- Sy, the set

of congruence classes of full homothetic minimal immersions f : Sm -^ Sy' thai
are derived from f can be parametrized by the convex body

The convex body Mf is said to be the moduli space associated to the full
minimal immersion / : Sm —> Sy- We say that / is linearly rigid [17] if Mf
reduces to a point. Note that the connecting, antipodal and transversality lemmas
remain valid in the context of minimal immersions.

Since SO(m+l) acts transitively on the unit sphere bundle of Sm, the standard
p-eigenmap fp : Sm —> Sup is conformai and thereby a minimal immersion with
homothety Xp/m. The standard moduli space Mp Mvm Mfp is the linear
slice of D> by the SO(m + l)-submodule Tv T^ Tiv C S2{W) and it
parametrizes the congruence classes of all full minimal immersions with homothety
Xp/m. The ultimate goal is to describe Mp. As a first step, we need to determine
the SO(m + l)-module structure of (its linear span) JFP, that is, the decomposition
of Tv into irreducible submodules. By DoCarmo-Wallach [3,17], Tv is nontrivial
iff m > 3 and p > 4.
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1.3. Some representation theory

y(«i, ,ud) V^[ 'Ud\d [(m+l)/2], denotes the (unique) complex irreducible
6*0(771 + l)-module with highest weight vector (u\,... ,Ud) relative to the standard
maximal torus in 5*0(771+1). In particular, y(p>0> >°) Tip as complex <S*O(m+l)-
modules. (Here and in what follows we denote TLV and its complexification by the

1 1 \ T^ o 1 ~ T r(u,v) T r(u,v) „ -w t(u,— V)
same symbol.) bov m 6 and v > 0, V£ ' means V^ (B V£

By DoCarmo-Wallach [3]:

Hp(E)Hq= Y^ v(u'v'0' '°\ p>q> 1, m > 3,

(u,v)eA^q ;u+v=p+q (mod 2)

where Ag'9 is the closed convex triangle in R2 with vertices (p — q,0), (p,q) and
(P + 9,O).

Setting p q and deleting the components that belong to the skew-symmetric
part of W®HP, we have

S2(HP)= Y^ V(u>v>°> >°\ (2)

(«,d)eAJ; u,v even

where we simplified the notation by setting Ag Ag'p.
We have

£p(E)C= Y V(u'v'0' '°\ (3)

(u,u)êAJ;«,i even

where A^ is the closed convex triangle in R2 with vertices (2,2), (p,p) and (2p —

2,2). For a quick proof cf. [5].

Remark. Let / : Sm —> Sy be a full p-eigenmap and assume that

These components correspond to the northeast side of the triangle A|. Then [14]

we have

dimV ydimHP^/im + l). (4)

(This is because the condition guarantees that the partial derivatives of the
components of / span TLP~^.)

The main result of DoCarmo-Wallach [3,17] asserts that J7^ is nontrivial iff
771 > 3 and p > 4.

The following result is proved in [14] and gives the positive resolution of the
so-called DoCarmo-Wallach conjecture:

Theorem 3. For m > 3 and p > 4,

y(2,2,0, ,0);_ ;y(2p-2,2A ,0)
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are not components of J-p so that we have

V(u'v'0' '°\ (5)

(u,v)e A^;u,v even

where A^ is the closed convex triangle in R, with vertices (4,4), (p,p) and (2p —

4,4).

Remark. In the lowest nonrigid range m 3 and p 4, Theorem 3 has been

proved by Muto [9].

1.4. Isotropie minimal immersions

Let / : Sm —s- S'y be a minimal immersion with homothety Xp/m. We denote by
ßk(f) an(i Op k < p, the k-th fundamental form and the k-th osculating bundle
of /. We say that / is isotropic of order k, 2 < k < p, if, for 2 < / < k, we have

(ßi(fp)(Xu ¦ ¦ ¦ ,Xi),ßi(fp)(Xl+1,... ,X2l))

where X\,... X%i are vector fields on Sm [5]. In this case, for 2 < / < k, the
osculating bundles OK and OK are isomorphic with a flbrewise isometry. Restricting
to the base point o (1,0,... 0) G Sm, as S>O(m)-modules, we thus have

In particular, since the osculating bundles are in the normal bundle, we obtain
that, for a full minimal immersion / : Sm —> S'y with homothety Xp/m, isotropy
of order k implies that

k

(YimV > ^dimW^! dimH^.
1=0

(The last equality is because of branching over SO(m) C SO(m + 1).)
According to a result of [5], the space of congruence classes of full minimal

immersions / : Sm —> Sy with homothety Xp/m that are isotropic of order k,
2 < k < p, is parametrized by a linear slice J\Av'>k of A4P whose linear span Tv>k is

an SO{m + l)-submodule of S2{W). We have [5]

v{u'v'°' '0)'

where A^ C A^ is the subtriangle with vertices (2(k + l),2(k + 1)), (p,p) and
(2(p — k — 1), 2(A; + 1)). Moreover (and this is more difficult), for m > 4, equality
holds.

Combining this with the above, we see that given a full minimal immersion

f :Sm ^Sv with homothety Ap/m, if (/) G \/(2'», / k,... ,p - k, then (/ is

isotropic of order k — 1 dim V > dim Ti^1.
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1.5. Representations of SU(2) S3

From now on we specialize the source dimension to m 3 The case of the 3-

sphere S*3 as a source deserves a special attention since it is itself a Lie group,
the Lie group of quaternions of unit length We write an element of S*3 as a + bj,
where |a|2 + |6|2 1, a, 6 G C Associating to a + bj G S*3 the special unitary
matrix

gives an isomorphism S*3 SU(2) Viewing a complex 2-vector (z,w) G C2 as

a real 4-vector (x,u,y,v) G R4, z x + xy, w u + iv, gives an embedding
of SU (2) into SO {A) as a normal subgroup The orthogonal transformation 7
diag(l, 1,1, —1) G O(4) (or equivalently, 7 z \-+ z, w \-+ w) conjugates SU{2) to
the subgroup

1, 7^=7, (6)

of SO (A) and (as simple computation shows), we have

SU(2)f)SU(2)' {±I} (7)

and (for reasons of dimension)

SU{2) SU{2)' SO{A) (8)

The complex irreducible S'C/(2)-modules are parametrized by the dimension of
the module More concretely, let Wp, p > 0, be the linear space of complex
homogeneous polynomials of degree p in z and w The standard basis in Wp is

{zp~qwq}p=Q Wp is a complex irreducible SU(2)-mod\ile with dim Wp p + 1

and each complex irreducible SU(2)-modu\e is equivalent to Wp for some p As
S'C/(2)-modules, we have

s

Wr «g) Ws J2 Wr+a-2t, r > s > 0 (9)
t=0

Restricting from 50(4) to E/(2), the S'O(4)-module TLV of complex spherical
harmonics on S*3 of order p splits as

6=p, a 6>0

where Ha b
is the complex irreducible C/(2)-module of harmonic polynomials of

degree a in z, w and degree 6 in z, w (This is easily seen by writing a harmonic p-
homogeneous polynomial in terms of the variables z, z,w,w The center F C U(2)
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acts on each Ha'b as a character. Restricting further to SU(2) C U{2), we thus
obtain

as complex S'C/(2)-modules. More generally, by the local product structure (8),
the S'O(4)-module Hp splits into the tensor product

W WV®W'V. (11)

Here we use the following notation. If W is an SU(2)-mod\ile then W denotes
the SU(2)'-module obtained from W by conjugating first SU{2)' back to SU{2)
within SO(A). Moreover, if —/ acts on W trivially then W is also considered as

an S'O(4)-module with trivial action of SU(2) on W. Similarly, if —/ acts on W
trivially then W is also an S'O(4)-module with W\SU(oy being trivial.

In the next lemma recall that we write V^v\ v > 0, for V^u'v) 0 v}u'~v\

Lemma. Let u > v > 1 and u + v even. Then

y(u,v) Wu_v ^ w^ 0 Wu+v ^ w^_v

and hence

su{2) 1)WU_V ®(u-v+ l)Wu+v. (12)

Proof. The northern vertex (u,v) in Ag'11 is missed by the subtriangles Ag~ 'v~

and Ag 'v~ overlapping in A^'v~ We thus obtain

We work out each tensor product using

Hr <E)HS (Wr <g) Wl) <g) (Ws <g) Ws')

(wr+s e VKr+s_2 © • • • © wr-s)
«8) (^+s e ^;+s_2 e... e w;_s), r>s,

and arrive at the stated equality.

Corollary. Letu > v > 1 andu + v even. Then V^u'v> \su(2) contains the trivial

SU\2)-module iff u v. The multiplicity of the trivial SU\2)-module in V^U}U> is
2u + l.

With the notation introduced above, we have

y(«,«) w2u 0 W'2u (13)
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as (complex) S'O(4)-modules
Finally, we make some comments on real irreducible S'C/(2)-modules For p

even, Wp is the complexification of an irreducible real S't/(2)-submodule Rp In
fact, Rp is the real subspace of the complex antilmear map of Wp that sends

z^wP-i to (-l^zP-iwi, q 0, ,p The standard basis of Rp is given by

zp + wp, i(zp - wp), zp-Xw - zwp-X, i{zp-Xw + zwp-X), iP/2zp/2wp/2

Using (11) and (13), we obtain the following real SO (A) modules for p even

V{-uu^=R2u®R'2u (14)

For p odd, Wp, considered as a real SU(2)-mod\ile, is irreducible We denote this
real representation by [Wp]n Hence we obtain the following real S'O(4)-modules
for p odd

^-[WP]R V^^=R2u®R'2u (15)

2. SU'(2) equivariant eigenmaps and minimal immersions

Smce S*3 acts on itself by left quatermomc multiplication, a p-eigenmap / S3 —>

S'y is SU(2) equivariant if there exists a homomorphism pf SU(2) —> S'O(V)
such that

foLg=pf{g)of, geSU{2),
where Lg is left quatermomc multiplication on S3 by g as a quaternion Clearly,
a p-eigenmap / is SU(2) equivariant iff / o 7 is SU(2)' equivariant The spaces
of congruence classes of full SU(2) (resp SU(2)') equivariant p-eigenmaps are
parametrized by the linear slices

£Pn {£P)SU(2)

We can find (£P)S(7(2) from the decomposition formula (3) by setting m 3,

restricting both sides to SU{2) and counting the trivial components In fact,
according to (14)

as S't/(2)/-modules In view of this, (3) and Corollary in 1 5, we have

[p/2]

{£p (g)

fc=l

fc=l
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so that, as real S't/(2)/-modules

[p/2]

{£P)SU{2) £ Rf4k

fc=l

Similarly

fc=i

as real S'C/(2)-modules In the lowest nonngid range p 2 (for eigenmaps), A^ in
(3) reduces to the single point (2, 2) so that we have

£2 {£2)SU{2) 0 {£2)SU{2)> =R>4(BRi

as S'O(4)-modules Thus the moduli space £2 is 'split' by two 5-dnnensional

orthogonal slices (£2)s(7(2) Û C\ R'A and (£2)s(7(2)' £2 n R4 parametrizing
SU{2) and SU{2)' equivanant quadratic eigenmaps It is now a crucial observation
to be generalized below that £2 is the convex hull of these slices [13]

Remark. As a convex set (£2)s(7(2) ^ (£2)s(7(2)' is the convex hull of aprojective
plane embedded into S*4 as the Veronese surface [14] More generally, for p even,

(Cp)su^ {Co G S2(Rp) I traceCo OandCo +/ > 0}

This follows from 'Hp\su(2) (p + 1)-Rp (cf (14)) and Schur's lemma applied to

symmetric endomorphisms of TLP in (fP)s(7(2) that commute with the action of
SU(2)

The situation is analogous for minimal immersions We have

(Mp)su(-2) =MpD (Tp

and similarly for SU(2)' Moreover, as S't/(2)/-modules

fc=2

fc=2

As for eigenmaps, we see that the SU(2) and SU(2)' equivanant minimal immersions

correspond to the northwest side of A1^ in (5) As real S't/(2)/-modules

k=2
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In particular, counting dimensions

dim(Mp)SU{2) di
[p/2]

fc=2

(2[p/2] +

This formula has been derived in [2] using a 'heuristic argument'
In the lowest nonrigid range p 4 (for minimal immersions):

as real SO(4)-modules. Intersecting with the moduli space we see that A44 is 'split'
by two 9-dimensional orthogonal slices (A44)s(7(2) M4 n R'8 and (A44)s(7(2)'
A4 ni?8 corresponding to SU(2) and SU{2)' equivariant minimal immersions. It
is also clear that precomposing quartic minimal immersions with 7 has the effect
of interchanging Rg and R'g.

Let B\ (dMp)su^ and B\ (dMp)su^'. Thus B\ (resp. B\) parametrize
the boundary type SU(2) (resp. SU(2)') equivariant minimal immersions / : S3 —>

Sy with homothety Ap/3.

Theorem 4. For p > 4, dMp l~l y(2fc>2fc) «s i/ie «mow of segments with one end-

point on B\ n \/(2fc'2fc) ararf the other on B\ n \/(2fc>2fc). Equwalently, every full
(boundary) minimal immersion f : S*3 —s- S'y 0/ degree p such that (/} G \/(2fc.2fc)

m congruent to one of the form (v^I/li \P^.f2 o 7) : S*3 ^ S'y, xy97 Ai + A2 1,

Ai, A2 > 0, where f\ : S -^ Svx and fa : S -^ Sy2 are full SU(2) equivariant
(boundary) minimal immersions with (/1), (/2) € i?4fc C y(2fc'2fc).

Proof. The connecting lemma establishes the equivalence of the two statements.
To prove the first it is enough to show that any segment connecting Bp n \A2fc>2fc)

and Bf, n \/(2fc'2fc) is entirely contained in the boundary of A4P. Let f\ and /2 as

in the second statement and let (/} be in the interior of the segment connecting
(/l) and (fa o 7}. We need to show that (/} G dßAp By the connecting lemma
cited above, we have

Vf=Vh+Vho7.
Since f\ and fa are SU(2) equivariant and of boundary type, Vf1 is a proper
St/(2)-submodule of TLP and Vf2O7 is a proper St/(2)'-submodule oîHp WV®W'V
(for simplicity we complexify again). We need the following elementary statement
whose proof is an easy application of Schur's lemma.

Lemma. Let G be a compact Lie group, R an irreducible G-module and W a

trivial G-module. Then any G-submodule Z of R<S>W is of the form Z R<S> Wq,
where Wq C W is a linear subspace.
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Returning to our previous setting, we have

Vh Wp <g) W^ and V>2O7 Wo <g> Wj,

where Wq C Wp and Wq C W^ are proper linear subspaces. Hence

vf vh + vhoi wP ® wä + w0 ® w;.

But Wo <8> Wq is equal to the overlap of both subspaces and hence V) can never
have the full dimension. Thus / is of boundary type.

Theorem 4 gives a complete description of full minimal immersions / : S3 —>

S'y with homothety Ap/3 whose parameter point (/} is in one of the irreducible

components V(4-4), y(6>6),... \/(2b>/2],2[P/2]) correSpOnding to the northwest side
of the triangle A^ in (5). It states that such minimal immersions are obtained
from SU{2) equivariant ones by the prescription given in the connecting lemma.
In particular, in the lowest nonrigid range p 4, A4, collapses to the single point
(4,4) so that Theorem 4 completely describes all full quartic minimal immersions
in terms of SU{2) equivariant ones. The proof of Theorem 4 also gives all possible
range dimensions of such minimal immersions for p > 4. This gives a partial
answer to a problem posed by DoCarmo: What are the possible (in particular,
minimum) range dimensions of all spherical minimal immersions?

Theorem 5. Let f : S3 —s- S'y be a full minimal immersion of degree p > 4 and

assume that (/} G \/(2fc>2fc). Then the possible range dimensions of f (plus one)
are

a) For p even

dim V (p + 1) — rs, with 1 < r, s < p — [(p + l)/4] or
dim V (p + l)r, with [(p -\- l)/4] + 1 <r<p+l (for the equivariant ones).

b) For p odd

dim V (p+ I)2 - rs, with 1 < r, s < p - [(p + l)/8] or
dim V (p + l)r, wrf/i [(p + l)/8] + 1 <r<p+l (for the equivariant ones).

Proof. It follows from the proof of Theorem 4 that dim Vf (p + l)dimWQ +
dimWo(p + 1) — dim Wq dim Wo. Furthermore, notice that it follows from (15)
that for p odd, the dimension of Wo and Wq must be even. But there are further
restrictions on the possible dimensions of equivariant embeddings. In [15] it was
proved that if / : S3 —> Sy is a full SU(2) equivariant minimal immersion of degree

p and (/} G \/(2fc>2fc) then dimV > (p + l)2/4. Of course for the equivariant ones
we also need that dimV is divisible by p + 1 if p is even and by 2(p +1) if p is

odd. This easily implies the claim in the theorem.
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Remark For p 4 and p 5, (JrP)s(7(2) consists only of a single irreducible
suminand But starting with p 6, it has at least two irreducible summands, in
particular (F6)SUC2) R'8 e R[2 In [15] it was shown that if p 6 and if (/) lies

in Rg or in i?'12, then dirnV^ > 14 The connecting lemma hence shows that any
point in the convex hull of M6 l~l R'8 with A46 l~l R'12 also has dimV^ > 14 But
in [2] an example was constructed of an equivanant minimal isometric immersion
with p 6 and dim V 7 (and was shown to be unique among such equivanant
isometric immersions) It follows that it cannot be in the convex hull of A46 l~l R'8

with A46 n R'12; le this immersion must "bulge out" in the moduli space Thus
the moduli space for p > 6 must have a much more complicated structure than for

p 4 It was conjectured in [2] that this degree 6 immersion into S6 is the only
degree 6 immersion with dim V 7 The above remarks show that a proof of this
fact must be much more complicated than the proof of theorem B

3. Quartic minimal immersions

From now on we let p 4 (and m 3) Theorem 4 asserts that A44 is the

convex hull of (A44)s(7(2) and (MA)SUW corresponding to SU{2) and SU{2)'
equivanant quartic minimal immersions The possible range dimensions for a full
S£/(2)-equrvanant quartic minimal immersion / S3 —s- S'y are

dim V 5,10,15,20,25

This is because V is an S't/(2)-submodule of W4|s[/(2) 5i?4 so that it must be

a multiple of R4 The range dimension 5 is not realized This follows from a

general theorem of Moore [8] or by easy computation in the use of the equivanant
construction below Thus Theorem 5 gives all possible range dimensions of full
quartic minimal immersions / S*3 —s- S'y

dim V 10,15,16,19,20, 21, 22, 23, 24, 25

We will see later that the range dimensions 10,15, and 20 actually occur for full
SU(2) equivanant quartic minimal immersions so that, without equivanance, all
the rest of the range dimensions above are realized Notice that it also follows from
the proof of Theorem 5 that diinT^ 10,15 and 20 can only occur if the minimal
immersion is SU(2) equivanant or SU(2)' equivanant In [2] it was shown that
there exists a unique SU(2) equivanant minimal immersion with dirnV^ 10 (up
to precomposition with an isometry of the domain) and hence Theorems A and B

in the introduction follow
We say that an equivanant minimal immersion is of type I, II, or III if the

ambient dimension is dimT^ 10,15, or 20 We denote by I, II, and III the set
of all minimal immersions of type I, II, and III Similarly for I', II', and III' in
<9(A/f4)s(7(-2-1 It follows also, that for example the immersions with dimT^ 16

in clM4 can only be obtained by connecting an immersion in I with one in I'
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Furthermore, if we connect a linear slice M.f in III with another linear slice

A4f in III', we obtain a 13 dimensional linear slice in clM4, which is the largest
dimensional linear slice in the boundary of A44 The equivanant immersions must
have an embedded image since they are given by orbits under the action of SU(2)
and SU{2)', in fact the orbit of a polynomial p G W4 is diffeomorphic to SU(2)/G
where G is the isotropy group of p From [2] it follows that the possible isotropy
groups are D^Z^ and Z%, Z% being the principal isotropy group Hence in the
equivanant case the images are embedded S^/D^, lens spaces S^/Z^, or projective
spaces RP3 We will see that all three cases actually occur

Since (A/f4)s(7(-2-1 is the 7-copy of (A/f4)s(7(-2-1, it remains to describe the latter

and this is our mam purpose in this section For simplicity we denote B
(A/f4)s(7(-2-1 and from now on all minimal immersions will be SU(2) equivanant
The SO (A) action on (<M4)S(7(2) reduces to an action of SU{2)' and hence I, II,
and III are each union of SU{2)' orbits The action of SU{2)' on R'8 (F4)su&
is the action on polynomials in z, w of degree 8 The orbits are all 3-dnnensional,
except one orbit, the one through z4w4, which gives rise to a minimal isometric
embedding of RP2 into a sphere in R'8 It follows from [2] that the possible finite

isotropy groups of SU{2)' acting on R'8 and hence also on <9(A/f4)s(7(-2-1 consist of
the cyclic group Z% (the principal isotropy group), the binary dihedral groups D%,

D% and _D|, and the binary octahedral group O* As was observed in [2], many of
the orbits are again minimal isometric immersions in their respective spheres

We now turn to the 'equivanant construction' for SU{2) that provides an
explicit description of all SU{2) equivanant minimal immersions as (constant curvature)

SU(2) orbits of polynomials in S't/(2)-submodules oîHp We first summarize
some of the results in [2] Each equivanant construction used here is based on an
S't/(2)-submodule of Hp, where we now (briefly) return to the general case p > 4

As a first example we take this to be Wp Consider a polynomial £ G Wp, of unit
length In terms of the standard basis in Wp, we write

Ç(z,w) cozp + c1zp~1w + + cpwp, co, ,cpgC (16)

Let /e S*3 —s- Swp be the orbit map

h{g) g e e°Ls 1, geSU(2) S3

More explicitly, setting g a + bj G S*3, we have

fç(a + bj)(z,w) Ç(az — bw,bz + aw), z, w G C

It is important to note here that /e is equivanant with respect to the conjugate
subgroup SU{2)' (and not with respect to SU{2)) More precisely, by the
identifications we made, we have

> f
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Note that the matrices differ by conjugation with diag (f, f, —f, —f (that preserves
the local product structure (8)) For this reason, we will usually make /e SU(2)
equivanant by precomposmg it with 7

/e is minimal iff

V^o ^2/ m ,2 P(P +2)
2_^(2q-p) (p-qyql\cq\
9=0

9=0

9=0

p -2q- \){q + l)l(p - qyCqcq+1 0

9=0

The first two equations are real and the last two are complex so that we have 6

constraints on the 2(p + f real variables dt(cq) and 3(cq), q 0, ,p
For p even, we can take Rp instead of Wp by requiring ^ £ Rp (so that /e

will actually map into Srp) Using the standard basis in Rp, we obtain that this
additional requirement translates into

cp co, cp_i -ci, ,C(j,/2)+i (-l)^/2^+1C(j,/2)-l, cp/2 tp/2t, t G R

We incorporate these p+1 additional constraints by writing

CQZP + CQWP

The system of equations for minimality of /e thus reduces to

9=0

9=0

(p/2)-3

J] 2(9 + 2)l(p -
9=0

/2 2* 0

- qyCqCq+1 + {-iyi2{p/2y{{p/2) + îyc^^t o

9=0
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As a first explicit example we now show that there is no SU{2) equivanant quartic
minimal immersion with range V R4 Indeed any such should come from the
equivanant construction above for p 4 The equations for minimality reduce to

12|ci|2+4t2 l,
3c2 + 8c0t 0,

— c\t 0

These equations are inconsistent and we are done
Next we turn to the description of type I minimal immersions These are

obtained from the equivanant construction applied to W4 2R4 Setting p 4

the constraints for W4 specialize to

48|c0
2

24|c0

2

2

H3|ci

H6|ci

2

2

h3|c3

h4|c2

2

2

h48|c4

h6|c3
2

2

H

1,

- 24|c4

C4 0,

34 0

This system has solutions, for example

co V6/24, c\ 0, c2 V2/4, c3 0, c4 -V6/24

To work out the orbit map /e S*3 —s- Sw4, we identify W4 with C5 by the
orthonormal basis

z4/V2Â, z3w/Vë, z2w2/2, zw3/Vë, w4/V2Â

We obtain (replacing the variable a+bj with z+wj in S*3, precomposmg with 7 and

up to an isometry on the range) the full quartic minimal immersion I S3 ^ S®

of type I, given by

w)

\2(z w -\- zw ),-\/6(zz w — zw w), (17)

- z2w2), 4 - A\z \w\4)

(The first four coordinates are complex, the fifth is purely imaginary and the sixth
is real so that I maps into C4 x (zR) x R R10 An important property of I is

that its components are orthogonal with the same norm



106 G. Toth and W. Ziller CMH

According to a rigidity result in [2], up to isometries on the source and the

range, this is the only type I minimal immersion and the image of the immersion
is an embedded S^/D^. Hence

l SU{2)' ¦ (I),

where we used SU(2) equivariance of I. For the next result we recall that the
octahedral manifold [2] is the quotient S*3/O*, where O* is the binary octahedral

group (that is the twofold cover of the group of symmetries of the regular
octahedron along S*3 —> 5*0(3)).

Theorem 6. 1 is a single SU(2)''-orbit. Furthermore, this orbit is an octahedral
'manifold S /O* embedded minimally in an 8-sphere of i?g. This embedding is

given by a degree 8 equwanant immersion o/S*3.

To prove the second part, we will have to show that O* is the isotropy group
of the SU(2)' action at (I), a computation which we postpone for the moment.
Once this is done, it follows that the orbit S*3/O* must be minimally embedded in
a sphere since according to [2] there exists only one orbit with isotropy O* which
is hence an isolated exceptional orbit and hence must be minimal. Or, as was
first observed in [18], S*3/O* is isotropy irreducible and hence for every invariant
polynomial the orbit construction must give rise to an isometric embedding up to
scaling.

We will first consider the type II immersions:

Theorem 7. We have

dimll<6. (18)

The set II splits into the disjoint union

II II0UlIi (19)

corresponding to linearly rigid and nonngid quartic minimal immersions. We have

dimllo 6. (20)

and

III SU(2)' ¦ V, (21)

where T> is a flat 2-dimensional disk with boundary circle on the octahedral manifold

I.

Proof. We show (18) by a careful dimension computation. For type II minimal
immersions the S'C/(2)-module is 3.R4. Since R4 can be thought of as the SU (2)-
module of quartic polynomials

£(2, w) CQZ + CQW + C\Z W — C\ZW — tz W' CQ, C\ G C, t G R,
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we look upon a general element of 3i?4 as a triple

f A A % % 9 9 *

üqz -\- üqw -\- a\z w — a\zw — rz w
Bqz -\- bow -\- b\z w — b\zw — sz w

A A Q 3 9 9
CQZ -\- CQW -\- C\Z W — C\ZW — ZZ W

where ao, a\, bo, b\, cq, c\ g C and r,s,t G R The decomposition 3i?4(= V) is not
unique, m fact, 5*0(3) acts on 3i?4 m a natural way Thus, rotating (r, s,t) G R3,
we may assume that r s 0 and t > 0 We still have the freedom to rotate
along the third axis This amounts to the change

ao h^ cos a ao — sm a bo,

ao + cosa 6o, (22)

and similarly for a\ and b\ The equations for minimality are

96(|ao|2 + N2 + M2) + 6(|ai|2 + |è!|2 + |C

48(|ao|2 + N2 + |co|2) + 12(|«i|2 + |6i|2 + |ci|2) + 4t2 1,

3(a2 + 62 + c2) + 8c0t 0, (23)

bob\ + coc\) — c\t 0

Note that these equations are invariant under the action (22) of 5*0(2) For fixed
t G R we can solve the first two equations and obtain

where

The second equation reduces the range of t to

0 <t < 1/V8

If t 1/V8 then a\ b\ c\ 0 The third equation m (23) gives c0 0 (the
fourth is automatically satisfied) so that we have

NI2 + M2 1/96
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We obtain that, for t 1/V&, the solution set is the 3-sphere (of radius l/\/96)
The action of SO(2) on (ao,&o) (whose orbits are essentially given by the Hopf
fibration) reduces this to a 2-dnnensional solution set

Now let 0 < t < 1/1/8 Since both radii ro(t) and r\{t) are positive, the first
two equations above say that

(ao,&o,co) € ^(t) and (ai,èi,ci) G S^^

in two copies of C3 If t 0 then the third and fourth equations in (23) reduce to

al + 61 + c1 0

and
0

The first of these is a complex quadric that intersected with S*5 ,_ gives a smooth

3-dnnensional manifold for {a\,b\,ci) (In fact, this is the real projective space
For fixed {a\,b\,ci), the second equation is a complex plane that intersected
with Sf,^2 gives a great 3-sphere Putting these together, the product is a 6-

dimensional manifold on which SO(2) acts without fixed points The quotient
gives a 5-dimensional solution set

Finally, let 0 < t < l/VE Given {a\,b\,c\) G S^ /^, we use the third equation

in (23) to get
O

The fourth equation in (23) is an affine complex plane

aoa\ + b(jbi + cqci -c\t
D

that, intersected with S^ /^ and knowing the value of cq, reduces the solution set

for (ao,6ojco) to at most one dimension This is because a\ and b\ cannot vanish
simultaneously (Indeed, if a\ b\ 0 then cqc\ -3c|ci/(8t) -3|ci|2ci/(8t)
On the other hand, cqc\ c\t/6 Combining these we obtain t 0, a contradiction

This, combined with the 5-dnnensional solution set for {a\,b\,c\) gives
a 6-dimensional solution set As before, the action of SO(2) reduces this to 5-

dimensions
Summarizing, for fixed 0 < t < l/\/8, the solution set is always at most 5-

dimensional Varying t now gives (18)
Next we consider Hi in the splitting (19) Given a full minimal immersion

/ S*3 —s- S'y of type II, if / is linearly nonngid, that is dim A4 / > 1, then the
points on dßAf correspond to type I minimal immersions so that dßAf C I Thus,
to describe Hi we consider line segments connecting pairs of points in I and use
the connecting lemma to make sure that the points in the interior of the segment
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correspond to type II quartic minimal immersions Since I is a single orbit, we may
assume that one endpomt of the segment is (I) We now choose g a+bj G SU (2)
so that 7#7 G SU(2)' and let the other endpomt be (To (737)) By the connecting
lemma, the space of components of any quartic minimal immersion corresponding
to the interior of the segment connecting these two points is the S'C/(2)-module

Vr

and, assuming that the endpomts are distinct, the interior points correspond to
type II or type III according as this is 3R4 or 4.R4 To simplify the computations,
we consider the quotient

(VXo(-yg-y) + Vl)IV1 VTo(7g7) / (VXo(7g7)

This quotient is trivial iff

a task we also have to carry out to prove Theorem 6 since 737 then belongs to the
isotropy group of SU(2)' The quotient is equal to R4 or 2R4 according to whether
we have type II or type III in the aforementioned segment Technically speaking,
we need to make the substitution z 1—> az + bw and w 1—> — bz + aw corresponding
to 7(77, g a + bj, in each of the polynomials in

A 499^ ^9 9
Vx span {z - w z w z w + zw ,zz w - zw w,

and work out the components modulo Vx Elementary computations now give
that VToiigi\ modulo Vx is spanned by the following polynomials

l^z4 + Aßz3w + Aßzw3 (24)

vz — 2az w -\- 2azw (25)

IJ,z3w - ßz3z + ßww3 + 3ßz2ww - 'ißzzw2 (26)

— 2vz w — Q.Z z — Q.WW -\- Za.z ww -\- Za.zzw (27)
~~ 2 2\\ /oo\n in — zu) [ /n

'zw - zw2w)), (29)

where

a aè(|a|2-|è|2)

ß a3b + ab3

v a2b2 + a2b2
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Lemma. (24) — (29) are linearly dependent iff

dt(aß) 0 and a.\i + 2ßv 0. (30)

Proof. We first observe that (24)-(25), (26)-(27) and (28)-(29) are mutually
orthogonal. Thus, we need to study linear dependence of each pair of polynomials.
The proposition now follows by case-by-case verification by splitting the first two
pairs of polynomials into real and imaginary parts and evaluating each 4x4-
subdeterminant of the corresponding 4 x 6-matrices. The last pair gives only
2 x 2-subdeterminants of a 2 x 4-matrix.

The remaining task is to work out (30) in terms of a and b. The first equation
in (30) gives

(|a|2-|6|2Ma262)=0. (31)

It is convenient to use 'isoparametric' coordinates on S*3, that is to set

a coste*e and 6 sin£e*^. (32)

t 0,tt/2 correspond to the two great orthogonal circles cut out from S*3 by the

span of the first and last two coordinate axes; a fixed 0 < t < tt/2 corresponds to
the Clifford torus Tt parametrized by 9 and </>.

Case I Let |a|2 |6|2. We are on the 'middle' Clifford torus 2^/4. We have a 0

so that, the second equation in (30) reduces to ßv 0.

If ß 0 then, substituting (32) into the expression of ß we obtain

</> — 6 -\- (2k -\- 1)tt/4, k € Z,

or equivalently,

a=(l/V2~ye, and b (l/v/2)e^ee2fc+1, k £ Z,

where e em/4.

If v 0, we get
</> 6 -\- (2k -\- 1)tt/4, k G Z,

so that
a (l/V2)ete and b (I/V2)elde2k+1, k e Z.

Summarizing Case I, the solution set is the union of 8 closed curves in 2^/4 and

they lift to [0, 2tt] to give straight segments with slope ±1 and 6- and (/»-intercepts
being any odd multiples of tt/4.
Case II We assume that t =/= tt/4. If t 0 then

a e%e and 6 0.
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We obtain the entire great circle To

If t ir/2 then
a 0 and b el4>

and the solution set is T^ß
Finally, let 0 < t < tt/2 and t ^ tv/A Working out each coefficient a, ß, /x,

v and substituting them into the second equation in (30), we finally arrive at the
solution set

a cos te' and b suit ele2k+1, k,leZ (33)

For fixed t as above, this is the union of 32 points and on [0,2tt]2 they
correspond to the intersection points of the straight segments obtained above As t
moves, these points sweep 32 curves that, on 2^/4, meet the existing solution set

in triple intersection points and on To an(i 2^/2 they also produce 8 triple
intersection points distributed equidistantly Summarizing, the solution set consists of
48 closed curves meeting in 48 triple intersection points Looking at each case

separately, we see that the triple intersection points are given (as quaternions) by

(l/V2)(ek + elj), k^l(mod2), ek, elj, k,leZ (34)

These form a group of order 48 and is conjugate in S*3 to the binary octahedral
group O* By abuse of notation, we denote this conjugate by the same symbol
We obtain that the orbit I is the 'octahedral manifold' S*3/O* in B and the second

part of Theorem 6 follows

Looking now back at the 48 curves above, we see that on the quotient I
S*3/O* they give exactly 3 closed curves intersecting at (I) After conjugation
with 7, they are orbits of the (mutually orthogonal) 1-parameter subgroups
corresponding to Z, (1/V2)(Y + X) and (l/y/2)(Y - X) in su{2), where

Z i 0

0 -i X
o il ro i
-l o ' U o

form the standard orthonormal basis in su(2) Denote these orbits by a, a' and
a" More explicitly, a is parametrized by

e^1e%e1 (I), öeR

(corresponding to t 0 in Case II) and a' (resp a") are parametrized by (33)
with k I 0 (resp k 1 and / 0) Note that they intersect orthogonally at
(I)

We now take a closer look at a A quick check of Case II reveals that VIof7e^e7\
modulo Vx does not depend on 9 The same is true for
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so that the connecting lemma implies that a is on the boundary of the relative
moduli space corresponding to any interior point of any segment connecting two
distinct points of a. We choose the midpoint of the segment connecting (I) and
em/8 ^ that has the type jj representative J : S3 -> Su given by

J{z,w) (1/^2) (z4 ,w4,2VSz2w2,2z3w,2zw3,

2w - zw2w),Vëz2w2, \z\4 - 4\z\2\w\2\w\2 + \wf)

Thus, we have a C dAij. Our immediate purpose is to show that a
holds. To prove this, we make a slight detour and, observing that J is U(2)
equivariant, we claim that the segment

parametrizes all full quartic U(2) equivariant minimal immersions / : S3 —s- S'y.
Indeed, the U(2) equivariant quartic minimal immersions are parametrized by the
fixed point set (.M4)'7'-2-1 so that the claim follows once we show that (R'8)u(2> is

1-dimensional. Since R'8 is SU(2) fixed, we have (i?g)(7(2) (R'gf, where

T {diag(eîe,eîo) | 9 e R} C SU{2)' (36)

is the center of U(2). As noted above, 7 G O(4) switches Rg and Rg and F to

eeGR}; (37)

the standard (1-dimensional) maximal torus in SU(2). Thus, (i?g)r corresponds
to (Rg) ¦ On the other hand, T' acts on the standard basis in Rg diagonally with
a unique F'-fixed polynomial —z2w2 and the claim follows.

Remark. For p even, Wp Ti^ where the SU(2)-module structure on the

space of spherical harmonics on S2 is given by the projection SU(2) —s- 5*0(3).
Thus we also have Rp H^2 as real modules. The SU(2)' orbit of (J) is RP2
embedded minimally into its respective 8-sphere as the image of the standard
minimal immersion f2 : S*2 -> S*8. Indeed, (F4)su& R'8 U\ and (R!g)u(-2')

corresponds to the zonals (TL^)30 whose 50(3) orbit on the unit sphere gives
the image of fy.

We are now ready to prove that a dßAj. By the above, a C dßAj so that
M.j is at least 2-dimensional. Since {J) is F-fixed, F leaves M.j and its boundary
invariant. F acts on dßAj without fixed points since a fixed point is automatically
U{2) fixed and there are only two of these on the entire boundary. Thus, dim M.j
must be even, therefore 2 or 4. Finally, it cannot be 4 since, in that case,
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would be a topological S*3 (by convexity) and it would have to coincide with I
(for reasons of dimension) The latter is S*3/O* that is topologically distinct from
S*3 We obtain that Mj is a flat 2-disk V with center (J), in particular, dA4j is

1-dnnensional, and thus it must coincide with a
The argument is entirely analogous for a' and a" so that they are the boundary

circles of 2-disks V and T>" Note that T>, V and T>" are orthogonal to each other
at the common boundary point (I) We now let SU(2)' act on this configuration
and realize that V and V" are on the SU{2)' orbit of V We thus arrive at (21)

At this point, without having a detailed study of the type III quartic minimal
immersions, we can only assert that IIo is of dimension at least 3 and postpone
the proof of (20) More specifically, we claim now that the antipodal orbit

SU(2)' <IO)

consists of type II linearly rigid quartic minimal immersions To do this, we first
determine the antipodal of I Recall that I has orthogonal components with the
same norm so that the antipodal lemma applies It immediately gives that the
antipodal Io is of type II The S't/(2)/-orbit through (Io), being the antipodal of
I, is again an octahedral manifold It remains to show that Io is linearly rigid
Assume that Aijo is nontrivial and consider a line segment through (Io) with
endpomts (/i) and (fa) on dA4xo Clearly, f\ and fa are of type I Consequently,
the antipodals /f and /| are of type II Let (/} be the intersection of the segment
connecting (/£) and (f%) with the line R (Io) We claim that / is of type III which
is a contradiction since, in this case, it should be congruent to I (the antipodal of
Io) that is of type I To prove the claim we use the connecting lemma and compute

On the other hand

dim(y/l P| Vh dim Vh + dim Vh

-àim{Vh+Vf2)
10 + 10 - dim VTo

10 + 10- (25- 10) 5

Theorem 7 follows (with the proof of (20) postponed)

We now consider type III quartic minimal immersions, and claim that the
antipodal Jo of J is of type III These are actually the two endpomts of the segment
(35) parametrizing the U(2) equivanant quartic minimal immersions Recall that
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{J) is the midpoint of the segment connecting (I) and (I o (¦ye™^^)) both of
type I. Thus, the antipodal of (J) must be on the segment connecting (Io) and

(I o (7em/87)o) provided that this segment is on the boundary B. Thus, by the
connecting lemma again, we need to work out

By the antipodal lemma, this is equal to

Vx± + VI±oh^/87) (Vxf]VXo{^/sy))±.

On the other hand

dim(Vi P| VXo(7^/87)) dim Vj + dim VXo(7eW87) - dim(Vx + VIo{rie^/Sl))

and this is 10 + 10 — 15 5-dimensional and the claim follows.

Lemma. Let f : S —> Sy be a full SU(2) equivariant quartic minimal immersion
of type III. Then, we have

> 4.

Proof. As before, the Lie algebra su(2) is considered as the tangent space of S*3

at the identity. For U G su{2), we denote by U, the right invariant extension of U
on S Given C G SV, we define the linear map

C) : su{2) x su{2) -+ V8,

by
üy,uü')~) (cü(f),ü'(f)),

where Vq is the space of homogeneous polynomials of degree q on R4. Evaluating
U(f) on the basis Z, X, Y it follows easily that this function belongs to P4 so that
^(C) maps into P8. Since ^(C) is symmetric in the arguments U and U', it can
be considered as a linear map

: S2(su(2)) -^ P8,

or equivalently, an element ^(C) G P8 <8) S'2(sm(2)). We now vary C in S^V and
obtain the linear map

* : S2V -+ P8 <g) S2(su(2)).

Since the right invariant vector fields (pointwise) span each tangent space in S*3,

we have
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To estimate this kernel we first observe that $ is a homomorphism of SU{2)-
modules, where the module structure on V is given by SU{2) equivariance of /.
Explicitly, for g G SU(2), we have

*(g-C)(Ad(g)(U),Ad(g)(U')) g

Since / is of type III, we have V 4I?4 as S'C/(2)-modules. Thus

S2V S>2(4ß4) 4S2(R4) 0
ior8 e 6R6 © 10R4 © 6ß2 e 10R0

(cf. (9)). On the other hand,

P8 H8®H6ffiH4ffiH2® H°

9R8 e 7R6 © 5R4 e 3fl2 © Ro,

where the first row is isomorphism as S'O(4)-modules, the second as SU(2)-
modules. Finally, su(2) R% so that

S2{su{2)) =fi4©%
Putting all these together, we obtain

Vs <g) S2(su(2)) 9R12 © 16ßio © 30ß8 0 31fl6 0 30ß4 0 18R2 © 6ß0-

Comparing this with the domain of ^ we see that 4i?o must be in the kernel.
Let III denote the set of points that correspond to type III quartic minimal

immersions. Recall also that Jo is the unique full U(2) equivariant quartic boundary
minimal immersion of type III.

Theorem 8. Ill is everywhere dense, open and connected in the 8-dimensional
boundary B. M.jo C B is 6-dimensional and

III SU{2)' ¦ mtMJo.

Proof. First of all, by (18), the complement of III in B is of codimension 2 so that
III is everywhere dense, open and connected in B. We now claim that

dim A4 j,, 6.

U{2) leaves M.jo invariant since it fixes {Jo)- By local unicity of the U{2) fixed
points, the center F of U{2) acts on dM.jo without fixed points. It follows that
dim M. jo is even. By the previous lemma, dimM. jo is either 4 or 6. The claim
will follow if we show that dim A4 jo > 6.
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Consider the 5C/(2)-module homomorphism * S2V —s- V8 <g> S2(su(2))
introduced m the previous lemma for / Jo S3 —s- Sy Since Jo is £/(2) equivanant,
ty is a homomorphism of £/(2)-modules, where the £/(2)-module structure on V is

given by the equivanance of JOl and the center F C f(2) acts on su(2) trivially
Being a £/(2)-submodule of W4, V^ (complexified) decomposes according to (10)
We have

V®-RC H40 (&H31 (&H13 (&H04 (38)

Indeed, since dirnV^ 20, we need only to show that W2 2
is not a component of

V This, however, follows from the antipodal and connecting lemmas Indeed, I
and Io (7em/87) do have components in W22, and so does J since (^7) is the
midpoint of the segment connecting (I) and (Xo^-ye™^^)) Since I has orthogonal
components with the same norm the antipodal lemma applies, and we see that Io
and Io (7em/87)o do not have components in TÛ 2 The same holds for Jo as (Jo)
is the midpoint of the segment connecting (Io) and (Io (7em/87)o)

As in the previous lemma, we now count the trivial components in the U(2)-
modules that contribute to the domain and range of the (complexified) ^ Since F

acts on these components as a character, we will also keep track of the corresponding

weights S^(V) contains 6 trivial components with zero weight, 4 coming from
the symmetric squares of the components in (38) (e g S^iji3 *) is contained in
H31(E)H13 that has weight (3 - 1) + (1 - 3) 0), and 2 coming from H4 ° <g>H° 4

and Tt3 ^®H} 3 In addition, S^(V) contains one trivial component for each weight
6,2,-2,-6, (eg H40(E)H31 has weight (4-0) + (3-1) =6) As C/(2)-modules,
S'2(sm(2)) TÛ 2 © Ti? since F acts on su(2) trivially All the trivial components
in Vs <g> S'2(sm(2)) are in H4 <g> {H2 2 © H°), and, by (10), we have 2 trivial
components with zero weight, and one trivial component for each weight 4, 2, —2, —4

Comparing, we see that the kernel of ^ must contain at least 4 trivial components
with zero weight, and two trivial components with weights ±6 We see that ker^f
is at least 6-dimensional The claim follows

By the transversality lemma, the SU{2)' orbit of mtAijo is an 8-dnnensional
smooth manifold since F leaves M.jo invariant, and SU{2)' does not have 2-

dimensional subgroups This orbit must then be open in B Its boundary is
contained in I U II It follows that SU{2)' mtAijo is a connected component of
III (and its boundary is equal to lull) Since III is connected, Theorem 8 follows
As a byproduct, we obtain that II and IIo are connected (and 6-dnnensional) since
I C II and Hi C II are of codimension > 2
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