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Spherical minimal immersions of the 3-sphere

Gabor Toth and Wolfgang Ziller*

Abstract. In 1966 Takahashi [11] proved that a minimal isometric immersion f : S™(1) —

S (r) of round spheres exists iff » = y/m/\p, where A, is the p-th eigenvalue of the Laplacian
on S™; in this case, the components of f are spherical harmonics on S™ of order p. This
immersion is unique up to congruence on the range and agrees with the generalized Veronese
map if m = 2 as was shown in 1967 by Calabi [1]. In 1971 DoCarmo and Wallach [3] proved
that the same rigidity holds for p = 2,3. The main aim of their work, however, was to show
that, for m > 3 and p > 4, unicity fails, and, indeed, the set of (congruence classes of) minimal
isometric immersions f : S — SN (4/m/)\p) can be parametrized by a moduli space M%,, a
compact convex body in a representation space FL, of SO(m + 1) of dimension > 18. In 1994,
the first author [14] determined the exact dimension of the moduli, and with Gauchman [5] in
1996, revealed intricate connections beween the irreducible components of FZ, and the geometry
of the immersions these components represent. The purpose of the present paper is to provide a
complete geometric description of the fine details of the (boundary of the) 18-dimensional space
M%, the first nontrivial moduli. This is made possible by several reductions that make use of the
splitting SO(4) = SU(2) - SU(2)’ as well as rely on the structure of SU(2) equivariant minimal
isometric immersions treated in the work of DeTurck and the second author [2] in 1992. The
equivariant imbedding theorem [14] asserts that the structure of ./\/lé reappears in the moduli
MP, for m >3 and p > 4.

Mathematics Subject Classification (1991). Primary 53C42.

Keywords. Spherical minimal immersion, special unitary group.

Minimal isometric immersions of round spheres into round spheres form an inter-
esting subject that has been studied by a number of authors, see e.g. [2,3,11,12].
We can write such maps either as isometric minimal immersions f : S™(1) —
SN(r) as was done in [2], or as we do here and as was done in [12], as minimal
immersions f : §"(1) — SN (1) with homothety 1/r2 (which we call spherical min-
imal immersions). The components of such an immersion must be eigenfunctions
of the Laplacian on S™(1) which are hence harmonic homogeneous polynomials of
degree p with eigenvalue A\, = p(p +m — 1), in which case the homothety is equal
to Ap/m. As is well known, if m =2, or if m > 3 and p = 2,3, the immersion is
unique up to congruence and agrees with the generalized Veronese immersion. But
for m > 3 and p > 4, there are many such immersions, and for a fixed degree p the

*With partial support from the National Science Foundation.
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congruence classes of such minimal immersions form a convex compact body in a
vector space of high dimension. The dimension of this convex body was computed
explicitly in [14]. In particular, if m = 3 and p = 4, it is equal to 18 (see also [9]
for this special case) and the dimension quickly grows with m and p.

The main purpose of the present paper is to examine this convex body in detail
in the special case of m = 3, p = 4, although some of the results also apply to the
general case. In this special case we are able to describe the structure of the convex
body and its boundary completely with a number of interesting consequences. This
is due to the fact that this low degree is the only case where the full convex body
can be reconstructed in a certain way from the special subclass of equivariant
minimal isometric immersions studied in more detail in [2,5,6]. This structure is
also important for higher degrees and higher domain dimensions, since, according
to the equivariant embedding theorem [14], the moduli space for degree four and
domain dimension three can be equivariantly embedded into that for any degree
> 4 and domain dimension > 3. In particular, using the examples developed here
and in [2], a variety of spherical minimal immersions can be explicitly constructed
from any domain of dimension > 4 and any degree > 3.

Before we describe our results, we set up some notation. If f is a spherical
minimal immersion f : S™(1) — SN (1) C RYHL — V which uses degree p homo-
geneous harmonic polynomials, we denote by M the set of all spherical minimal
immersions f' = Ao f with A : RNt _, RN+ any linear map (in other words,
the components of f/ € M are linear combinations of the components of f). M;
is a compact convex body in a linear subspace F; C S 2V parametrized by AT A—1.
The points on the boundary of M consist of spherical minimal immersions with
ambient dimension less than V. If f,, is the standard spherical minimal immersion
of 8™, consisting, up to homothety, of an orthonormal basis of the set H? of all
homogeneous harmonic polynomials of degree p, then My, = MP is by definition
the set of all spherical minimal immersions of degree p. For f € M?, M forms a
linear slice in MP. If f lies in the interior of MP, M/ is of course equal to MP.
But if f lies on the boundary of MP, then M; is a linear slice contained in the
boundary of M?. We call f linearly rigid if My = {f}. The linearly rigid spher-
ical minimal immersions are precisely the extremal points of MP? in the sense of
convex geometry (by the connecting lemma in Section 1.1). By the Krein-Milman
theorem, a convex set is the convex hull of its subset of extremal points, so that
MP is the convex hull of the linearly rigid spherical minimal immersions.

SO(m+1) acts on MP via precomposition f — fo A, f e MP, A€ SO(m+1),
which makes F? a linear SO(m-+1) representation space. A group G is the isotropy
group of that action at a point f iff f is equivariant under G. We will say that f
is full if the image of f spans all of V.

What is special about m = 3 is that SO(4) = SU(2) - SU(2)’ with each SU(2)
acting transitively on $3. Hence we can consider the SU(2) and SU(2)’ equivariant
spherical minimal immersions, which can also be viewed as the fixed point set
(MP)SUQ) or (MP)SUR) | We will show that for p = 4, and this is what makes
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m = 3,p = 4 so special, that F* = (]:4)SU<2) & (FHSUQ)' | each one being a
9 dimensional linear subspace of F 4 As an SO(4) representation, this splitting
is Rg @ Rg where SU(2) acts trivially on Rg and via the unique 9 dimensional
irreducible representation on Rg and in a reversed role for SU(2)’. Furthermore,
we show that each point in AM? lies on a straight line in Fi connecting a point
f1 € dM*SUD with a point fo € M*)SUR) This straight line consists of
the immersions (y/c1f1,+/c2f2) with ¢y > 0,c9 > 0,¢1 + c2 = 1. An orientation
reversing isometry of S® will interchange Rg and Rg and hence 3(./\/14)5 U(2) with
AMHSUP) " Thus the boundary immersions OM? are completely determined
by the equivariant boundary immersions in (9(./\/14)S u(2), Equivariant immersions
in (M*5U® have ambient dimension N 4+ 1 = 5,10,15,20 or 25, and one can
easily exclude N + 1 = 5. This will enable us to completely determine all ambient
dimensions:

Theorem A. If f: 5% — SV is a full degree 4 spherical minimal immersion, then
the only possible ambient dimensions are N +1 =10,15,16, or 19 — 25, and each

one occurs.

Furthermore, it will follow that the spherical minimal immersions with N +1 =
10,15, or 20 consist only of SU(2) or SU(2)' equivariant ones. Combining this
with Proposition 1 in [2], p.449, yields the following uniqueness result for the
lowest, possible ambient dimension:

Theorem B. There exists a degree 4 spherical minimal immersion T : 53 — §9
such that if f : 53 89 is any degree 4 spherical minimal immersion, then there
erist isometries A € O(10) and B € O(4) such that f = AoZ o B. Furthermore T
is SU(2) equivariant with image an embedded space form SS/DS, where D3 is the
quaternion group {+1,+4, +5, £k}.

One can easily describe 7 : 53 89 explicitly:

I(z,w) = <(1/\/§)(z4 —wt), V62202, V222w + 20°), V6 (22w — 2w’w),
AP - 2a?), (VBRI — 4Pl + ) )

Here z and w are complex with |z|?+|w|? = 1. Notice that the first four coordinates
are complex, the fifth is purely imaginary and the sixth is real so that 7 maps into
R and one easily checks that it maps into the unit sphere in R0, Also notice
that the map is invariant under (z,w) — (iz,iw) and (z,w) — (vViw, —v/iz) which
generagte a group isomorphic to D3. It will follow that 7 is an embedding of S3 /D3
into S”.
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Finally we describe the equivariant boundary immersions in (M4)S U@ c FL
They naturally divide into 3 subsets, denoted by I, II, and III, depending on if
the ambient dimension is N 4+ 1 = 10,15, or 20. Notice that the action of SO(4)
reduces to an SU(2) action on (M4)SU(2) and hence each set is the union of
SU(2)" orbits. We will show:

Theorem C. d(M*)SUR) = TUTTUTIL and one has:

a) 1 is a single SU(2) orbit (the SU(2)" orbit of T) and is an octahedral man-
ifold S3/O* embedded minimally in a sphere in R§ = (.7:4)SU(2), the embedding
given by a degree 8 equivariant minimal isometric immersion.

b) IT = ITgUILy where Ilg is a 6 dimensional connected set consisting of linearly
rigid immersions, and 11y is the 4 dimensional set SU(2)' -int D where D is a flat
2-dimensional disk with boundary circle on the octahedral manifold I. Furthermore
D = My, where J is the unique U(2) equivariant minimal immersion in II.

¢) I11 is dense, open and connected in the 8 dimensional boundary O(M*)SUV (2
The opposite J° of J on the boundary dMMSV D s of type III. My, is 6
dimensional and

III = SU(2)' - int M.y,

The U(2) equivariant map J : 58 < 514, is given explicitly as follows:

T (z,w) = (1/v2) (z4,w472\/522u72,2z3w, 22>,
2v3(222w — zw?w), V6z2w?, |2* — 4] |w|? + |w[*).

J is invariant under (z,w) — (iz,4w) and the image is an embedded lens space
53/Z4. J is at the center of the disk D = M7 and the center of U(2) acts as a
rotation on this disk and hence SU(2)" - D = SU(2)" - M7 is 4-dimensional. This
gives an explicit description to all elements in ITj.

There exists only a 1-dimensional space of U(2) equivariant immersions in
(MHSU(2) and hence only two U(2) equivariant elements in d(M*)5V @) one of
which is J and the other one the antipodal point 7, (which lies in IIT). The orbit
SU(2)'J (and hence also SU(2)"7,) is a minimally embedded R.P? in a sphere in
R§ which is in fact the standard rigid minimal isometric immersion for m = 2 and
p=4.

It is more difficult to find explicit examples in the 6-dimensional set of linearly
rigid elements in ITyp. One explicit example in IIg is Z,, the antipodal to the
immersion Z in Theorem B. Since the components of 7 are orthogonal of equal
length, one can easily write down Z, explicitly by choosing such a basis for the
orthogonal complement of the subspace spanned by the components of 7 in H?.
In particular 7, : 53 — S and we will show that 7, is linearly rigid.
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SU(2) are the elements in T and

By Theorem C, the only exremal points in (M*)
IIy. Hence (M4)SU(2) is the convex hull of such immersions. As a consequence,
all of M* is the convex hull of I, ITg and the images I', IIj) in (M?)SV @)

Also, notice that if we connect a linear slice M in ITI with a corresponding
linear slice in 8(M4)SU(2)/, we obtain a 13 dimensional linear slice in dM?, which
is the largest dimensional linear slice in the 17-dimensional boundary.

Another interesting question that one can ask, is about the image f (53). Are
they embeddings or immersions of a quotient 53 /G and what quotients can arise?
For interior points of MP? it was observed in [18] that they are always embedded
spheres or projective spaces, depending on if p is odd or even. But on dMP
many other images can occur. It is still an open problem whether all space forms
can arise. In [2] it was shown that every homogeneous space form admits an
equivariant minimal isometric embedding and in [4] an example was constructed
of an inhomogeneous lens space with a minimal isometric immersion into S190 with
degree 32 polynomials. It follows from [2] that for the equivariant maps in M4,
the images are embedded homogeneous space forms 53 /D3, lens spaces 53 /74,
or projective spaces (the generic case). It also follows that there exist many non
equivariant minimal isometric embeddings of the homogeneous space forms 52/ D3
and S%/7,.

For m = 3 and p > 4 there are corresponding results, but they only describe a
portion of the moduli space which are not sufficient to prove analogues of Theorems
A and B. See Theorems 4 and 5 for details. This is due to the fact that FP splits
into many irreducible summands under SO(4) (see Theorem 3) and our methods
apply to only some of those summands.

It is interesting to compare the results in this paper with some of the results in
[15]. One can formulate the above mentioned connecting lemma, by saying that
M?* is the convex hull of its slices by the two irreducible components in F*. For
p =6 (and m = 3) the moduli space of SU(2) equivariant immersions (M5)SV(2)
has two irreducible components and in [15] it is shown that a minimal immersion
in each component has ambient dimension N 4+ 1 > 14. The degree 6 minimal
immersion f : 5% — % constructed in [2] cannot lie in either component and
not in the convex hull of the linear slices with each component either. Thus for
larger degrees, the moduli space is not any more the convex hull of its linear
irreducible slices, which shows that the structure of the moduli space gets much
more complicated for p > 4.

In section 1 we collect several preparatory results that hold in the general case.
Section 2 describes some results about the SU(2) equivariant minimal maps of 53
but any degree p and in section 3 we prove the above results for m = 3 and p = 4.
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1. General theory
1.1. Eigenmaps

A spherical harmonic of order p on S™ is, by definition, an eigenfunction of
the Laplacian A on S™ with eigenvalue A\, = p(p + m — 1), or equivalently,
the restriction (to S™) of a harmonic homogeneous polynomial in the variables
(@g; 550 32m) € R™*L The linear space of spherical harmonics is denoted by
‘H? = HE . (Unless important, we suppress the source dimension m.) In a similar
vein, a p-eigenmap f . S™ — Sy, where V is a Euclidean vector space with Sy,
the unit sphere in V, is a map whose components «co f, & € V*, are spherical
harmonics of order p on S™, or equivalently, a harmonic p-homogeneous spherical
polynomial map f : R™tl — V. Spherical means that f maps S™ into Sy and,
in this case, we identify f : R™T1 — V with its restriction f: S™ — Sy.

f 8™ — Sy is full if it has no zero component. In this case, precomposition
with f, @ — ao f, a € V*, gives a linear embedding V* — HP whose image; the
space of components of f, is denoted by V. Since V' is Euclidean, we have the
isomorphisms

Veyr Vi C HP.

In what follows, V, V* and V; will be identified under these isomorphisms.

Two p-eigenmaps f1 : S — Sy, and fo : S™ — Sy, are said to be congruent
if fo = U o f1 for some isometry U : Vi — Va.

Let f: 8™ — Sy and f' : ™ — Sy be full p-eigenmaps. [’ is said to be
derived from f, written as f’ ~ f, if there exists a linear map A : V — V'’ such
that Ao f = f’. Since f is full, A is uniquely determined. Since f’ is also full, A
is onto.

Let f : 8™ — Sy be a full p-eigenmap. Let & C 52V denote the orthogonal
complement of

Wi = span{f(x) @ f(a) | € 5™}
in S2V. Let
Ef = {C€5f|c+120},

where I = Iy = identity of V and ‘>’ means ‘positive semidefinite’. Clearly, £
is a convex body in &; and the origin of £; is contained in the interior of L;. A
DoCarmo-Wallach type argument gives the following:

Theorem 1. Given a full p-eigenmap f : S™ — Sy, the set of congruence classes
of full eigenmaps [’ : S™ — Sy that are derived from [ can be parametrized by
the convex body Ly. The parametrization is given by associating to the congruence
class of f' the endomorphism

(fy;=AT - A-TIeS%,

where f' = Ao f and T denotes transpose.
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Remark. For (all) spherical minimal immersions this is due to DoCarmo-Wallach
[3,17]. The present relative version is taken from [12].

The convex body L of £f(C 52V) is called the moduli space associated to the
full p-eigenmap f : S™ — Sy. f corresponds to the origin 0 (= (f) ). The interior
int £L; parametrizes those full p-eigenmaps f’ : S™ — Sy for which f < f’, or
equivalently, f// = Ao f with A : V — V’ invertible. As A is onto, this holds
iff dimV = dimV’. Thus the boundary 0L corresponds to those p-eigenmaps
f': 8™ — Sy for which f/ « f and dim V' < dimV.

Since < is a transitive relation, for f - f, £ can be embedded into L. The
image is an affine slice (that is, the intersection of £, with an affine subspace).
More precisely, let f : S™ — Sy and f': 8™ — Sy, with f/ « f,ie. ff=Aof,
and define

R A

by
YCY=AT . C" A+ (fYs=AT (C'"+ L) - A-Iy.

Then, as easy computation shows, + maps &£y injectively into £ and
WLpr) = &) N Ly.

From now on, we identify £ with its image in L;.

Up to scaling the components of an orthonormal basis in H? with respect to
the L2-scalar product give rise to the standard p-eigenmap f, : 5™ — Sy». For
f = fp, we denote LP = LP = L EP = EP = &, etec. We call LP the standard
moduli space. Since all p-eigenmaps are derived from f,, £? parametrizes the
congruence classes of all full p-eigenmaps f : 8™ — Sy. For simplicity, we set
(fyg, = (f). We say that a full p-eigenmap f : S™ — Sy is of boundary lype
if dimV < dimH?, or equivalently, if (f) € 9LP. Also, for any full p-eigenmap
f:8™ — Sy, L is an affine slice of L. Integrating the condition of sphericality
for f, we see [3,17] that EP consists of traceless endomorphisms of S2(HP). We
thus have:

Corollary. LP and (hence) L are compact.

Let f:S™ — Sy and f/': S™ — Sy be full p-eigenmaps and assume that f’ < f
with f = Ao f, where A: V — V’ is linear and onto. Then V} is contained in V;
and the inclusion Vi C V7 is given by sending o/ o f/, o/ € (V')*, to (o/ 0 A) o f.
Connecting Lemma. Let f1 : ™ — Sy, and fa : S™ — Sy, be full p-eigenmaps
and assume that they are incongruent. Let c1,co > 0 with ¢1 + co = 1. Then the
point

c1{f1) +ca(fa) € LP

on the segment connecting (f1) and (f2) is represented by the p-eigenmap f : S™ —
Sy, V. = Vi X Vo, defined by | = (\/e1f1,+/C2f2) and made full. In particular,
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f— f1,fo and
V=V +Vp

so that
dim Vy = dim Vy, +dim Vy, — dim(Vy, () V3,)-

Proof. Setting f1 = Ajof, and fo = Agof, with A1 : HP — V] and Ay : HP — V3
linear and onto, we have

(fiy=AT A1 —I and (f2) = AJ Ay — L.
By definition, f = (\/c1A1,/c242) o f, so that

(f) = (c1A{ Ay + c2Ag Ag) — I
= Cl(AlTAl -+ CQ(AQTAQ -1
= c1{f1) +c2(f2)

since ¢1 + ¢g = 1. The rest is clear.

Given a full p-eigenmap f : S™ — Sy of boundary type, (f) € 9LF, the
line R - (f) intersects OL? in (f) and another point called the antipodal of (f).
A representative f, : S™ — Sy, of the antipodal of (f) is called the antipodal
p-eigenmap of f. (f, is unique up to congruence.)

The connection between f and f, is subtle. A related (and again subtle)
problem has been posed by R.T.Smith in his Thesis [10]: Given a p-eigenmap
f: 8™ — Sy, does there exist a p-eigenmap f’ : S™ — Sy such that V} is the
orthogonal complement of V; in HP? The following observation will be useful:

Antipodal Lemma. Let f : S™ — Sy be a full p-eigenmap of boundary type
and assume that, relative to an orthonormal basis in 'V, the components of f are
orthogonal in HP and have the same norm. Then the antipodal f, : S™ — Sy, of
f has the same property and

Vf © Vfo =HP

is an orthogonal direct sum.

Proof. Relative to an orthonormal basis in V' and up to a constant multiple, the
components of f give an orthonormal basis V in Vy C ‘HF. Select an orthonormal
basis V, from VfL C HP. Let f,: R™*! — V, be a full harmonic p-homogeneous
polynomial map whose components, relative to an orthonormal basis in V,, are the
elements of V,. Since V|JV, (suitably normalized) gives the components of f,,
up to a constant multiple, f, is spherical so that it restricts to a full p-eigenmap
fo 1 8™ — Sy,. By construction, f, = (cf,cof,) for some constants ¢,c, > 0.
Taking norms, we have ¢ + cg = 1 so that the connecting lemma applies. We
obtain that the origin is on the segment connecting (f) and (f,). Since both f
and f, are of boundary type, f, is the antipodal of f.



92 G. Toth and W. Ziller CMH

Let f : S™ — Sy be a p-eigenmap and assume that f is equivariant with
respect to a homomorphism ps : G — SO(V), where G C SO(m + 1) is a closed
subgroup. Equivariance means that

fog=rpilg)ef,
for all g € G. py defines an orthogonal G-module structure on V' and therefore on
V*. Under the isomorphism V* = V; C HP, V becomes a G-submodule of HP|s.
Indeed, since g € G actson V*as g-aa =ao pf(g)*l, a € V* we have

(g-a)of=(acpilg) of=(aofog".
The G-module structure on V extends to that of $2V given by

9-C=psla)-C-psle)".
& is clearly a G-submodule of S2V. In fact, L is G-invariant since, for f' — f,
we have
g- (=09 Ny

Given a closed subgroup G’ C G, a p-eigenmap f' : S™ — Sy., f' — f, is
equivariant with respect to a homomorphism pp : G — SO(V') iff (f') is left
fixed by G’. Thus the congruence classes of full p-eigenmaps that are equivariant
with group G are parametrized by the linear slice

(L) =Lpn(En®.

Remark. Let f: S™ — Sy be a full p-eigenmap and assume that, relative to an
orthonormal basis of V', the components of f in HP form an orthogonal basis V
with the same norm. Then, the isotropy group at (f) € LP can be written as

SO(m + 1)) = {g € SO(m + 1) |V = Vyoy}. 1)

Indeed, for g € SO(m+1), U € SO(V) with Uo f = fog exists iff V; = V.4 and
is the transfer matrix between ¥V and Vo g obtained by precomposing the elements
of ¥V with g.

The following lemma is contained in [12] (pp.24-25).

Transversality Lemma. Let f : 8 — Sy be a full p-eigenmap that is equivari-
ant with respect to a homomorphism py : G — SO(V), where G C SO(m+1) is a
closed subgroup. Let f': 8™ — Sy be a full p-eigenmap such that {(f'); € int L.
Ifa: R — G is a I-parameter subgroup such that the orbit t — a(t)- (f')¢, 1t € R,
is tangent to int Ly at t = 0 then it is entirely contained in int Ly.

The standard p-eigenmap f, : ™ — Syr is equivariant with respect to the
homomorphism p, : SO(m+1) — SO(HP) that is just the orthogonal SO(m+1)-
module structure on HP given by precomposing spherical harmonics by the inverse
of linear isometries on $™. Thus £ is an SO(m + 1)-submodule of S?(HP). A
result of Calabi [1] asserts that &£ is trivial for any p > 2. As we will see below
&P is nontrivial for m > 3 and p > 2.
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1.2. Spherical minimal immersions

A spherical minimal immersion is a conformal p-eigenmap f : ™ — Sy . The con-
formality factor is then \,/m. We say that f : 5™ — Sy is a minimal immersion
with homothety Xp/m. The condition of homothety can be written as

(Fe(X), £(Y)) = (Ap/m)(X, YY),

for all vector fields X and Y on S™.
Let f: 8™ — Sy be a full homothetic minimal immersion with homothety A,/m.
We define

Fr=span{ f(X)® Lu(Y)] XY e T(S™)} € 5%V,

where “denotes translation of vectors to the origin. (Here and in what follows it is
understood that X and Y belong to the same tangent space of S™.)
Let

Mf :{CEff|C+IZO}.

A result of Takahashi [11] implies that
FrC &

(cf. [12]). The defining relation for L; in & is the same as for My in F¢. Thus,
the inclusion above gives
My =FrnNLy,

as a linear slice of L;. In particular, M is a compact convex body in Fy.

Theorem 2. Given a full homothetic minimal immersion f : S™ — Sy, the set
of congruence classes of full homothetic minimal immersions ' : S™ — Sy that
are derived from f can be parametrized by the convex body My.

The convex body My is said to be the moduli space associated to the full
minimal immersion f : 8™ — Sy. We say that f is linearly rigid [17] if My
reduces to a point. Note that the connecting, antipodal and transversality lemmas
remain valid in the context of minimal immersions.

Since SO(m-+1) acts transitively on the unit sphere bundle of ™, the standard
p-eigenmap fp, : S™ — Syp is conformal and thereby a minimal immersion with
homothety A,/m. The standard moduli space M¥ = MP = My, is the linear
slice of £P by the SO(m + 1)-submodule P = FE = F; C S*(HP) and it
parametrizes the congruence classes of all full minimal immersions with homothety
Ap/m. The ultimate goal is to describe MP. As a first step, we need to determine
the SO(m+1)-module structure of (its linear span) F?, that is, the decomposition
of FP into irreducible submodules. By DoCarmo-Wallach [3,17], F? is nontrivial
iff m >3 andp>4.
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1.3. Some representation theory

Vlut,ua) — Vrfffﬁi”' ma) g [(m+1)/2], denotes the (unique) complex irreducible
SO(m+1)-module with highest weight vector (uy,... ,uy) relative to the standard
maximal torus in SO(m+1). In particular, V(®:0-0) — H? as complex SO(m+1)-
modules. (Here and in what follows we denote HP and its complexification by the
same symbol.) For m =3 and v > 0, V4(u’v) means 144(“’”) @ V4(u’7v).

By DoCarmo-Wallach [3]:

HP o HY = > vied-0p>q>1, m>3,
(uw)eAE?; utv=p+q (mod 2)

where Ag’q is the closed convex triangle in R2 with vertices (p —q,0), (p,q) and
(p+q,0).

Setting p = ¢ and deleting the components that belong to the skew-symmetric
part of H? ® H?, we have

SQ(HP) _ Z V(u,v,O,... 7O)7 (2)

(u,v)eAE; u,veven

where we simplified the notation by setting Af = Af”.
We have
&p ®C = Z V(u,v,O,... 7O)7 (3)

(u,w)EAT; u,v even

where A} is the closed convex triangle in R? with vertices (2,2), (p,p) and (2p —
2,2). For a quick proof cf. [5].

Remark. Let f: 5™ — Sy be a full p-eigenmap and assume that
() e VEBA0-0) p=1, . [p/2)

These components correspond to the northeast side of the triangle Aﬁ. Then [14]

we have
dimV > dimH? 1/ (m + 1). (4)

(This is because the condition guarantees that the partial derivatives of the com-
ponents of f span HP~1))

The main result of DoCarmo-Wallach [3,17] asserts that F2 is nontrivial iff
m >3 and p > 4.

The following result is proved in [14] and gives the positive resolution of the
so-called DoCarmo-Wallach conjecture:

Theorem 3. Form > 3 and p > 4,

V(220..0)  y(2-220..0)
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are not components of FF so that we have

FPRC = Z V(u,v,o,... 70)7 (5)

(u,v)eAL u,v even

whe)re AL is the closed convex triangle in R2 with vertices (4,4), (p,p) and (2p —
4.4).

Remark. In the lowest nonrigid range m = 3 and p = 4, Theorem 3 has been
proved by Muto [9].

1.4. Isotropic minimal immersions

Let f : 8™ — Sy be a minimal immersion with homothety X,/m. We denote by
Gie(f) and (9’;, k < p, the k-th fundamental form and the k-th osculating bundle
of f. We say that f is isotropic of order k, 2 < k < p, if, for 2 <[ < k, we have

B )X, X0, B (X1, -, X))
= {Bi(fp)(X1,..., X0), Bi(Fp)(Xig1, .- Xou))

where X1, ..., Xo; are vector fields on S™ [5]. In this case, for 2 <[ < k, the oscu-
lating bundles Olf and O;p are isomorphic with a fibrewise isometry. Restricting

to the base point o = (1,0,...,0) € ™, as SO(m)-modules, we thus have
0., =0} ., =H. 2<1<k.

m—1»
In particular, since the osculating bundles are in the normal bundle, we obtain
that, for a full minimal immersion f : ™ — Sy with homothety A,/m, isotropy
of order k implies that

k
dimV >y " dimH}, | = dim Hy,.
1=0
(The last equality is because of branching over SO(m) C SO(m +1).)
According to a result of [5], the space of congruence classes of full minimal
immersions f : S™ — Sy with homothety A,/m that are isotropic of order k,

2 < k < p, is parametrized by a linear slice MP?* of MP whose linear span FP* is
an SO(m + 1)-submodule of S?(H?). We have [5]

f‘p;k ®@C O Z V(u,’mo,... 70)’

(uw,v)EAT;u,v even

where A} C A} is the subtriangle with vertices (2(k + 1),2(k + 1)), (p,p) and
(2(p —k —1),2(k+1)). Moreover (and this is more difficult), for m > 4, equality
holds.

Combining this with the above, we see that given a full minimal immersion
f: 8™ — Sy with homothety \,/m, if (f) € V:2%) [ =k, ... p—k, then (f is
isotropic of order k —1) dimV > dim H%—~1.
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1.5. Representations of SU(2) = 53

From now on we specialize the source dimension to m = 3. The case of the 3-
sphere 53 as a source deserves a special attention since it is itself a Lie group;
the Lie group of quaternions of unit length. We write an element of 53 as a+ bj,
where |a]? 4 |b]?> = 1, a,b € C. Associating to a + bj € S3 the special unitary
matrix
[_ag g } € SU(2)

gives an isomorphism S3 22 SU(2). Viewing a complex 2-vector (z,w) € C? as
a real 4-vector (z,u,y,v) € RY 2 = 2+ iy, w = u + iv, gives an embedding
of SU(2) into SO(4) as a normal subgroup. The orthogonal transformation v =
diag(1,1,1,—1) € O(4) (or equivalently, v : z — z, w — @) conjugates SU(2) to
the subgroup

SU@2) =vSU@2)y, 7' =1, (6)

of SO(4) and (as simple computation shows), we have

SU2)(SU(2) = {1} (7)
and (for reasons of dimension)

SU(2) - SU(2) = SO(4). (8)

The complex irreducible SU(2)-modules are parametrized by the dimension of
the module. More concretely, let W,, p > 0, be the linear space of complex
homogeneous polynomials of degree p in z and w. The standard basis in W, is
{zf”*qwq}f;:o. W, is a complex irreducible SU(2)-module with dimW, = p +1
and each complex irreducible SU(2)-module is equivalent to W, for some p. As
SU(2)-modules, we have

W, oW =3 Wpa g, 72520 (9)
t=0

Restricting from SO(4) to U(2), the SO(4)-module H? of complex spherical har-
monics on S of order p splits as

Holyey = Y., H™, (10)

a+b=p;a,b>0

where H®? is the complex irreducible U(2)-module of harmonic polynomials of
degree a in z,w and degree b in z,w. (This is easily seen by writing a harmonic p-
homogeneous polynomial in terms of the variables z, z,w,w.) The center I' C U(2)
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acts on each H*? as a character. Restricting further to SU(2) C U(2), we thus
obtain
HPlsu@) = (p+ D)W,

as complex SU(2)-modules. More generally, by the local product structure (8),
the SO(4)-module H? splits into the tensor product

H = W, @ W, (11)

Here we use the following notation. If W is an SU(2)-module then W' denotes
the SU(2)-module obtained from W by conjugating first SU(2)" back to SU(2)
within SO(4). Moreover, if —I acts on W’ trivially then W' is also considered as
an SO(4)-module with trivial action of SU(2) on W’. Similarly, if —I acts on W
trivially then W is also an SO(4)-module with W{g(9), being trivial.

In the next lemma recall that we write V<“’“>, v > 0, for Wf“’v) D V4(u’7v).
Lemma. Let u > v > 1 and u+v even. Then
Ve =W, @ Wiy, ®@ Wy @ W,_,
and hence

VO gy = @t v+ D Way @ (0 — v+ 1)War. (12)

Proof. The northern vertex (u,v) in Ag" is missed by the subtriangles Ag_l’v_l
and Angl’U*l overlapping in Ag"j*z We thus obtain

v e (e ) o (T e 1) = (HY @ HY) @ (H* @ H™2).
We work out each tensor product using

- (Wr+s 53] Wr+572 S...0 ers)
QW s @W 9®...0W] ), r>s,

and arrive at the stated equality.

Corollary. Letu >v > 1 and u+v even. Then V<“’“>|SU(2) contains the trivial

SU(2)-module iff u = v. The multiplicity of the trivial SU(2)-module in V(%% s
2u+ 1.

With the notation introduced above, we have

V) — Wy, & Wi, (13)
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as (complex) SO(4)-modules.

Finally, we make some comments on real irreducible SU(2)-modules. For p
even, W, is the complexification of an irreducible real SU(2)-submodule R,. In
fact, R, is the real subspace of the complex antilinear map of W, that sends
2%wP~1 to (—1)92P~ 9w, ¢ =0,... ,p. The standard basis of R, is given by

22+ P, i(2F — wP), 2Pl — 2P~ z'(zpflw + pr71)7 v 21252 2002
Using (11) and (13), we obtain the following real SO(4) modules for p even
HP = RZ’ ® R;o 3 HP|SU(2) = (p + I)RP ) V<u7u) = Ro, & R/Qu (14)

For p odd, W, considered as a real SU(2)-module, is irreducible. We denote this
real representation by [W,]r. Hence we obtain the following real SO(4)-modules
for p odd

pt1

H =W Wl » Hlsue) = ——Wlr v = Ry, & Rh,. (15)

2. SU(2) equivariant eigenmaps and minimal immersions

Since S2 acts on itself by left quaternionic multiplication, a p-eigenmap f : 53—
Sy is SU(2) equivariant if there exists a homomorphism ps : SU(2) — SO(V)
such that

foLg=pslg)of, g€SU_2),

where L, is left quaternionic multiplication on 53 by g as a quaternion. Clearly,
a p-eigenmap f is SU(2) equivariant iff f o v is SU(2)’ equivariant. The spaces
of congruence classes of full SU(2) (resp. SU(2)') equivariant p-eigenmaps are
parametrized by the linear slices

(KP)SU(Q) =[P N (5P)SU(2) (resp. (Ep)S’U(Q)’ —rPn (gp)SU(Q)')‘

We can find (£2)SY@) from the decomposition formula (3) by setting m = 3,
restricting both sides to SU(2) and counting the trivial components. In fact,
according to (14):

(V(u,u))SU(Q) _ R/Qu ® C

as SU(2)-modules. In view of this, (3) and Corollary in 1.5, we have

2
(EP ® C)SU(Q) _ [pz/:](v(Qk,Qk))SU(Q)
k=1
[p/2]
= Z (R}, ® C)
k=1



Vol. 74 (1999) Spherical minimal immersions of the 3-sphere 99

so that, as real SU(2)-modules:

[p/2]

gp SU(2) _ Z R

Similarly
[p/2]
gp SU(Q 2 R4k

as real SU(2)-modules. In the lowest nonrlgld range p = 2 (for eigenmaps), Al in
(3) reduces to the single point (2,2) so that we have

as SO(4)-modules. Thus the moduli space £2 is ‘split’ by two 5-dimensional
orthogonal slices (£2)5V(2) = £2n R} and (£2)SV2" = £2 N Ry parametrizing
SU(2) and SU(2) equivariant quadratic eigenmaps. It is now a crucial observation
to be generalized below that £2 is the convex hull of these slices [13].

Remark. As a convex set (£2)SV(2) =~ (£2)SU(2)" i5 the convex hull of a projective
plane embedded into S? as the Veronese surface [14]. More generally, for p even,

(LP)SU?) — {Cy € S?(R,) | trace Co = 0and Cp + I > 0}.
This follows from H?|gy(9) = (p+ 1)R, (cf. (14)) and Schur’s lemma applied to

symmetric endomorphisms of H? in (£7)5Y(2) that commute with the action of
SU(2).
The situation is analogous for minimal immersions. We have

(Mp)SU(Q) - MPN (]:p)SU(Q)7
and similarly for SU(2)". Moreover, as SU(2)-modules

[p/2]

(FP ® C)SU(Q) — Z(V(Qk,Qk))sU(Q)
k=2
[p/2]

= (Ry,®C).
k=2
As for eigenmaps, we see that the SU(2) and SU(2)’ equivariant minimal immer-

sions correspond to the northwest side of AL in (5). As real SU(2)-modules

[p/2]

P)SU@) - Z Rilk'
E=2
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In particular, counting dimensions
dim(MP)SU?) = dim(F?)SV @)
[p/2]
= (4k+1)
k=2

— (2lp/2] +5)(p/2] ~ 1),

This formula has been derived in [2] using a ‘heuristic argument’.
In the lowest nonrigid range p = 4 (for minimal immersions):

7;4 _ (j;4)SU(2) ® (j:4)SU(2)' _ Ré @ Ry

as real SO(4)-modules. Intersecting with the moduli space we see that M s ‘split’
by two 9-dimensional orthogonal slices (M*)SV(2) = M4 0 R, and (M*)SVR) =
M40 Rg corresponding to SU(2) and SU(2) equivariant minimal immersions. It
is also clear that precomposing quartic minimal immersions with + has the effect
of interchanging Rg and Rg.

Let BY = (OMP)SU2) and BY = (9MP)SUR) . Thus BY (resp. BS) parametrize
the boundary type SU(2) (resp. SU(2)') equivariant minimal immersions f : $% —
Sy with homothety A, /3.

Theorem 4. Forp > 4, OMPN V(26:28) s the union of segments with one end-
point on Bi) N V@R2R) gnd the other on BIQ) NV (2k26) FEquivalently, every full
(boundary) minimal immersion f : 83 — Sy of degree p such that (f) € v (2k,2k)
is congruent to one of the form (v/Af1,vVAafa o) : S — Svixvy, Al + A2 =1,
M, A2 >0, where fi : S — Sy, and fa 1 83 — Sy, are full SU(2) equivariant
(boundary) minimal immersions with (f1),(f2) € R}, C i

Proof. The connecting lemma establishes the equivalence of the two statements.
To prove the first it is enough to show that any segment connecting Bf NV (2, 2k)
and B N v (26,2) ig entirely contained in the boundary of MP. Let fi and fs as
in the second statement and let (f) be in the interior of the segment connecting
(f1) and {(fa o v). We need to show that (f) € dMP . By the connecting lemma
cited above, we have
Vi=Vi + Vo

Since fi and fo are SU(2) equivariant and of boundary type, Vy, is a proper
SU(2)-submodule of HP and V}, . is a proper SU(2)"-submodule of H? = W, W,
(for simplicity we complexify again). We need the following elementary statement
whose proof is an easy application of Schur’s lemma.

Lemma. Let G be a compact Lie group, R an irreducible G-module and W a
trivial G-module. Then any G-submodule Z of R W is of the form Z = R® Wy,

where Wo C W is a linear subspace.
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Returning to our previous setting, we have
Vi =W, W3 and Vyoy =Wo® W;
where Wy C W, and W) C Wz; are proper linear subspaces. Hence
Vi=Vy +Vioy =W @ Wi+ Wo @ W,

But Wy ® Wy is equal to the overlap of both subspaces and hence V; can never
have the full dimension. Thus f is of boundary type.

Theorem 4 gives a complete description of full minimal immersions f : S3 —
Sy with homothety A,/3 whose parameter point (f) is in one of the irreducible
components \/'(474)7 \/'(676)7 e 7‘/@[1’/2]’2[”/2]) corresponding to the northwest side
of the triangle A in (5). It states that such minimal immersions are obtained
from SU(2) equivariant ones by the prescription given in the connecting lemma.
In particular, in the lowest nonrigid range p = 4, A% collapses to the single point
(4,4) so that Theorem 4 completely describes all full quartic minimal immersions
in terms of SU(2) equivariant ones. The proof of Theorem 4 also gives all possible
range dimensions of such minimal immersions for p > 4. This gives a partial
answer to a problem posed by DoCarmo: What are the possible (in particular,
minimum) range dimensions of all spherical minimal immersions?

Theorem 5. Let f : % — Sy be a full minimal immersion of degree p > 4 and
assume that (f) € V(k28) - Then, the possible range dimensions of f (plus one)
are

a) For p even

dmV = (p+1)2—rs, with 1<r,s<p—|[(p+1)/4 or
dimV = (p+ Ur, with [(p+1)/4]+1<r <p-+1 (for the equivariant ones).

b) For p odd

dmV =(p+1)2—rs, with 1<r,s<p—|[p+1)/8] or
dimV = (p+ U)r, with [(p+1)/8]+1<r <p-+1 (for the equivariant ones).

Proof. Tt follows from the proof of Theorem 4 that dimVy = (p + 1) dim W} +
dim Wy (p + 1) — dim W dim Wy. Furthermore, notice that it follows from (15)
that for p odd, the dimension of Wy and W} must be even. But there are further
restrictions on the possible dimensions of equivariant embeddings. In [15] it was
proved that if f : S — Sy is a full SU(2) equivariant minimal immersion of degree
pand (f) € VE&2E) then dimV > (p + 1)2/4. Of course for the equivariant ones
we also need that dimV is divisible by p + 1 if p is even and by 2(p + 1) if p is
odd. This easily implies the claim in the theorem.
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Remark. For p = 4 and p = 5, (fP)SU<2) consists only of a single irreducible
summand. But starting with p = 6, it has at least two irreducible summands, in
particular (F6)5V(2) — Rg @ Ry. In [15] it was shown that if p = 6 and if (f) lies
in Rg or in R{,, then dimV > 14. The connecting lemma hence shows that any
point in the convex hull of M% N R§ with Mbn R)5 also has dim V" > 14. But
in [2] an example was constructed of an equivariant minimal isometric immersion
with p = 6 and dimV = 7 (and was shown to be unique among such equivariant
isometric immersions). It follows that it cannot be in the convex hull of M N Ry
with M5 N Rfy, i.e this immersion must "bulge out” in the moduli space. Thus
the moduli space for p > 6 must have a much more complicated structure than for
p = 4. Tt was conjectured in [2] that this degree 6 immersion into S is the only
degree 6 immersion with dim V' = 7. The above remarks show that a proof of this
fact must be much more complicated than the proof of theorem B.

3. Quartic minimal immersions

From now on we let p = 4 (and m = 3). Theorem 4 asserts that M? is the
convex hull of (M*)SV(2) and (M*)SV?) corresponding to SU(2) and SU(2)
equivariant quartic minimal immersions. The possible range dimensions for a full
SU(2)-equivariant quartic minimal immersion f : 53 — Sy are

dimV = 5,10, 15,20, 25.

This is because V' is an SU(2)-submodule of H4|SU(2) = 5R4 so that it must be
a multiple of R4. The range dimension 5 is not realized. This follows from a
general theorem of Moore [8] or by easy computation in the use of the equivariant
construction below. Thus Theorem 5 gives all possible range dimensions of full
quartic minimal immersions f : S3 — Sy

dimV = 10,15,16, 19, 20, 21, 22, 23, 24, 25.

We will see later that the range dimensions 10, 15, and 20 actually occur for full
SU(2) equivariant quartic minimal immersions so that, without equivariance, all
the rest of the range dimensions above are realized. Notice that it also follows from
the proof of Theorem 5 that dim V = 10, 15 and 20 can only occur if the minimal
immersion is SU(2) equivariant or SU(2)" equivariant. In [2] it was shown that
there exists a unique SU(2) equivariant minimal immersion with dimV = 10 (up
to precomposition with an isometry of the domain) and hence Theorems A and B
in the introduction follow.

We say that an equivariant minimal immersion is of type I, II, or III if the
ambient dimension is dimV = 10,15, or 20. We denote by I, II, and III the set
of all minimal immersions of type I, II, and III. Similarly for I, II’, and IIT' in
8(M4)SU(2)/. It follows also, that for example the immersions with dimV = 16
in dIM?* can only be obtained by connecting an immersion in I with one in I'.
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Furthermore, if we connect a linear slice My in III with another linear slice
My in IIT', we obtain a 13 dimensional linear slice in 8/\/14, which is the largest
dimensional linear slice in the boundary of M*. The equivariant immersions must
have an embedded image since they are given by orbits under the action of SU(2)
and SU(2), in fact the orbit of a polynomial p € H* is diffeomorphic to SU(2)/G
where G is the isotropy group of p. From [2] it follows that the possible isotropy
groups are D3, 74 and Zy, Z9 being the principal isotropy group. Hence in the
equivariant case the images are embedded & 8 /D3, lens spaces 53 /Z4, or projective
spaces RP3. We will see that all three cases actually occur.

Since (M*)SV@) is the ~v-copy of (M*)SV?) it remains to describe the lat-
ter and this is our main purpose in this section. For simplicity we denote 5 =
(M*)SU) and from now on all minimal immersions will be SU(2) equivariant.
The SO(4) action on (M*)SU@) reduces to an action of SU(2)" and hence I, II,
and III are each union of SU(2)’ orbits. The action of SU(2) on Ry = (F4HsU@)
is the action on polynomials in z,w of degree 8. The orbits are all 3-dimensional,
except one orbit, the one through z%w?, which gives rise to a minimal isometric
embedding of RP? into a sphere in Rg. Tt follows from [2] that the possible finite
isotropy groups of SU(2)" acting on Rg and hence also on AMHSUR) consist of
the cyclic group Zg (the principal isotropy group), the binary dihedral groups D3,
D3 and D}, and the binary octahedral group O*. As was observed in [2], many of
the orbits are again minimal isometric immersions in their respective spheres.

We now turn to the ‘equivariant construction’ for SU(2) that provides an ex-
plicit description of all SU(2) equivariant minimal immersions as (constant curva-
ture) SU(2) orbits of polynomials in SU(2)-submodules of H?. We first summarize
some of the results in [2]. Each equivariant construction used here is based on an
SU(2)-submodule of H?, where we now (briefly) return to the general case p > 4.
As a first example we take this to be W,,. Consider a polynomial £ € W,,, of unit
length. In terms of the standard basis in W, we write

&(z,w) = cp2? +e2P w4 cpwf, cp,...,cp € C. (16)
Let fe: $3 Sw, be the orbit map:
felg)=g-§=€0Lyn, geSUER) =5
More explicitly, setting g = a4+ bj € 5’3, we have
fela+b7)(2,w) = &(az — bw, bz + aw), z,w € C.

It is important to note here that f¢ is equivariant with respect to the conjugate
subgroup SU(2)’ (and not with respect to SU(2)). More precisely, by the identi-
fications we made, we have

dols FJrere)- [ 2] e

a
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Note that the matrices differ by conjugation with diag (1,1, —1, —1) (that preserves
the local product structure (8)). For this reason, we will usually make fe SU(2)
equivariant by precomposing it with ~.
fe is minimal iff
- 2 2 plp+2)
> 20 —p)*(p — @)lglleql” = —g
q=0
P
> = a)lglleg* =1,
q=0
p—2
> g+ 2)Up — g)legeqia =0,
q:O
p—l
> (=20 -1)(qg+1)p — q)legiqi1 = 0.
q=0

The first two equations are real and the last two are complex so that we have 6
constraints on the 2(p + 1) real variables R(c;) and $(cq), ¢ =0,... ,p.

For p even, we can take R, instead of W), by requiring £ € R, (so that f;
will actually map into Sg,). Using the standard basis in 2, we obtain that this
additional requirement translates into

Cp =€, Cp—1=—Cl,---;C(p/2)41 = (—1)(p/2)+16(p/2>,17 Cpj2 = */%, t e R.
We incorporate these p + 1 additional constraints by writing
&(z,w) = cpz? + cou® + c12P Y — Gyl P 2P 202
The system of equations for minimality of f¢ thus reduces to

(p/2)-1
> 2020 -p)%(p - 9)lglleql* = w,
q=0
(p/2)-1
> 2 — @)lglleg + (/2% =1,
q=0
(p/2)-3
Y 200+ — @)legara + (“DPAT((p/2) + D2, )
q=0
+ (i) 22(p/2)1(p/2) + 2)\e(pj2) 2t =0,
(p/2)-2

> (p—2¢— g+ Dlp — @)leglqrr + (=) (p/2)N(p/2) + 1)leg2) 1t = 0.
4—0
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As a first explicit example we now show that there is no SU(2) equivariant quartic
minimal immersion with range V' = R4. Indeed any such should come from the
equivariant construction above for p = 4. The equations for minimality reduce to

96|col? + 6le1|* = 1,
48co|? + 12]e |2 + 442 =1,
3¢} + 8cot = 0,
6cgcy — 1t = 0.
These equations are inconsistent and we are done.
Next we turn to the description of type I minimal immersions. These are

obtained from the equivariant construction applied to Wy = 2R4. Setting p = 4
the constraints for Wy specialize to

48Jco|? + 3ler|* + 3les|® + 48eal* = 1,

24]co|? + 6ler]? + 4leal® + 6lea|? + 24Jea]® = 1,
decoca + 3cye3 + 4eacy = 0,

6cgcy + c1¢o — cacg — 6egey = 0.

This system has solutions, for example
co=V6/24, ¢1 =0, cg = V2/4, c3 =0, cg = —/6/24.

To work out the orbit map f¢ : $3 Sw,, we identify Wy with C% by the
orthonormal basis

2 V24, 2Bw/ V6, 22?2, 20 V6, wh /24,
We obtain (replacing the variable a+bj with z+wj in S 3 precomposing with v and

up to an isometry on the range) the full quartic minimal immersion 7 : S53 — 89
of type 1, given by

I(z,w) = ((1/&)@4 — ), V6:2w?,
V2(23w + z0%), V6(27%w — 2w’ w), (17)
V3/2(2%w? — 22w?), (1/V2)(|2[* — 4]z lw]? + le4))~

(The first four coordinates are complex, the fifth is purely imaginary and the sixth
is real so that Z maps into C?* x R)xR= Rlo.) An important property of 7 is
that its components are orthogonal with the same norm.
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According to a rigidity result in [2], up to isometries on the source and the

range, this is the only type I minimal immersion and the image of the immersion
is an embedded S3/D3. Hence

1= SU(2) - (1),

where we used SU(2) equivariance of Z. For the next result we recall that the
octahedral manifold [2] is the quotient S3/0O*, where O* is the binary octahe-
dral group (that is the twofold cover of the group of symmetries of the regular
octahedron along % — SO(3)).

Theorem 6. I is a single SU(2) -orbit. Furthermore, this orbit is an octahedral
manifold 53/0* embedded minimally in an 8-sphere of Rg. This embedding is
given by a degree 8 equivariant immersion of 53,

To prove the second part, we will have to show that O* is the isotropy group
of the SU(2)" action at (Z), a computation which we postpone for the moment.
Once this is done, it follows that the orbit S3/0O* must be minimally embedded in
a sphere since according to [2] there exists only one orbit with isotropy O* which
is hence an isolated exceptional orbit and hence must be minimal. Or, as was
first observed in [18], S o /O* is isotropy irreducible and hence for every invariant
polynomial the orbit construction must give rise to an isometric embedding up to
scaling.

We will first consider the type Il immersions:

Theorem 7. We have
dimIT < 6. (18)

The set 11 splits into the disjoint union
II =11y UIL (19)
corresponding to linearly rigid and nonrigid quartic minimal immersions. We have
dimITy = 6. (20)

and

I, = SU(2) - D, (21)

where D is a flat 2-dimensional disk with boundary circle on the octahedral mani-

fold 1.

Proof. We show (18) by a careful dimension computation. For type II minimal
immersions the SU(2)-module is 3R4. Since R4 can be thought of as the SU(2)-
module of quartic polynomials

&(z,w) = coz? + agwt + 122w — e 20® — 12202, ¢p,c1 € C, L € R,
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we look upon a general element of 3R4 as a triple:

3 3 2,,2

a0z4 +&0w4 +a12°w — ajzw’ —rz‘w

boz4 + b0w4 -+ b1z3w — blzw?’ — 5222

coz4 + 60w4 + clz?’w - Elwa — 12202

where ag, a1,bg, b1,¢p,c1 € C and r, 5, € R. The decomposition 3R4(= V) is not
unique, in fact, SO(3) acts on 3Ry in a natural way. Thus, rotating (r, s, ) € R3,
we may assume that r = s = 0 and £ > 0. We still have the freedom to rotate
along the third axis. This amounts to the change

ag — cosa - ag —sina - by,

bo — sina - ag + cos a - by, (22)
and similarly for a1 and b;. The equations for minimality are

96(]ao|® + [bo|® + |co[?) + 6(Jar|* + b1 [* + [e1]*) = 1,

48(lag|? + [bo|* + |eol?) + 12(|ax | + [b1|* + er]?) + 422 = 1,
3(a} + b3 + 3) + 8cot = 0, (23)

6(apay + boby + coe1) — et = 0.

Note that these equations are invariant under the action (22) of SO(2). For fixed
t € R we can solve the first two equations and obtain

laol? + [bol* + |eo|? = ro(t)?
la1|? + b1 )% + |e1]? = ri ()2,

where
ro(t)? = L(1+4t?)
144
1
2 2
1) = —(1 — 8t°).
n)? = (-8

The second equation reduces the range of ¢ to
0<t<1/V8.

If t = 1/+/8 then a; = by = ¢; = 0. The third equation in (23) gives ¢g = 0 (the
fourth is automatically satisfied) so that we have

|ao[* + [bo[* = 1/96.
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We obtain that, for ¢ = 1/4/8, the solution set is the 3-sphere (of radius 1/+/96).
The action of SO(2) on (ag,by) (whose orbits are essentially given by the Hopf
fibration) reduces this to a 2-dimensional solution set.
Now let 0 <t < 1/4/8. Since both radii ro(t) and r{(¢) are positive, the first
two equations above say that
(ag, bo, co) € Sfo(t) and (aq,by,c1) € S5l(t)

in two copies of C3. If ¢ = 0 then the third and fourth equations in (23) reduce to
a% + b% |- c% =0

and -
apay + boby + cpey = 0.

The first of these is a complex quadric that intersected with S5 1 gives a smooth

1/V18
3-dimensional manifold for (a1,b1,¢c1). (In fact, this is the rezil projective space.)
For fixed (ay,by,c1), the second equation is a complex plane that intersected
with Sir’/m gives a great 3-sphere. Putting these together, the product is a 6-
dimensional manifold on which SO(2) acts without fixed points. The quotient
gives a 5-dimensional solution set.

Finally, let 0 < ¢ < 1/+/8. Given (ay,by,c1) € Sfl(t), we use the third equation

in (23) to get

3
co = —g(a% + b3 +c}).

The fourth equation in (23) is an affine complex plane
_ T _ 1
agal + bgby + ¢ = gclt

that, intersected with SE’D o and knowing the value of ¢g, reduces the solution set

for (ag, by, co) to at most one dimension. This is because a1 and by cannot vanish
simultaneously. (Indeed, if a; = by = 0 then ¢ge; = —30%51/(815) = —3|e1[e1/(8).
On the other hand, ¢gé; = ¢1¢/6. Combining these we obtain ¢ = 0; a contra-
diction.) This, combined with the 5-dimensional solution set for (ay,by,cq) gives
a 6-dimensional solution set. As before, the action of SO(2) reduces this to 5-
dimensions.

Summarizing, for fixed 0 < ¢ < 1/ /8, the solution set is always at most 5-
dimensional. Varying ¢ now gives (18).

Next we consider IIy in the splitting (19). Given a full minimal immersion
f: S§3 — Sy of type II, if f is linearly nonrigid, that is dim My > 1, then the
points on OM y correspond to type I minimal immersions so that oM C I. Thus,
to describe IT; we consider line segments connecting pairs of points in I and use
the connecting lemma to make sure that the points in the interior of the segment
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correspond to type Il quartic minimal immersions. Since I is a single orbit, we may
assume that one endpoint of the segment is (Z). We now choose g = a+bj € SU(2)
so that vgy € SU(2)’ and let the other endpoint be (Z o (vgv)}. By the connecting
lemma, the space of components of any quartic minimal immersion corresponding
to the interior of the segment connecting these two points is the SU(2)-module

Vio(ygy) + V1

and, assuming that the endpoints are distinct, the interior points correspond to
type II or type III according as this is 3R4 or 4R4. To simplify the computations,
we consider the quotient

(VIO(vgv) +Vr)/Vr = VIO(“/QW)/(‘/IO(WQW) ﬂ Vz).

This quotient is trivial iff
(Zo(vgy) = (D),

a task we also have to carry out to prove Theorem 6 since gy then belongs to the
isotropy group of SU(2)'. The quotient is equal to R4 or 2Ry according to whether
we have type II or type III in the aforementioned segment. Technically speaking,
we need to make the substitution z — az + bw and w +— —bz + aw corresponding
to vgv, g = a+ by, in each of the polynomials in

Vg = span {z% — w2202, 22w + 20°, 222w — 2w,

S(=%w?), 21t — 4220l + el *}

and work out the components modulo V7. Elementary computations now give
that VIO(7 ) modulo V7 is spanned by the following polynomials:

Mz4 + 4ﬂz3w + 43,21113 (24)
vat — 202%w + 2a20° (25)
pz3w — 323z + fuww® + 362 ww — 3622w (26)
— w2tw — a2’z — aww® + 3022w + 3azzw? (27)
S(p2?w?) + 4382w — 22zw)) (28)
I/QR(zQwQ) e 23‘3(@(22210 = zu)QzIJ))7 (29)

where

7 2 2
a = ab(|a]” —[b]%)
B = a®b+ ab®
p—dt gt B

v = a’b? + a2b?.
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Lemma. (24) — (29) are linearly dependent iff

R(aB) =0 and ap+ 26v =0. (30)

Proof. We first observe that (24)-(25), (26)-(27) and (28)-(29) are mutually or-
thogonal. Thus, we need to study linear dependence of each pair of polynomials.
The proposition now follows by case-by-case verification by splitting the first two
pairs of polynomials into real and imaginary parts and evaluating each 4 x 4-
subdeterminant of the corresponding 4 x 6-matrices. The last pair gives only
2 x 2-subdeterminants of a 2 X 4-matrix.
The remaining task is to work out (30) in terms of a and b. The first equation
in (30) gives
(laf* = pI*)R(ab?) = 0. (31)

It is convenient to use ‘isoparametric’ coordinates on § 3, that is to set
a=-coste’ and b=sinte. (32)

t = 0,7/2 correspond to the two great orthogonal circles cut out from 53 by the
span of the first and last two coordinate axes; a fixed 0 < ¢ < /2 corresponds to
the Clifford torus 7, parametrized by € and ¢.
Case I Let |a|? = |b|2. We are on the ‘middle’ Clifford torus T /s We have a =0
so that, the second equation in (30) reduces to fv = 0.

If 3 = 0 then, substituting (32) into the expression of 3 we obtain

¢p=—-0+2k+Dn/4, keZ,
or equivalently,

a=(1/v2)e®, and b= (1/V2)e et LeZ,
where € = ei"/4,
If v =0, we get
p=0+(2k+1)n/4, ke Z,

so that 4 4
a=(1/v2)e® and b= (1/vV2)e?* ! keZ

Summarizing Case I, the solution set is the union of 8 closed curves in T /4 and

they lift to [0, 27r]2 to give straight segments with slope 1 and #- and ¢-intercepts
being any odd multiples of 7/4.
Case II We assume that ¢ £ 7/4. If t = 0 then

a=¢c? and b=0.
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We obtain the entire great circle Tj.
If t = 7/2 then 4
a=0 and b=¢"

and the solution set is T% /2.
Finally, let 0 < ¢ < 7/2 and ¢ # w/4. Working out each coefficient «, 3, p,
v and substituting them into the second equation in (30), we finally arrive at the
solution set
a=coste and b=sintd?* | kleZ (33)

For fixed ¢ as above, this is the union of 32 points and on [0727r]2 they corre-
spond to the intersection points of the straight segments obtained above. As ¢
moves, these points sweep 32 curves that, on T} /4, meet the existing solution set
in triple intersection points and on Ty and T’ /2 they also produce 8 triple inter-
section points distributed equidistantly. Summarizing, the solution set consists of
48 closed curves meeting in 48 triple intersection points. Looking at each case
separately, we see that the triple intersection points are given (as quaternions) by

(1/V2)(* + €5), k£ 1(mod?2); *, éj, k,leZ. (34)

These form a group of order 48 and is conjugate in 53 to the binary octahedral
group O*. By abuse of notation, we denote this conjugate by the same symbol.
We obtain that the orbit I is the ‘octahedral manifold’ S3/O* in B and the second
part of Theorem 6 follows.

Looking now back at the 48 curves above, we see that on the quotient I =
53/ O* they give exactly 3 closed curves intersecting at (Z). After conjugation
with ~, they are orbits of the (mutually orthogonal) 1-parameter subgroups cor-
responding to Z, (1/v/2)(Y + X) and (1/v/2)(Y — X) in su(2), where

=i o] x84 -]

form the standard orthonormal basis in su(2). Denote these orbits by o, ¢’ and
o”. More explicitly, o is parametrized by

01— ey (T), 6 eR

(corresponding to ¢ = 0 in Case II) and o’ (resp. ¢”) are parametrized by (33)
with k =1 =0 (resp. k=1 and [ = 0). Note that they intersect orthogonally at
(I).

We now take a closer look at 0. A quick check of Case Il reveals that V.,
modulo V7 does not depend on #. The same is true for

(ve®fy)

VIo(veie'y) + VI
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so that the connecting lemma implies that ¢ is on the boundary of the relative
moduli space corresponding to any interior point of any segment connecting two
distinct points of o. We choose the midpoint of the segment connecting (Z) and
¢™/8 . (T) that has the type II representative 7 : S3 — 514 given by

T (z,w) = (1/v/2) (,24,10472\/5221?)27223w7 22w°,
2v3(22%w — zw?w), V62?2t — 4]z |w|? + |w[?).

Thus, we have ¢ C dMy. Our immediate purpose is to show that ¢ = oMy
holds. To prove this, we make a slight detour and, observing that J is U(2)
equivariant, we claim that the segment

R (J)[M*)T@ (35)

parametrizes all full quartic U(2) equivariant minimal immersions f : $3 — Sy.
Indeed, the U(2) equivariant quartic minimal immersions are parametrized by the

fixed point set (M*)V(2) so that the claim follows once we show that (R§)V(?) is
I-dimensional. Since Rg is SU(2) fixed, we have (Ré)U(Q) = (R})T, where

I = {diag(e"?,¢") |0 € R} C SU(2) (36)
is the center of U(2). As noted above, v € O(4) switches Rg and Rg and I' to
IV = {diag(¢”, e ") |0 € R}; (37)

the standard (1-dimensional) maximal torus in SU(2). Thus, (R§)" corresponds

to (Rg)F’. On the other hand, I'" acts on the standard basis in Rg diagonally with
a unique ["-fixed polynomial —z2w? and the claim follows.

Remark. For p even, W, = HQ/Q, where the SU(2)-module structure on the
space of spherical harmonics on S? is given by the projection SU(2) — SO(3).
Thus we also have R, = Hg/Q as real modules. The SU(2) orbit of (J) is RP?
embedded minimally into its respective 8-sphere as the image of the standard
minimal immersion fy : $2 — $8. Indeed, (F4)SV(2) — R} = 'H3 and (Ré)U@)
corresponds to the zonals (H%)SO@) whose SO(3) orbit on the unit sphere gives
the image of fo.

We are now ready to prove that ¢ = OM 7. By the above, o0 C OM 7 so that
M7 is at least 2-dimensional. Since (J) is I-fixed, I" leaves M 7 and its boundary
invariant. I' acts on M 7 without fixed points since a fixed point is automatically
U(2) fixed and there are only two of these on the entire boundary. Thus, dim M 7
must be even, therefore 2 or 4. Finally, it cannot be 4 since, in that case, OM 7
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would be a topological 53 (by convexity) and it would have to coincide with I
(for reasons of dimension). The latter is $2/O* that is topologically distinct from
53, We obtain that M7 is a flat 2-disk D with center (7), in particular, dIM 7 is
1-dimensional, and thus it must coincide with o.

The argument is entirely analogous for ¢’ and ¢” so that they are the boundary
circles of 2-disks D’ and D”. Note that D, D’ and D are orthogonal to each other
at the common boundary point (Z). We now let SU(2)’ act on this configuration
and realize that D’ and D" are on the SU(2) orbit of D. We thus arrive at (21).

At this point, without having a detailed study of the type III quartic minimal
immersions, we can only assert that IIy is of dimension at least 3 and postpone
the proof of (20). More specifically, we claim now that the antipodal orbit

SU(2)' - (Lo)

consists of type II linearly rigid quartic minimal immersions. To do this, we first
determine the antipodal of Z. Recall that 7 has orthogonal components with the
same norm so that the antipodal lemma applies. It immediately gives that the
antipodal Z, is of type II. The SU(2)'-orbit through (Z,), being the antipodal of
I, is again an octahedral manifold. It remains to show that Z, is linearly rigid.
Assume that Mz, is nontrivial and consider a line segment through (Z,) with
endpoints (f1) and (fa) on OM7, . Clearly, fi and fo are of type I. Consequently,
the antipodals f{ and f§ are of type II. Let (f) be the intersection of the segment
connecting (f7) and (fg) with the line R-(Z,). We claim that f is of type I1I which
is a contradiction since, in this case, it should be congruent to 7 (the antipodal of
7,) that is of type 1. To prove the claim we use the connecting lemma and compute

Vf — fo + Vfé’
_ 1/l 1
- Vfl + sz
= (Vfl meQ)L‘
On the other hand

dim(Vy, (V) = dim Vy, + dim V,
— dim(Vy, + V)
=10+ 10 — dim V7,
=10+ 10 — (25— 10) = 5.

Theorem 7 follows (with the proof of (20) postponed).
We now consider type III quartic minimal immersions, and claim that the

antipodal 7, of 7 is of type I11. These are actually the two endpoints of the segment
(35) parametrizing the U(2) equivariant quartic minimal immersions. Recall that
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(J) is the midpoint of the segment connecting (Z) and (I o (ve'™/84)) both of
type 1. Thus, the antipodal of (J) must be on the segment connecting (Z,) and
(T o (ve'™/8%),) provided that this segment is on the boundary B. Thus, by the
connecting lemma again, we need to work out

VI, + Vio(yeir/8y),-

By the antipodal lemma, this is equal to
1 1 i
Vi + Vioyenisyy = (V2 ﬂVIO(ve”/Sv)) :
On the other hand
dim (Vg m VIo(vei"/Sw)) =dim V7 4+ dim VIo(vei"/Sw) —dim(Vz + VIO(Weiﬂ/SW))
and this is 10 + 10 — 15 = 5-dimensional and the claim follows.

Lemma. Let f: 53— Sy bea Jull SU(2) equivariant quartic minimal immersion
of type III. Then, we have
dim M > 4.

Proof. As before, the Lie algebra su(2) is considered as the tangent space of Rt
at the identity. For U € su(2), we denote by U, the right invariant extension of U
on 53, Given C € SQV, we define the linear map

V(C) : su(2) X su(2) — P8,

by ~ ~ B B
V(CYU,U") = (CFf(U), £ (U)) = (CU(f),U'(f)),

where P1? is the space of homogeneous polynomials of degree ¢ on RY. Evaluating
U (f) on the basis Z, X, Y it follows easily that this function belongs to P4 so that
U (C) maps into P8, Since ¥(C) is symmetric in the arguments U and U’, it can
be considered as a linear map

V() : S%(su(2)) — PB,

or equivalently, an element ¥(C) € P® ® S2(su(2)). We now vary €' in S?V and

obtain the linear map
V5%V — P8 5% (su(2)).

Since the right invariant vector fields (pointwise) span each tangent space in 53,

we have
ker ¥ = Fy.
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To estimate this kernel we first observe that ¥ is a homomorphism of SU(2)-
modules, where the module structure on V is given by SU(2) equivariance of f.
Explicitly, for g € SU(2), we have

¥(g- C)(Ad(g)(U), Ad(g)(U")) = ¥(C)(U,U") 0 Ly-1.
Since f is of type 111, we have V = 4Ry as SU(2)-modules. Thus

52V = S%(4Ry) = 45%(R4) @ 6(R4 ® Ry)
= 10Rs ® 6Rg @ 10R4 ® 6R9 @ 10Ry

(cf. (9)). On the other hand,
P=1lonoH oH2 0o H®
=9Rg @ TRg ®5R4 @ 3R2 @ Ry,

where the first row is isomorphism as SO(4)-modules, the second as SU(2)-
modules. Finally, su(2) = Rg so that

52(su(2)) = R4 @ Ro.
Putting all these together, we obtain
P8 ® 52(su(2)) = 9R12 ® 16R19 @ 30Rg @ 31Rs @ 30R4 @ 18Ry @ 6Ry.

Comparing this with the domain of ¥ we see that 4Ry must be in the kernel.

Let III denote the set of points that correspond to type Il quartic minimal im-
mersions. Recall also that 7, is the unique full U(2) equivariant quartic boundary
minimal immersion of type III.

Theorem 8. III is everywhere dense, open and connected in the 8-dimensional
boundary B. My, C B is 6-dimensional and

III = SU(2) - int M.

Proof. First of all, by (18), the complement of ITT in B is of codimension 2 so that
III is everywhere dense, open and connected in B. We now claim that

dim My, = 6.

U(2) leaves Mg, invariant since it fixes (7,). By local unicity of the U(2) fixed
points, the center I' of U(2) acts on dM y, without fixed points. It follows that
dim M7, is even. By the previous lemma, dim My is either 4 or 6. The claim
will follow if we show that dim M 7, > 6.
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Consider the SU(2)-module homomorphism ¥ : S2V — P& @ $2(su(2)) intro-
duced in the previous lemma for f = 7, : S§3 — Sy. Since J, is U (2) equivariant,
¥ is a homomorphism of U(2)-modules, where the U(2)-module structure on V is
given by the equivariance of J,, and the center I' C U(2) acts on su(2) trivially.
Being a U(2)-submodule of H*, V' (complexified) decomposes according to (10).
We have

VeorC=HYaH3 o 1B & HOA. (38)

Indeed, since dim V = 20, we need only to show that H2?2 is not a component of
V. This, however, follows from the antipodal and connecting lemmas. Indeed, 7
and 7 o (ve"™/84) do have components in H>?2, and so does J since (J) is the
midpoint of the segment connecting (Z) and (Zo(ve"™/8+)). Since T has orthogonal
components with the same norm the antipodal lemma applies, and we see that Z,
and 7 o (v¢"™/85), do not have components in H>2. The same holds for 7, as ()
is the midpoint of the segment connecting (Z,) and (Z o (ve'™/85),).

As in the previous lemma, we now count the trivial components in the U(2)-
modules that contribute to the domain and range of the (complexified) W. Since I'
acts on these components as a character, we will also keep track of the correspond-
ing weights. SQ(V) contains 6 trivial components with zero weight; 4 coming from
the symmetric squares of the components in (38) (e.g. S?(H>1) is contained in
H31 @ H13 that has weight (3 —1)+ (1 —3) = 0), and 2 coming from H*0 @ 104
and H31@H 13, In addition, SQ(V) contains one trivial component for each weight
6,2, -2, —6, (e.g. H*? @ H31 has weight (4—0) + (3—1) = 6). As U(2)-modules,
52(su(2)) = H>2 @ HO since T acts on su(2) trivially. All the trivial components
in P8 @ S2(su(2)) are in H* ® (H?2 @ H°), and, by (10), we have 2 trivial com-
ponents with zero weight, and one trivial component for each weight 4,2, —2, —4.
Comparing, we see that the kernel of ¥ must contain at least 4 trivial components
with zero weight, and two trivial components with weights +6. We see that ker ¥
is at least 6-dimensional. The claim follows.

By the transversality lemma, the SU(2)" orbit of int M 7, is an 8dimensional
smooth manifold since T' leaves M7, invariant, and SU(2)" does not have 2-
dimensional subgroups. This orbit must then be open in B. Its boundary is
contained in TUIL. Tt follows that SU(2)" - int M 7, is a connected component of
IIT (and its boundary is equal to IUIT). Since ITI is connected, Theorem 8 follows.
As a byproduct, we obtain that IT and Iy are connected (and 6-dimensional) since
I C IT and IT; C II are of codimension > 2.
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