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Fundamental groups of compact manifolds and symmetric
geometry of noncompact type

A. Candel! and R. Quiroga—Barranco?

Abstract. We introduce the notion of geometrical engagement for actions of semisimple Lie
groups and their lattices as a concept closely related to Zimmer’s topological engagement condi-
tion. Our notion is a geometrical criterion in the sense that it makes use of Riemannian distances.
However, it can be used together with the foliated harmonic map techniques introduced in [8] to
establish foliated geometric superrigidity results for both actions and geometric objects. In par-
ticular, we improve the applications of the main theorem in [9] to consider nonpositively curved
compact manifolds (not necessarily with strictly negative curvature). We also establish topo-
logical restrictions for Riemannian manifolds whose universal cover have a suitable symmetric
de Rham factor (Theorem B), as well as geometric obstructions for nonpositively curved com-
pact manifolds to have fundamental groups isomorphic to certain groups build out of cocompact
lattices in higher rank simple Lie groups (Corollary 4.5).

Mathematics Subject Classification (1991). Primary 53C12, 58E20; Secondary 58Gl11,
28A33.

Keywords. Symmetric spaces, semisimple groups, foliations.

1. Introduction

One of the main problems in the study of the superrigid properties of symmetric
spaces of noncompact type, and their groups of isometries, is to determine the
restrictions on the fundamental groups of manifolds whose geometry and/or dy-
namics are closely related to such spaces. In this direction, we found results by
Ballmann-Eberlein [2], Gromov [3] and Spatzier-Zimmer [9] which show (among
other things) that a compact manifold whose geometry (dynamics in the case of
[9]) is that of a rank at least 2 irreducible symmetric space of noncompact type
cannot have the fundamental group of a compact manifold with strictly negative
curvature.

1Research supported by N.S.F. Grant No. INT-9600468.
2Research supported by SNI-MEXICO, CINVESTAV-IPN-MEXICO and grants CONACYT
E120.3148 and JIRA-97,/043.
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On the other hand, by using the foliated heat flow theory developed by Gromov
[5], it has been possible to extend geometric superrigidity techniques to compact
foliated manifolds as found in [1] and [8]. These works provide restrictions on
possible leafwise geometries of compact foliated manifolds which already carry a
leafwise symmetric geometry; in [8] it is further developed a way to compare the
geometry of such compact foliated manifolds to that of a compact nonpositively
curved manifold. However, the following remarks point to some problems not con-
sidered in these works: 1) The results from [1] and [8] make use of diffeomorphisms
as a mean of comparison between manifolds and, even though they impose some
useful geometric restrictions, they are not truly showing topological restrictions.
2) The notion of stretch of a foliation introduced by Gromov and used in [8] to
solve foliated geometric superrigidity problems has a geometric/dynamic nature,
which was not further studied in [8], and this feature should be the key step in
extending the techniques of [8] from foliations to suitable actions of semisimple
Lie groups.

The main contribution of this work is to deal with the above remarks by pro-
viding a geometric notion of Zimmer’s topological engagement condition which is
then used, together with the foliated techniques from [8], to prove rigidity results
(in the sense of providing topological obstructions) for compact manifolds with
suitable geometry or dynamics closely related to that of certain symmetric spaces
of noncompact type.

One of the main tools used in [8], as well as in this work, is the notion of a
positively stretched foliation which is spelled out in section 2. To better under-
stand the techniques and main results of this work let us just say at this point
that to a compact manifold M carrying a foliation F, a leafwise Riemannian met-
ric g and a finite invariant transverse measure one associates a nonnegative real
number stre(M,F, g) which provides a geometric measure of the properness of
the foliation when lifted to the universal cover; if (M, F, g) is positively stretched,
i.e. stre(M,F,g) > 0, then, in some sense, there is a non-null collection of geo-
metrically proper leaves in the universal cover of M. We take a step further and
say that suitable actions of semisimple Lie groups are geometrically engaging if,
when lifted to the universal cover of the manifold being acted upon, the orbits are
proper in the sense of a Riemannian distance. Such restriction is similar to the
topological engagement condition considered by Zimmer in [9].

The main results are the following:

Theorem A. Let M be a manifold with a smooth foliation F carrying a finite
invariant transverse measure p and a leafwise Riemannian metric g. Assume
that each leaf is isometrically covered by a fized irreducible symmetric space X
of moncompact type which is either of rank at least 2 or a quaternionic or Cayley
hyperbolic space, and thatstre(M,F,g) > 0. If N is a compact manifold with non-
positive sectional curvature when rank(X) > 2 and with nonpositive complezified
sectional curvature otherwise and m (M) = w1 (N), then there exist a homothetic
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totally geodesic immersion X — N.

This theorem improves one of the main results from [8] by obtaining a geometric
restriction (the totally geodesic immersion X — N) from just an isomorphism of
fundamental groups. In [8], to obtain a similar conclusion, it was required either
a diffeomorphism between M and N or a smooth map M — N with certain
geometric/dynamical restrictions.

Theorem B. Let (M,g) be a compact Riemannian manifold whose universal cov-
er can be isometrically split as M=2~Y x X, where X is as in Theorem A. Let N
be a compact manifold with nonpositive sectional curvature when rank(X) > 2 and
with monpositive complerified sectional curvature otherwise. If (M) = m(N),
then there is a homothetic totally geodesic immersion X — N. In particular, for
rank(X) > 2 the group m (M) cannot be isomorphic to the fundamental group of
a compact manifold with strictly negative sectional curvature.

This last result can be rephrased by saying that if a nonpositively curved com-
pact manifold N has the same fundamental group of a compact manifold M whose
geometry is only “partially” symmetric of rank at least 2, then N contains some
of that geometry immersed in a homothetic and totally geodesic fashion, and so
it can be considered itself as “partially” symmetric. Theorem B’ from section 5
states a similar result for Riemannian foliations.

As for results involving the dynamics of the group of isometries of a symmetric
space we prove the following:

Theorem C. Let X and N be as in Theorem A, and let I' be a torsion free
cocompact lattice of the group of isometries of X. Assume I' has a geometrical-
ly engaging action on a compact manifold T that preserves a finite measure. If
w1 (1) =2 w1 (N), then there is an isometric totally geodesic immersion X — N. In
particular, when rank(X) > 2, the space T' cannot have the fundamental group of
a compact manifold with strictly negative sectional curvature.

This result is similar to the main theorem found in [9], where the geometrical
engagement condition replaces the assumption on the existence of an invariant
connection used in [9]. We remark that some of the arguments found in [8] prove
that a geometrically engaging action is topologically engaging and, since the latter
is the chief tool used to prove the main result in [9], it follows that the particular
case stated in Theorem C is a consequence of [9]. However, Theorem C imposes
obstructions given the condition 71(7T") = m(N) even if N does not necessarily
have strictly negative sectional curvature, which is an essential hypothesis in the
arguments found in [9] when using topological engagement. On the other hand,
for higher rank groups as above the known measure preserving actions are of
an algebraic nature or obtained by gluing such algebraic constructions (see 4 and
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section 4), and we prove that they all are geometrically engaging (see Theorems 3.3
and 3.4), so the condition is not very restrictive. Also, our proofs use only geometry
and harmonic map theory, so that the particular case of Theorem C provides a
geometric proof (in fact, a geometric superrigidity proof) of the main theorem
from [9] for all known measure preserving actions.

As a matter of fact, the geometric engagement of some “exotic” actions (as
described in section 4) is used to establish an obstruction for nonpositively curved
compact manifolds to have certain fundamental groups build out of lattices. More
precisely, let H be a simply connected simple Lie group and G a simple subgroup,
both of noncompact type and rank at least 2. Assume that G has codimension at
least 3 in H and that there is a torsion free cocompact lattice A of H such that
I'=ANG is a lattice in G. Then we have the following;:

Corollary 4.5. Let N be a compact manifold with nonpositive sectional curvature.
If w((N) is isomorphic to the amalgamated product Axr A or to the HNN—extension
Axp (both constructed from the identity isomorphism of '), then there is an iso-
melric totally geodesic immersion of the symmetric space associated to G in N.
In particular, the fundamental group of a compact manifold with strictly negative
sectional curvature cannot be isomorphic to either A xp A or Axp.

2. Preliminaries

In this section we recall some results and definitions from [8] related to the notion of
stretch and foliated geometric superrigidity. We also define geometric engagement
as a dynamical version of the property of having positive stretch. Also some
auxiliary results are stated and/or proved in this section.

Definition 2.1. Let M be a compact metric space with a smooth foliation F
carrying a smooth leafwise Riemannian metric g, (V,h) a compact Riemannian
manifold and f: M — N asmooth map. For v in UTxM (the leafwise unit tangent
bundle of M) let v be the g—geodesic with initial velocity vector v lying within the
leaf £ to which v is tangent, let ¥ be any lift of v to the universal cover of £ and
f(®) its image under a lift f to universal covers of the restriction f|z. Define:

$e(v) = di ,, (F(7(0)), F(3(1))
Then the pointwise stretch of f is the function defined by:

p-stre(f): UTrM — R
$:(v)

v — liminf —/——=
t—o0
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If F carries a finite invariant transverse measure pu, the stretch of f is defined by:

stre(f) = lim Md/@ :/ p-stre(f)dur

t—=oo Jurynm UTeM

where pf, is the measure on UT'rM obtained by integrating against y the Rieman-
nian measures on the leaves of the foliation in UT'rM induced by F.

Remark 2.2. It is an easy matter to verify the last identity on the previous
definition.

The pointwise stretch of a function f is nonnegative, and we will say that f has
positive pointwise stretch if it is a positive function; observe that this condition
does not depend on the choice of the metric on N. The same kind of remarks
apply to the stretch.

For the particular case M = N and f = idps, the identity map on M, the above
are called the pointwise stretch and the stretch of (M,F,g) and are denoted by
p-stre(M, F,g) and stre(M, F, g), respectively.

Remark 2.3. The notion of a positive stretch map, being formally similar to that
of quasi—isometry, is not equivalent to it. An example that illustrates this is the
following. Take two Reeb foliations of a strip in the plane, glue them together to
obtain a foliation of a cylinder, then mod out by a translation to get a foliation
of the flat two-dimensional torus. In the universal cover of the torus we have a
foliation whose leaves can be assumed to be the translates of the graphs of the
curves y = exp((1 — 22)~2) and vertical lines &z = £1. It takes a short calculation
to verify that each graph has positive stretch but, excepting the lines, is not quasi—
isometrically embedded.

Similar examples can be constructed in hyperbolic space, simply by taking two
geodesics with one common endpoint at infinity, and then inserting in between
them a Reeb-like foliation.

Definition 2.4. Let G be a connected Lie group locally isomorphic to the group
of isometries of a symmetric space X of noncompact type and let T' be a compact
Riemannian manifold acted upon by G. Choose a Cartan decomposition g = ¢®m
for the Lie algebra of G (with &€ a maximal compact subalgebra), and let m; be
the unit ball in m with respect to the Killing form of g. For v € my denote with

g7 = exp(tv) the one—parameter subgroup of G generated by v. The pointwise
stretch of the action of G on T is the function defined by:

pstre(G,T):my x T — R
d=(g7x,x

(v,2) — l'ltm inf L

where G acts on T' by an arbitrary but fixed lift of the action of G on T'. We say

that the action of G on T" has positive stretch if p-stre(G,T') is a positive function.
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Remark 2.5. Observe that the pointwise stretch of an action does not depend on
the choice of the lift of the action of G on T' to an action of G on T'. On the other
hand, the pointwise stretch of an action does depend on the choice of the Cartan
decomposition and the Riemannian metric on I'. However, the property of having
positive stretch does not depend on any of them. Also notice that the action of G
on 1" has positive stretch if and only if for every one—parameter subgroup g; of G
which does not map into a compact subgroup of Ad(G) we have:

- s d~(gtx7 x)

liminf ————

t—o0
for every x € T. From this it is a straightforward matter to check that an action
with positive stretch is topologically engaging.

Since the orbit under g; (as in the definition above) of a suitable point in

X is a geodesic, with ¢ proportional to the length parameter, we can say that
the action of G on T has positive stretch if the action lifted to universal covers
is such that the orbits of “noncompact” one—parameter subgroups increase their
length at least as fast as they do within X. Hence, a positive stretch action has
geometric/dynamical properties similar to those of the action of G on X.

Definition 2.6. With the same notation as in the previous definition, we say that
the action G X T' — T of the Lie group G on the manifold T has uniform positive
stretch if: dn(gb, )
. . TG T, T
liminf inf """ >0
t—o0 vemq

for every z € T,

In words, an action with uniform positive stretch is one that has at every point
positive stretch bounded from below by a fixed constant for all directions of the
symmetric space associated to GG. A property like this would be good enough to
provide the conclusions of our theorems, but we actually need less. We introduce
the notion of geometrically engaging action; this concept implies positive stretch,
and it is implied by uniform positive stretch. It is close in spirit to the notion of
topologically engaging action discussed in [9].

Definition 2.7. With the notation as in the previous definitions, we say that the
action of G on T is geometrically engaging if for every sequence (g, ), in G such
that (gnx0)y is a quasi-ray in X (the symmetric space associated to G) for some
(and hence any) zg € X, the limit inferior:

dr~(gnx,
lim inf T(g )

—— >0
n—oo dx (gn®0,20)

for every = € T.
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Definition 2.8. Let I' be a cocompact lattice in the group of isometries of a
symmetric space X of noncompact type, and let T' be a compact manifold. An
action of ' on T is called geometrically engaging if it is induced by a I'-action
on the principal bundle 7' — T' in such a way that for every sequence (v,,), in I’
defining a quasi-ray (for a word metric) we have that for some (and hence any)
zg € X, the limit inferior:

de( vz, T
liminf —E05®) o
n—oo dx(Vn20,%0)

for every x € 7,

Remark 2.9. Recall that a sequence z,, in X is called a quasi-ray if there exist
constants A > 0 and B > 0 such that

A71|m—n| — B <dx(zn,zm) < Am—n|+ B

for all m,n > 0. Also recall that the image of a geodesic ray under a quasi—isometry
is a quasi-ray.

Remark 2.10. Let G be a simply connected semisimple Lie group of noncom-
pact type and I' a cocompact lattice. If (), is quasi-ray in I' for some word
metric, then (v,z0)y, is a quasi-ray in X (the symmetric space associated to G)
for any zg € X. In particular, any geometrically engaging action of G induces a
geometrically engaging action of T'.

Remark 2.11. It is clear that the notion of geometrically engaging action is
independent of the point zg of X because G is the isometry group of X. Also note
that the actual value of the limit inferior may depend on the point = in 7T'.

The concept of geometric engagement ensures that the geometric/dynamical
properties of the action of G on T are close to those of the action of Gon X ,
but now from the point of view of orbits by sequences in G which are only nearby
to the one—parameter subgroups considered in definition 2.4. It is stronger than
topological engagement, which only requires the existence of an element of G (not
in a conjugate of the isotropy group of X)) whose orbit in T is locally closed (see

[90)-
Now we state some simply facts about cocycles which will be needed later.

Definition 2.12. Let G and H be Lie groups such that the former acts on a Borel
measure space T'. A Borel mapping a: G x T' — H is called a cocycle if for every
g,9 € G it satisfies:

olgg',z) = alg,g'z)aly,x)
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for a.e. z € T'. The cocycle is called strict whenever this condition is satisfied for
every z € T

Remark 2.13. We recall that if GG is Lie group acting by bundle automorphisms
on a principal bundle p: P — M with structure group H, then any Borel section
s of p induces a cocycle a: G x M — H which is defined so that it satisfies:

gs(m) = s(gm)a(g,m)

for every g € G and a.e. m € M. Moreover, if s is a section in the sense of sets,
then « can be assumed to be strict.

Lemma 2.14. LetT be a compact Riemannian manifold and 1" a cocompact lattice
of the group of isometries of a symmetric space of noncompact type. Assume that
I' acts on the principal bundle T' — T'. Then there erist a Borel section s:T — T'
of the universal covering p: T — T which is a bijection onto s(T') and such that
the latter is Borel with diameter < 6 diam(7T'). In particular, the section s induces
a strict coeycle ag:y X T — w1 (1), for the I'-action on T T, which satisfies:

dz(vs(x), s(x)an (v, 7)) < 6diam(T)
foranyy el andx e T.

Proof. Let {B;}?_{ be a cover of T' by evenly covered open balls (i.e. the restricted
bundle 7T|ﬂ.71(Bi)Z7T71(Bi) — B, is trivial), and for each ¢ choose a lift B, of B;
such that all of them lie within a fixed ball of radius 3diam(7"). Define A| = El,
A = B;\ (pY(B1U---UB;_1)); then A = Ui 1 A; is Borel with diameter
< 6diam(T") such that p|4: A — T is a bijection, and so the latter defines a Borel
map s = p|g1 which is a section of p in the sense of sets.

On the other hand, the cocycle induced by s satisfies:

vs(z) = s(yx)ao(y, =)

for every v, z. In particular, vs(z) and s(z)ag(7y, z) lie within the set s(T)ag(~, z)
which has diameter < 6 diam(7") since ag(v, ) is an isometry. O

The following is the main result from [8] on foliated geometric superrigidity.

Proposition 2.15. Let M be a compact manifold with a smooth foliation F car-
rying a finite invariant transverse measure p and a leafwise Riemannian metric
g. Assume that each leaf is isometrically covered by a fixed irreducible symmetric
space X of noncompact type which is either of rank at least 2 or a quaternionic
or Cayley hyperbolic space. Let N be a compact Riemannian manifold with non-
positive sectional curvature when the rank of X is at least 2 and with nonpositive
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complezified sectional curvature otherwise. If f: M — N is a smooth map with
positive stretch, then there is a homothetic totally geodesic immersion X — N.

The next result from [8], which will be applied later, asserts that suitable
compact manifolds have positive stretch for foliations induced by their de Rham
factors.

Proposition 2.16. Let M be a compact Riemannian manifold whose universal
cover isometrically splits as M =Y X X, where X is an irreducible Riemannian
manifold without conjugate points, and such that the factor X induces a foliation
F on M. Then (M,F) is pointwise positively stretched with respect to the leafwise
Riemannian metric induced from that of X and the finite invariant transverse
measure induced by the Riemannian measure on 'Y .

In order to build positively stretched maps from cocycles we will make use of
the following proposition.

Proposition 2.17. Let I be a discrete group which acts smoothly on the manifolds
X and T, where the action on the former is free. Let o:T'x T — 7 (N) be a strict
cocycle, where N is a manifold with contractible universal cover. Then there is a
smooth (a, w1 (N))—equivariant map f: X X T — N, which in particular induces a
smooth map f:T\(X xT)— N.

Proof. Observe that I" acts on X x T' by ~v(z,t) = (yz,~t) and similarly, the strict
cocycle condition on « ensures that the mapping:

IxXXTxN—->XxTxN

y(,t,n) = (v, 78, naly, 1))
defines an action. Moreover, it is easy to check that the natural projection F\(X X
T x N) — I'\(X x T defines a fiber bundle with fiber N. The manifold N being

contractible, there is a smooth section s and we can define a map_ f XxT—N
by the condition s([z,?]) = [z, f(:c t)]. One easily shows that f is well defined
and (e, m (N))—equivariant, i.e. it satisfies:

Fola,0) = fla t)aly,0) "
for every y € I', z € X and t € T Also, by looking at local trivializations of the

bundle one can show that ]Tis smooth. By (o, 71 (N ))—equivariance, f induces a
map f:I'\(X x T') — N which makes the diagram

XxT — W

I !

(X xT) —— N
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commutative, where the vertical arrows are the natural projections. Notice that
the commutativity of the diagram implies the smoothness of f. O

3. Fundamental groups and geometric engagement

In this section we develop some criteria to ensure that suitable maps and foliations
are positively stretched, and we also prove that the algebraic measure preserving
actions of semisimple Lie groups of noncompact type are geometrically engaging.
Our first result considers topological data to get the desired conclusion.

Proposition 3.1. Let M and N be compact manifolds and assume that M carries
a smooth foliation F and a leafwise Riemannian metric g without conjugate points.
Let h be a Riemannian metric on N. If f: M — N is a smooth map which induces
on fundamental groups a map f.:m1(M) — 71 (N) which is a quasi-isometry, then
there is a constant A > 0 such that:

Ap-stre(M,F, g) < p-stre(f)

where p-stre(f) is computed by considering f as a map f:(M,F) — (N,h) for
some arbitrary but fired Riemannian metric h on N.

Proof. Choose any global Riemannian metric s over M. Since f. is a quasi—
isometry, it follows that the lift f: M — N of the map f to universal covers is a
quasi-isometry. Hence, there is a map g: N — M and constants A\,C > 0 such
that for any z,y € M:

¢
dg @) 2) < € 2)

=
I
X
ko)
s
=
|
>
o
=
&
0
£
+
Q

Let v € UTxr(M) be given and denote by v the g—geodesic in the leaf that
contains the basepoint of v and with initial condition 7/(0) = v. Let 5 be some

lift of ~ to the universal cover M, and for every ¢ > 0 define:

Yi(v) = d(ﬂj)ﬁ(o):?(t))
$e(v) = d 5, (FF(0), FFD))

In particular, we have:

p-stre(M,F,g)(v) = litm inf @

p-stre(f)(v) = lim inf (th(U)

t—o0
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Then from inequality (1) it follows that:

451 TGO, TFEON) < Mg (FEO), FE@N) +
= Agpi(v) +C

which together with inequality (2) yields:

Yulv) < d gz, (3(0), 5(E0))
+d g o GO,TFGE))
+d gz GG, FTED))
<3C + Mg (v)

)
)

After dividing by ¢ and taking the limit inferior as ¢ — oo we obtain:

S pstre(M, F,g) < prstre(f)

As an immediate consequence we obtain the following:

Corollary 3.2. Let M and N be as in the Proposition 3.1 and let f: M — N
be a smooth map. If (M,F,q) is pointwise positively stretched and f induces an
isomorphism fo:m1 (M) — w1 (N), then [ is pointwise positively stretched.

The following result shows that the algebraic actions of semisimple Lie groups
are geometrically engaging.

Theorem 3.3. Let G be a closed subgroup of a Lie group H, both assumed to be
semisimple of noncompact type, and A a cocompact lattice in H. Then the action
of G on H/A is geometrically engaging. In particular, the action on H/A of any
cocompact lattice of G is geometrically engaging.

Proof. Denote with g and h the Lie algebras of G and H, respectively. Let g = ¢&m
and h = [ @& n be Cartan decompositions with £ and [ compact subalgebras. Since
g can be canonically embedded into § (i.e. a Cartan decomposition on f is chosen
so that its involution leaves g invariant, see [7] for more details) we can assume
that € C [ and m C n. Choose a right H—-invariant Ady(L)—invariant (and hence
left L—invariant) Riemannian metric h on H such that [ L n and whose restriction
to n coincides with the Killing form of . The metric ~ induces a Riemannian
metric on H/A, and we will prove that for this choice the action of G on H/A is
geometrically engaging.
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Let H be the universal cover of H and G the closed connected subgroup of
H with Lie algebra g. Since the metric on His right H- invariant and the right
action of H on itself is equivariant with respect to the left G—actlon it is enough
to check geometric engagement at the identity e.

Let L and K be the closed subgroups of H with Lie algebras [ and €, respectively.
Then the metric on H induces a Riemannian metric on L\H such that the natural
projection m: H— L\H is a Riemannian submersion. Also, observe that the metric
on f\ﬁ is H—invariant and so it is isometric to the symmetric space associated
to H. Moreover, the natural inclusion K \@ — Z\ﬁ realizes the symmetric space
X =K \@ associated with G as a totally geodesic Riemannian submanifold of
I\H.

Now let (gn)n be a sequence in G such that (Kgn)n is a quasi—ray in the
symmetric space X = K \G For each n, let ¢, be the geodesic segment in H from
e to g, such that length(c,) = d(H7h) (gn7 ). Since 7 is a Riemannian submersion

and 7o ¢, has Le and Zgn as endpoints it follows that:

length(e,,) > length(r o ¢,) > dz\ﬁ(ZQn, Le) = d[?\a(zgmze)

where the last identity follows from the fact that Le and Egn lie in K \é which is
a totally geodesic submanifold of L\ H. In particular, we have:

dz 1y(gns€)
n—o0 dx (x0gn,20)
for X = K \@ the realization given above of the symmetric space associated to G
and zg = K the class of the identity. In particular, the action under consideration
is geometrically engaging at e and hence at every point. O

Remark 3.4. In the proof above we have considered a realization of the sym-
metric space associated to G by a quotient of the type K\G. However, the usual
realization of the symmetric space X associated to G (as used in the definition of
geometric engagement) is given by X = G/K. This causes no conflict since they
are isometric under the map Kg+— g ' K.

The following result is the key step to prove Theorem C:

Proposition 3.5. Let I' a torsion free cocompact lattice of the group of isomelries
of a symmetric space X of noncompact type with I acting on the left on X, N a
compact manifold with contractible universal cover and T a compact manifold on
which I acts smoothly preserving a finite measure p. Assume that w1 (T) =2 7 (N)
and that the action of I' on T is geometrically engaging. Let I' act diagonally on
X X T and endow I'\(X x T') with the obvious foliation and leafwise Riemannian
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metric coming from the symmetric space X. Then there is a smooth map f: T\ (X x
T) — N such that, for any Riemannian metric on N, the map f has positive
stretch.

Proof. Let ap:I'x T' — w1 (1') be a Borel cocycle that satisfies the conditions from
Lemma 2.14. The cocycle ag composed with an isomorphism p: w1 (1T') — 71 (N)
(which we fix from now on) yields a strict cocycle a:T' x T' — 7w(N), and we
consider the maps fand f provided by Proposition 2.17.

Let h be a Riemannian metric on /N and denote with g the Riemannian metrics
on both X and I'\(X x T'), the latter being leafwise; also observe that the I'-
invariant finite measure p on T induces a finite invariant transverse measure on
M\(X x T). To show that f has positive stretch, the Riemannian metric we put
on I'\(X x T') is such that its restriction to the leaves coincides with the metric
g on X, and makes the transversals T' orthogonal to the leaves. This metric is
obviously I'-invariant when lifted to X x T'.

Choose (zg,t0) € X x 1" and v € T, X unitary, and let g; be a one-parameter
subgroup of G (the group of isometries of X) such that ¢ — g:zg is the geodesic
in X with initial velocity vector v. Then the curve defined by c(t) = [g:z0, to] is
a leafwise geodesic in I'\(X x T'), and the pointwise stretch of f at [zg,%p] in the
direction of the vector v is given by:

pestre( f)(v) — liminf d(f(gezo,t0), f(z0,t0))

t—o0 t

(3)

Observe that for any g,v € G we have, for some constant A > 0,

d5(f(a,t), flgz, 1)) — dg(Fz,1), flyw, )| < dg(Flgz,1), flyw, 1)) (4)

S AdXXT((gx7t)7 (’Yﬁﬂf))
= Adx(gz,vz),

for all (z,t) € X x T, where the second inequality follows from the fact that ]7
descends to the map f, which is a smooth map between compact manifolds (hence
Lipschitz), and the last equality because of the choice of metric in I'\(X x T').

Let g = £ ® m be the Cartan decomposition of the Lie algebra of G, where ¢ is
the Lie algebra of the isotropy group of zg. Now choose a mapping F:exp(m) — I’
obtained as the composition of the natural homeomorphism exp(m) — X and a
quasi—isometry X — I'. One can further assume that:

dx(gzo, F(g)zg) < 2diam(I"\ X)

for all z € X and g € exp(m). From equations (3) and (4) it follows that:

p-stre(f)(v) = lim inf d5(f(zo,t0), f(F(g:)z0,%0))

t—o00 t
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In order to estimate the last ratio, we first note that since f is (a,m1(N))-
equivariant we have that

dz(f(@o,t0), f(yzo0,t0))

2 d(f(zo,t0), f(yxo,vt0)) — d5(f(vzo,vto), f(vz0,t0))
= d(f(zo,t0), f (w0, t0)a(v,t0) 1) — d5(F(vw0,7t0), f (720, t0))

for every y € T _

On the other hand, since for any yg € N the map v — ygv defines a quasi-
isometry w1 (N) — N, it follows that for d’ a group distance on 71 () there exist
constants A and C such that we have:

d'(e,0(v,t0)) < Mg (f(zo,t0), f(wo, to)aly,to) 1) + C

for all v € I'. Moreover, by the second inequality in (4), the I'-invariance of the
metric on X x T and the compactness of T' there is a constant C’ depending only
on zg such that:

d5(f(vao, 7o), f(yzo,t0)) < Adxxr((vz0,7t0), (v2o,t0))

= Adxx1((z0,t0), (z0,7 1t0))
<

for every y € T.

For a suitable choice of generators we can assume that p defines an isometry
between 71 (T") and 71(N) with their group metrics, so that if we denote with the
same symbol d’ the metric on 7 (7"), then the last three sets of inequalities imply
that:

a5 (F(wo, o), Flrwo,to) > 3 (e a0y, 10) — = — ' Q

for every vy € T L
Choose a Riemannian metric on T" and let ¢tg € T' be the image of ¢ under the
Borel section from Lemma 2.14. Then it follows that for every v € I':

ds(~io, Toao (v, t0)) < 6 diam(T)

Also, recall that by compactness of T, the mapping v — t~ofy defines a quasi—
isometry w1 (1) — T, so there exist constants Ag and Cy such that for every v € I':

d=(to, toao(7,t0)) < Xod'(e, a0(v,t0)) + Co,
and this together with the previous inequality yields

dz(10,70) < Aod' (e, a0(v,t0)) + Co + 6 diam(T), (7)
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for every y € I.
From the above it follows that:

d~(f(z0,t0), F(F(ge)zo,t0))

p-stre(f)(v) = litm inf ¥ n by (5)
!
> 1 lim inf d (6’a0(€(gt)7t°)) by (6)
d~(to, F(g:)i
> Ll'mrlinf 47( 0, FlgeJto) by (7)
A 0 t—oo t

To see that the last limit inferior above is positive, we first observe that since
F'is a quasi—isometry:

i 2 (@0, Flge)zo)

im ———————=

> M\
t—oo  dx (0, g:20)

for some positive constant A\1. Alsot = dx(zg, g:x0), and the stretch of f satisfies:

d~=(to, Fg:)tc
p-stre(f)(v) 2 )\)‘Tl lim inf 2200 Flge)f0).

>0
o t—oo dx(zo, F(gi)zo)

which is positive since the action of I' on T is geometrically engaging and ¢ —
F(g)zg (t > 0) is a quasi—ray in X. O

4. Exotic actions

We will present a family of geometrically engaging actions which are not of an
algebraic nature (see Theorem 3.3). The construction is a modified version of
examples previously constructed by Benveniste in [4].

Let H be a noncompact simply connected simple Lie group and G be a noncom-
pact simple Lie subgroup of H with real rank at least 2 and codimension at least
3. Let A be a cocompact lattice in H such that I' = G N A is a cocompact lattice
in G. We further assume that A is torsion free. Also, throughout this section we
will assume that H carries a Riemannian metric which is right H—invariant and
left L—invariant, as in the proof of Theorem 3.3, where L is such that Ad(L) is a
maximal compact subgroup of Ad(H).

The quotient space H/A has a foliation given by the induced action of G' on
its left, and it has one compact orbit Cy = G/I". The arguments from [4] prove
that Cp can be blown up to obtain a smooth manifold My with boundary By in
such a way that My is acted upon by G with the natural projection My — H/A
a G-equivariant map. We now take two copies M), M}/ of My and identify them
along their boundary Bg. The resulting space 1 is a smooth manifold which
admits a G—action on the left. It is clear that the smooth volume on H induces a
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finite G—invariant measure on 7. We will consider Tj as a Riemannian manifold
with metric induced by metrics in M{) and M/ coming from one on Mj.

A similar construction, which will prove to simplify certain matters, can be
performed without having to blow up before gluing. More specifically, let us take
two copies of H/A and identify them along the orbit Cy = G/I" to obtain a space
Tj. The space T} is a manifold with singularities which admits a length structure
simply by defining the distance between two points to be the minimum of the
lengths of all paths joining them, where the length is measured according to which
copy of H/A the segments of the path lie in. Also observe that there is a natural
G-equivariant projection mg: Ty — T} induced by the projection Mo — H/A.

Let us now assume that the centralizer Z = Zy(G) is not discrete and choose
z ¢ GA. Let M, be the smooth manifold obtained by blowing up the compact
G-orbits Cyp = G/T" and C7 = Gz/I". Again, it is proved in [4] that the left G-
action on H/A induces a left G—action on M, such that the natural projection
M, — H/A is G-equivariant. Denote by T, the manifold obtained from M, by
identifying the two exceptional divisors associated to Cy and Cy. Clearly, the left
G—action on M, induces one on T,. In this construction, whenever it is necessary
to choose Riemannian metrics we will assume that a metric on 7, is fixed and
induces one on M,.

Once again, we perform the construction without blowing up and denote by 77
the space obtained from H/A by identifying Cy with Cq. The resulting space is a
manifold with singularities carrying a length structure as the one described for 1}
where the length of a curve is now measured by carrying suitable segments from
T! to H/A and computing their lengths; observe that the right H—invariance of
the metric on H implies that the length of a segment within the image of Co U Cy
in T is independent of whether it is computed as a curve in Cy or in C;. We
have again a map m,: T, — T which is induced by the projection M, — H/A and
hence is G—equivariant. _ _

We observe that both universal covers T}, and T have length space structures
that can be obtained in the same manner as for 7{) and 7. For these metrics the

covering maps are clearly local isometries. When required, we will assume that Té
and T/ carry such metrics.

Remark 4.1. Observe that the universal cover TO of Ty can be constructed by
hand and for our purposes all we need to know about the construction is the
following. One takes the universal cover My of My, which can be seen as H
with the translates GA of G ()\ € A) blown up. Then one considers a suitable
collection (M )i of copies of Mo and glue one copy M to another M along some
exceptional divisor (i.e. some lift of Bp) which is not necessarily the same within
M and M The manner in which the gluing is to be performed is dictated by
the structure of the fundamental group of T, which is A *xp A (the amalgamated
product build from the identity isomorphism in I'), and it is not of importance
for the argument. However, one important feature that we will need is that if a
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path joining two points within the same copy ]\Z moves crossing a submanifold B
through which it is glued to a copy Mj, then it has to come back to M; through
the same submanifold B.

Similar observations apply to the universal covers of T}, T, and T, where we

use copies of H for both T"é and TZ/ suitably identified along the translates GX in
the case of Té, and identified along the translates GA and Gz A in the case of TZ/

For the universal cover TZN“Z we use a family of copies of 1\72 Also observe that the
fundamental group of both T, and 77 is the HNN—extension build out of I' C A,
for the isomorphism I' — I' given by the identity (see [4] for more details), and
which we will denote by Axp from now on.

Remark 4.2. An additional important feature to notice about the universal cover
T} of T} is that if a path ~ has both endpoints in a fixed copy H; of H, then one
can get a curve g lying completely within that copy with the same endpoints and
length.

To obtain vg we use the previous remark and the following observation. If
« is a path lying in a copy H; with endpoints in a translate GA C H; glued to
GX C Hj for some other copy Hj, then there is a path o' lying in H; with the
same endpoints and length; o is obtained by taking the mirror image of o through
G, ie. by considering in H; the path that corresponds to « under the natural
isometry H; = H = H; composed with the isometry given by right multiplication
by A~LX. Then ~o is obtained from v by repeatedly taking the mirror images of
subarcs of . In particular, for any two points 2 and y lying in the same copy H;
of H in Tj, we have:

d%/é(xﬁy) - de’ (:E?y)

where both dq:, and dg, are length metrics, i.e. the infimum of the length of the

paths joining t%vo points within the corresponding space.

A similar remark applies to the universal cover T/ of T!. Here we only need to
notice that besides translating with a right multiplication by AN we may first
have to translate with the right multiplication by z, which is still an isometry.

Lemma 4.3. With a setup as above, for fired Riemannian metrics on Ty and T,
there is a constant A > 0 such that for any choice of lifts 7o and 7, to universal
covers of the maps mg and 7, respectively, we have:

dz, (To(x), Mo(y)) < Adg (#,y) Y,y € T

dg, (7:(2), 7 (y)) < Adg (2,9) Vr,y €T

where the distances in the universal covers Té and TZ’ come from the length struc-
tures described before.
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Proof. The natural projection Mg — H/A is smooth and has compact domain.

Therefore, there is a constant A > 0 such that for any curve o in My with image
o/ in H under a lift of My — H/A we have:

lengthy (o/) < A length 7 (o)

In view of the remarks preceding this lemma, any curve « in To can be decom-
posed into segments lying within a copy of My. And for any such segment the
previous inequality applies, so that after adding up the length of all segments we
have:

lengthi,)(a/) <A lengthfo(a)

and from this we obtain the first inequality in our statement. The second inequality
is proved similarly. O

As for geometrical engagement for the exotic actions we have the following:

Theorem 4.4. For G, 1y and T, as above, the actions of G on Ty and T, are
geometrically engaging.

Proof. First observe that from the previous Lemma (since we can assume that the
mappings 7 and 7, are G—equivariant) it is enough to check that the limit inferior
condition from Definition 2.7 is satisfied for the length spaces Té and TZ’ But the
latter is a direct consequence of Remark 4.2 and Theorem 3.3. O

An inmediate consequence of Theorems C and 4.4 is the following:

Corollary 4.5. Let N be a compact manifold with nonpositive sectional curvature.
If w1 (N) is isomorphic to the amalgamated product Axp A or to the HNN—-extension
Axp (both constructed from the identity isomorphism of '), then there is an iso-
metric totally geodesic immersion of the symmetric space associated to G in N.
In particular, the fundamental group of a compact manifold with strictly negative
sectional curvature cannot be isomorphic to either A xp A or Axp.

Proof. We only have to observe that A xp A and Axp are the fundamental groups
of Ty and T3, respectively. O

Examples of Lie groups G and H to which the arguments above can be applied
include the case of G = SL(n) C H = SL(n+ 2).

Also, as the reader would probably have noticed, it makes sense to somewhat
generalize this construction of amalgamated actions to include the case of a graph
of homogeneous spaces. That is, one has a graph T', associated to each of its
vertices there is a homogeneous space of the form H/A, and associated to each
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edge there is a homogeneous space G/I'. Moreover, each edge group come equipped
with inclusions on the vertex groups of that particular edge. After that one can
form a stratified space by appropriately gluing vertex spaces along their edges.
The cases that we have considered here are those in which the graph is either an
edge, with one or with two vertices, and the vertex spaces are the same. We have
not discussed the more general construction because it goes out of the philosophy
of the topic, namely, consideration of smooth actions on smooth manifolds. In the
general case of a graph, the final amalgamated space is not likely to be a manifold
but a stratified space whose strata are homogeneous spaces.

As to whether the techniques of this paper apply to these more general stratified
spaces, we note that most of them extend with minor modifications. An exception
is Proposition 3.5 which can nonetheless be done in this generalized setup after
some more careful consideration. Also, the theory of harmonic maps works pretty
well in this setting, as many authors have already shown (e.g. Gromov—Schoen);
in particular, the proof of our Proposition 2.15 as found in [8] can be carried out
with almost no modification to the case of compact metric spaces with smooth
laminations.

5. Proof of the main theorems

Theorem A. Let M be a manifold with a smooth foliation F carrying a finite
invariant transverse measure p and a leafwise Riemannian metric g. Assume
that each leaf is isometrically covered by a fized irreducible symmetric space X
of moncompact type which is either of rank at least 2 or a quaternionic or Cayley
hyperbolic space, and thatstre(M,F,g) > 0. If N is a compact manifold with non-
positive sectional curvature when rank(X) > 2 and with nonpositive complerified
sectional curvature otherwise and m (M) = w1(N), then there exist a homothetic
totally geodesic immersion X — N.

Proof. Since N has contractible universal cover, there is a smooth map f: M — N
which induces an isomorphism on fundamental groups. Then by Corollary 3.2, the
map f has positive stretch, and so by Proposition 2.15 the conclusion follows. [

Theorem B. Let (M,g) be a compact Riemannian manifold whose universal cov-
er can be isometrically split as M=~Y x X, where X is as in Theorem A. Let N
be a compact manifold with nonpositive sectional curvature when rank(X) > 2 and
with monpositive complerified sectional curvature otherwise. If (M) = m(N),
then there is a homothetic totally geodesic immersion X — N. In particular, for
rank(X) > 2 the group m (M) cannot be isomorphic to the fundamental group of
a compact manifold with strictly negative sectional curvature.

Proof. By passing to a finite cover of M, as well as the corresponding covering of
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N under some isomorphism 71 (M) 2 7m1(N), we can assume that the factor X
from M induces a foliation 7 on M. Moreover, the Riemannian measure on Y
induces a finite invariant transverse measure for F. By Proposition 2.16 it follows
that (M, F) has positive stretch, and by Theorem A the conclusion follows. O

Theorem B’. Let (M,h) be a compact Riemannian manifold without conjugate
points carrying a smooth foliation F which is Riemannian for h with totally
geodesic leaves. Assume that the lift of F to M has leaves isometric to X as
in Theorem A for the restriction of h to the leaves. Let N be a compact Rie-
manmnian manifold with nonpositive sectional curvature when rank(X) > 2 and
with nonpositive complerified sectional curvature otherwise. If (M) = m(N),
then there is a homothetic totally geodesic immersion X — N. In particular, for
rank(X) > 2 the group m1 (M) cannot be isomorphic to the fundamental group of
a compact manifold with strictly negative sectional curvature.

Proof. The Riemannian transverse structure on M induces a finite invariant trans-
verse measure for F, and since the leaves are totally geodesic in a manifold without
conjugate points the pair (M, F) has positive stretch. By Theorem A the conclu-
sion follows. O

Theorem C. Let X and N be as in Theorem A, and let ' be a torsion free
cocompact lattice of the group of isometries of X. Assume I' has a geometrical-
ly engaging action on a compact manifold T' that preserves a finite measure. If
m(T) 2 w1 (N), then there is an isometric totally geodesic immersion X — N. In
particular, when rank(X) > 2, the space T' cannot have the fundamental group of
a compact manifold with strictly negative sectional curvature.

Proof. By Proposition 3.5 there is smooth map f:I'\(X x T) — N with positive
stretch. Hence by Proposition 2.15 the result follows. |
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