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On nonpositively curved Euclidean submanifolds: splitting
results

Luis A. Florit! and Fangyang Zheng?

Abstract. In this article, we prove that a n-dimensional, non-positively curved Euclidean sub-
manifold with codimension p and with minimal index of relative nullity ¥ = n —2p is (in an open
dense subset) locally the product of p hypersurfaces.

Mathematics Subject Classification (1991). Primary 53B25; Secondary 53C40.

Keywords. Isometric immersion, non-positively curved, Euclidean submanifold.

Let f:M™ — Q"P be an isometric immersion from a Riemannian manifold
into a complete simply connected Riemannian manifold of constant sectional cur-
vature ¢ (superscripts will always denote dimensions). Denote by v the indez of
relative nullity of f,

v(z) = dim{X € TuM : af(X,Y)=0,Y Y € T,M},

where oy stands for the vector valued second fundamental form of f. It is well
known that having v > 0 imposes strong restrictions on the manifold M"™ and on
its isometric immersion f. In [F1], the first author proved the inequality v > n—2p
when the sectional curvature of M™ satisfies Kjs < ¢ and gave several applications
of this result. First let us show that this estimate is sharp.

Example. Foreach:=1,... p, let §; C R3 be a negatively curved surface.
Then the product M = S x..-x5, CR3® satisfies the equality v =n—2p =0.

More generically, let M;** C R™T! be nowhere flat nonpositively curved hyper-
surfaces, ¢ =1,...,p. The Gauss equation tells us that the relative nullity v; of
M is v; = n; —2. Then, the product manifold M™ = M{” X oo X M;,”’ C R tP
also have v =n — 2p.

1Research partially supported by CNPq Brazil.
2Research partially supported by a NSF grant and an Alfred P. Sloan Fellowship. This
project is also sponsored by the National Security Agency under grant # MDA904-98-1-0036.
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The first author proved in [F2] a general splitting theorem for Euclidean sub-
manifolds f of nonpositive sectional curvature, under the additional assumption
that the normal bundle of f is flat. The main purpose of this paper is to drop that
assumption in the borderline case v = n — 2p to prove that the above example is
essentially the unique one with minimal relative nullity index.

Theorem 1. Let f : M"™ — R™P be an isometric immersion into Fuclidean
space of a Riemannian manifold with nonpositive sectional curvature. Assume
that v = n — 2p everywhere. Then there exists an open dense subset U C M™
such that fly splits locally as a product of p Fuclidean hypersurfaces, that is, for
any © € U, there exist a neighborhood x € V C U and p nowhere flat Euclidean
hypersurfaces f; : M['* — Rritl of monpositive sectional curvature, such that

V=M x- - xM, and flv=rfix-xf
split.

First of all, note that when f is analytic, the splitting occurs on the entire M. In
the general case, each n; is constant in a connected components of I, in fact, the
universal covering space of any component of of U is the product of p Euclidean
hypersurfaces. However, there are examples in which the n;’s are not constant in
the entire U. Secondly, it is interesting to observe that, from Theorem 1 of [M] we
have that f|y in the above is isometrically rigid if and only if each factor is rigid.

Corollary 2. Let f : M™ — QP 2p < n, be an isometric immersion of a
connected Riemannian manifold M™ with Ky < ¢ and Ricei curvature Ricy < c.
Then ¢ =0, n=2p and f splits locally as a product of p negatively curved surfaces
of R3. Moreover, the splitting is global provided that M™ is a Hadamard manifold.

The assumption on the Ricci curvature in the above can be replaced by the weaker
one v = 0. Also, the Hadamard condition can probably be relaxed a bit. Combin-
ing our results and [Z], we can state the complex analogue of the above:

Theorem 3. Let X™ be an immersed complex submanifold of CQZJ”’, the complex
space form of constant holomorphic sectional curvature c. Assume that X™ has
nonpositive extrinsic sectional curvature. Then the index of relative nullity of X™
satisfies v > n — p and:

(1) when v =n —p =0, we must have ¢ = 0;

(2) when ¢ = 0 and v = n — p, X" is locally holomorphically isometric to a
product

'3
CrXX™Mx o x X CX™P n—k4+> n,
i=1

for some 0 < k < v, where each X™ C c™t s a4 nowhere flat nonpositively
curved hypersurface.
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Moreover, if X™ is complete, then its universal covering is holomorphically
isometric to the product C¥ X 31 X -+ X X, where each Y; — Cc?isa complete
immersion of the unit disc. All dimensions here are the compler ones.

Notice that the real analyticity of X prevented k from jumping around. The last
part of Theorem 3 is because, by a theorem of Abe in [A], any complete immersed
complex submanifold of C™ with one dimensional Gauss image must be a cylinder.

Remark. Any Euclidean hypersurface g : H™ — R™H of nonpositive sectional
curvature without flat points can be described locally by means of the Gauss
parametrization in the following way (see [DG] for details). Take a surface ¢ :
V2 — $™ in the Euclidean unit sphere and a smooth function v on V2. The map
v T;V — R™H given by

Y(v) =€+ grad v +v

parametrizes g over the normal bundle of £, in the open set of normal vectors v
which satisfies det(yld+Hess,—B,) < 0. Here, B, denotes the second fundamental
operator of £ in the direction v. In this parametrization, £ is the Gauss map of g
and v = (g, &) its support function. For a discussion on the isometric deformations
of those hypersurfaces see [DFT]. Observe that any isometric immersion f as in
Theorem 1 can now be explicitly parametrized locally along U using the Gauss
parametrization for each factor.

The flatness of the normal bundle

Let o : V™ x V™ — WP be a symmetric bilinear map, where V' and W are real
vector spaces of dimension n and p, respectively, and W is equipped with an inner
product (, ). Assume « is nonpositive as defined in [F1], i.e.,

Ko(X,Y) = (a(X, X),a(Y,Y))— | o(X,Y) [P< 0,
for all X, Y € V. Denote by v the dimension of the null space N of a:
N={XeV | ofX,Y)=0,VY eV}
Recall that a subspace T' C V is said to be asymptotic, if a(X,Y) = 0 for all
X,Y € T. We know from [F1] that, for the above a, v > n — 2p. The main

technical part of this article is the following diagonalization result for the borderline
case v =n — 2p.

Proposition 4. Let o : V™ x V" — WP be a symmelric, nonpositive bilinear
map. If v =n—2p, then there exist a basis {e1,... ,en} of V and an orthonormal
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basis {w1,... ,wp} of W such that {eapy1,... ,en} is a basis of the null space N,
and for each i,7 < 2p, 4
ae;,e5) = (5¢j(—1)lw[#] ‘

Proof.We will carry out the induction on p. When p = 1, « is just a symmetric
bilinear form, so it can always be diagonalized. The nonpositivity condition will
force the rank of « to be less or equal than 2, and when it equals 2, the two nonzero
eigenvalues must be of opposite sign. Now assume that the result holds when dim
W < p, and consider the case dim W = p. _

By restricting o to a subspace V27 such that V = N & V, we may assume
that n = 2p and v = 0. Denote by ax the endomorphism ax(Y) = a(X,Y). By
Proposition 6 of [F'1] we know that there exists an asymptotic subspace T? C Vp
of a.. Set

r=min{rank ax :0£ X €T} > 0.

Fix a vector X € T with rank ax = r and let V/ = Ker(ax) 2 T. Thus, by the
first claim in the proof of Proposition 6 of [F1], we know that the image a(V’ x V')
is perpendicular to the image subspace Im(ax ), that is, we have the restriction
map
fe% |V’><V/3 V/ X V/ — Im(ax)J‘.
Let N’ be its null space. If there is Y € N’ \ T, then span(T U {Y'}) would be
an asymptotic subspace of « of dimension p + 1. By Proposition 8 of [F'1], we get
v > 1, a contradiction to our assumption. Therefore, N' C T'.
For each Y € N/ C T, we have Ker(ay) 2 V' = Ker(ax), so rank ay = r.
Therefore,
V' =Ker(ay), YO#£Y € N (1)
>

Put Wy = span{lm(ay) : Y € N’} which has dimension r + s, for some s
0. Again from the proof of Proposition 6 of [F1], we know that oV’ x V') is
perpendicular to Wy, that is,

ﬁ: « IV’XV/: Vix V' = WOL

is itself a symmetric, nonpositive bilinear map, with dim V' = 2p —», dim W3- =
p—r —s. Write ¢ = dim N’. Then by Proposition 9 of [F1] we have

9> (2p—1)—2Ap—r—35)=1+2s. (2)

On the other hand, if {Y7,...,Y,} is a basis of N' and Z € V' \ V’, from (1) we
obtain that the set of vectors {a(Y1,72),---,a(Yy,Z)} in Wy must be linearly
independent. Thus

g<r+s. (3)

We conclude from (2) and (3) that s = 0 and ¢ = r. So we can apply the induction
hypothesis on 3. However, we want to show first that r = 1.



Vol. 74 (1999) On nonpositively curved euclidean submanifolds 57

Assume the contrary, that is, ¢ > 1. Take a subspace V" such that Vi@V’ =V,
Choose any Y € N’ not collinear with X. Since s = 0, (the restriction of) both
ax and ay give isomorphisms between V| and VVOL Fix an orthonormal basis
{wi,...,w,} of Wg. Let {v1,...,v,} be the basis of Vj such that ax(v;) = w;
and write ay (v;) = 22:1 Bijw;. That is, we identify V7 and VVOL through ax,
and use the matrix B to represent ay.

If B has a real eigenvalue A, then ay_»x would have rank less than r, which
contradicts (1). So the matrix B has no real eigenvalues. By considering a complex
eigenvector which corresponds to a complex eigenvalue of B, we obtain two 2-
planes P C Vq, Q C WOJ-, such that both ax and ay give isomorphisms between
P and Q.

Now let us fix an orthonormal basis {w1,ws} of @, and let {es, e4} be the basis
of P such that ax(e3) = w1, ax(eq) = wa. Write

ay(e3) = awy +bws, ay(eq) = cwy + dws.
Replacing Y by Y — dX, we may assume that
d=0.

We know that the 2 x 2 real matrix with entries a,b,c,0 can not have any real
eigenvalue, or equivalently,
4bc + a <0.

Set e1 = X, eo = Y. For arbitrary real constants z and y, let us consider the
vectors Z = xeq + zyeg + xes —eq and Z' = yes + e3. We have

ZNZ =zyey Neg + ey Neg +yeg Aeg + e3 A ey.
Define the symmetric bilinear form R on A2V, the curvature of «a, as
R(Z1 N Za,Z3 N\ Zy) = (alZ1, Z3), o Z2, Z4)) — (o Zn, Za), ((Z2, Z3)).  (4)
Hence, the matrix of R under the partial basis {e1 Aeg,e1 Ae3z,egAeq,e3Neq} is

0 0 0 c—b
10 -1 b -—f
= 0 b - —g

c—b —f —g —h

Therefore —R(ZAZ',Z A Z') = 22 + 2y® + h + 2(2b — ¢)zy + 2fz + 2gy. Thus,
the nonpositivity of a gives us

Ay? £ 2((2b— )z + g)y + (22 + 2fz + h) > 0.
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Hence, the discriminant with respect to y must be nonpositive, that is,
0 < (@ +2fz+h)—((2b—c)z+g))? = (4be—4b2)a? +-2(c? f+cg—2bg)a+(Ph—g?).

Since a? 4 4be < 0, the leading coefficient is negative, which is a contradiction for
z sufficiently large. This completes the proof of the claim that ¢ = = 1.

Now applying the induction hypothesis on the restriction map 3, we obtain
an orthonormal basis {wi,... ,wp} of W and a basis {e],e9,€5,... ,ep,e,} of
V' = Ker(ax) such that X = ¢}, Im(ax) = span{w},

C\f(@i,@j) - 6ljw’b7 OL(€£7€;) - _6’ij’b7 a(@i76;‘) = 07 v 2 S /L?] Spa

and of course afle],e]) = ale],e;) = ale],ef) =0, for all 2 <i < p.

Choose a vector e; € V\ V' such that a(e1, e}) = w1. Write o = (A, ..., AP),
where each A% = (a(eq,ep),wy) is a symmetric 2p x 2p matrix. Here for
convenience we adopt the notations e, = e,4,; and i’ =i +p, for ¢ <p. Under the
basis {e, Aep; 1 <a<b< 2p} of A2V, the coordinate matrix of the bilinear

form R becomes
p

Rab,cd - Z(AI;CAIgd - A];dAlljc)'
k=1

The nonpositivity of a simply says that R(Z1 A Za, Z1 A Z3) < 0. For any three
vectors Z;, i = 1,2,3, by considering the nonpositivity at Z; A (Zg + xZ3) for
arbitrary x, we have

R(Z1 A Za, 71 N Za) - R(Z1 A Z3, Z1 A Z3) > (R(Z1 A Z9, Z1 A Z3))2. (5)

For all 2 < i < pand 2 < a # 4,7, from the above and R s = 0 we have
Rij 0 = — A%, :‘O. That‘ is, Ailj = Ailj, =0, for all 2 <7 # 7 < p. Replacing ey
by e1 —YF 5(Aj,e; — Al €l) , we may assume that

=0, Vij>2 (6)
For 2<i<p,set
Al _ 7l _ 4l
bifA1]7 aifAli, Ci*Alih

Thus,
Ry = -1,
2
Rii1e =bi—a;, Ri11:= —ai,
2
Ry 19 = by —ci, Riv e = —a,

since A}y, = 1. From (5) and Ry1/ 11/ Rii15 > (Ri17,1:)% we get b; < 0. Similarly,
replacing ¢ by ¢/, we have b; > 0. Therefore, all b; = 0.
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Now we take any nonsingular 2 X 2 matrix

3]

such that

and set

€1 =aey tce|, €] =bey+de|, & =e;—ae], € =c,—ce], 2<i<p.

Then under the new basis {é,} of V, we have «a(é,,é,) =0, if a#b,V/, and

a(é,é) =w;, alé,é)=—w;, V1<i<p.

This completes the proof of Proposition 4. O
Let us examine the diagonalizing frame {w;} of Proposition 4. Set
D={XeV :rank(ax) <1}

This set of course depends only on «. By Proposition 4, we know that D is
the union of p subspaces of dimension v + 2, denoted by D;, i = 1,... ,p, with
D;ND; = N foralli # j. If we choose a plane V; C D; which has trivial
intersection with N, then V is the direct sum

V=NoVie &V,

and a(D; x D;) = 0 if ¢ # 7, while all a(D; X D;) are one dimensional and
mutually perpendicular. So the orthonormal frame {w;} is uniquely determined
up to permutations.

It is interesting to note that K < 0 does not implies in general that the symmet-
ric curvature operator R is negative semidefinite. However, it is easy to see using
Proposition 4 that, in our case, we really have R < 0. In fact, {e;Ae;qp, 1 1 <14 < p}
is a basis of the orthogonal complement F' of the nullity space of R in A2V formed
by the unique (up to scaling) decomposable elements in F. Indeed, e; A €;, is
eigenvector of R of eigenvalue K (e;,e;p) # 0.

We are now in position to give the remaining proofs.
Proofs of Theorem 1 and Corollary 2. For each 2 € M™, consider «¢(z) the vector

valued second fundamental form of f at z. Since Kj; < 0, the Gauss equation
tells us that af(x) is nonpositive. Thus, we apply Proposition 4 to it to obtain the
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special (smooth) orthonormal frame {w;,1 <1 < p}. By Theorem 1 and Corollary
2 of [F2], we only need to prove that the normal bundle of f is flat. We will show
indeed that this frame is normal parallel.

For each 1 <4 < p, consider the shape tensor A,,, on M™ defined by (A, X,Y) =
(af(X,Y),w;). By Proposition 4, V; = Im A,,, are two dimensional distributions
on M™ such that

Vi @V,=At (7)
where A stands for the relative nullity distribution of f. Let ;; be the 1-forms

defined by v;;(X) = (Vxwi,w;). We only need to show that v;; = 0, for all 4, ;.
Recall that the Codazzi equation for 4, is

Vx(AwY) = Aw, VXY — Ayr,,,Y = Vy(Aw, X) — Ay, Vy X — Ayr,, X (8)
Taking in (8) X,Y € V;* = Ker A, we easily obtain using (7) that
Aw, (i (X)Y —4;(Y)X) =0, VX, Y € Vit 1<j<p.

Suppose that there is Xo € V', and j # i such that ¢;;(Xo) # 0. The above
equation implies that V- C VjL ® span {Xp}, that is,

T.M # Vi + Vih = (VinVy)*,

which is a contradiction by (7). Thus V;* C Ker 5, for all 4,5. By the orthonor-
mality of {w;} we have t;; = —t;;. Therefore, T,M = V> + V}L C Ker vy;.
Notice that the Ricci equations imply that the V;’s are orthogonal. This concludes
our proof. O

The proof of Theorem 3 can be obtained by combining the diagonalization
theorem of [Z] (together with the similar argument of the orthogonality of the
special frame) and the proof of the Theorem 1 of [F2]. So we shall omit it here.

Final comments

i) Let us explain Theorem 1 a little bit. We have everywhere on M™ the orthogonal
decomposition TM = N®V @- - -@ V), of the tangent bundle into distributions. Let
\72, be the distribution spanned by all vector fields in V; and all Vx, ---Vx X1,
where all X; € V. It is shown in [F2] that 12 1L 173 whenever ¢ # j, and all XZ are
parallel distributions (in the neighborhood where they have constant dimensions).
Let n;(x) be the dimension of \7; at z. Each n; is a lower semicontinuous integer-
valued function. If kK = n — Zle n;, then 0 < k < v. Let U be the open dense
subset of M™ which is the disjoint union of open subsets U; in which k(z) takes
constant value j. All n; are necessarily constant in ;, and we have the desired
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local splitting on U/;. Observe that, using the Gauss parametrization, it is easy to
construct examples of submanifolds with the functions n; nonconstant. Therefore,
for v > 0 we can only obtain the local splitting along an open dense subset. With
this is mind, the same argument as in Corollary 2 of [F2] proves the following

Theorem 5. Let f: M"™ — Qg”*” , 2 < r <n/2, be an isometric immersion
with flat normal bundle of a connected Riemannian manifold with Ky < ¢ and
Ricpyr < c. Then ¢ =0 and f splits locally as a product of r nonpositively curved
Buclidean submanifolds, that is, f = fix---x f, locally, with f;: M — R2ni—1,
The splitting is global provided M™ is a Hadamard manifold.

Again, the assumption on the Ricci curvature can be replaced by v = 0.

ii) We believe that the case v = n — 2p > 0 for an isometric immersion f :
M™ — QP | with ¢ # 0, cannot occur. It would be interesting either to prove
its nonexistence or to construct such an example. The complex case should be
similar.

iti) Taking the curvature tensor R as a 4—tensor on M", it is defined the
nullity space of M™ at z as the subspace I'(z) = {X € T,M : R(X,Y,Z, W) =
0, VY, Z,W € T,M}. This is an intrinsic subspace, so its dimension p(x) called
the nullity index of M™ is an intrinsic function. For an isometric immersion f of
M™ into Euclidean space we always have that the relative nullity distribution A
of f satisfies A C I". Thus, our assumption on the relative nullity distribution in
Theorem 1 can be replaced by the intrinsic one y = n — 2p. The same holds for
Corollary 2.

iv) Now let us consider the more general situation discussed in Theorem 1 of
[F2], namely, v = n —p —r, for some 2 < r < p. It is natural to ask if it can
be generalized by dropping the flatness of the normal bundle assumption as we
did for the case r = p. The answer to this question seems to be negative, since
the algebraic decomposition Proposition 4 does not generalizes, even for the case
r =p — 1, as the following example shows. Take A; defined as

1 0 00 0 000 0 O 0000 1
0 -1 0 0 0 000 0 O 00001
Ai=1]0 0 0 0 0|, A,=|0 01 0 0|, A3=]0 0 0 0 1
0 0 0 0 0 000 -1 0 00001
0 0 0 00 000 0 O 11110

The bilinear form o = (A1, Ag, A3) : R® x R® — R3 is nonpositive, has v =
n—p—r=0forr=p—1=2 but is not decomposable. It is easy to generalize
this example for all p. Thus the analogous result to Proposition 4 is false for
v=n—p—rand2<r<p-1.
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