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On holomorphic forms on compact complex threefolds

Marco Brunella

Abstract. We study the structure of holomorphic 1. forms on compact complex threefolds of
positive algebraic dimension. We obtain a rather detailed description of integrable 1. forms. We
use this result to extend Castelnuovo - De Franchis lemma (as well as Catanese’s generalization)
to non-Kahler threefolds.

Mathematics Subject Classification (1991). 32J17, 32130, 32J10.

Keywords. Complex manifolds, holomorphic 1. forms, algebraic dimension, foliations,
Castelnuovo-De Franchis lemma.

A very useful tool in the study of Kéhler manifolds is the classical Castelnuovo - De
Franchis lemma: it says that if w1 and wy are two linearly independent holomorphic
1-forms on a connected compact Kéhler manifold M, which satisfy the collinearity
relation wq A wg = 0, then there exists a holomorphic map = : M — C onto an
algebraic curve C of genus greater or equal than 2 such that wy, wo are pull-back
by 7 of two holomorphic 1-forms on C. This simple lemma has several nontrivial
consequences on the topology of Kahler manifolds [Cat], their Chern numbers
[Bog] [Miy], and many others things. A nice generalization has recently been
found by Catanese [Cat] (and, independently, other mathematicians; see [Cat] for
the references). We state only a particular case, sufficient for our purposes: if wy,
wo and ws are holomorphic 1-forms on a connected compact Kéhler manifold M,
such that wq Awg Awg =0 and w1 Awg, wy Aws, wg Awq are linearly independent,
then there exists a holomorphic map 7 : M — S onto a normal algebraic surface
S of Albanese general type such that wi, wo, ws are pull-back by 7 of three
holomorphic 1-forms on S. We shall recall in section 1 the definition of “variety of
Albanese general type”, for the moment we only say that it is one of the possible
higherdimensional generalizations of “curve of genus greater or equal than 2”.
These results are based on the closedness of holomorphic forms on compact
Kahler manifolds; in fact, the Kahler assumption is exploited only to ensure that
closedness. There are, however, many examples of compact complex non-Kdhler
manifolds which support non-closed holomorphic 1-forms: the most classical ones
are compact quotients of certain Lie groups [Uel,§17]. It is not clear to us if
Castelnuovo - De Franchis - Catanese statement is still true outside the Kahler
world. For instance, it is false on algebraic varieties in positive characteristic, and
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it frequently happens that positive characteristic algebraic geometry presents the
same pathologies of non-Kahler complex geometry.

In this paper we shall study the three-dimensional situation (holomorphic 1-
forms on compact surfaces are always closed, by Stokes theorem). In order to
obtain a complete result, we shall need a (unnecessary?) integrability hypothesis:
recall that a 1-form w is said to be integrable if w A dw is identically zero.

Theorem. Let M be a connected compact complex threefold.
1) If wy,wo € QY M) are two holomorphic 1-forms such that:

1.i) wy A dwy =0;

1.4) w1 Awg =0;

1.44%) w1 and we are linearly independent;
then wi and we are closed. Hence there exists a holomorphic map # : M — C
onto an algebraic curve C' of genus greater or equal than 2 such that w; = 7w*(n;)
for suitable n; € Q1(C), 1 =1,2.
2) If wi,wa, w3 € QYM) are three holomorphic 1-forms such that:

2.i) w1 Adwi = wa A dwg =0;

2.ii) w1 Nwg Aws =0;

2.iii) w1 A wa, way Aws and ws A wy are linearly independent;
then w1, wo and ws are closed. Hence there exists a holomorphic map w: M — S
onto a normal algebraic surface S of Albanese general type such that w; = 7*(n;)
for suitable n; € Q1(S), 1 =1,2,3.

Let us spend some words about the proof. In both cases the threefold M has
some nonconstant meromorphic function, given by a “quotient” of holomorphic
forms. Hence its algebraic dimension [Uel] a(M) is at least 1. If a(M) = 3 then
(Moishezon) M is bimeromorphic to a projective threefold and therefore every 1-
form on M is closed. If a(M) = 1 or 2 we can efficiently use an algebraic reduction
of M, which is a fibration over a curve or a surface [Uel]. If a(M) = 2 then M
may have non-closed 1-forms, but we shall see that they are quite special, and in
particular never integrable. However if a(M) = 2 we shall prove the theorem even
without the integrability hypothesis and also in a higherdimensional context. The
difficult case, where integrability will play an important role, is the case a(M) = 1,
and in fact our paper is mostly devoted to a rather detailed description of integrable
1-forms on threefolds whose algebraic dimension is equal to 1 (description which
may eventually be useful for other purposes). We also note some point of contact
with [C-P], where the authors study 2-forms on Kéhler threefolds with the help of
canonical fibrations; however in our case the difficulties arise from the non-Kahler
setting [Ue2], whereas in [C-P] they have a different nature.
As an application of the theorem we shall prove the

Corollary. Let M be a connected compact complex threefold with dim QS(M) <1
and dim QY (M) — dimQ3(M) > 3. Then M fibers over a curve of genus greater
or equal than 2 or a normal surface of Albanese general type.
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1. Preliminaries and some general results

We shall use in the following the basic properties of algebraic dimension and alge-
braic reduction of a compact complex space, which can be found in [Uel §3,§12].
We only recall that given a connected compact complex manifold M of algebra-
ic dimension a(M) (by definition, this is the transcendence degree of the field of
meromorphic functions on M, M(M)) we can construct a modification M = M
and a holomorphic map 7 : M — V with connected fibres onto an algebraic man-
ifold V' of dimension a(M), such that M(M) &~ M(M) = 7*M(V). A similar
construction can be done starting with any algebraically closed subfield of M(M),
instead of the full M(M).

A compact complex manifold (or space) M is called Moishezon if a(M) =
dim(M). Any Moishezon space is bimeromorphic to a complex projective manifold,
and therefore every holomorphic form on it is closed. This fact can be elementarily
proved by remarking that any k-form w on a compact complex space of dimension
(k+ 1) is closed (by Stokes theorem applied to the exact and non negative form
dw N %) and by observing that a Moishezon space M contains a lot of compact
complex subspaces, of any dimension (more precisely, given a generic p € M and
a l-subspace E C T,M we can find a [-dimensional compact complex subspace
N C M withp e N and T,N = E).

Given a Moishezon space M, we can consider its Albanese map ap; : M — Ay,
where Ay is the Albanese torus of M. Then any holomorphic 1-form on M is the
pull-back by aps of a unique holomorphic (linear) 1-form on Ap;. We shall say
that M is of Albanese general type [Cat] if dim(ap (M)) = dim(M) and ap (M) is
a general type variety (equivalently, by results of Ueno and Kawamata, aps (M) C
Az is not invariant by translations along a nontrivial subtorus of A,;). Remark
that this definition is more restrictive than the one given by Catanese (he requires
only dimay (M) = dim(M) < dim(Ax)).

As in [Cat], we shall say that a collection of holomorphic 1-forms wy, ..., wg41
on M (smooth, connected, compact, n-dimensional) generate a strict k-wedge if:
l) w1 A LA W41 = 07
ii) the k-forms Q; = w1 A Awj_1 Awjp1 A Awpyt, j = 1,...,k+ 1, are linearly
independent.

More explicitely, this means that there are meromorphic functions fi,..., fr €

M(M) such that
k
Wet1 = Z fiw;
i=1

and {1, f1, ..., fr} are linearly independent (over C). In particular, each f; is not
a constant and so the algebraic dimension of M is at least 1. We necessarily have
1 <k <n. If k=1 then we are in the setting of Castelnuovo - De Franchis lemma:
two linearly independent 1-forms whose wedge product is identically zero. At the
opposite side, one can show that a Moishezon n-space is of Albanese general type
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if and only if it admits a strict n-wedge [Kaw].

We can now recall Castelnuovo - De Franchis - Catanese lemma. We shall give
a proof slightly different from that of [Cat] in order to see how and where the
closedness hypothesis is really exploited.

Lemma 1 [Cat]. Let M be a connected compact compler manifold and let wq, ...,
w1 be closed 1-forms on M generating a strict k-wedge. Then there ezists a
holomorphic map m : M — V onto a k-dimensional normal Moishezon space of
Albanese general type such that w; € 7 (QY(V)) for every i =1,...,k+ 1.

Proof. The closed 1-forms {wl}f;rll generate a singular holomorphic foliation F
on M, given at a generic point by the intersection of the kernels of the 1-forms.
Clearly the codimension of the leaves of F is equal to k. Let M(F) be the field
of meromorphic functions on M which are constant on the leaves of F. As usual,
we can construct a modification M > M and a holomorphic map M = V with
connected fibres onto a smooth algebraic variety V such that

M(F) = M(F) = x* M(V)

where F is the foliation lifted to M.

We claim that [ = dim(f/) is equal to k. Assume by contradiction that I # k, i.e.
I < k. Then the foliation F , Whose leaves are contained in the fibres of 7, restricts
on a generic fibre to a foliation of codimension (k—[) > 0. We can find among the 1-
forms @; = r*w; a collection of (k —1) 1-forms (say, @1, ..., wx—;) whose restrictions
to a generic fibre F' generate the foliation F|p (that is, &1 A ... A Op_y|p # 0).
Hence for every ¢ = k — 1+ 1,...,k + 1 the 1-form &;|p, which vanishes on the
leaves of .7:"|F, can be expressed as a linear combination of @1|p, ..., 0| with
meromorphic coefficients. Varying F' we find for every ¢t =k -1+ 1,..,k+ 1 a
collection of meromorphic functions f;; € M(M), j=1,....,k — I, such that

k—1
w; |ﬁbres = Z fij (dj |ﬁbres)'
j=1

The closedness of &; on fibres, i =1, ...,k + 1, implies that

k1
Z(dfij |fibres) A (@ lfibres) = 0
=1
and therefore fi;|gpres is constant on the leaves of F lfibres, that is f;; is constant
on the leaves of F: f;; € M(F). Hence every f;; is also constant on the fibres of
.

We now look at the cohomology classes [0;|r] € H!(F,C), for F a generic
fibre. Varying I, the class of [@;|p] is locally constant (with respect to a local
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trivialization which preserves integral cohomology) because @; is closed on M. On
the other hand [@1]|F], ..., [0k—i|r] are linearly independent because @1 |p, ..., Ok—1|p
are (and because a closed nontrivial holomorphic 1-form on a compact manifold is
never exact, so that the space of closed holomorphic 1-forms injects into the first
cohomology group). From

k—1

(@il F] = fislivs| el

i1

we deduce that f;; are constant on all of M and not only on the fibres of .
Finally, by definition of strict k-wedge we have

k+1

B1=") [
=2

where f; € M(M) and {1, fo, ..., fut1} are linearly independent. Taking the
product with @ A ... A@j,_y, restricting to fibres and dividing by @1 A ... A@k—1|fibres
we finally obtain

k+1 k—1
1= > (X fa)
j=k—1+1 =1

contradicting the linear independence of {1, f_;41, ..., fx+1} because every f;; is
constant. This proves, as desired, that the dimension of Vis equal to k.

As a consequence of this, the foliation F on M coincides with the fibration
7 M — V. Because F on M is defined by closed holomorphic 1-forms and
therefore it is locally defined by holomorphic maps to C*, we see that = descends
to a holomorphic map 7 : M — V which defines a fibration which coincides with
F. The space V is a normal Moishezon space of dimension k and V = Vis
a modification. The 1-forms w; vanish on the fibres of & and therefore they are
projectable on Vi w; = #*(n;), 7 € Q'(V) (singular fibres give no problem, see for
instance and more generally [Eno, lemma 3.3]). These 7; generate a strict k-wedge
on V, so that V is of Albanese general type. O

In the previous proof we tried to use as less as possible the closedness of the
holomorphic 1-forms. Remark that the crucial point was to prove that the func-
tions f;; are constant, and this was done in two steps. As a by-product we can
easily prove the next two lemmata.

Lemma 2. Let M be a connected compact complex manifold of dimension n and let
W ey Wi 1 E Ql(M) be generators of a strict n-wedge. Then M is a Moishezon
manifold (and therefore of Albanese general type).
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Proof. Suppose by contradiction that | = a(M) < n and take an algebraic reduc-
tion 7 : M — V,dim(V) = I. As in the proof of lemma 1 we choose (n—1) 1-forms
among the @; (say, @1, ...,&n—;) whose (n — [)-fold exterior product do not vanish
identically on the fibres of w. Then for everyi=n—1[0-+1,...,n+ 1 we obtain

i N2 A o N Dn—t|fibres = 9i(W1 A @2 A oo A @n—i|fibres)

where g; € M(M) is now constant on the fibres simply because M (M) = 7* M (V).

Even if @;Awo ... A&y, is possibly non-closed, we still have that its cohomology
class [@; A@o A ... A Dn—i|r] € H* '(F,C) (F a generic fibre) is locally constant:
to see this, take a generic algebraic curve C C V and observe that ©; Awa A ... A
Wn—t]r-1(c) Is closed by Stokes theorem and dim(7—1(C)) = n— 1+ 1. Hence

every g; is constant on all of M , and as in the proof of lemma 1 we rapidly arrive
to a contradiction. O

Lemma 3. Let M be a connected compact complex manifold with a(M) = dim(M )—
1 and let wy, ...,wr41 € QI(M) be generators of a strict k-wedge. Then dw; = 0
for everyt =1,....k + 1 (and therefore we can apply lemma 1).

Proof .

The generic fibres of an algebraic reduction M = V are elliptic curves. If one
of the @; does not vanish on a generic fibre then we can work as in the proof of
lemma 2 and we arrive to a contradiction. Hence &;|gppes = 0 for every 4, so that
@; is projectable on V' and therefore closed (again, by [Eno, lemma 3.3], singular
fibres give no problem). O

If dim(M) — a(M) = 2 (or more) then the situation is more complicated: it
may happen that every @; A@; vanishes on the fibres of the algebraic reduction, so
that the arguments of lemma 2 do not work, and at the same time some of the &;
do not vanish on the fibres, so that we cannot project on V. Moreover, it seems
difficult to analyse the variation of the cohomology class of ©; restricted to fibres.

Returning to the case dim(M ) —a(M) = 1, we also note the following property
of integrable 1-forms.

Proposition 1. Let M be a connected compact complex manifold with a(M) =
dim(M) — 1. Then any integrable 1-form on M is closed.

Proof. Take an algebraic reduction M = V, whose generic fibres are elliptic
curves. Every non-closed 1-form & € Q!(M) becomes closed when restricted to
any surface 7r_1(C’)7 where C' is a generic curve on V. It follows that for generic
p € M the kernel of do at p contains the vertical direction T,(7~!(n(p))). On
the other hand, for generic p € M the kernel of @ at p do not contain the same
vertical direction, otherwise @ would be projectable on V' and therefore closed.
Hence (@ A d@)(p) # 0. O
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Let us also observe that a manifold M with a(M) = dim(M) — 1 > 2 may
possess non-closed (hence non-integrable) 1-forms. For instance, take an algebraic
surface S with a holomorphic 2-form © # 0 whose periods belong to a lattice
Z ®7Z C C. Let E be the elliptic curve C/Z @ 7Z. We can choose an open
covering {U;} of S such that Qly, = dwj, w; € QY (U;), and w; — w; = dFy,
F; € OU; nU;). Then {Fi; + Fjr + Fi; } is a locally constant cocycle which
represents the class of Q in HQ(S, C), hence Fy; + Fji + Iy € Z @ 77 for every
1,7,k. We can consider each Fj; as a translation on F' and so we can construct
an E-bundle M over S by glueing the pieces {U; X E} via the translations {F;;}.
The 1-forms w; + dt € QY(U; x E) glue to a global 1-form w € Q1(M), whose
differential dw projects on S to Q. The 3-form w A dw vanishes exactly on the
preimage on M of the zero set of Q.

Looking at the proof of proposition 1 we see that this example is not far from
the general case. On the other hand, a particular case of this construction (S a
complex torus) gives the “solvmanifolds of type 2” [Uel,p.214].

From now on we shall restrict to the three-dimensional situation. If M is a
threefold and a(M) > 2 or k = 3 then by the previous results there is nothing
more to do concerning k-wedges. In the next two sections we shall analyse the
structure of holomorphic 1-forms on threefolds of algebraic dimension 1.

2. Non-closed 1-forms on threefolds with o(M) =1

Let M be a connected compact complex threefold of algebraic dimension equal
to 1. There exists a modification r : M — M and a surjective holomorphic map
7 : M — C onto an algebraic curve C', which induces an isomorphism between
M(C) and M(M) (and hence M(M)). The fibres of 7 are connected, and a
generic fibre of 7 has non-positive Kodaira dimension [Uel,§12]. There are several
possibilities for such a generic fibre, but in this section we shall prove that the
existence of a non-closed 1-form on M strongly restricts the choice.

Proposition 2. Ifw € Ql(M) is not closed then a generic fibre of 7 is a surface
bimeromorphic to a complex torus.

In order to prove this proposition we shall bound the first Betti number b1 of
the generic fibre of 7.

Lemma 4. by (generic fibre) > 2.

Proof. 1If by(generic fibre) < 1 then the generic fibre of 7 has no holomorphic
1-forms (see for instance the appendix of [Uel] for the rudiments of Kodaira’s
classification of surfaces). Hence the restriction of @ = r*w to a generic fibre is
identically zero, that is @ is projectable on C' and therefore closed, contradiction. [
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Lemma 5. bj(generic fibre) > 4.

Proof. If by(generic fibre) = 2 or 3 then the generic fibre F; of m has a one-
dimensional space of holomorphic 1-forms, or equivalently its Albanese torus A, is
an elliptic curve over which F} fibers (with connected fibres) via the Albanese map
oy - Fy — A;. Over a Zariski - open subset Cyp C C we can glue together these
Albanese tori {A; }1cc, and Albanese maps {o4}+cc, to obtain an elliptic surface
A% Oy and a holomorphic map o : My = 7 1(Cy) — A such that A, = p~(¢)
and the restriction of a to Fy, = 7~ 1(¢) coincides with ay, for every ¢ € Cp (see for
instance [Cam, lemme 2J; the important fact is that the Albanese map is unique
modulo automorphisms of the Albanese torus).

The 1-form & = r*w restricts on F} to a 1-form which is induced by the Albanese
map «a; and therefore vanishes on the fibres of «;. That is, @| 1o vanishes on

the fibres of a and so it is projectable on A: there exists € Q!(A) such that
a*n = &|1\;10' We want to prove that 7 is closed: this fact would be obvious if A
were compact (Stokes) or at least if A were a Zariski - open subset of a compact
surface B such that o : Mg — A extends to a holomorphic map 3 : M — B [Eno,
lemma 3.3]. However, we note that the arguments of [Eno] can be applied also to
our noncompact (and perhaps noncompactifiable) situation, in the following way.

For any € > 0 (small) let 7. C Cp be the boundary of a e-neighbourhood of
C\ Cp in C, with respect to any smooth metric on C. We have to prove that the
non-negative function

FO= [ maT L e
=1 (e

tends to zero as € — 0, so that by Stokes theorem fA dnAdn = 0 and hence dy = 0.

Take a hermitian metric on M (not only Mp) and denote by © its hermitian (1,1)-
form. Then the non-negative function

G(e):/ WATEAG| , >0,
1(r.)

tends to zero as € — 0, because the volume of 7 1(.) tends to zero and &, ©
are defined on all of M. The map 7 1(v.) = p~1(7.) is a regular fibration, along
which @ is projectable to 7; we therefore obtain, by Fubini’s theorem,

G(e) > F(e)- inf / i O ="F(e)- i}llf< ){Area(ail(q))}.
a—1(q qeEp™ (Ve

qep~1(v.)

But on a compact hermitian manifold the areas of compact complex curves are
uniformly bounded from below by a strictly positive constant, therefore we finally

obtain that F(e) tends to zero, as desired. Hence dn = 0, dv = 0, contradiction.
O
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Proof of proposition 2. From the classification of surfaces [Uel, appendix] the only
surfaces whose Kodaira dimension is non-positive and whose first Betti number
is at least 4 are are the surfaces whose a minimal model is a complex torus or a
ruled surface of genus at least 2. But this latter case never appears as a fibre of
an algebraic reduction [Kuh]. O

Remark. There exists another way to see that the generic fibre of 7 is not a ruled
surface, of any genus. In that case, ker do would define on a Zariski open subset
of M a rational fibration. If ¥ is a closed (1,1)-form representing the first Chern
class of M then the integral of ¥ over a rational fibre is strictly positive (=2) and
hence fM de AN do AT is also strictly positive. But the same integral must be zero
by Stokes theorem. This argument, however, cannot be exploited in the situation
of lemma 5, where ker dw defines on Mg an elliptic fibration.

We conclude this section by recalling that there are several examples of compact
complex threefolds of algebraic dimension 1 which possess non-closed 1-forms,
integrable or not. The simplest ones are suspensions of torus automorphisms [G-
V]. Take a 2 X 2 complex matrix A which preserves a lattice I' C C? and has
an eigenvalue A of modulus smaller than 1. Let 1" be the complex torus c? /T,
over which A acts as a holomorphic diffeomorphism; there exists on T a 1-form
7 #Z 0 such that A*n = An. Remark that the leaves of the foliation defined by
kern are directed along the eigenspace of A corresponding to the eigenvalue of
modulus bigger than 1, and arithmetical or dynamical considerations immediately
show that each leaf is dense in T'. Let M be the complex threefold C* X T'/(z,p) ~
(A 1z, A(p)). It is a torus bundle over E = C*/z ~ A~ 12 its algebraic dimension
is equal to 1, and the bundle projection 7 : M — FE coincides with the algebraic
reduction. The 1-form 2z € Q1(C* x T) quotients to a 1-form w € Q1(M), which
is non-closed, integrable, and moreover satisfies the relation dw = 8 A w, where
B =1*(%£) e 7 QY(E).

The determinant of A has necessarily modulus equal to 1, but it can be different
from 1 and even different from any root of 1 [G-V,appendix|. Hence we distinguish
two cases:

1) det A # 1: then Q!(M) is bidimensional, spanned by 3 and w;

2) det A = 1: then the second eigenvalue of A is A~! and we can construct a 1-
form w’ € Q1(M) with the same procedure as before but starting with 5’ € Q1(7)
satisfying A*n’ = A~y and quotienting %77/ e QL(C* x T). We obtain dw’ =
—B8 AW, and w+ w' is not integrable. The space QI(M) is threedimensional and
spanned by 3, w and w’. M is a so-called “solvmanifold of type 3” [Uel,p.214].

One can take ramified coverings in order to obtain examples of threefolds fibered
over a curve of higher genus. All these examples are torus bundles, i.e. the
holomorphic type of the fibre is constant, but it should be possible to construct
examples where that holomorphic type is variable.

In the next section we shall see that many features of these examples survive
in the general case.
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3. Integrable 1-forms on threefolds with a(M) =1

We continue with the same assumptions and notations of the previous section, and
moreover we shall assume that w is integrable: w A dw = 0. Our main result is the
following.

Proposition 3. If w € QY (M) is non-closed and integrable then:
i) there exists 3 € QY(C) such that

do=7*(B) A&
i) every fibre I' of w contains an irreducible component Iy such that

Olp, Z0.

Remark. By i) the genus of C is strictly positive, hence the meromorphic map
mor1: M — — — — (Cis in fact holomorphic and so we can choose M = M
[Uel,remark 12.7].

Let us firstly fix the notation. The integrable 1-form @ defines a codimension
one holomorphic foliation F whose singular set Sing(F) has codimension at least
2 (locally we can write @ = fwg with f holomorphic and Zero(wg) of codimension
at least 2, then F is the foliation generated by wg and Sing(F) = Zero(wo)).
Similarly, the 2-form d& defines a one dimensional foliation £, whose singular set
Sing(L) has codimension at least 2. We have, outside the singular sets, £ C F.
On the other hand, d& is identically zero on every fibre of 7w and therefore £ is
tangent to the fibres of . Neglecting singular sets, this means that the leaves of £
are the “intersections” of the leaves of F and the fibres of 7 (at least generically:
certain fibres of 7 can be leaves of F, but a generic fibre is not a leaf of F, otherwise
w would be closed).

We know, from proposition 2, that a generic fibre of 7 is bimeromorphic to a
complex torus, but of course it can contain exceptional curves. However, as it is
shown in [Ue2,cor.1.11], these exceptional curves belong to an hypersurface of M
which can be contracted, perhaps after some blow-ups. This operation does not
affect our problem (the new threefold we obtain is still an algebraic reduction of
M, and if the statement of proposition 2 is true for some algebraic reduction then
it is true for every algebraic reduction), and so we may and shall suppose that the
generic fibres of 7w are minimal surfaces.

Let us consider now the restriction of @ on a generic fibre: it is a holomorphic
1-form which is not identically zero, hence it has no zero at all since the generic
fibre is a torus. This means that F is transverse to the generic fibre, and therefore
the differentiable type (but perhaps not the holomorphic type) of the foliation
induced by F on the generic fibre (that is the foliation £ restricted to the generic



652 M. Brunella CMH

fibre) is constant. For a foliation on a torus given by a holomorphic 1-form there
are two possibilities: either every leaf is compact (an elliptic curve) or no leaf is
compact. These two possibilities are obviously differentiably distinct.

Lemma 6. On the generic fibre of m the foliation induced by F has no compact

leaf.

Proof. 1t is a straightforward modification of lemma 5 of the previous section. The
only difference is that instead of taking the Albanese reduction of every generic
fibre we take only the “component” of the Albanese reduction which is obtained
by integrating @ (if, by contradiction, the leaves of the foliation on a generic fibre
were compact then the periods of © on a generic fibre would be rational). |

In order to prove proposition 3 we will firstly construct a meromorphic 1-form
as in 1), and then we shall verify that it is actually holomorphic.

Lemma 7. There exists a meromorphic 1-form 3 on C such that do = 7*(3) A®.

Proof. Take any non-constant meromorphic function f on M ,that is f = foom,
fo € M(C), fo not a constant. Outside the polar set of f, which is a union of
fibres of 7, the 1-form f& is still holomorphic, integrable, and defines the same
foliation as @. Its differential d(f@) is still identically zero on fibres, and hence it
defines the same foliation as dw. Therefore d( f&) = gd@ for a suitable g € ./\/l(]\~4)7
that is

gdw =df Ao+ fdw

df
do = ——N@.
g—1f
But g = gg o 7 for some gg € M(C), and so we can set
__do_
g0 — fo

q.e.d.

We shall compute the residue of 5 at every point of C. Take ¢ € C and set
F, = 7~ 1(t). We shall say [C-C] that F} is F-dicritical if there exists a modification
(composition of blow-ups with smooth centres) M 2 M such that F, = m1(F,) =
(m om)~L(t) is not invariant by the foliation F = m*(F) (more precisely, there
is an irreducible component of F, which is not invariant by F ). Here F is the
codimension one foliation, with codimension two singular set, generated by & =
m*@ € QY(M). Remark that d& = (7 om)*(8) A&. The proof of the next lemma
will distinguish dicritical and non-dicritical case.

Lemma 8. Lett € C.
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i) B has at t at most a first order pole;

ii) Res8 > 0;

iii) if Res; 3 = 0 (i.e. 3 is holomorphic at t) then there is an irreducible component
(Ft)o C Fy such that &|(p,), # 0.

Proof. First case: Fy is F-dicritical.

Take a modification M =% M such that Fy = m~1(F}) contains an irreducible
component (13',5)0 which is not F-invariant. Take a generic point of (Ft)m where F
is transverse to (F})g, and choose local coordinates (z,y, z) centered at that point
and a local coordinate w centered at ¢t € C such that:

1) the projection mom is expressed by w = 2", where n is the multiplicity of
(Fo)o;
2) F is given by the kernel of dz.
Hence
& = h(z,y,2)dx

for a suitable holomorphic function h, and
(mom)*(8) = b(z")d(z")

for a suitable meromorphic function b. From dw = (wom)*(3) A& it easily follows
that h factorizes as h(z,y, z) = ho(2)h1(z), where

ho(2)
ho(2)

= nz2""1b(2").

Clearly this implies that b has at 0 at most a first order pole. Moreover, if hg
vanishes at 0 at order & >0 (i.e. ho(2) = cz® + ..., ¢ # 0) then
k
Res;3=— > 0.
n

If Res;3 = 0 then k£ = 0, i.e. hg do not vanish on (Ft)o; also hq do not vanish iden-
tically on (Ft)o, otherwise, being independent on z, it would vanish everywhere.
Therefore Res, 8 = 0 is equivalent to (2;|( )0 Z 0, and the proof is completed by
observing that the existence of such a component implies that also F; contains an
irreducible component (F})g such that &g, # 0.

Second case: Iy is not F-dicritical.

Up to a base change C' — C ramified at ¢ we may assume that F}; contains
an irreducible component (Ft)o whose multiplicity is equal to 1 (see for instance
[F-M,p.3]). We choose local coordinates (x,y, z) near a point of that component
such that 7 is given by (z,y,2) — 2. Then

© = A(z,y,z)dx + B(z,y, 2)dy + (C1(z,y,2) + yCa(z,y, 2))dz + Co(z)dz
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where A, B, C; are local holomorphic functions. Observe that Cp(2)dz is the pull-
back by 7 of a holomorphic 1-form v on C (defined on a neighbourhood of ¢),
and hence Cp(z)dz is in fact defined on a full neighbourhood of F;. Hence the
difference @ — Cy(z)dz is also defined on a full neighbourhood of F}, and so we can
decompose on that neighbourhood

@ =&y + (7).

The holomorphic 1-form @y is still integrable, because d A7*(y) = 0, and defines
(near I}) a codimension one foliation Fp. Moreover &g and @ coincide when
restricted to fibres, therefore Fp induces on a generic fibre a foliation without
compact leaves.

We claim that F} is Fp-dicritical. To see this, observe that the curve {z =y =
0} is tangent to Fy. If F;, were Fp-nondicritical then by [C-C] (see especially part
IV) that curve could be “continued” to a surface > analytic on a neighbourhood
of F; and tangent to Fy. The intersection of 3 with a generic fibre would be a
compact analytic curve invariant by Fp, and we said that this cannot happen.

Now we can apply the first part of the proof to Fp (the fact that this foliation
is defined only on a neighbourhood of the fibre is clearly inessential). From

diog = dio = 7*(B) A& = 7*(B) Ao

we obtain i) and ii). If Res;3 = 0 then there exists (F})o C F} such that &o|(p,), #
0, but 7*(v) vanishes on the fibres and so &[(p,); # 0. O

Remark. One can try to prove the nondicritical case of lemma 8 by a purely
local argument, as it is done in the dicritical case, avoiding any reference to the
deep theorem of Cano and Cerveau. Near a generic point of (F;) we can choose
coordinates (z,y,z) such that @ is expressed by A(z,z)dz + C(x,z)dz and the
projection is still (z,y, z) — 2, and then we will find that 7#*(/3) is something like
%dz, but we don’t know how to control the term C, (e.g. why isn’t possible
A(z,z) = z, C(z,2) = 1+ 2z, which would give a negative residue?). A global
argument seems here unavoidable.

Proof of proposition 3.

By lemma 8 the residue of 3 at each point of C' is real and non negative, but
by the residue theorem 3, - Res;3 = 0, therefore the only possibility is that
Res;3 = 0 for every t € C'. Hence, by the same lemma, (3 is holomorphic and
every fibre of m contains an irreducible component over which the 1-form do not
vanish identically. O

We stop here our analysis of integrable 1-forms, even if it is perhaps possible
to obtain further informations concerning the structure of the singular fibres of
7. The interested reader may look at [F-M] for a comprehensive study of singular
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fibres of torus fibrations, and [Ue2] for some patologies specific to the non-Kéhler
context. Probably, the presence of an integrable 1-form on the threefold excludes
some of these pathologies; for instance our proposition 2 implies that the direct
image (on C) of the sheaf of 1-forms which vanish on F is trivial, and this fact
should say something about the direct image of the sheaf of relative 1-forms.

4. Proof of the theorem and its corollary

Concerning the proof of the theorem, by the results of section 1 it remains only to
consider the case where a(M) = 1.
Case 1. We have wg = fwy for a suitable non-constant f € M(M), therefore wy is
also integrable. If wy or wg were not closed (say, dwy # 0) then from proposition
3.1 we deduce that f (which is constant on the fibres of the algebraic reduction)
has no poles and therefore it is a constant, contradiction.
Case 2. We shall prove that a(M) = 1 leads to a contradiction. We have w3z =
fiwi+ fawe for suitable fi, fo € M(M), with {1, f1, f2} linearly independent. The
one-dimensional foliation defined by the common kernel of the 2-forms w; A w; is
tangent to the fibres of the algebraic reduction, because the closedness of 2-forms
implies df; A wi Awo =0, i =1,2. At least one of the 1-forms wi and wo do not
vanish identically when restricted to fibres (say, wilgpres # 0), therefore we can
write

wfibres = h2(w1lfibres) w3lfibres = h3(w1lfibres)

for suitable meromorphic functions h;, and then we obtain (cf. lemma 1)
hs = f1 + faha.

If dwy # 0 then by proposition 3.ii we deduce that hs and ho have no poles
and so they are constant, contradicting the linear independence of {1, f1, fo}. If
dwi = 0 we still have the same non-vanishing conclusion of proposition 3.ii, for
cohomological reasons, and therefore the same contradiction. O

Concerning the proof of the corollary, we have either dim Q3 (M) = 0, dim Q1 (M)
> 3ordimQ3(M) =1, dim Q! (M) > 4. In both cases we can find a 3-dimensional
subspace 2 C Q1(M) mapped to zero by the natural linear map /\3 E — Q*(M).
Because dim Q3(M) < 1, the map E 3 w — w A dw € Q3(M) vanishes on a (ho-
mogeneous) surface S C E, hence we can find a basis w1, w2, ws of F with wy and
w9 integrable. If w; A w; are linearly independent then, by the theorem, M fibers
over a normal algebraic surface of Albanese general type. Otherwise we can find
a bidimensional subspace F' C F generated by two 1-forms whose wedge product
vanishes. These 1-forms are necessarily integrable (again by dim Q3(M ) <1) and,
by the theorem, M fibers over an algebraic curve of genus greater or equal than
2. O



656

M. Brunella CMH

Acknowledgement

This work has been achieved thanks to some crucial remarks of D. Cerveau about
“dicriticalness”. I am sincerely grateful to him.

References

[Bog]
[Cam]

[C-P]
[c-Cl

[Cat]

[Eno]

[F-M]
[G-V]
[Kaw]|
[Kuh]

[Miy]
[Uel]

[Ue2]

F. Bogomolov, Unstable vector bundles and curves on surfaces, Proc. ICM Helsinki 1978,
pp. 517-524.

F. Campana, Réduction d’Albanese d’un morphisme propre et faiblement Kéahlerien I,
Comp. Math. 54 (1985), 373-398.

F. Campana, T. Peternell, Holomorphic 2-forms on complex threefolds, preprint (1998).
F. Cano, D. Cerveau, Desingularization of non-dicritical holomorphic foliations and ex-
istence of separatrices, Acta Math. 169 (1992), 1-103.

F. Catanese, Moduli and classification of irregular K&hler manifolds (and algebraic vari-
eties) with Albanese general type fibrations, Inv. Math. 104 (1991), 263-289.

I. Enoki, Generalizations of Albanese mappings for non-Kahler manifolds. In: Geometry
and analysis on complex manifolds (eds. Mabuchi et al.), World Scientific, Singapore
1994, pp. 51-62.

R. Friedman, D. Morrison, The birational geometry of degenerations, Birkhauser PM 29
1983.

E. Ghys, A. Verjovsky, Locally free holomorphic actions of the complex affine group. In:
Geometric study of foliations (eds. Mizutani et al.), World Scientific, Singapore 1994,
pp. 201-217.

Y. Kawamata, On Bloch’s conjecture, Inv. Math. 57 (1980), 97-100.

N. Kuhlmann, Ein Satz iiber regelflache vom geschlecht 2, Arch. Math. 29 (1977),
619-620.

Y. Miyaoka, Inequalities between Chern numbers, Sugaku Expositions 4 (1991), 157-176.
K. Ueno, Classification theory of algebraic varieties and compact complex spaces, Springer
LN 439 1975.

K. Ueno, On compact analytic threefolds with non-trivial Albanese tori, Math. Ann.

278 (1987), 41-70.

Marco Brunella

Laboratoire de Topologie (CNRS UMR 5584)
9, Avenue Savary

BP 47870

F-21078 Dijon

France
e-mail:

brunellaQu-bourgogne.fr

(Received: December 6, 1998)



	On holomorphic forms on compact complex treefolds

