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A Lagrangian camel

David Théret

Abstract. We prove the Lagrangian analogue of the symplectic camel theorem: there are com-
pact Lagrangian submanifolds of R2" that cannot be moved through a small hole by a global
Hamiltonian isotopy with compact support.
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1. Introduction

In [19], Claude Viterbo constructed a symplectic capacity cg(V') for V' an open

set of R2", and used it to prove several interesting results in symplectic geome-
try, including the following Symplectic Camel Theorem. Here the subscript “gf”
stands for “generating functions”, because this is the tool used to define cqp(V');
we summarize in Appendix A the definition and basic properties of this symplectic
capacity.

Let us recall what the Symplectic Camel Theorem states. We consider the
space C" = RZ = R" x R"™, endowed with the coordinates

2=+ 1y = (Yy) = @l 5BnsYis: =3 Un)
with the standard symplectic form
Q= Qpan = —dhg2n = dz Ady =Y da; A dy;
j=1
and with the Euclidean scalar product and norm
< % e=p7 2l = vV<z2>

Let us define Ri" = {z e R?";y, > 0} and R?* = {z € R?";y,, < 0}, and, for
7 > 0, the holed hyperplane ¥, = {z € R2";y,, = 0 and ||z|| > n}.
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__ The Camel Theorem says that if n > 2 and V' is a (bounded) open set with
V c R?" and cgt(V) > 72, then it is impossible to find a Hamiltonian isotopy
(®t)efo,1) of R2" with compact support in R?" — 33, , such that ®1(V) C R?ﬁ.

Remark 1.1. In [8], Y. Eliashberg and M. Gromov showed, using pseudo-holo-
morphic curves, that this is impossible if V' is a Euclidean ball of radius r > 7 (see
also [11, 12]). As the gf-capacity of a ball of radius r is 72, Viterbo’s theorem is
more general.

When trying to study the flux of Lagrangian isotopies, the Lagrangian Camel
problem comes as a natural question. Instead of looking at an open set V' C R2”7
we consider a closed Lagrangian embedding j : L — R?". We are primarily
interested in the quantity cg(L, j) that we define now.

Definition 1.2. The gf-capacity cgt(L, j) of the embedding is the infimum of all
cgt(V), V being any open neighborhood of j(L) in R2",

Since j(L) has empty interior and does not even bound an open set, we could
expect its capacity to vanish. However, we will prove the following result, where
w(L,j) is defined as follows, following Viterbo.

A theorem of Weinstein [20] says that the embedding j can be extended to
a symplectic embedding J : U — R2" where U is a neighborhood of L in T*L.
We will call (U, J) a Weinstein neighborhood of the embedding j. Let p be a
closed 1-form on L, representing the Maslov class u(j) of the embedding. Then
the (negative) p-width of U is defined as |U]|,, = sup{s > 0; —spu(L) C U}. The
number ||U||,, depends of course on the representative ;o chosen for the Maslov
class p(j): the “smaller” the form g, the greater the p-width of U.

Definition 1.3. Let w(L, j) denote the supremum of all possible ||U]|,,, where U
is a Weinstein neighborhood and p represents the Maslov class of the embedding.

The basic result of this paper is the following.

Theorem 1.4. We suppose n > 2.
1L Ifj T — R is a Lagrangian embedding, then the gf-capacity of j(T™)
satisfies
cgf(T™, ) 2 2w(T™, ) > 0.

2. Ifj: L— R?" is a Lagrangian embedding and L admits a Riemannian metric
with strictly negative sectional curvature (for instance all non-orientable sur-
faces L with x(L) strictly negative and divisible by 4: see [9] and also [2]),
then

cat(L,3) > (n— (L, j) > 0,
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More generally, if (L1,71), ... ,(Lm,Jm) are m Lagrangian embeddings of this
type and (L, 7) is the product embedding, then

Cgf(L7j) > (n - m)w(L7]) > 0.

Remark 1.5. In particular, if L = S(ry) X -+ x S(ry,) is a split torus in C* =
C x --- X C, each S(ry) being a Euclidean circle of radius ry, then

ct(L) = min(r}, ... r2).
Indeed, using polar coordinates in each factor C, it is easy to construct a Wein-
stein neighborhood whose width is precisely arl=m min(r%7 e m%). On the other
hand, the capacity of such a split torus is clearly less than that of the cylinder
B2 (0,7) x R2"=2 which is again 7r2.

Corollary 1.6. (Lagrangian Camel Theorem). Let j : L — R?" be one
of the above embeddings. Then for 0 < n < ¢(L,7) it is impossible to find a
Hamiltonian isotopy ((I)t)te[o,l] of R2" with compact support in R2 — Yy, such
that &1 (j(L)) C R2".

Indeed, any isotopy moving j(L) into R%r" will also move a neighborhood of
J(L) from R?" into R%{‘? which is impossible by the Symplectic Camel Theorem.

Remark 1.7. There are several results like Theorem 1.4 that are already proved,
see for instance Viterbo [18] and Polterovich [13]. The problem is that, to our
knowledge, there is no corresponding symplectic camel theorem that can be ap-
plied to the capacities they use. So the alternative was either to prove the corre-
sponding symplectic camel theorem, or to establish Theorem 1.4. Because of our
greater familiarity with generating functions, we chose the second option. Basi-
cally, we will follow the arguments developed in [17, 18] and adapt them to the
theory of generating functions, but the reader will notice some slight restrictions
in comparison to these references. The reason for this is that we could not use the
natural Sl-invariance of the action functional: generating functions are a kind of
discretization of this functional, and it is still unclear whether one can recover this
natural action or not.

Let us now briefly explain the relation between the camel problem and the
mean property of the flux of Lagrangian isotopies.

Most generally, let (M,w) be a symplectic manifold. Any symplectic isotopy
(¢'t)te[0,1] determines a closed 1-form « on M, whose cohomology class is the
flux of the isotopy, see [3] (the easiest way to define « is to say that its integral
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over a smooth loop in M is the symplectic area swept out by this loop under the
isotopy). This cohomology class [a] depends only on the homotopy class of the
isotopy (¢t)t€[0’” with endpoints fixed. Two basic and very important properties
are: (i) an isotopy (é¢)sc[0,1 is Hamiltonian if and only if the flux of (¢¢)scjo -]
vanishes for each 7 € [0,1], and (ii) the flux of an isotopy vanishes if and only
if it is homotopic (with endpoints fixed) to a Hamiltonian isotopy (for this last
statement, we assume either that M is compact or that the isotopy is compactly
supported).

Let us now turn to the Lagrangian case. Similarly, let (j;),c [0,1] be a Lagrangian
isotopy of a closed manifold L into M, that is j; : L — M is a smooth family
of Lagrangian embeddings. We can define in the same way a closed 1-form on L,
whose cohomology class is (by definition) the flux of the isotopy. We ask whether
this flux has the following mean property, as in the case of symplectic isotopies:

Given a Lagrangian isotopy (jt)te[o,l] with vanishing flux, is it homotopic,
with endpoints fixed, to a Lagrangian isotopy (kt)te[o,l] such that the flux of each
(kt)ielo,7] vanishes for T € [0,1]7

It is immediate to see that such an isotopy (kt)te[(),l] would in fact be induced by
a global Hamiltonian isotopy. We now show that our Lagrangian Camel Theorem
gives an example (in a non-compact symplectic manifold) where this property does
not hold.

Indeed, let M = R?" — Y, with the symplectic structure induced from that
of RQ", and j : L — R?" © M be as in Theorem 1.4. Using the presence (in
RQ") of a contracting Liouville vector field, we can isotop L to an arbitrarily small
Lagrangian L’ (but this cannot be done by a global Hamiltonian isotopy); then
we move L' to L C R?I_" C M through the hole of ¥, (by a Hamiltonian isotopy),
we expand L” to L in such a way that L” is just the tramslate (in R?") of
L. It is easy to see that this Lagrangian isotopy from L to L” has zero flux.
Now, if it were homotopic (with endpoints fixed) to a Lagrangian isotopy with
flux vanishing at every intermediate time, this last isotopy would be induced by a
global Hamiltonian isotopy of R%* — Y, that could be assumed to have compact
support (remember that L is compact), thus contradicting the Lagrangian Camel
theorem.

Remark 1.8. While working on this subject, we discovered that Y. Chekanov [5]
found a more surprising counterexample to the mean property for the flux of
Lagrangian isotopies: it happens in R2" that some Lagrangian submanifolds can
be connected by Lagrangian isotopies with zero flux, but not through Hamiltonian
isotopies.

This work was partly done during a post-doctoral year at the Université du
Québec & Montréal (Canada). It is a great pleasure for me to thank Frangois
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Lalonde for his hospitality and for many explanations on the flux homomorphism.
I am also very grateful to Claude Viterbo, who helped me understand his earlier
papers [17, 18].

2. A Hamiltonian system in T*L

Let j: L — R?" be a Lagrangian embedding, L being a closed n-manifold. Here
T*L is endowed with (local) cotangent coordinates (¢, p) and with the symplectic
form wy, = dg A dp. Let V = J(U): it is a bounded open set in R2" with finite
gf-capacity cq(V'), see Appendix A. Here (V,J) is a Weinstein neighborhood of j.

We consider a fixed Riemannian metric on L. It induces a bundle isomorphism
TL = T*L and a metric on the vector bundle T*L. If v € TyL and p € T/ L are

corresponding elements for that isomorphism, we write v = p” and p = »f. In
particular, ||[v||; = [|v¥]l4-
Let p > 0 be small enough so that B, = {(g,p) € T*L;||p|lq < p} is contained
in U. We consider a smooth function h : [0, 4+00] — R~ such that:
1. h=—aon [0,£/2]
h is increasing, strictly convex on [¢/2, €]
R =conlegp—¢
h is increasing, strictly concave on [p —e,p — /2]
.h=0on[p—¢/2,+0]
where £ > 0 is very small with respect to p, ¢ > 0 is not the length of a closed
geodesic of L, and a > cgf(V'). See Figure 1.
Then we define a compactly supported Hamiltonian function H : T*L — R by

H(q,p) = h(llpll) (1)

Let ¢ = (¢¢);c(0,1) be the Hamiltonian isotopy of 7' L it generates: it is obtained by
integrating the Hamiltonian vector field X associated to H, defined by i xwy, = dH.

The isotopy ¢ is easily proved to be a reparametrization of the cogeodesic flow.
Indeed, let K : T*L — R be the standard Hamiltonian

v o

7"2 2
K(qp) = =120 e

It generates the cogeodesic flow, denoted by (g¢)ier: if 2 = (q,p) is a point in T*L
and v = p’ € T, L, then there is on L a unique geodesic (¢;);er such that ¢o = ¢
and g = v, and we have g,(z) = (qh (qt)ﬂ).

Since H(q,p) = h(||p||), we can write H(z) = ao K(z), with

a(s) = h(v2s) 3)
Hence Xp(2) = c(2) Xk (z), where

o) — a0 K2y MDD ”
I
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0 € p—¢ p

Y

Figure 1.
Graph of h.

Consequently, since H and K are constant along both g~ and ¢s-orbits, we have

$1(2) = go(o)e(2) (5)

ie. the isotopy ¢ is a reparametrization of the cogeodesic flow.
Let z = (¢, p) € B, be afixed point of ¢1. Then, according to (5), the projection
on L of its ¢-orbit is a closed geodesic v with length £(~) = c(z)||p|| = ¥ (||pl])-
Let us consider the symplectic vector bundle F = U, g1 E; over S 1 (seen as
[0, 1] with endpoints identified), where the fiber

By =T;T"L x Ty g T*L € [0,1] (6)

is endowed with the symplectic form (—wr(2)) @ wr(#:(z)). It has a canonical
Lagrangian subbundle V' = U, 41 V;, namely

V; = Vert(z) & Vert(¢(z)) (7)

where Vert(z) is the vertical subspace at z € T*L of the bundle T*L — L. The
graphs of the differentials d¢:(z) : T,T*L — T¢t<z)T*L define a continuous path
I': [0,1] — A(E) of Lagrangian subspaces I't C F;. We may therefore consider
the Maslov-Duistermaat index

indg(z) = indy (I
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as defined in Appendix B.2.
In this setting, J. J. Duistermaat [7] has proved the following result for conver
Hamiltonians:

Proposition 2.1. Let z = (q,p) € T*L be a fized point of ¢1, and v be the
underlying geodesic on L. Then, i(y) denoting the Morse indexr of v as a closed
geodesic, we have

{ indg(z) =i(y) +n if b is strictly convex at ||p| (®)

indg(z) =i(y)+n—1 if h is strictly concave at ||p||

We will deduce the formula in the concave case from that in the convex case.
The idea is the following. We can express I as the sum E' @ E” of two symplectic
subbundles, and we also have Lagrangian splittings V =V @ V' I = 1" ¢ I'”.
Thus inds(z) = indy/(IV) + indy~(T"). We will see that indy~(T") does not
depend on the convexity/concavity of k, and for the other term indy-(I") we will
have explicit simple formulas enabling us to conclude. To do so, we will need a few
facts about the (co)geodesic flow (g;):cr, that we recall now (see [10] for details).

If the cotangent bundle is endowed with the Levi-Civita connection correspond-
ing to the metric, then we have a splitting

T.(T*L) = Hor(z) & Vert(z) (zeT*L) (9)

into horizontal and vertical subbundles. Given z = (q,p) € T*L, both Hor(z) and
Vert(z) are canonically isomorphic to T, L, hence they carry a well-defined scalar
product. In that setting, the symplectic form wy, has the expression:

wr(2)(82,02") = < 0p2,0p2" >q — < p2’ 62 >y (10)

where 6, and J, denote the horizontal and vertical parts of a vector, identified
to their images in T, L. In particular, (9) is a Lagrangian splitting. We also note
that the Hamiltonian vector field associated with K(q,p) = 1/2||p||? has the form
Xk (g,p) = (p,0).

Let v = (’Yt)te[O,T] be a geodesic on L, and z = yo* € T*L. Then the Ja-
cobi vector fields (Yt)te[O,T] along ~ are in one-to-one correspondence with the
g-invariant vector fields (Zt)te[O,T] along the orbit of z. This correspondence is
given by Y; — Z; = (Y}, VY}), using the splitting (9).

Since Hor(z) and Vert(z) are isomorphic to T,L = TyL = (Rp) @ pt, we
have associated splittings Hor(z) = Hot'(2) @ Hor”(z) and Vert(z) = Vert/(z) @
Vert” (z), and then T,T*L = T!T*L & T/T*L, where T!T*L = Hot'(z) @ Vert/(z)
is 2-dimensional and T/ T*L = Hot”(z) ® Vert”(z) is (2n — 2)-dimensional. Now
TT*L =T'"T*L&T"T*L is a splitting into symplectic orthogonal subbundles, and
the (co)geodesic flow preserves that decomposition.
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The subbundle T"T*L is obviously trivial. Given z € T*L and ¢t € R, dg:(2)

induces an isomorphism T,T*L — Tg’t(z)T*L whose matrix in the obvious bases is

((1) i > . This comes from the fact that the Jacobi field (Yt)te[O,T] along a geodesic

v = ('Yt)te[O,T] such that Yy = o and VY = 34 is given by V; = (a + Gt):.

Proof of Proposition 2.1. Differentiating (5), we obtain:
dge(z).02 = dgc<z)z(z).(5z + t[dc(z)éz] Xk ((bt(z)) (11)

It follows that the flow (¢;):cr also preserves the decomposition TT*L = T'T* L&
T"T*L. Indeed, if 6z € T,"T* L then dc(2)dz = 0, hence d¢y(2)dz = dg,.(,)(2)0z—
in particular, d¢;(z)dz does not depend on the concavity/convexity of h at ||p||.

Thus /' = E' @ E” splits into two symplectic vector subbundles, and both
V=V'eV”"and I' = I @ I'” split into Lagrangian subbundles of E/ and E”
respectively. Hence indy (') = indy- (I') + indy~ (I'"") by additivity of the Maslov-
Duistermaat index under direct sums. We have just seen that indy~(I") does
not depend on the concavity/convexity of i at ||p||, so it only remains to see how
indy/(I') depends on it.

If 62 = (0n2,0,2) = (e, f) € TT*L = Hor'(2) @ Vert'(2) =2 R?, then a straight-
forward computation shows that dg:(2)dz = (o + ¢8R (r),3). We thus see that

the matrix of the induced isomorphism from 7727*L to Té)ﬁ(z)T*L is

<(1) th’;(r)> (12)

We have E/ ~ R2 x R2, V/ = (0 x R) x (0 x R) and T'; is the graph of the
linear symplectomorphism A; of R? whose matrix is (12). To compute indy-(I")
according to Appendix B, we choose the Lagrangian subspace o = (R x 0) x
(0 x R) € R? x R%: we have aNT'; = 0 for all ¢t € [0,1]. Hence the Maslov-
Duistermaat index of I is given by ind(I") = ind Q(I'1, o; I'). It is easy to see from
the definitions that the index of Q(I'1, a;g) is also the coindex of Q(T'g, a;T'1),
that we now evaluate.

Let us consider the linear map C : I'g — « such that v + Cu € I'1 for all
u € 'g = A. We write

u = (ug,ug;uy,ug) € A
Cu = (v1,0;0,9) € « (13)
v+ Cu = (wy,we; wy + A (r)wsg, we) € T'y
since dg1(2)(w1,w2) = (w1 + A" (r)wsz, ws).
Then, by definition, see (28):
Q(To, Wo; ') (u) = (—Q]Rzn ) Q]Rzn)(Cmu)
- _QRQ" ((U]-? 0)7 (U17U2)) + QRZ" ((07 U2)7 (ula u2)>
= —vjug — vguy = h'(r)(ug)? (14)
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Since coind ) is the number of strictly positive eigenvalues of @), we see that
indy+(I') = 1if B”(r) > 0, and indy/(T") = 0 if A”(r) < 0. Consequently,

ind;onczw(z) s ind;onve)((z) _ 1

which finishes the proof of Proposition 2.1.

3. The Hamiltonian system viewed from R?*"

We define the compactly supported Hamiltonian H : R?" — R and its associated
Hamiltonian isotopy ((I)t)ze[o,l] in the obvious way:

{H—Hojl onV

15
H=0 on R> —V (15)

We will apply Viterbo’s theory of symplectic capacities, as summarized in Ap-
pendix A. According to Theorem A.4, we have ¢_(H) = 0 (since H < 0) and
cy(H) > 0 (since ®1 is not the identity map). Thus ®; has a fixed point z = 24
such that 0 < Ag(2) = c4(H) < cgt(V). This implies z € V, since Ay = 0 outside
V. Similarly, Afg = a on the set {H = —a}, which is ruled out by the hypothesis
a > cgf(V'). Consequently, we may define (¢, p) = J~1(2): this is a fixed point of
¢1 satistying ||p|| €]e/2, p — £/2|. But, as we have seen, h/(||p||) is now the length
of a closed geodesic on L, so by assumption we cannot have 1/(||p||) = ¢. We have
thus proved the following result, that will allow us to apply Proposition 2.1.

Lemma 3.1. If a is strictly greater than cg(V) and c is distinct from the length
of any closed geodesic on L, then ¢1 has a fized point z = (q,p) such that h is
strictly conver or strictly concave at ||p||.

In the setting of Appendix A, let Sy : R? x R¥ — R be a generating function
for ®1 such that S (w, &) = Qoo (&) outside a compact set of R?* x R¥ where Qo
is a non-degenerate quadratic form on R¥.

Definition 3.2. Let z € R2" be a fixed point of &1, and (z,£) be the correspond-
ing critical point of S1. From Viterbo’s uniqueness theorem [19, 15], it follows that
the integer ind dQSl(zf) — ind Qo does not depend on S, but only on ;. We
call it the gf-inder of 2, denoted by indg¢(2). The nullity of z, denoted by v(z),
will be the dimension of Ker(d®1(z) — Id) 2 Ker(dgy(z) — Id)

Note that if z is as in Lemma 3.1 and -« is the corresponding closed geodesic
on L, then the (equivariany) nullity of « is v(y) = v(z) — 1.

Proposition 3.3. The fized point z of Lemma 3.1 can be chosen so that

2n —v(z) <indg(z) < 2n
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Proof. We know from Appendix A that ¢ = ¢ (H) = S1(z,&) is a critical value
of S obtained by minimax, so that H2»tindQe (Sf+’7, S577") # 0 for > 0 small
enough. But the set of critical points of S at the level ¢ is a non-degenerate
critical manifold, so that, by standard Morse theory, there must be on the level
¢ a critical point (z,¢) such that ind d2S1(2,€) < 2n + ind Qo < ind d2S1(2,€) +

dim Ker dQSl(z, &)]. It follows from the very definition of generating functions that
Ker d251(z,€) is isomorphic to Ker(d®1(z) —1d), so that its dimension is v(z).0

Next, we relate the Maslov class () of the embedding j with the two indices
defined above.

Proposition 3.4. Let z be a fixed point of ¢1 as in Lemma 3.1, and v be the
corresponding closed geodesic on L. Then

indge(z) = indg(2) + (u(5),7)

Proof. To relate the Maslov-Duistermaat index and the gf-index, we define still
another Lagrangian subbundle C' = U, 51C; of the symplectic vector bundle F —
see (6) — this time connected to the embedding J: we consider a fixed Lagrangian
subspace in RQ”, say R™ x 0, and then define

Cy = dJ(2) " R™ x 0) x dJ (¢:(2)) " (R™ x 0)

Recall that T'; C F; is the graph of d¢.(2); now, if T'} is the graph of d®;(z) in
R2" xR?", then it follows from the definition of the Maslov-Duistermaat index that
indo(I") = ind(I”). Since d®g(z) = Id, it follows from Propositions B.7 and B.8
that ind(I") = indgf(z). Then, according to (32), we have indg¢(2) = inde(I") =
indy (') + indg (V). But it is clear that inda(V) = (p(5),7). O

Corollary 3.5. To the Hamiltonian H of (1) there corresponds a real number
c(H) €10,¢qt(V)]. A fized point = = (q,p) of the associated Hamiltonian isotopy
can be chosen so that, v denotling the projected closed geodesic on L,

c(H) = el (llpll) = Rlpll) + 7(3'*)\]@% (16)
and
{ (M(]%’Y) € [n—1i(y) —v(z),n—i(y)] in the convex case (a7)
(M(j)KY) €n—ily)—v(z)+1,n—i(y)+1] in the concave case

Proof. Formula (16) is just a reformulation of the relation ¢(H) = ¢(H) = Ag(z) =
sy (2) [0, 1] Ap2n — Hdt Along the ®-orbit of z, the Hamiltonian H is constant:

H(2¢(2)) = hlllpl)- And §, 6, ) scpo,1 Me2n = $, 5 Aw2n = $1 (o) veo ) AL =
27 (llpl). Finally, (17) follows from Propositions 2.1, 3.3 and 3.4. O
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4. A limit process

The functions h and H that we considered so far depend on p, ¢ and €. Now we
fix the numbers p and ¢, and we consider € as a parameter converging to 0. Hence
we have a family of functions h. and Hamiltonians H..

The limit of ¢(H.) as e — 0 does exist: this is because ¢ < &’ implies H, < H,.
by construction, and then ¢(H. ) < ¢(H;) by Theorem A.4; as ¢(H) is bounded
from above by ¢g¢(V'), we conclude. Let us write

K(p,c)= 1'111(1) c(H,)

Now let &, be a real sequence converging to 0. For each m, we find a closed
geodesic 7,y,, a real number 7, € |€:/2,Em[U]p — Em,y p — Em /2] such that

(o) = o () — h(rm) + / 7 Agen

m

We may suppose that we are in one of two cases: r,, € | /2, e[ for all m (convex
case), OF Ty, € |p— Em, p — /2] for all m (concave case).

In both cases, we have €(~,,) = I/(r,) < ¢. Due to the compactness of the set
of closed geodesics of length bounded by ¢, we may suppose that ~,, converges to
a closed geodesic ~.

Corollary 4.1. The number K(p,c) € |0, cq(V)] satisfies

(18)

pc+ fvj*)\Rzn in the convex case
K(p,c)=
G pl(y) + fvj*)\Rzn in the concave case

for a closed geodesic v on L satisfying (17).

5. Proof of Theorem 1.4

Let J : U — R2" be a Weinstein neighborhood of the embedding j, and p be a
closed 1-form on L, representing the Maslov class p(j) € Hl(L; R). We will also
denote by o the Liouville class of the embedding: o(v) = fvj*ARZ'ﬂ.

Following [18], we define a continuous family of Lagrangian embeddings. Let
p > 0 be small enough so that B, C U, and define

|UNlp = sup{s > 0; —su(L)+ B, CU}
For s € [0, ||U]| 40|, We consider the symplectic transformation

T,:T*[ — T*L
(a.p) — (q,p—su(9)
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and then the Lagrangian embedding
jo=Jo(T)p: L—R™ (19)

that can be extended to J, : B, — R2",
Applying Corollary 4.1 for each parameter s, we obtain a map s € [0, ||U]|4,,] —
Ks(p;c) €]0,c4t(V)]. Because of property 6 in Theorem A.4, it is continuous.
Furthermore, for each such s, there exists on L a closed geodesic v, with length
£(~s) < ¢, such that
K.(pc) = { Plvs) + o(ys) — spls) .111 the concave case (20)
pc+o(vs) — suys) in the convex case

(this is because f% JEApen — fwsj*ARZ" = —s(p(g),7s))-
5.1. The negative curvature case

If L admits a metric with strictly negative sectional curvature, then i(v) = 0 and
v(vy) =0 for any closed geodesic. Hence v(z) =1 for our fixed point, and

{ w(y) € [n—1,n] in the convex case

u(y) € [n,n+1] in the concave case

Since n > 2, we obtain p(vy) > n —1 > 0 in any case. Again, the set of closed
geodesics of length bounded by ¢ being compact, the quantities €(vs) and o(ys)
that appear in (20) can take only a finite number of values. This implies that,
when s grows from 0 to ||U]|,,,, the point (s, K;(p,c)) moves on a finite set of
straight lines of R2, with slopes < —(n —1). Accordingly, we must have

0 < Ks(p,c) < Ko(p,c) = (n—1)s Vs €[0,[|U],l

In particular,
K(p,c) = Ko(p,c) 2 (n = 1)[|U]|.,p

and then, since ||U||,,, — ||U]|, as p — 0,

K(j) = lim lim K(p,c) 2 (n = D||U| 4 (21)

P*‘O c—00

We are now ready to finish the proof of Theorem 1.4 in this case. We may
obviously assume that V' = J(U), where U and .J are as before. Now (21) shows
that, for any § > 0 arbitrarily small, we can find p > 0 and ¢ > 0 such that
J(B,) C Vand K(p,c) > (n—1)||U||, — 6. This means that, for all § > 0, there is
a Hamiltonian H with compact support in V, such that c(H) > (n —1)||U]| . — 26.
Hence

cgt(V) 2 (n = DU,
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by the very definition of cg(V').

If L =L1x - x Ly, is the product of m manifolds, each having a metric
with strictly negative curvature, then i(vy) = 0 and v(y) = m — 1 for any closed
geodesic. Hence

w(y) € [n—m,n] in the convex case
w(y) €[n—m+1,n+1] in the concave case

Since m < n and n > 4, we may proceed as above, whence

cgi(V) 2 (n —m)||U]|-

5.2. The torus case

The torus case is handled with in the same spirit, with some slight complications.
With the flat (product) metric, the closed geodesics of T™ satisfy ¢(y) = 0 and
v(v) =n — 1, hence v(z) = n for our fixed points. We thus get the estimates

w(vy) € 10, n) in the convex case
w(y) € [1,n+1] in the concave case

and the arguments used for the negative curvature case fail because pu(y) = 0 is
now possible.

Remark 5.1. Since the torus is orientable, the Maslov index of any loop will be
even. Hence p(vy) > 2 in the concave case.

First, we will study how K({p,c) grows with ¢, p being fixed throughout the
entire discussion.

Let C’ be the set of those ¢ > 0 such that K(p,c) can only be realized as
K(p,c) = pc+oa(v), with p(vy) > 0. It is an open set (its complement is easily seen
to be closed). Similarly, the set C” of those ¢ > 0 such that K(p,c) can only be
realized as K (p,c) = pl(vy) + o(v), with p(vy) > 2 (remember that u(y) is even)is
open.

The complement C" of C’ UC” consists of isolated points: this is because for
such a ¢ > 0, K(p,c) can be expressed in both ways:

K(p,c) = pc+o(y1) = pl(y2) +o(72)

where ¢(1) and £(vs) are bounded by ¢, and there is only a finite number of such
possibilities.

On each connected component of C’, we have K (p, c) = pc+ constant. On each
connected component of C”, we have K(p, c) = constant. Thus, the total measure
of C' is not greater than c,¢(V')/p.
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Figure 2.
Graph of ¢ — K(p,¢)

Hence the graph of ¢ — K{(p, ¢) looks like Figure 2.

Next, we study the dependence of ¢ — K(p,c) with respect to the parameter
s, with obvious notations.

Note that when we move s, we change the “breakpoints” where ¢ — K(p,c)
might have a discontinuous derivative. However, they can be followed continuously:
a point ¢; € C can be written as cg + s(p(v1) — p(v2)) for some cg € Cf’ and v,
o closed geodesics of length < c.

For the same reason as before, if c € C
and similarly for C”.

If Jeq, co| is a component of C/ , then for s close enough to sg we have continuous
functions ¢1(s) and ca(s) such that ¢1(sg) = ¢1, ca(s0) = ¢, and Je1(s), ca(s)[ is a
component of C/. A similar statement holds for the components of C.. Thus, we
can follow their components, although “flat” ones may disappear as in Figure 3.

It follows easily that on any component of C,UCY, the numbers K;(p, ¢) can be
realized by geodesics of the same Maslov index (see equation (20)). In particular,
a “flat” component, as long as it does not disappear, goes down with s at a speed
greater or equal to 2.

We do not conclude that there exists some ¢ > 0 such that K(p,c) < Ko(p,c)—
2s as in the negative curvature case, since whole components of C. might be realized
by geodesics of zero index and components of C/ may disappear. However, it
is easy to see that there exists a continuous s — c(s) such that K,(p,c(s)) <

/

5o then c € C! for s close enough to sg,
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LK
KS
5 S N N S B,
cl(s) cj(s”) cz(sQ cz(s) cs(s)c3(s)
- ¢(s)
= cl(s”):cz(s”)
Figure 3.

Cancellation of flat component (0 < s < s < s’ < §”)
Ko(p,c(0)) — 25, and we conclude as before:
cgt(V) 2 2| Ul

Remark 5.2. The referee has suggested the following construction for such a
continuous s — c(s) as above. Let us consider the function k(s,c) := Kq(p,c),
defined on [0, ||U||mp]><]pflcgf(V)7 +oof. Let C] := Ug{s} x C. and C7 := Ug{s} x
C! : they are disjoint subsets of [0, ||U||,L7p]><]pflcgf(V)[, whose complement is a

discrete union of segments. We have

Ok Ok

{ A LUB b
ok Ok Z
8% <=2 =0 onC

Then we set c(s) = p~legg(V) + 2(||U]lz,p — ), Where & > 2 is not the slope of

any of the segments in the complement of C’ UC”. We see that the continuous
function s — k(s, c(s)) always has a right derivative, which is less than or equal
to —2.
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Appendix A. Gf-capacity

We recall some basic facts from Viterbo’s theory of capacities on the symplectic
vector space (R?",€2). The reader is referred to [19] for proofs (and more results).

Remark A.1. A general warning must be made about sign conventions, which
are not always the same from one paper to the other.

Let V be a bounded open set in R?". A (time-dependent) Hamiltonian function
H = H;(z) : [0, 1]xR?** — R is V-admissible if there is a compact set C' of such that
supp(H;) C C for each t € [0,1]. The set of smooth V-admissible Hamiltonians
will be denoted by Hy .

To each H € Hy there corresponds a complete Hamiltonian vector field X =
(Xt)icj0,1) defined by the relation

ix,Q=dH, Vtel0,1] (22)

This vector field generates a Hamiltonian isotopy ® = (®¢);c[o,1] of R?". If z € R?*
is a fixed point of ®1, then its action Ag(z) is the real number

il
Au) = [ oo — e = [ [~ Mot (23)
t—®.(2),t€[0,1] 0

where (z¢,v;) = P+(z) for t € [0,1].
To introduce generating functions, we will use the symplectic isomorphism

I: EQn % RQn — T*RQn ~ RQn % I;&Qn
(5,2) = () = (i - )

where R2" x R2" denotes the vector space R2" X R2" endowed with the symplectic
form (—Qp2.) ® Qp2.. For t € [0,1], let T'; € R?" x R?* be the graph of ®;, and
I'; € T*R?" be its image under I.

(24)

Definition A.2. (see [14]). Let k be an arbitrary integer. A smooth function
S = S(w,€) : R?" x R¥ — R is a generating function if 0 € (R¥)* is a regular
value of 9:S = 9S/9¢. 1In that case, 9:S~1(0) is a smooth 2n-manifold, and
we have a smooth Lagrangian immersion ¢g : 855*1(0) — T*R?" defined by
ig(w,&) = (w,BwS(wf)). If 45 is an embedding, we say that S generates the
embedded Lagrangian submanifold L C TR,

Notice that the critical points of S correspond to the intersection points of L
with the zero section of T*R2".

Now the ft’s are Lagrangian submanifolds of T*]RQ"7 fg is the zero section and
obviously there is a compactly supported Hamiltonian isotopy (‘I’t)te[o,l] of T*RZ"

such that ft = Wt(fo).



Vol. 74 (1999) A Lagrangian camel 607

The next existence result was proved by Marc Chaperon [4], although not in
this formulation, which comes from Jean-Claude Sikorav [14].

Theorem A.3. ([4]) There exists a (a priori non-unique) smooth family of gen-

erating functions S; : R?" x R¥ - R, t € [0,1] such that

(i) S; generates Ty for each t € [0, 1]

(ii) the whole family is quadratic at infinity: we have Si(w,£) = Qoo(§) outside a
compact subset of [0,1] X R2" x R*, where Qoo : RF — R is a non-degenerate
quadratic form .

Because of the choice of the identification (24), this implies that the fixed points
of ®1 are in 1-1 correspondence with the critical points of S1. Furthermore, if 2 is
a fixed point of ®1, then the corresponding critical point is of the form (z,&), and
an easy computation shows that

An(z) = 51(2,¢) (25)

By a so-called minimax method using the behaviour at infinity, it is possible
to select two critical values of S7. First, remark that we can extend the S;’s to
527 % R¥, where §2" 2 R?" U {oo} is the one-point compactification of R?", by
Si(00,8) = Qoo(€). Then, for @ € R, let S = {S1 < a}. For a > 0 large
enough, the homotopy type of the pair (S, 5 ) is constant, and we denote it

by (SfLOO, 51 ). If i denotes the index of the quadratic form Q, then it follows
from the Kiinneth isomorphism that

H*(SELOO,STOO) ~ H*(S&n) ® H*(Diwsrifl) ~ H**i(SQn)
where D (resp. 571} is the unit disk (resp. the unit sphere) in R?. Hence
HMSH®,87°)=0  ifk#4,i+2n
Let u_ (resp. uq) be a generator of H*(S;>°,57°°) (resp. of H2"Hi(SF>, §,°)).
Then define

cy = inf{a € R; uy does not vanish in H*(S7,57>)}

It is easy to show that H*(S{~ " 87" ") # 0 and H2”+i(5f++n75i+7n) £ 0 if
7 > 0 is small enough. This implies that c are critical values of S7. Furthermore,
it can be proved that they do not depend on the particular family (St)te[o,l]
chosen but only on the Hamiltonian H, so we may call them c. (H). We list some
of their properties in the next statement (some inequalities differ from those of
[19], because some sign conventions differ).

Theorem A.4. ([19]). To any H € Hy generating the isotopy ((bt)te[o,l]: we can
associate two real numbers c (H) with the following properties.
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c_(H) <0< ceqr(H).

c—(H) = ¢ (H) if and only if 1 = ldpa-.

There are points 2. € R? such that ®1(21) = 21 and App(2+) = co(H).
IfH <0 then c_(H) = 0.

IfH <K then c:(H) > c1(K).

The maps H — c1(H) are continuous for the CO-topology on Hy . More pre-
cisely, if H, K are in Hy and satisfy |[H—K]||co < ¢, then |cL(H)—ci(K)| < e

S s oo~

Definition A.5. ([19]). The gf-capacity cy(V) of the open set V' C R2?" is now
defined as

cgt(V) = sup{cy(H);H € Hy } (26)

Theorem A.6. ([19]). The map V — cy4(V') satisfies the following properties.

1. If Vi C Vo then cge(V1) < cgi(V2)

2. If(q’t)ze[o,l] is a compactly supported Hamiltonian isotopy of R2™, then cgf(d%(V))
18 constant.

3. cgf(BQ”(O7r)) — Cgf<B2(O77”) X ]RQn*Q) = 7r2.

4. The Symplectic Camel Theorem stated at the beginning of this paper.

Appendix B. The Maslov-Duistermaat index

In this appendix, we recall Duistermaat’s generalisation of the Maslov index [7],
and relate it to another index obtained with quadratic generating forms.

B.1. On a symplectic vector space

Let (F, o) be a symplectic vector space of dimension 2m, and A(F) = A(F,o) be
the set of its Lagrangian subspaces. If « € A(F) and k=0, ...,m, we consider

A*(@) = {8 € A(F); dim(an §) = k}

and then Y(a) = A(F) — A%(«), which is an algebraic hypersurface of A(F') whose
principal part is Al(a).

Generically, a smooth loop L : S — A(F) intersects ¥() in Al(a) only;
Al() being coorientable, the algebraic intersection number of L with %(«) can
be defined; and because A(F') is connected, this number does not depend on the
choice of oo € A(F). It is the Maslov index of the loop L, denoted by ind(L), see
[1]. A loop is contractible if and only if its Maslov index vanishes.

The sign convention we use (following Duistermaat) is that, in R? with the
standard structure for instance, the loop L = (L¢);c(o,1) defined by Lo = R X 0
and L; = e™*(Lp) has index —1 (ie. turning positively with respect to the natural
orientation gives negative Maslov index).
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In [7] (see also [6]), Duistermaat generalizes this index to non-closed curves of
Lagrangian subspaces, as follows. Let L : [0,1] — A(F) be such a (continuous)
path. We choose a € A(F) transversal to Lo and Li. As A%(a) is simply-connected
(it has the structure of an affine space), there is a path L’ in A%(«) joining L to
Lo, and all such paths are homotopic. The intersection index of L with o, denoted
by [L : ], will be the Maslov index of the loop L = L * L':

L : o] = ind(L) (27)

Duistermaat then adds a boundary term to obtain an integer independent of c.
Because of the transversality assumption, there is a linear map C : L1 — « such
that Lg is the graph of C, ie. Lg = {u + Cu;u € L1}. Then a quadratic form
denoted by Q(Ll, «; Lo) can be defined on Lq:

Q(LLoz; L()) 1 —R

(28)
w— o(Cu,u)
The Maslov-Duistermaat index ind(L) of the path L is now
ind(L) = [L : o] + ind Q(L1, o; Lo) (29)

As notation suggests, it does not depend on the choice of o € A%(Lg) N A%(Ly),
and it obviously gives the same index as before when L is a loop.

Proposition B.1. Let L :[0,1] — A(F) be a path.

1. The integer ind(L) depends only on the homotopy class (with endpoints fired)
of L.

2. If A € Sp(F,0) and AL denotes the path (AL); := A(L:) in A(F), then
ind(AL) = ind(L)

3. If L' is a loop in A(F) based at Ly, then ind(L x L') = ind(L) + ind(L’) (note
that the Maslov-Duistermaat index is not additive for the concatenation of all
paths).

Proof. These properties come directly from the definition and from the analogous
(standard) properties of the ordinary Maslov index for loops. O

To extend the Maslov-Duistermaat index to a symplectic vector bundle over
the circle, we will need the following result.

Corollary B.2. Let L, L’ be two paths in A(F), and A = (At)ic(o,1) be a loop in
Sp(F"). Let AL denote the path in A(I") defined by (AL): := Ai(L+), and similarly
for AL'. Then we have

ind(AL) — ind(AL’) = ind(L) — ind(L")
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Proof. The path AL is homotopic (with endpoints fixed) to the path AgL followed
by the loop AL, hence ind(AL) = ind(L) + ind(AL1) by Proposition B.1. Simi-
larly, ind(AL’) = ind(L’) +ind(AL} ). But, since A(F) is connected, the two loops
ALy and AL} are homotopic, hence they have the same ordinary Maslov index.[]

B.2. On a symplectic vector bundle over the circle

Consider next a symplectic vector bundle £ — S L with fiber (F,0). We see S L as
the interval [0, 1] with endpoints identified, and denote by ¢ its generic point; the
fiber of E over t will be called E;.

We consider V' = U, g1 V; a Lagrangian subbundle of F, and R : [0,1] — A(E)
a path of Lagrangian subspaces R; C F; (without imposing Ry = Ry) .

Because Sp(F') is connected, the symplectic bundle F is trivial, ie. there is a
symplectic isomorphism 7 : F = S1 x (F,¢). Then 7(V) can be identified to a
loop in A(F), and 7(R) to a path. According to Corollary B.2 the difference

indy (R) := ind(7(R)) — ind(7(V)) (30)

does not depend on the trivialization 7 chosen. It is called the Maslov index of R
with respect to V.

Remark B.3. Suppose that R, and V; are transverse for all ¢ € [0,1]. Then
indy (R) = ind Q(R1, Vo; Ro) (31)

where the definition of Q(Ry1, Vp; Ro) is a straightforward generalization of (28).
Indeed, by the very definition of indy(R), we may suppose that V (resp. R) is
a loop (resp. a path) in A(F'). Since Vy = V] is transverse to Ry and Ry by
assumption, we may take o = Vj to compute ind(R). Let R’ be a path in A%(Vp),
joining Ry to Rp. Then ind(R) = ind(R’ - R) + ind Q(R1, Vp; Ro) by definition,
and we just need to prove that ind(R’ - R) = ind(V'). But it is clear that R’ - R
is homotopic to a loop S in A(F') such that S; NV, = 0 for all ¢, and this implies
that S and V' have the same (ordinary) Maslov index.

If I'{ and I'y be two Lagrangian subbundles of E, then the Maslov class
w(I'1,T2) of the pair (I'\,I'2) is defined as u(I'y,I'9) = indp,(I'1). It vanishes
if and only I'y and I's are homotopic through Lagrangian subbundles of E. In
that case, we have indp, (R) = indr, (R); more generally, the following relation
holds:

indp, (R) — indp, (R) = (I, I'1) = —p(l'1,T'2) (32)
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B.3. Using generating functions

We consider the space R endowed with the symplectic form Qpa...
Let k be an arbitrary integer, and Q@ = Q(w,¢) : R™ x R¥ — R be a quadratic
form. Using matrix representation with respect to the canonical bases of R™ and

R¥, we write Q(X) = 3 *XBX, with X = (?) and B = <“

%
(n + k)-matrix.

We say that Q is a generating form if it is a generating function in the sense
of Definition A.2, ie. if the k x (n + k)-matrix (*b,c) is of maximal rank k. Then
Yo = {(w,&);'bw + € = 0} is a m-dimensional vector subspace of R™ x R,
and the map ig : Xg — R2Zm =~ T*R™ defined by ig(w, &) = (w,aw + bE) is a
Lagrangian linear embedding. The Lagrangian subspace L = Im(ig) is said to be
generated by Q. The spaces Ker @ and (R™ x 0) N L are obviously isomorphic.

b .
& a symmetric

Example B.4. Let W be a Lagrangian submanifold of R2m admitting a gen-
erating function S : R™ x RF — R. If (w,w') is a point on W and (w,¢) is
the corresponding element of g, then dQS(w7 &) is a generating form for the La-
grangian subspace T, ,\W € A(R2™),

As in the non-linear case of Section A, there are existence and uniqueness results
for forms generating a continuous path of Lagrangian subspaces. The proofs are
much simpler, however, in the linear case: see [16].

Theorem B.5. and Definition). Let L : [0,1] — A(R?™) be a path of Lagrangian
subspaces. Then there is a path (Qt)te[o,l] of generating forms, such that Q;
generates Ly for all t € [0,1]. Furthermore, if (Qt)te[(),l] is any such path, then
the integer ind Q1 —ind Qq depends only on L = (Lt)te[o,l]' It is called the gf-index
of L, denoted by indgt(L). If L is a loop, then indgt(L) coincides with the standard
Maslov index of L.

Now, if Sp(R?") is the manifold of linear symplectomorphisms of (R2*, Qpa..)
and A : [0,1] — Sp(R*") is a continuous path, we use the identification (24) to
define a path L in A(R?"™, Q. ), with 2m = n: for t € [0,1], the graph of A, is a
Lagrangian subspace of R x R2”7 and we set L; = I(graph A;).

Definition B.6. The gf-indez of the path A is indgs(A) := indge(L).

Proposition B.7. Let ® = (®),c[p,1] be @ Hamiltonian isotopy of R?" with, com-
pact support, and (St)te[o,l] be a family of generating functions as in Theorem A.3.

Let z € R* be a fized point of ®1 and (2,€) be the corresponding critical point of
Sy. If A denotes the path of symplectomorphisms A, = d®.(z) € Sp(R*"), then
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indgg(A) = ind d251(2,€) — ind Qoo

Proof. We follow the notations of Appendix A. In particular, (‘I’t)te[o,l] is the
Hamiltonian isotopy of T*R?" given by ¥, = I o (id x®;) o I"1. There is a
continuous path (wy,&;) € R* x R* ending at (z,€), such that (wy,&;) € Ng, and
is,(wy, &) = Wy (2,0) for all ¢. Then Q; = dQSt(wt,&) is a quadratic generating
form of T\I,t(OJ)lN“t, and that vector subspace is precisely L;. Hence indg(A) =
indgf(l(graph A)) = ind @1 — ind Qo by definition.

Since Sp generates the zero section and Sp = Qo outside a compact set, it is
easy to see that ind d?Sp(wo,&) = ind Qo (consider a path ~; on Y5y, joining
(wo,&0) to a point at infinity; it is immediate that Kerd?Sp(v;) has constant
dimension, so the index of d25y(v;) is also constant).

Hence indgf(A) = ind d251(2,€) — ind Qo as claimed. O

On the other hand, the path (graph At)te[o,l] also has a well-defined Maslov-
Duistermaat index, from Appendix B. We show that the two indices are equal if
the path starts at the identity map.

Proposition B.8. Let A= (A;),cp,1] be a path in Sp(R?™). If Ag = Id, then

indg¢(A) = ind(graph A)

Proof. Let us begin with a simple but important remark: to prove that ind and
indgf coincide for all paths joining two fixed Lagrangians Lo and L1, it is enough
to show that they coincide for one of them. This follows easily from the additive
property of infyr under concatenation of paths, from the weaker corresponding
statement for the Maslov-Duistermaat index (see Proposition B.1), and the fact
that the indices do coincide on loops of Lagrangian subspaces.
Since
(i) Aj gives a decomposition R?* = F' @ F” as the direct sum of symplectic
Aq-invariant subspaces such that the restriction of A1 to I does not have
the eigenvalue —1, and the restriction of Ay to ' has only the eigenvalue
-1,
(ii) the symplectic group of a symplectic vector space is always connected,
(iii) the indices are additive with respect to symplectic direct sums,

we may suppose that 4; does not have the eigenvalue —1 or that it has only this

eigenvalue.

1. Let us first assume that —1 is not an eigenvalue of A;. Then, in view of (24),
the hypotheses mean that Lo = R x 0 and that L{ is transversal to 0 x R%".
Consequently, we may take o = 0 x R?" in (27)-(28)—(29).

First, let L’ be path in A%(«), joining Ly to Lo. Then [L : ] = ind(L « L)
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by definition, see (27). But ind and indgs coincide on loops of Lagrangian
subspaces, so [L : o] = indg(L * L’). Since indgs is additive (this is obvious),
we have

[L : o] = indgg(L) + indge( L")

Now L’ is a path of Lagrangian subspaces that never meets the vertical
0 x R?*. This implies that the L}’s are graphs of (symmetric) linear maps
¢ : R — R?. Then Qj(w) = 3 < fw,w > defines a quadratic form
generating L}, for ¢ € [0,1]. Since L} = Lo = R2" x 0, we have ¢} =0, hence
Q) = 0. Therefore,

indgs(L') = ind Q) — ind Qf = —ind Qg

Finally, we relate Qg and Q(L1, a; Lo). Consider the linear map C': L1 — «
such that u+ Cu € Lo = R2" x 0 for all u € Ly. Since L1 = L{ is the graph of
), we write u = (w, fyw) = (w,0) + (0, f4w) € (R** x 0) @ (0 x R?"). Hence
Cu = (0, —{{w), and then

Q(L1, o Lo)(u) = QCu,u) = Q0, —Lyw; w, fyw) = < fw,w > = 2Qp(w)
This proves in particular that
ind Qf) = ind Q(L1, «; Lg)

whence

ind(L) = [L: o] +ind Q(L1, ; Lp)
= indg¢(L) + indg(L') + ind Q(L1, o Lo)
= indge(L) — ind Qg + ind Qp

= indgf(L)
2. Let us now assume that —1 is the only eigenvalue of A1. We choose « to be
I(graph(B)), where B = _OI é . Then « is transversal to Lg and L1, and

furthermore it is possible to join L to — Id through symplectomorphisms that
have only —1 as eigenvalue. It is then easy to see that both indices do not
change if we compose our path (A;) with this path from L; to —Id. Hence
we may assume that A; = —Id. But then we only need to check equality of
the indices to one given path from Id to — Id, and again we may assume that
R2" — R2 and A, is rotation of angle 2xt. A direct application of the definitions
shows that in this case both indices are equal to 0. |
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