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Abstract. The results in this paper show that simple connectivity of a 3-manifold is reflected
in the behavior of essential surfaces in exteriors of knots in the manifold. A corollary of the
main theorem is that any non-trivial knot, with irreducible complement, in a homotopy 3-sphere
must have two boundary slopes that differ by at least 2. This statement is false for knots in a
homology 3-sphere. The main theorem itself applies more generally to knots in closed orientable
3-manifolds with cyclic fundamental group.

Introduction

If K is a knot in the 3-sphere, any minimal-genus spanning surface may be iso-
toped so as to meet the exterior M = M (K) in a non-separating bounded essential
surface. (See Section 1 for the definition of essential surface and of other terms
used here.) Essential surfaces are useful in the study of the topology of the knot
exterior M; for example, the existence of a non-separating bounded essential sur-
face implies, via Papakyriakopoulos’s work, that w1 (M) is an HNN extension with
a free associated subgroup. It was shown in [4] that if K is non-trivial then A
always contains a connected bounded separating essential surface F'. This implies
the result, first conjectured by Neuwirth, that 71 (M) is a non-trivial free product
with amalgamation, and that the amalgamated subgroup is free. That F' separates
M is a consequence of the fact that its boundary slope, an element of Q U {oo}
that encodes the common isotopy class of all the components of 3F, is non-zero.
It follows from a theorem of Hatcher’s [6] that the set BK C QU {oo} of
all boundary slopes of essential surfaces is finite for any knot exterior M. The
arguments of [4] show that this set has at least two elements if K is non-trivial. The
set BK has been computed for some families of knots. The first such computations
were made for 2-bridge knots by Hatcher and Thurston [8]. Their methods were
generalized by Hatcher and Oertel [7], who gave a procedure for computing BK
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in the case that K is a Montesinos knot.

The results in [8] led Hatcher and Thurston to ask whether boundary slopes
are always even integers, and whether there always exist two boundary slopes that
differ by more than 2. The first question was answered negatively in [1]. (More
generally, Hatcher and Oertel showed in [7] that every rational number arises as
a boundary slope for some Montesinos knot.) In the present paper we address
Hatcher and Thurston’s second question. We show that for a non-trivial knot K
in 53, the diameter of BK is at least 2, i.e. that if oo ¢ BK then there are two
elements r,s € BK C Q such that »r — s > 2. This is included in Corollary 1.6
below, and may be regarded as a refinement of the main result of [4], insofar as
the latter result bears on knots in S3.

There is an important difference between the nature of the results about BK
proved in this paper and those that were proved in [6] and [4]. The set BK
is well-defined for any knot K in an integer homology sphere. For a knot in an
arbitrary closed orientable 3-manifold it is defined modulo integer translations and
reflection about 0. (In this paper, just as a matter of convenience, we define BK
only for knots with irreducible complement.) Now, the results of [6] establish the
finiteness of BK not only for a knot K in 53 but for a knot in an arbitrary closed
orientable 3-manifold. Likewise, the arguments of [4] can easily be adapted to give
a proof that if K is a non-trivial knot in an arbitrary closed 3-manifold 3., and if
M(K) does not contain an essential separating annulus or a non-separating torus,
then K has at least two boundary slopes. (This result is made explicit in [12].)
By contrast, Corollary 1.7 below, which asserts that BK has diameter at least 2,
requires the hypothesis that > be a homotopy 3-sphere. In fact, the discussion
given below in 1.8 shows that for any ¢ > 0, there exist a homology 3-sphere >
and a non-trivial knot K C ¥ such that the diameter of BK is < e¢. Thus the
results of this paper show that simple connectivity of a 3-manifold is reflected in
the behavior of essential surfaces in exteriors of knots in the manifold. Our results
are therefore relevant to the Poincaré Conjecture. We discuss this further, in a
more general context, in Section 1.9.

Corollary 1.7 is derived from our main result, Theorem 1.1, which applies more
generally to a closed, orientable 3-manifold ¥ with a cyclic fundamental group. If
K is a non-cabled knot in ¥ such that oo € BK, Theorem 1.1 implies that either
BK has diameter at least 2 or else . has a genus-1 Heegaard splitting in which
K is a core curve for one of the Heegaard solid tori. (The actual statement of
Theorem 1.1 is slightly stronger. For precise definitions of the terms used here,
see Section 1.)

Theorem 1.1 is sharp: Nathan Dunfield has discovered that there is a hyperbolic
knot K in a 3-manifold with cyclic fundamental group such that BK has diameter
exactly 2. Dunfield’s example is described in Example 1.4. In [5] Dunfield gives
conditions under which the inequalities of Theorem 1.1 and Corollary 1.7 are strict.

The proof of our main result combines the techniques of [3] and [4] with prop-
erties of the norm on Hi(0M;R) which was introduced in Chapter I of [1]. Given
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the techniques of these earlier papers, the proof of the main theorem is relatively
simple in the case of a hyperbolic knot. One of the refinements which are needed to
handle the non-hyperbolic case is a generalization of the theory of Chapter I of [1]
to manifolds with more than one boundary torus. This is developed in Section 2.
Our results are stated in Section 1 and proved in Section 4, and a key topological
lemma is proved in Section 3.

We thank Nathan Dunfield and Cameron Gordon for many helpful discussions.
We are especially grateful to Dunfield for permission to present Example 1.4 in
this paper.

1. Notation and Main Results

Suppose that ¥ is a closed connected orientable 3-manifold. A knot in ¥ will
always be understood to be tame. If K is any knot, a regular neighborhood U
of K is a solid torus, the knot exterior M = . — U is a compact 3-manifold with
boundary, and dM = OU is a torus. We will say that K is round if the manifold
M has a solid torus connected summand. In other words, K is round if and only
if M is boundary-reducible.

In the case where the exterior M of K is irreducible, K is round if and only
if M is a solid torus. Note that this implies that > has a genus-one Heegaard
Sleittinig and is therefore homeomorphic to a (possibly trivial) lens space or to
5% x St

For any knot K C 3, the regular neighborhood of K and the exterior of K are
well defined up to ambient isotopy. In certain situations this will allow us to write
U(K) for a regular neighborhood and M(K) for a knot exterior without risk of
ambiguity.

If U is a solid torus in . and M =3 — U, we define a meridian of U to be an
oriented simple closed curve in OM = AU which bounds an essential disk in U.
We think of such a curve as being defined up to oriented isotopy. From this point
of view, a knot has two meridians, which differ only in orientation. Furthermore,
we shall not always distinguish between an isotopy class of oriented simple closed
curves in @M and the corresponding primitive class in H(0M; Z); thus a meridian
may be regarded as an element of Hy(0M;Z). We define a framing for the solid
torus U in ¥ to be a basis (u,v) of H1(OM;Z), where p is a meridian.

If K is a knot in 3, we shall often refer to a meridian of U(K) or a framing for
U(K) as a meridian of K or a framing of K, provided that no ambiguity arises.

In the case where 3 is an integer homology 3-sphere, orientations of 3 and K
give rise to a canonical framing (, A) for K in the following way. The orientation
of ¥ restricts to an orientation of M = M(K) which induces an orientation of
OM. The kernel of the inclusion homomorphism H{(OM;Z) — H{(M;Z) is a
direct summand of H{(0M;Z) = H{(0U(K);Z), and is generated by an element
A whose image in Hy(U(K);Z) is the element defined by the given orientation of
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K. We may think of X\, which is called a longitude, as an oriented simple closed
curve in M defined up to isotopy. For either choice of the meridian p we have an
ordered basis (u, \) for Hy(OM;Z); furthermore, there is a unique choice of u for
which this ordered basis determines the induced orientation of M.

If U is a solid torus in a general closed, orientable 3-manifold 32, and if M =
Y. — U, it follows from Poincaré duality that ker(H{(0M;Z) — H1(M;Z)) is in-
finite cyclic, and thus is contained in a unique direct summand Z. A generator
of Z will be called an external longitude for U. In the case that 3 is an integral
homology sphere the longitude of U is an external longitude. In general, however,
the kernel may be a proper subgroup of Z, and Z may fail to be complementary
to the summand generated by the meridian. For example, if H{(}) is infinite
cyclic, and if a core curve of U represents k times a generator of Hi(>;Z), then
ker(H1(0M;Z) — H1(M;Z)) has index k in Z and the meridian is a generator of
Z, i.e. the meridian is an external longitude.

Suppose that K is a knot in a closed orientable 3-manifold 3, and let us set
M = M(K). If we fix a framing (u, v) for K then any oriented, homotopically non-
trivial simple closed curve « in 9M represents a class pu + qv, where p and ¢ are
relatively prime integers. The element p/q € QU{o0}, called the slope of -y, depends
only on the isotopy class of the simple closed curve v, not on its orientation. This
defines a bijection between isotopy classes of unoriented, homotopically non-trivial
simple closed curves in M and elements of QU{oo}. This bijection depends on the
choice of a framing. Changing the framing has the effect of composing the bijection
with an element of the dihedral group D, generated by z — z+ 1 and z — —=z.
Note that for the case of an oriented knot in an oriented integer homology sphere,
we have a standard choice for this bijection arising from the standard framing.

Let M be an orientable compact irreducible 3-manifold whose boundary compo-
nents are tori. By an essential surface in M we mean a tame, orientable, properly
embedded 2-manifold no component of which is a 2-sphere or a surface which is
parallel to a subsurface of M. A connected essential surface F' is called a fiber
if it is a fiber in some fibration of M over S1: it is called a semifiber if M is a
union of two twisted /-bundles £ and F5 over non-orientable surfaces, such that
E1NEy = F and F is the common associated dI-bundle of F{ and Fo. We will say
that an essential surface F' is strict if no component of I’ is a fiber or a semifiber.

If the knot K C ¥ has irreducible exterior M = M(K) and if I is an essential
surface in M with 0F # ), then all the components of 9F are mutually parallel
non-trivial simple closed curves in @M. Thus all the components of OF determine
the same pair of primitive elements of Hy(OM;Z), differing by sign; these will be
called the boundary classes of . If we fix a framing of K, all the components of
OF have the same slope p/q € QU {oo}, called the boundary slope of . We define
an element p/q of Q U oo to be a boundary slope of K if it is the boundary slope
of an some bounded essential surface in M. We call p/q a strict boundary slope if
it is the boundary slope of some bounded strict essential surface in M. Given a
framing, we define BK C QU {oo} to be the set of all boundary slopes of K, and
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Bs K to be the set of strict boundary slopes of K.

According to a theorem of Hatcher’s [6], BK is a finite set; hence so is BsK.
Changing the framing of K has the effect of replacing BK (resp. Bs;K) by its
image under an element of Do,. In particular, if oo ¢ BK (resp. oo ¢ BsK), the
diameter of BK (resp. BsK), which is defined to be the difference between the
greatest and least elements, is an invariant of the knot K.

If Ug C ¥ is a solid torus, we define a cable on Up to be a simple closed curve
in Uy which has geometric intersection number at least 2 with a meridian of oUyp.
A knot K in ¥ is called a cable knot if it is not round and is a cable on some solid
torus Up. (If Uy is a regular neighborhood of a knot Ky we may also say that K
is obtained by cabling Kj.)

We may now state our main result.

Theorem 1.1. Let X be an orientable 3-manifold with cyclic fundamental group,
and let K be a knot in Y. such that M(K) is irreducible and oo ¢ BsK. If K is
not a cable knot or a round knot then diam B, K > 2.

1.2. Theorem 1.1 can be paraphrased by saying that if K is not round and is
not a cable knot, and M(K) is irreducible and co ¢ B, K, then in terms of any
framing of K there exist elements s1, sy € B K such that |s; — sg| > 2. Of course
the quantity |s; — sa| is independent of the framing since it is invariant under the
action of D, described above. However, it is instructive, and will be useful for the
proof of Theorem 1.1, to give a direct definition of this quantity which does not
involve the choice of a framing. To this end let us denote by {,-) the intersection
pairing on H{(0M;Q). This pairing is determined by a choice of orientation of
OM, and is in any case well-defined up to sign. Now if F| and F5 are bounded
essential surfaces in M(K), then with each F; we can associate a boundary class
a;, well-defined up to sign. Given any framing (u,v) of K we can write a; in the
form p;u + ;v for i = 1,2, and the boundary slope of F; is s; = p;/q;. We then
have

P192 — P241
q192

(a1, o9) ’
7

[s1 —s2| =
(o1, p){eva, 1)

where the expression on the right is clearly independent of all choices of sign. If we
now define a strict boundary class for M(K) to be the boundary class of a strict
essential surface then Theorem 1.1 can be reformulated as follows:

Theorem 1.3. Let ¥ be an orientable 3-manifold with cyclic fundamental group,
and let K be a knot in Y. Suppose that M = M(K) is irreducible and that K is not
a cable knot or a round knot. Let € Hi(M;Z) denote a meridian of K. Then
either p is a strict boundary class for M, or there exist strict boundary classes o
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and ag for M such that
(a1, a9)
CIRDICINT)

’22.

Example 1.4. The following example, which was discovered by Nathan Dunfield,
shows that Theorem 1.1 is sharp.

Let T be a compact orientable genus-1 surface with one boundary component.
We identify the mapping class group of T' with PSL(2,Z). Let M denote the
bundle over S1 with fiber 7" and monodromy

(5 5)

(This manifold is sometimes called the sister of the figure-8 complement.)
The fundamental group of M has a presentation

la,b,t : t~lat = aba 1t bt = bf3a71|.

The commuting elements ¢ and aba—1b~! of 7{(M) are represented by periph-
eral simple closed curves whose homology classes, respectively denoted 7 and A,
form a basis for Hi(OM;Z). We will work in terms of the framing (7,X). We
may use the algorithm in [2] to find the essential surfaces in M. In the notation
of [2], we find three surfaces: the fiber, C(1 : 3) and C(—1 : —3). The “standard
framing” determined by C(1 : 3) is the framing (7, A), so according to [2, Table
I], the surface C(1 : 3) has boundary class oy = 47 + A. The “transition index”
between the standard framing of C(—1 : —3) and that of C(1 : 3) is 1, so the
boundary slope of C(—1: —3) turns out to be ag = 47 4 3.

Next we claim that the manifold ¥ obtained by Dehn filling of M along a curve
representing the class p = 27 + A has cyclic fundamental group. We have

m1(5) = |a,b,t ¢t Yat = aba~ 1, t M0t = b 3071, aba o142 = 1).

(Note that ¢ and t—! were interchanged in the description of the standard framing
that appears in [2].) Substituting ¢ !at for aba—1 in the third relation we obtain

m (%) = |a,b,t: tat = aba L, t bt = b 201, atb 1t = 1].

Since the third relator implies a = ¢ 16t ! we may eliminate the generator a. This
gives
() = bt t o= bt 1btb e, ¢ 1o = b 3tp ]

= bttt e e =1, P = .
Writing v = t~ 142 and eliminating ¢t we have

1 (2) = |u, b ub lub tub b =1, w2 = b1
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Finally we may eliminate b to obtain
(2 = |u:u'® =1].

Thus M is the exterior of a knot K in the manifold ».. The fundamental group
of ¥ is cyclic and the meridian of K is . We have

| = || =2
and, for i = 1,2,
o ‘ =1,
(ai ) (A, )

Thus BK has diameter 2.

We remark that the manifolds obtained by 2/1 and 1/0 Dehn filling also have
cyclic fundamental groups (of order 5 instead of 10). Thus the manifold M is also
extremal with respect to the Cyclic Surgery Theorem [1].

The following result, which will be proved at the end of Section 3, gives a lower
bound for the diameter of BK in the case of most cable knots K, provided that
H1 (> Z) is finite.

If Uy is a solid torus in a closed orientable 3-manifold ¥, and if the meridian
and external longitude of Uy have geometric intersection number at least 2, then
the external longitude can be viewed as a cable on Uy. Such a cable will termed
exceptional. A knot in Y will be called an exceptional cable knot if it is not round
and is an exceptional cable on some solid torus Uyp C .. Notice that in a homology
sphere there are no exceptional cable knots.

Proposition 1.5.  Let ¥ be a closed orientable 3-manifold such that H1(3;Z)
is finite, and let K be a cable on a solid torus Uy C 3. Suppose that M(K)
is irreducible (or, equivalently, that Y — Uy is irreducible), and that oo ¢ BK.
Let n be the order of the homology class in H1(X;Z) represented by a core curve
of Uy. Then either K is a round knot, or K is an exceptional cable on Uy, or

diam BK > 2/n.
Combining Proposition 1.5 with Theorem 1.1 we obtain the following result.

Corollary 1.6. Let K be a knot in a closed 3-manifold > with finite cyclic
fundamental group. Suppose that M(K) is irreducible and that oo ¢ BK. Then

either K is a round knot or an exceptional cable knot, or diam BK > 2/|m1(%)].
O

As we observed above, there are no exceptional cable knots in a homology 3-
sphere. Moreover, if a knot K in a homotopy 3-sphere 3. is round, then . is S3



Vol. 74 (1999) Boundary slopes of knots 537

and K is a trivial knot. Thus Corollary 1.6 specializes to the following result in
the case that ¥ is a homotopy 3-sphere.

Corollary 1.7. Let K be a knot in a homotopy 3-sphere ., with M(K) irreducible
and 0o ¢ BK. Then either diam BK > 2 or ¥ is % and K is a trivial knot. O

1.8. Corollary 1.7 does not extend to knots in an arbitrary homology 3-sphere. To
see this, let us consider any non-trivial oriented knot K in 53, and let 3, be the
result of 1/n Dehn surgery along K. By definition this means that ¥, is obtained
from M = M(K) by attaching a solid torus U,, along the boundary in such a way
that the boundary of an essential disk in U, is identified with a simple closed curve
whose slope, in terms of the standard framing (u, A) of K, is 1/n. A core curve of
U, is then a knot K,, C »,,. Furthermore, ., is a homology 3-sphere, and K,, can
be oriented so that its standard framing is (p,,A), where p,, = g+ nA. If F'is an
essential surface in M whose boundary slope, in terms of the standard framing of
K, is p/q, then the boundary curves of I' can be oriented so as to represent the
homology class pu+ g\ = ppn, + (g —pn)X; thus the boundary slope of F, in terms
of the standard framing of K,, is p/(q —pn). As this quantity approaches 0 when
n tends to infinity, it follows from Hatcher’s finiteness theorem that diam(BK,,)
also approaches 0 as n — oo.

1.9. In order to explain the potential relevance of Theorem 1.1 to the Poincaré
Conjecture, it is convenient to restate it in a contrapositive form. Let 3 be a
closed orientable 3-manifold. Suppose that > contains a knot K with the following
property:

(¥) M(K) is irreducible, K is not cabled, co ¢ BK, and diam BK < 2.

In this situation, Theorem 1.1 asserts that if m1(>) is cyclic, then K must be
a round knot. According to our definition, this implies that M is a solid torus, so
that 3 is homeomorphic to a (possibly trivial) lens space or to 2 x S1.

We express this by saying that (x) is a “good property” of a knot. In general,
let Z be a property of knots in closed, orientable 3-manifolds. We will say that
7 is good if every knot K with property Z in a closed, orientable 3-manifold with
cyclic fundamental group is round.

While (%) is a good property, it follows from 1.8 that many irreducible non-
Haken manifolds contain knots with Property (x). If one can exhibit a good
property 7Z such that every non-Haken manifold contains a knot with Property Z,
the Poincaré Conjecture will follow; more generally, it will follow that every closed
3-manifold ¥ with finite cyclic fundamental group is a lens space. (This deduction
is immediate in the case where ¥ is irreducible, since a manifold with finite cyclic
fundamental group is non-Haken. The general case follows from Kneser’s finiteness
theorem.)



538 M. Culler and P. B. Shalen CMH
2. Norms

In the case where K is a hyperbolic knot, Theorem 1.1 follows via elementary
arguments from the properties of the norm on Hi(OM (K );R) that were established
in [1] and used in the proof of the Cyclic Surgery Theorem. In the case where M (K)
contains an incompressible torus we need to decompose M (K) into hyperbolic and
Seifert-fibered pieces and use a slightly more general version of this norm to analyze
the hyperbolic pieces. The results in [1] apply to manifolds with a single torus
boundary component, but here we need to consider manifolds with several torus
boundary components. The SLg(C)-character varieties of such manifolds were
considered in [4], but the norm was not introduced in that context.

In this section we sketch the construction of this generalized norm and enumer-
ate its fundamental properties. We shall use the notation of [1], modified slightly
to accommodate a manifold which may have more than one cusp.

Throughout this section we shall assume that N is an orientable 3-manifold
which is homeomorphic to the compact core of a finite-volume hyperbolic 3-
manifold. We shall also assume that 0N consists of tori By, ... , Bg, where k > 0.
The manifold N plays the réle of the manifold M which is discussed in [1], with
the torus component By of ON replacing the torus dM. Accordingly, we identify
the group L = H1(Bp;Z) with a lattice in the vector space V = H{(Bp;R). We
let e: L — m1(Bg) denote the inverse of the Hurewicz map; we often view e as
a homomorphism from L to w1 (M) which is well defined up to composition with
inner automorphisms. If « is a primitive element of L then we denote by N{«)
the manifold obtained by glueing a solid torus along Bg so that the meridian of
the solid torus is identified with a curve representing a.

We consider the complex affine algebraic set R = R(m1(N)) of representations
of m1(N) in SLa(C). The set of characters of such representations is also an affine
algebraic set and the map p — x, is a polynomial map. To each element « of
71 (N) there is associated a function I, on X(N) defined by I,(x) = x(v) for
every character y € X(N).

For each ¢ = 1,... ,k we choose a peripheral element ~; # 1 in the image of
71(B;) in w1 (N). We may consider the affine algebraic subset W = W (vy1,... ,ym)
of X(N) defined by the equations I,, = +2, for ¢ = 1,... ,n. It is shown in [4,
page 541, proof of Theorem 3| that there exists a curve Cy contained in W such
that

(C1) Cp contains the character xg of a discrete faithful representation of

w1 (N).
It is also shown that for any such curve Cp we have
(C2) for ¢ = 1,...,n, if v € m(N) is a peripheral element conjugate to an
element of 71 (B;) then I, is identically equal to either 2 or —2 on Cp;
and

(C3) if v # 1 is conjugate to an element of 71(Bp) then I, is non-constant.
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2.1.We let 5’0 denote the smooth projective model of the curve Cp. This curve will
replace the curve Xg in [1]. As in [1] there is associated to each ideal point = of
Co a non-trivial action of 71(N) on the tree for SLo(F), where F is the function
field of 50 equipped with the discrete valuation v, associated with the smooth
point z. In this section we shall denote this tree by T,. We shall be considering
surfaces in N which are associated to the action of m1(N) on T} in the sense of
[1, Definition 1.3.1]. The statements of Propositions 1.2.6, 1.2.7 and 1.3.2 of [1]
remain true with N replacing M and 5’0 replacing )?0, and the proofs remain the
same. In particular, no point of T, is fixed by 71 (V) and therefore any surface
associated with the action of w1 (N) on T}, is non-empty.

The main modification that we must make to the results of [1] consists of
replacing the class of essential surfaces in M with the class of essential surfaces in
N which are disjoint from the boundary tori By,... ,Bs. This is made possible
by the following

Lemma 2.2. If z is any ideal point of (7() then for each i = 1,... ,k the image
of m1(B;) in w1 (N) is contained in the stabilizer of some vertex of T,

(As in [1] we shall often work with groups that are defined only up to conjugacy
when there is no danger of confusion.)

Proof. For any v € 71 (B;), for ¢ > 1, the function /, is constant on on 60. Thus
by [1, Proposition 1.2.6] the element v fixes a vertex of T'. It is shown in [13,
Corollary 3 to Proposition 26] that a finitely generated group fixes a vertex of a
tree if each of its elements fixes a vertex. |

The next lemma is a slight generalization of Proposition 1.3.8 of [1]. The proof
is identical.

Lemma 2.3. Assume that 71(N) acts on a tree T and that no vertex of T is
fized by the entire group. Then there exists an essential surface associated to the
action. Furthermore, if K is a subcompler of ON such that for each component
K' of K the image of w1 (K') in w1 (N) is contained in a vertex stabilizer, then the
surface may be taken to be disjoint from K. O

Generalizing the definition from [1] we define a strict boundary class to be
an element of L which is the boundary class of an essential surface I’ such that
OF C Bp and such that F' is not isotopic to the fiber of a fibration of N over S L
(The last condition is automatic if k& > 1.)

The next lemma generalizes Proposition 1.3.9 of [1]

Lemma 2.4. Let z be an ideal point of 6’0, Let o be a primitive element in L
such that 1) (x) # oo. Then either I ) (z) # oo for all B € L or else o is a
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Proof. By [1, Proposition 1.2.6] e(«) stabilizes a vertex of T,,. By Lemma 2.2, for
¢t =1,...,k the image of 7m1(B;) in 71 (N) also fixes a vertex of T,,. We apply
Lemma 2.3 taking K = By U ---U By Uc¢, where ¢ is a simple closed curve By
representing «.. This gives an essential surface S associated to the action of 71 (V)
on T, such that 95 is contained in By and is disjoint from ¢. We now proceed
exactly as in the proof of Proposition 1.3.9 of [1]. O

If f is an element of the function field C(Cy) = C(Cp) we will denote by Z,(f)
the order of zero of f at the point z € Cp. If f(x) £ 0 we set Z,(f) = 0. Similarly
we denote by I1,(f) the order of pole of f at z, with I,(f) = 0 if f does not have
a pole at z. Thus v, (f) = Z,(f) — I,(f). For each element o of L we will let f,
denote the function f, = Ig(a) — 4, which vanishes wherever /., takes the value
2 or —-2.

The next lemma generalizes Proposition 1.6.1 of [1].

Lemma 2.5. Let z be an ideal point of 50. Let o and § be non-zero elements of
L. Suppose that « is primitive and is not a strict boundary class, and that

Zz(fa) > ZZ(fé)‘

Then M contains a closed orientable m1-injective surface of positive genus. In
particular w1 (M(a)) is not cyclic.

Note that the conclusion that () is not cyclic is non-trivial only in the
case where N has at most two boundary components. The case of two boundary
components will be crucial for our application of this lemma.

Proof of Lemma 2.5. It suffices to produce a closed surface associated to the action
of m1(N) on T,. Then the proof of [1, Proposition 1.6.1], which occupies Section
1.6 of [1], goes through without change.

By applying Lemma 2.3 with K = 0N we see that there will exist a closed
surface if the image of w1 (B;) fixes a vertex of T, for ¢ = 0,... ,k. We know from
Lemma 2.2 that the image of 71(B;) fixes a vertex of T}, for ¢ > 1. Our hypothesis
implies that I_(,)(z) # oo. Since « is not a strict boundary class, we conclude
from Lemma 2.4 that I,z (z) # oo for all g € L. Arguing as in the proof of
Lemma 2.2 this implies that the image of 71 (Bp) fixes a vertex of T}. O

We may view 5’0 and P! as compact 2-manifolds and regard f,, as a branched
covering map from Cp to PL. As such, f, has a well-defined topological degree
which equals the number of inverse images of a generic point of P1. The following
result generalizes Proposition 1.1.2 and Corollary 1.1.4 of [1].
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Proposition 2.6. There exists a norm || - || on the vector space V which has the
following properties.
(N1) For every o € L, ||| is equal to the degree of fo.

(N2) The unit ball of the norm || - || is a (balanced conver) polygon. FEach
vertex of this polygon is a rational multiple of a strict boundary class (in
LcVv)

(N3) If a is a primitiwe class in L which is not a strict boundary class and
if, in addition, the Dehn-filled manifold N(a) has cyclic fundamental
group, then ||o|| < ||9]| for each non-zero element & of L.

Proof. The proof is essentially the same as the proofs of the corresponding state-
ments in [1], using Lemmas 2.4 and 2.5 in place of Propositions 1.3.9 and 1.6.1 of
[1]. We sketch the main ideas.

Let o be an element of L. We first observe that the degree of f, can be
computed as the sum, over all ideal points p of Cp, of the order of pole of f, at p.
(The function f, has no poles at ordinary points of Cp.) Thus we have

degfa — Z Hz(foc)

z ideal

One shows, using the valuation extension theorem exactly as in [1, section 1.4],
that for each ideal point = of 5’0 there exists a homomorphism of abelian groups
¢o: L — Z such that I1,(f,) = |¢(a)| for every o in L. We extend ¢, to a linear
functional ®,:V — R and for each v € V we set

lloll = [®a(v)]-

z ideal

In particular if « is an element of L then ||a|| equals the degree of f,. Thus the
equality in (N1) holds.

The function ||-|| is a sum of the absolute values of finitely many linear function-
als with integer coefficients, each arising from an ideal point of 5(]‘ This implies
that || - || is a linear semi-norm given by a piecewise-linear function with integer
coefficients. 1If || - || were not a norm then there would exist a homomorphism
non-zero element « of I which was contained in the kernel of every ¢,. But then
the degree of f, would be zero, i.e. f, would be constant. This is ruled out by
condition (C3) above, so || - || is a norm.

Each vertex u of the unit ball of || - || is an element of the kernel of one of the
linear functionals ®,, where ¢, is not identically zero. Hence w is a scalar multiple
of a generator o of the kernel of ¢,. Since ¢,(a) = 0 we have that f,(x) # oo.
Since ¢, is not identically zero there exists 3 in L with fg(z) = oo. Thus by
Lemma 2.4 o is a strict boundary class. This establishes property (N2).

To prove property (N3) we use the observation that the degree of f, can also
be written as the sum of Z,(f,) over all points = € Cp. We will assume that
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falz) = 0 and consider two cases, according to whether z is an ideal point or
not. In each case we will obtain a contradiction to the hypothesis that w1 (N(«a))
is cyclic.

Suppose that we are given two arbitrary elements « and é of L. If z is not
an ideal point then we can apply Proposition 1.5.2 of [1], with M replaced by
N and Xy replaced by the set 56’ of ordinary points of 50. The proof of this
proposition, which occupies Section 1.5 of [1], goes through without change. The
essential property of Cy which is used in the argument is that it contains the
character of an irreducible representation. We conclude that if Z,(fo) > Z.(fs)
then there exists a representation of 71 (N(a)) into PSLo(C) which has non-cyclic
image. This is a contradiction. If z is an ideal point then we can apply Lemma
2.5 to conclude that if Z,(fs) > Zz(fs) then m(N(e)) is non-cyclic, giving a
contradiction. O

2.7. As in [1] it will be useful to consider the ball @ = {v:||v|]| < m} where
m = mingxser, [[6]]. It follows from (N2) that this is a balanced convex polygon.
By definition there are no non-zero elements of L in its interior. By a theorem
of Minkowski’s Q has area at most 4 with respect to the natural area element in
which the area of V/L is 1 (cf [1, page 244]). It follows from (N3) that if p is a
primitive element of L such that 71 (N(g)) is cyclic then u lies on the boundary
of @. If, in addition, i is not a strict boundary class then (N2) implies that pu is
not a vertex of @ and hence lies in the interior of a side.

3. Proof of the Main Theorem

This section is devoted to the proof of Theorem 1.3 which, as was pointed out in
Section 1, is equivalent to Theorem 1.1. Throughout the section 3 will denote an
orientable 3-manifold with cyclic fundamental group, K will denote a knot in X
with irreducible complement, and M = M(K) will denote the exterior of K. We
shall assume that K is not round. The solid torus > — M will be denoted by U.
We shall let ;4 denote a meridian of K.

According to the Characteristic Submanifold Theory of Jaco and Shalen [9]
and Johannson [10], and Thurston’s Geometrization Theorem [11], there exists,
up to isotopy, an essential surface 73 C M, each component of which is a torus,
with the property that each component of the manifold A obtained by splitting
M along Ty is either a Seifert-fibered space or the compact core of a finite-volume
hyperbolic manifold. We will think of A as being the complement of an open
regular neighborhood of 7Tp;. Let Np C M denote the component of A" that
contains the boundary torus of M. We regard the boundary torus of M as a
distinguished component of dNp which we denote Bg. The components of the
frontier ONp — By of Np are all tori.



Vol. 74 (1999) Boundary slopes of knots 543

Lemma 3.1. Suppose that oo ¢ BsK. Then either Np = M or NpUU is a solid
torus. In particular, m1(Np UU) is cyclic and the frontier of Np has at most one
connected component.

Proof. We shall assume that Np # M and show that Np U U is a solid torus.
‘We can write ¥ as the union of the two submanifolds Np UU and M — Np which
meet along the frontier of Np. Since 7y is essential each component of M — Np is
boundary irreducible. Since ¥ has cyclic fundamental group and therefore cannot
contain a 7i-injective torus, we conclude that NpUU is boundary reducible. Thus
Np UU has a solid torus connected summand. It therefore suffices to show that
Np UU is irreducible.

Since Np is irreducible any 2-sphere which does not bound a ball in Np UU
must meet U. Every isotopy class of 2-spheres in Np U U contains a sphere which
meets the solid torus U in meridian disks. Among all spheres which do not bound
balls and which meet U in meridian disks, choose one, say S, for which the number
of meridian disks is minimal. Then SN Np is a properly embedded planar surface
in Np. We claim that S N Np is essential. If the inclusion 71 (SN Np) — 71 (Np)
fails to be injective then we can use a compressing disk for S N Np to produce
two 2-spheres in Np UU. One of these spheres fails to bound a ball in Np UU
and both meet U in fewer meridian disks than S. We know that S N Np is not
boundary parallel in Np because otherwise S would bound a ball in Np UU. The
surface S N Np cannot be a fiber in a fibration of M over S! because there is an
essential torus in its complement. This shows that co € B;K, in contradiction to
our hypotheses. O

Recall that the hypotheses of Theorem 1.3 specify that the knot K is not a
cable. The next lemma allows us to conclude under this hypothesis that Np is
hyperbolic.

Lemma 3.2. Suppose that oo ¢ BsK. If Np is Seifert-fibered then K is a cable
knot.

Proof. We fix a Seifert fibration of Np. We may assume that this is not a Seifert
fibration over a Mdébius band with no singular fibers since the twisted I-bundle
over a Klein bottle also admits a Seifert fibration over a disk with two singular
fibers. Because 77 consists of essential tori we also do not have a Seifert fibration
over a disk with at most one singular fiber, nor a Seifert fibration over an annulus
with no singular fibers.

Next we claim that the meridian is not a Seifert fiber. Let X denote the base
of our Seifert fibration and let By be the boundary component of X which is the
image of the torus By under the Seifert fibration. We may choose an arc a in X,
with da: C [y, which is essential in the sense that any closed disk having o as its
frontier contains the image of at least one singular fiber. The inverse image of «
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under the Seifert fibration is an essential annulus in Np and hence in M. Our
choice of Seifert fibration guarantees that this annulus is not a fiber in a fibration
over S1. Thus the Seifert fiber is a strict boundary slope and hence cannot be the
meridian.

We may therefore extend the Seifert fibration of Np to a Seifert fibration of
NpUU in such a way that K is a fiber. By Lemma 3.1 we know that Np UU has
a cyclic fundamental group. Thus the Seifert fibration must either have base S2
with at most two singular fibers, or base P2 or D? with at most one singular fiber.
In each of these cases our conditions on the Seifert fibration of Np guarantee that
K must be a regular fiber and that there must be at least one singular fiber in
Np. Let D be a disk in the base of the Seifert fibration of Np UU containing the
image of K and the image of exactly one singular fiber. Then the inverse image
of D in Np UU is a solid torus W. Since K is a regular fiber, it is isotopic to a
curve on the boundary of W. If n > 1 denotes the index of the singular fiber in
W then K has geometric intersection number n with a meridian disk of W, and
hence K is a cable. O

For the rest of the section we assume that K is not a cable knot, so that by
Lemma 3.2 Np is homeomorphic to the compact core of a finite-volume hyperbolic
3-manifold. We shall follow the conventions of Section 2, taking N = Np and
letting Bg = OM be the distinguished boundary component of N. We set V =
Hi(Bo;R) and L = H{(Bo;Z) C H1(Bp;R). We shall work with the norm || - ||
on V = Hi(Bo;R) which was constructed in Section 2 and, in particular, with
the polygon @ which was defined in 2.7. Recall that @ = {v:|[v|]| < m} where
m = mingzser, ||9]].

In Section 2 we were considering essential surfaces in N whose boundary is
contained in By. The boundary classes of such surfaces are elements of L, as are
boundary classes of essential surfaces in M. Recall from the definition that if Np
has at least one frontier component, i.e. is not equal to M, and if I’ is any essential
surface in Np with 8F C By, then the boundary class of F' is automatically a strict
boundary class.

Lemma 3.3. An element of L is a strict boundary class for M if it is a strict
boundary class for Np.

Proof. We may assume that Np has non-empty frontier since otherwise Np = M.
Under this assumption we shall show that if I is an essential surface in Np with
OF C By then F' is a strict essential surface in M. Because the frontier tori of Np
are essential in M, and F' is essential in Np, it follows that F' is essential in M.
Since the complement of F' in M contains esential tori, namely the frontier tori
of Np, the surface F' cannot be a fiber in a fibration of M over S1. Thus F is a
strict essential surface in M. O
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Now we are ready to give the

Proof of Theorem 1.8. Assume that oo ¢ B; K. Then by Lemma 3.1 the manifold
NpUU = Np(p) has cyclic fundamental group. (Lemma 3.1 also implies that the
number of frontier components of N = Np, which was denoted by & in Section 2,
is at most 1.)

Recall from 2.7 that @) is a balanced convex polygon of area at most 4 with
respect to the canonical area element on V' such that V/L has area 1. Since Np(u)
has cyclic fundamental group, we know from 2.7 that p lies on the boundary of Q).
Moreover, since p is not a strict boundary class by Lemma 3.3 , we know from 2.7
that p lies in the interior of a side of Q). Let v and vy be the vertices of @) that
are the endpoints of the side containing p. By (N2) these are multiples of strict
boundary classes a1 and ag. We shall show that

(a1, 2)
(o, ) {2, 1)

22

We may extend the intersection pairing (-,-) on L to an alternating bilinear
pairing on the vector space V, also denoted (-, -}. We then have

(a1, 09) ‘ _
(a1, p) (o, 1)

{v1,v2) ‘
(1, ) (va, 1) |

We write = tvg + (1 — ¢)vg. We have

(v1,p) = (1 =t){v1,v9) and (vg,p) = —t{vy,v2).

Since the parallelogram with vertices at v and 4w is contained in @, its area,
2|{v1,v9)|, is at most 4.

Hence
(v1,v9) ‘ - ‘ 1 1

Zq1=8

<U17M><U27:u’> t(t - 1)<U1)U2>
The right hand side of this inequality is bounded below by 2 since the maximum
value on [0, 1] of the function ¢(1 —¢) is 1/4. This completes the proof. O

We end by giving the

Proof of Proposition 1.5. Let Mg = > — Up and let (ug,vp) be a framing of Up.
Let pug + quo € H1(0Up; Z) be the class represented by the knot K.

We may choose the regular neighborhood U(K') of K so that the boundary
torus of Up meets M = M(K) = > —U(K) in an annulus A. The boundary
curves of A are parallel in dUy to the knot K, and thus have slope p/q on dUj.
We claim that either K is a round knot or A is an essential annulus in Mg. If A
is compressible, then the knot K bounds a disk in .. But, since ¥ is irreducible,
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this implies that ¥ is a 3-sphere and K a trivial knot. In particular, K is round.
On the other hand, if A is boundary-parallel then, since K is a cable on Uy and
hence meets the meridian of Uy at least twice, A must be parallel to the annulus
OM N Mgp. This implies that My is a solid torus whose core is parallel to K. Again,
this shows that K is round. This proves the claim. We may therefore assume that
A is essential.

Let o be a class in Hy(0U(K); Z) represented by the boundary components of
A, and let p be a meridian of U(K). Note that (u,«) is a framing of K. Since we
have assumed that A is essential, « is a boundary class for M.

Let 1z, Tip and g and @ denote the elements of Hy(M;Z) which are the images
under inclusion of p, pp and vy and o respectively. In particular, we have & =
plo + qvp. Moreover, we have the relation g = fry. To see this, consider a solid
torus U’ which is isotopic to U(K) by a small isotopy and is contained in the
interior of Up. Let D be a meridian disk of Uy which meets U’ in ¢ meridian disks
of U’. Since the meridian of U’ represents the class u, the planar surface D — U’
exhibits the relation in question.

Since H1(>;Z) is finite, the image of vy under the inclusion homomorphism
Hy{(My;Z) — H1(3;Z) is an element of some finite order n. Note that n is equal
to the order of a class in Hy(3; Z) which is represented by a core curve of Uy. Since
H{(3;Z) is the quotient of Hy(Mg;Z) by the cyclic subgroup generated by the
image of g, we have mfiy+nrg = 0 for some integer m. In particular the external
longitude of Uy has slope m/n with respect to the framing (ug,1p). Since K is a
non-exceptional cable it follows that m/n # p/q, so A = pn — gm is non-zero.

Let us write the external longitude of K as ap+ bo where a and b are arbitrary
integers. Then afz + ba is a torsion element in Hy(M;Z). On the other hand

nap + nba = nap + nbpig + nbqvy
= nafi + nbpqfi — mbg*Ti
= (na+ A¢b)T.

We know that the class & has infinite order, since otherwise H1(Y) would be

infinite. Thus we must have
a —Aq

b n

We have |q| > 2 by the definition of a cable. Thus |a/b| > 2/n. With respect
to the framing (p, ) of K we have 0 € BK since « is the boundary class of an
essential annulus, and a/b € BK since ap + br is an external longitude of K. It
follows that

diam BK > |a/b| > 2/n.
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