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On products in algebraic K-theory

Dominique Arlettaz, Grzegorz Banaszak and Wojciech Gajda

Abstract. This paper investigates the product structure in algebraic Ä"-theory of rings The
first objective is to understand the relationships between products and the kernel of the Hurewicz
homomorphism relating the algebraic Ä"-theory of any ring to the integral homology of its linear
groups The second part of the paper is devoted to the ring of integers Z Using recent results of
V Voevodsky we completely determine the products in K* (Z) tensored with the ring of 2-adic
integers
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sequence, linear group homology, ring of integers Z, Dwyer-Priedlander map, cyclotomic fields

0. Introduction

The purpose of this paper is to study the Loday's product homomorphism

* K%{R)®Kk{Z)^K%+k{R)

in the algebraic E"-theory of any ring R with identity, for positive integers i and k
(see [21]) Our first goal is to exhibit very strong connections between the image of
that product and the kernel of the non-stable Hurewicz homomorphisms relating
the E"-groups of R to the integral homology groups of its linear groups

K K,,(R) tt,BGL(R)+—> H,BGL(R)+= H,GL(R) for i>\,
respectively ht K,,(R) -> H,,E(R) for i > 2 and ht K,,(R) —> H,St(R) for

i > 3, where GL(R) is the infinite general linear group (considered as a discrete
group) over R, E(R) its subgroup generated by elementary matrices, and St(R) the
infinite Steinberg group over R A universal approximation of the exponent of the
kernel and some information on the cokernel of these Hurewicz homomorphisms
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have been obtained in [3], [4] and Section 5 of [5]. Our argument is based on the
understanding, from various viewpoints, of the stable Hurewicz homomorphism
between the algebraic E"-theory and the homology of the if-theory spectrum. We
establish in particular the following result (see Theorem 3.2):

For any ring R and any integer i > 2, the image of * : Kt(R) <g>

K\(Z) —s- K,^i(R) is contained in the kernel of the Hurewicz homo-
morphisms h%^\ : Kl^\(R) —> Hl^\GL(R) and h%^\ : K^i^R) —>

Hl+1E(R); the same holds for ht+1 : Kl+1(R) -> Hl+1St(R) if i > 3.

In low dimensions, we actually prove exactness results for any ring R (see Theorems
4.1 and 4.3).

(a) There is an exact sequence

K4(R) -^ H4E(R) —> T(K2(R)) —> K3(R) -^ H3E(R) —> 0

where F(—) is the quadratic functor defined on ahelian groups by
J.H.C. Whitehead in Section 5 of [37]; moreover, ker/13 is isomor-
phic to K2(R)*K1(Z).

(b) There is an exact sequence

K5(R) -^ H5St(R) —> K3{R)®Ki{Z) -^ K4(R) -^ H4St(R)

and the kernel of /15 fits into a short exact sequence

0 —> K4(R) • Ki(Z) —>ker/i5 —>Q —>0,

where Q is a quotient of the subgroup of elements of order 2 in the

group K3(R).

The second objective of the paper is to compute explicitely products in the
algebraic E"-theory of the ring of integers Z. First of all, we determine in low
dimensions the products Kt{X)-^Kk{1i), the homology groups of SX(Z) and St(Z),
and the Hurewicz homomorphism (see Proposition 5.1). Secondly, we consider

maps
Kt(Z) <g> tffc(Z) -^ Kt+k(Z) -^ Kt+k(Z) <g> Z2

for all positive integers i and k, where the second arrow is the tensor product of
Xj+fc (Z) with the inclusion of Z into the ring of 2-adic integers Z2. We call these

maps 2-adic products for X*(Z) and continue to denote them by the symbol *.
We deduce from a topological argument based on results by M. Bökstedt [12], V.
Voevodsky [33], J. Rognes and C. Weibel [35] and [28] the calculation of all such
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2-adic products (see Theorems 5 6,5 7, Corollary 5 8 and Theorem 5 9)

The 2-adic product * Kt(Z) <g> Kk(Z) —> Kl+k{Z) <g> Z2 is
trivial for all positive integers i and k, except if i k 1 mod 8

or i 1 mod 8 and k 2 mod 8 (or i 2 mod <§ and k 1 mod
<§j where its image is cyclic of order 2

We also mention in Proposition 5 11 an interesting relationship between products

in algebraic if-theory and the kernel of the Dwyer-Friedlander map

For any odd prime I and any integer n > 2, the image of the

product map

is contained in the kernel of the Dwyer-Friedlander map i^4n_2(Z)

Observe that the 2-adic products in the if-theory of Z have a very small image
On the other hand, we finally prove in Theorem 6 4 that the image of the product

• Ki(E) <g) K2n-i(E) —> K2n(E)
is huge when E is a cyclotomic field and n and odd integer

The paper is organized as follows In Section 1, we give a new construction of
the Whitehead exact sequence for spectra Section 2 presents another approach of
the study of the Hurewicz homomorphism for spectra using the so-called Postmkov
cofibrations Section 3 is devoted to general results on the relations between
products in algebraic E"-theory and the kernel of the stable and of the non-stable
Hurewicz homomorphism Section 4 provides the above exact sequences involving
the E"-groups and the homology groups of the linear groups in dimensions < 5 In
Section 5, we calculate the 2-adic products in the algebraic E"-theory of the ring of
integers Z We finally discuss in Section 6 products in the E"-theory of cyclotomic
fields

Throughout the paper, all rings are supposed to have an identity We consider
all ordinary homology groups with (trivial) coefficients in Z except if explicitly
mentioned If G is an abehan group, Gi denotes the /-torsion subgroup of G (for a

prime /), K(G, s) the Eilenberg-MacLane space having all homotopy groups trivial
except for G in dimension s and H(G) the Eilenberg-MacLane spectrum having all
homotopy groups trivial except for G in dimension 0 If X is any CW-complex or
any CW-spectrum and i any integer, we write at X —> X[i] for its z-th Postmkov

section (l e tt^X^] 0 for k > i and (at)t tt^X ^ tt^X^] for k < i) and

7ï X{i) —s- X for the fiber of at, in other words, X{i) is the «-connected cover of
X Forj > i-\-l, X(i,j] denotes X(z)[?], whose homotopy groups are rK].X{i1j\ =0
if k < i or k > j and 7rfcX(z, j] irkX iît + l<k<j
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1. The Whitehead exact sequence for spectra

Let S be the sphere spectrum and S —> S[0] H(Z) its O-th Postnikov section.

By taking the smash product of any spectrum X with the cofibration 5(0) -^->

S —(^ S[0], where 5(0) is 0-connected, one obtains the cofibration of spectra

X a S(0) ld^°lA^l ld-^>° X A H (Z),

whose homotopy exact sequence is the long Whitehead exact sequence

> TTt(X A 5(0)) -^ TTtX -^ HtX -^ 7T,_l(X A 5(0))

of X; here i is any integer, v% is the connecting homomorphism, \% is induced
by (id A 7o) and ht by (id Aao), i.e., ht is the stable Hurewicz homomorphism.
The groups -k%{X A 5(0)) are usually denoted by I\(X): that définition coincides

actually with the homotopy groups of the fiber of the Dold-Thom map (see [16])
and it was recently proved in [29] that they are isomorphic to the groups introduced
in the original paper [37] by J.H.C. Whitehead.

Now, let us assume that the spectrum X is (r — l)-connected for some integer
r. The advantage of the above approach is that one can compute the groups Tt(X)
with the Atiyah-Hirzebruch spectral sequence for the 5(0)-homology of X:

HS(X; irtS(0)) => Ts+t(X).

Notice that Ejt 0ifs<r-lort<0. This implies in particular that I\(X) 0

for i < r (Hurewicz theorem) and that (p\P2 • • ¦ P%-r)F%{X) 0 for i > r + 1,

where pk denotes the exponent of the homotopy group iri-S for k > 1 (see also [29]
for another proof and [5] for corresponding results for the generalized Hurewicz
homomorphisms). The first interesting Gamma group of an (r — l)-connected
spectrum X is

l
(this was in fact established a long time ago by J.H.C. Whitehead, see for instance
Section 14 of [37]). Our first goal is to understand the homomorphism Xr+1 '¦

rT._|_i(X) TTrX (g) tt\S —s- Trr^\X. Let us start with the following general result

on the external product -k%X <S>iikS —> 7rj-|-fc(X AS) tTj+^X (see [32], p. 270 for
the définition of the external product).

Lemma 1.1. Let X be any spectrum, i and k two integers with k > 1. Then the

image of the external product A : irtX <g> iri-S —s- tt^^X is contained in the kernel
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of the stable Hureuncz homomorphism ht-\-i~

and all positive integers k.

Proof. The commutative diagram

CMH

for all integers i

tX (g)
(id)*®(70)*

Xz+k

shows that the image of A : -k%X <g> -KuS —s- TTj+fcX is contained in image Xi+k —

ker ht-\-k ¦ Another proof of this fact is given by Lemma 1 of [6]. D

In the case where X is (r — l)-connected and i r, k 1, we have the following
exactness result:

Proposition 1.2. For an (r—1)-connected spectrum X, the homomorphism Xr+l '¦

rr_|_i(X) —s- tvt^\X in the Whitehead exact sequence is exactly the external product
A : 7TrX <g> 7T\S —> 7Tr_|_lX.

Proof. Consider the commutative diagram

HrX <g) i?i5(0)

7rrX(8)7ri5(0)

(id)«0(7o)*

A
7TrX <g> 7T\S

ffr+l(XA5(0))

Î-
^r+l(XA5(0))

i X.+l

Tr+1(X)

The top horizontal homomorphism is an isomorphism by Künneth formula and the
two top vertical arrows, which are Hurewicz homomorphisms, are isomorphisms
since X is (r — l)-connected, 5(0) is 0-connected and X A 5(0) is r-connected.
Consequently, the external product in the middle of the diagram is an isomorphism.
The homomorphism (id)* <g> (70)* is an isomorphism because (70)* : tti5(0) -^^
7Ti5. Therefore, Xr+l ls exactly the external product irrX <g> tti5 —> tvt^\X. D
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Corollary 1.3. For any (r — 1)-connected, spectrum X, the following sequence is
exact:

X <g> TTlS -^ TTr+lX k-^ Hr+1X > 0

2. Postnikov cofibrations

The purpose of this section is to present another approach of the study of the
Hurewicz homomorphism. For an (r — l)-connected spectrum X, consider for all
integers i > r + 1 the cofibrations of spectra

where at_ i is the (i — 1 )-st Postnikov section of X [i] : let us call them the Postnikov
cofibrations of X. The associated homology exact sequences are

> Hl+lX\i] (a^* Hl+lX[i - 1] J>ff,(g%I)) h^*

HtX\i] {a^* HtX[i - 1] —> 0

=HZX

and it is easy to check that (7^-1)* is the stable Hurewicz homomorphism hl.
Thus, we obtain the following

Proposition 2.1. Let X be an(r — 1) -connected spectrum and i an integer > r+1.
There is an exact sequence

> Ht+1X\i] {a^* Ht+1X[i - 1] -^ TrtX -^ HtX {a^* HtX[i - 1] —> 0

Now let us try to understand the homomorphism d for the cases i r + 1 and
i r + 2.

Proposition 2.2. (a) For any (r — \)-connected spectrum X, there is an exact

sequence

0 —> Hr+2X[r + 1] -^ TTrX <g) 7Ti5 -^ TTr+lX h-^i Hr+lX —> 0
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(b) The homomorphism d is again exactly the external product A : tttX <g> tt\S —>

TTr+lX.

Proof. Let us look at the Postnikov cofibration of X for i r + 1,

Xr+1F(7rr+iX) -^ X[r + 1] -^ X[r] ~ Srff(7rrX),

and take its homology exact sequence

^ Hr+2X[r + 1] -^
=0

=0

where (p is written for (ar)*. Since Y7H{rKrX~) is an Eilenberg-MacLane spectrum,
it is clear that

and we get assertion (a). Then, consider the map «o : S —> iî(Z) and denote by
the composition

(id A a0) 7r : Sr+1F(7rr+iX) —> X[r + 1] ~ X[r + 1] A 5 —> X[r + 1] A ff(Z),

and by F its fiber. By smashing with H(Z) the cofibration obtained by looping
the base spectrum of the cofibration Sr+1F(7rr+iX) -^ X[r+1] -^ Srff(7rrX),
we get the commutative diagram

A H(Z) -^ Zr+1H(TTr+1X)AH(Z) ^^ X[r+1]AH(Z)

ldAan
> X[r+l]AH(Z)
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in which all rows are cofibrations Then look at their homotopy exact sequences

^Hr+2(SrH(nrX)) ~iT+lX =Hr+1X

Hr+2X[r + l] —? Hr+1(Er-1 H(7rrX)) -^ Hr+1(Sr+1H(TTr+1X)) ^^ *
Hr+1X[r

=hr+1
Hurewicz

7Tr+1F -^ 7rr+1X -^ Hr+1X[r+l]

xr+i hri
Hr+2X[r + l] > Fr+1(X[r + l]) > 7rr+iX[r + 1] —

Tr+1(X) -Kr+1X -Hr+1X

Observe that the three horizontal arrows on the left of the diagram are mjective
and conclude by the five lemma that the two vertical arrows starting from tvt^\F
are isomorphisms assertion (b) can then be deduced from Proposition 12 D

Remark 2.3. It follows from Corollary 1 3 and Proposition 2 2 that the cokernel
of /ir+2 T^r+2^ -^ Hr+2X is lsomorpliic to image vr^i ker (A 7rrX <g> tt\S —s-

Hrjr2^[r + 1] f°r anY (r — l)-connected spectrum X

Similarly, we can investigate the stable Hurewicz homomorphism in dimension

r + 2 Consider the Postmkov cofibration of an (r — l)-connected spectrum X for
i r + 2 and its homology exact sequence

Hr+3X[r + 1] -^
—7T?,_|_2J^

+ 1] -^ 0

where ip is written for d The next two lemmas describe the group Hr^sX[r + 1]

and the homomorphism ip

Lemma 2.4. There is an exact sequence

—> TTr+iX (g) ttiS -^ Hr+3X[r + 1] -^ 2(irrX) —> 0

where J^rX) denotes the subgroup of elements of order dividing 2 in the group
TTrX
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Proof. Let us look again at the cofibration

and at its homology exact sequence

> Hr+3(Zr+1H(Trr+lX)) -U Hr+3X[r + 1] -X Hr+3{T,rH{TTrX)) -^ 0

where 6 and fj are the homomorphisms induced by jr and o.r respectively. It turns
out that
Fr+3(Sr+1ff(7rr+iX)) ^ rr+2(Sr+1ff(7rr+iX)) ^ irr+iX <g) ^S because of the
results of Section 1 and that

2(7rrX), according to Théorème 2 of [14]. D

Lemma 2.5. The composition tjj 9 : tvt^\X <g> tv\S -^ irr^2X is the external product

A.

Proof. The obvious map X(r) —> X provides the commutative diagram of coflbra-
tions

X(r,r+1] ~

which induces the commutative square

Then, the statement of Proposition 2.2 for the r-connected spectrum X(r) shows
that the top horizontal arrow is the external product. D



Vol 74 (1999) On products in algebraic K-theory 485

We may summarize our results on the stable Hurewicz homomorphism /ir+2 as

follows

Proposition 2.6. Let X be an (r — l)-connected spectrum
(a) There is an exact sequence

-^ Hr+3X[r + 1] -^ nr+2X ^ Hr+2X -^ Hr+2X[r + 1] -^ 0

(b) The kernel of /ir+2 fits into the short exact sequence

0 —> A(7rr+iX (g) tt\S) —> ker hr+2 —> Q —*¦ 0

where Q is a quotient of ^(irrX)

Remark 2.7. Since ntX[r + 1] 0 for i > r + 2,

The Postmkov section X —> X[r + 1] induces a map / between the Atiyah-
Hirzebruch spectral sequences

Ha(X,irtS(0))=>Ta+t(X) and Hs{X[r + 1], 7rtS(0)) => Ts+t(X[r + 1])

The lines s +t r + 2 in these spectral sequences give the following picture

d2

—> TTrx<g>TT2s —> rr+2(x) —>

By the universal coefficient theorem, one has i7r_|_2(^,7rl'S') — (^r+2^ (EittiS*) ©

iTiS), thus, one can check that f\ is surjective because of Whitehead's theorem
and deduce from the five lemma that

Tr+2{X) - Tr+2(X[r + 1]) - Hr+3X[r + 1]

Moreover, one can show with the argument of the proof of Proposition 2 2 (b) that
the homomorphism ip of Proposition 2 6 (a) is actually Xr+2
of Corollary 1 3 Consequently, the part

Hr+3X[r + 1]
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of the sequence given by Proposition 2.6 (a) is a piece of the Whitehead exact

sequence.

Remark 2.8. It follows from Lemma 2.4 and the previous remark that the group
IV^ (-X") is described by the exact sequence

> irr+1X <g> irtS -U Tr+2(X) -X 2(TrrX) -^ 0

and in particular that its exponent divides 4 (this was already known by [11],
Section 4).

Remark 2.9. All exact sequences introduced in Sections 1 and 2 are obviously
natural in X.

3. Products and Hurewicz homomorphisms in algebraic if-theory

If R is any ring, let us denote by Xr the connective if-theory spectrum of R, i.e., a

—l)-connected Q-spectrum whose O-th space is the infinité loop space BGL{R)+ x
Kq{R). We shall also consider the (r—l)-connected spectra Xp,(r—1) for r > 0, i.e.,
the fiber of the Postnikov section Xr —s- Xr[v — 1], and call 7r_i the obvious map
XR(r — 1) —s- XR. Observe that Kl{R) TrtXR(r - 1) for i > r. Remember that
the infinité loop spaces corresponding to Xr(0), Xr(1) and Xr(2) are BGL(R)+,
BE(R)+ and BSt(R)+ respectively. If R and R' are two rings, there is a pairing
/x : XrAXr/ —s- Xri^r/ and the product in algebraic if-theory is defined as follows

• : Kt(R) <g> Kk(R') ^ TTtXR ® iikXw -X 7rî+fc(Xfi A XR>)

-^ Kx+kXnsR, Kt+k(R «g) R1)

for any two integers i > 0 and k > 0 (see for instance [21], Proposition 2.4.2). We
shall actually concentrate our attention to the special case where R' is the ring of
integers Z: the goal of Sections 3 and 4 is to investigate the relationships between
the image of the product

• : Kt(R) <g> Kk{Z) —> Kl+k{R <g> Z) Ä,

and the kernel of the stable and the non-stable Hurewicz homomorphism.

Remember that Xi is a ring spectrum and let us call j : S —s- Xz its identity.
Notice that j corresponds to the map -BS+ —> BGL{X)+ given by the inclusion of
the infinite symmetric group Sqq into GL(Z). This map j induces an isomorphism

j* : tt\S ^^ ttiXz K\{X) and the image of j* : TrkS -^ Kk(7L) for k > 2 is

described in [22] and [26]. For any ring R, the above pairing /x provides then X#
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with an Xz-module structure. Let us first translate the results of Sections 1 and
2 in terms of algebraic if-theory.

Proposition 3.1. Let R be a ring, i and k two integers with i > 0, k > 1, and
consider an element x G Kt(R) and an element y G Kk(Z) belonging to the image

(a) For all r < i, x-ky is an element of the kernel of the stable Hurewicz homo-
morphism hl+k : Kl+k(R) —>¦ Hl+kXR(r - 1).

(b) Ifk<i — 1, then x-ky is an element of the kernel of the non-stable Hurewicz
homomorphisms ht-\-k : Kt-\-k(R) —> Ht-\-kE(R) and ht-\-k : Kt-\-k(R) —> Ht-\-k
GL(R).

(c) If i > 3 and k < i — 1, then x-ky is an element of the kernel of ht-\-k :

Kt+k(R) ^ Ht+kSt(R).

Proof. The first assertion is a consequence of Lemma 1.1 and of the commutativity
of the diagram

Hl+kXR(r - 1)XR(r-

7T,XR6,

i
KJR) ®

1) (g>irkS

(7.-l).®.d

A

A

*
>

!"

-l)

where the bottom square commutes because XR is an Xz-module. In order to
prove the last two assertions, consider the (i — l)-connected cover BGL(R)+(i —

1) of the CW-complex BGL{R)+, for i > k + 1 > 2. The iterated homology
suspension a : Ht^kBGL(R)+(i — 1) —> Ht^kXR(i — 1), which is an isomorphism
since k < i — 1, and the commutative diagram

h. +k
Kt+k(R) —+ H%+kBGL{R)+{i-

1=
_

'[^
Kt+k(R) -^U Fî+fcXfi(i-l)

showthat ht-\-k : Kt^k{R) -^ Ht^kBGL{R)+[i — 1) fulfills ht^k{x-ky) 0 according
to (a) for r i. Since i > 2, assertion (b) then follows from the composition with
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the obvious homomorphism

Ht+kBGL{R)+{i - 1) -^ Ht+kBE(R)+ -^ Ht+kBGL(R)+

If i > 3, this homomorphism factors even through Ht^kBSt{R)+ and we get (c).D

Now, let us consider the case k 1 and i r: the fact that j* : tt\S —s- K\{X)
is an isomorphism implies the following result, where XR(i — 1, i + 1] is written for

Theorem 3.2. Let R be any ring.
(a) For any integer i > 0, there is a natural exact sequence

^ Hl+2XR{i - 1) ^±? Kl{R) <8>

Kl+1(R) H1 Hl+1XR(i -1)^0.
Moreover, ker(*) imageP4_|_2 — -ff»+2^fi(* — l,i + 1].

^ -For any integer i > 2, the image of* : Kt(R)<S)Ki(Z) -^ Kt^\(R) is contained

in the kernel of the non-stable Hurewicz homomorphisms h%^\ : Kt^\(R) —s-

Hl+1E(R) and hl+1 : Kl+1(R) -> Hl+1GL(R).
(c) For any integer i > 3, the image of* : Kt(R)<S)Ki(Z) -^ Kt^\(R) is contained

in the kernel of h%^\ : Kt^\(R) —s- Ht^\St(R).

Proof. Assertion (a) follows from Corollary 1.3 and Remark 2.3 for the spectrum
XR{i — 1) since the diagram

commutes again because of the Xz-module structure of Xr. Assertions (b) and
(c) are direct consequences of Proposition 3.1. (b) and (c). D

It is possible to obtain a similar information on the stable and the non-stable
Hurewicz homomorphism in any dimension i > r + 1. Proposition 2.1 provides the
exact sequence

> Hl+lXR(r -l,i] (a^* Hl+lXR(r - l,i - 1] -^
Kt(R) -^ HtXR{r - 1) (a^* HtXR(r - l,i- 1] —.0.
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Proposition 3.3. Let R be any ring, i and r positive integers such that r < i <
2r — 1, then the kernel of the non-stable Hurewicz homomorphism

K : K,,(R) -> H,BGL(R)+(r - 1)

is exactly the image of d.

Proof. Let us consider the homology exact sequence of the Postnikov cofibration

Y?{H{Kt{R)) ^ XR(r - l,i] °^X XR(r - l,i - 1],

and the corresponding homology exact sequence obtained from the Serre spectral
sequence of the fibration of CW-complexes

K(Kt(R),i) —> BGL(R)+(r -l,i] —> BGL(R)+(r - l,i - 1]

We obtain the commutative diagram

l,i-l] -^ Kt(R) -^ HtXR(r-l)

h Î
Ht+1BGL(R)+(r-l,i-l] -1- if,(ß) -^ H,BGL(R)+(r -

where the horizontal sequences are exact and the three vertical arrows are iterated
suspensions. The left iterated homology suspension a is surjective if i + 1 < 2r
and even an isomorphism if i + 1 < 2r — 1 (see [36], p. 382); consequently we may
conclude that image d image 3. D

4. Products and the non-stable Hurewicz homomorphism in low
dimensions

The purpose of this section is to study the relationships between the algebraic K-
theory of a ring R and the integral homology of its linear groups in low dimensions.
In dimension 2, the following isomorphisms are known (see [4]):

and H2GL(R) K2{R) 0 K2{

Let us start by looking at dimensions 3 and 4. Let F(—) be the quadratic
functor defined on abelian groups by J.H.C. Whitehead in Section 5 of [37]: if y
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is a simply connected CW-complex, then the group F3 (Y) in the Whitehead exact

sequence of the space Y turns out to be isomorphic to T(tt2Y).

Theorem 4.1. For any ring R, there is a natural exact sequence

-^ T(K2(R)) ^h K3{R) -^ H3E{R) —> 0

and ker h3 is isomorphic to the image of the product homomorphism -k : K2(R) <g>

KX{Z) -> K3(R). In particular, H3E{R) K3(R)/(K2(R) * KX{Z)).

Proof. The exact sequence is just the Whitehead exact sequence (see [37]) of the

space BE{R)+ since T3{BE{R)+) T(K2(R)). In order to determine the image
of X3, consider the exact sequence given by Proposition 2.2 for X Xr(1) and

r 2, and also the corresponding exact sequence obtained from the Serre spectral
sequence of the flbration of CW-complexes

K(K3(R),3) —>BE(R)+[3] —> K(K2(R),2).
We get the commutative diagram

H4XR(1,3] -^ Hi(Y?H(K2(R))) -^ K3(R) -A H3XR(1)

Î-
0 -^ H4BE(R)+[3] -^ H4(K(K2(R),2)) -1- K3(R) -^ H3BE(R)+ —> 0,

where the vertical arrows are iterated suspensions. It turns out that

K2(R),2)) T3(K(K2(R),2)) T(K2(R))

and the argument of the proof of Proposition 2.2 shows again that the homomorphism

X3 m the Whitehed exact sequence is exactly d. According to the proof
of Proposition 3.3, the iterated homology suspension a is surjective and one gets
imageX3 image d K2{R) -k K\(Z). Notice that this computation of the image
of X3 can also be deduced from Section 2.2.6 of [21]. D

Remark 4.2. This extends the result for fields given in [31], Corollary 5.2, to the
case of any ring R.

In order to understand the 4-dimensional and 5-dimensional Hurewicz homo-
morphisms, let us use exactly the same idea (but now for r 3) for the 2-connected
CW-complex BSt(R)+, respectively the 2-connected if-theory spectrum Xr{2).

Theorem 4.3. Let R be any ring.
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(a) There is a natural exact sequence

H6XR(2,4] -^ K5{R) -^ H5St{R) -^ K3(R) <g> Kt(Z) -^
K4(R) ^H

In particular, H4St(R) K^R)/(K^R) * Ki(Z)).
(b) There is a natural exact sequence

K4(R) <g> Kt(Z) -U H6XR(2,4] -^ 2{K3{R)) -^ 0

(c) The composition ip6 is the product map * : K^(R) <8> K\{Z) —> K§(R). Con¬

sequently, there is a natural short exact sequence

0 —

where Q is a quotient of ^

Proof. As in the previous proof, we use Proposition 2.2, but consider in this case
the following commutative diagram:

^ K4(R) -^ H4XR(2) -^ 0

î= Î
0 -^ H5BSt(R)+[4:} -^ H5{K{K3{R),3)) -^ K4(R) -^ H4BSt(R)+ -^ 0.

However, this time, a is even an isomorphism. Observe that H§BSt{R)~^[4\ is

isomorphic to the kernel of * : K^{R) <g> K\{Z) -+ K^{R). The Whitehead exact
sequence of BSt{R)+ is

> T5(BSt(R)+) -^ K5{R) -^ H5St{R) -^ r4(SS't(ß)+)

^ KA{R) -^ HASt{R) —> 0

and it is easy to check that r4(S5t(ß)+) ^ ^(ß) ® l^i(Z) ^ H5(K(K3(R),3)).
In order to understand the kernel of h§, let us use the exact sequence given by
Proposition 2.6 for r 3, i 5, and the exact sequence coming from the homology
Serre spectral sequence of the fibration of CW-complexes

K(K5(R),5) —> BSt(R)+[5] —> BSt(R)+[4:}.
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We obtain the commutative diagram

H6XR(2,4] -^ K5{R) i HroXR{2) -^ H5XR(2,4] -^ 0|| |
[4] -^ K5{R) -^ H5BSt(R)+ —> H5BSt{R)+[4] -^ 0

;

where the vertical arrows are iterated suspensions. According to the proof of
Proposition 3.3, the iterated homology suspension a is surjective and therefore
imaged imageip. On the other hand, the group H§XR{2,A\ and the image of $
may be described by Proposition 2.6 and Lemmas 2.4 and 2.5. D

The following corollary follows from the five lemma and the argument of the
proofs of Theorems 4.1 and 4.3.

Corollary 4.4. For any ring R, the iterated, homology suspensions H^E(R)
H3BE(R)+ -> H3XR(1) and H4St(R) ^ H4BSt(R)+ -> H4XR(2) are isomorphisms.

Remark 4.5. Observe that /14 : K^(R) —> H^St(R) is an isomorphism up to
2-torsion. This produces the following consequence of Proposition 9 of [9]. Let /

be an odd prime, £; a primitive /-root of unity of order /. Let R Z[^; + £j~ ] be
the ring of integers of the maximal real subfleld of the cyclotomic field Q(£;). The
vanishing of the group H^St(R) in this case would imply the Kummer-Vandiver
conjecture for the prime /.

5. Products in the algebraic if-theory of the ring of integers Z

This section is devoted to the study of products in the algebraic if-theory of the
ring of integers Z:

• : Kt(Z) <g> Kk(Z) —> Kt+k(Z).

Let us start by describing the results on low-dimensional products given by Section
4 in the case where R 7L.

Proposition 5.1.
(a) The product homomorphism -k : X^(Z) (g).K'i(Z) —> Xj_|_i(Z) is an isomorphism

ifi l, mjectwe ifi 2, and trivial if i ^ 1 or 2 mod 8.

(b) The product homomorphism * : Kt (Z) <g> K2 (Z) —> K%-\-2 (Z) is trivial if i ^ 1

mod 8.
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(c) H4SL(Z) Z/2 and H4St(Z) 0

(d) There is a short exact sequence

0 —> K5(Z) -^ H5St(Z) -^ Z/2 —> 0

Proof The assertion (a) is well known for z 1 Theorem 4 1 produces the exact

sequence

^ H4SL(Z)

(see [2], [19] and [37], Sections 5 and 13) and asserts that the product * K^(Z) <g>

K\{Z) —> Kz{Z) is mjective Recently, J Rognes and C Weibel deduced from the
work of V Voevodsky [33] the complete calculation of the 2-torsion of the algebraic
if-theory of Z (see Table 1 of [35] and Theorem 0 6 of [28]) This, together with
another argument of J Rognes, shows that K±(Z) 0 and implies that H^SL(Z)
is cyclic of order 2 Moreover, Kt(Z) is a finite odd torsion group if i is a positive
integer 0, 4, or 6 mod 8 Therefore, K%{Z) * Ki{Z) 0 if i 0, 4, or 6

mod 8 or if i + 1 0, 4, or 6 mod 8 This gives (a), and (b) follows from (a)
since K<2{Z) K\{Z) * K\{Z) Note that the first author proved the triviality
of * K3(Z) (g) Ki(Z) -s- Ki(Z) in [6] before Rognes and Weibel's proof of the
vanishing of K^{Z) The calculation of Kt{Z) -k K\(Z) when i 1 or 2 mod 8 and
of Kt(Z) -kK<i(Z) when i 1 mod 8 will be given by Theorems 5 7 and 5 9 below

Now, let us apply Theorem 4 3 The map ip is actually the connecting homo-
morphism of the homology exact sequence of the cofibration

S5ff(if5(Z)) —> Xz(2,5] —> Xz(2,4]

It is of course possible to consider the analogous cofibration for the sphere spectrum
S

The identity j S -^ X% of the ring spectrum X% induces the commutative diagram

0

I

K5(Z)
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which shows that tjjj* 0. Now, look at the following commutative diagram
where the bottom homomorphism is given by the second assertion of Theorem
4.3:

H6S(2,4] > H6(Z3H(ir3S)) Jir3S)

I

JK3(Z)).

The top horizontal arrow is an isomorphism because the vanishing of ir^S
exhibits an equivalence 5(2,4] c; T,sH(Tr3S). The right vertical arrow is an isomorphism

since the homomorphism tt3S —s- K%(Z), induced by j, is injective (remember

that tt3S Z/24 and K3(Z) Z/48). Therefore, there exists a splitting
t : JK^{Z)) —> H§Xi{2,A\ of fj such that t is the composition of an isomorphism

2(K~3(Z)) —^ HßS(2,4:] with j*. It then follows from the vanishing of the composition

%jj j* that iJjt 0. Consequently, the group Q of Theorem 4.3 (c) is trivial if
R Z since Q image (fyr), and ker /15 image {tjj9) is the image of the product
map • : K^(Z) <g> K\(Z) —> Kz,(Z). Consequently, there is an exact sequence

^ K5(Z) -^ H5St(Z) -^ K3(Z) <g)

K4(Z) ^
The fact that K^{Z) 0 provides the vanishing of H^St{Z) and the short exact
sequence (d) (which was already given in Section 6 of [7]

K5(Z) -^ H5St(Z) -^ Z/2 —> 0

According to Theorem 1 of [20], Theorem 1 of [30], Table 1 of [35] and Theorem 0.6

of [28], K5(Z) ZeT, where T is a finite abelian 3-group: thus, H5St(Z) ^ Z®T
and /15 is multiplication by 2 on the infinité cyclic factor of K^{Z). D

Corollary 5.2. Let R be a ring such that the homomorphism £* : K%{Z)
(induced, by the obvious map £ : Z —> R) induces an isomorphism £* <g>id : K%{Z) <S>

Z/2 —> K^(R) <8> Z/2 (for instance, if R Q or any localization ofZ). Then the
non-stable Hurewicz homomorphism /14 : K^(R) —s- H^St(R) is an isomorphism.
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Proof. This follows from the commutativity of the diagram

K3(Z) (g) Ki(Z) -^ K4(Z) 0

K3(R) (g) Kt(Z) -^ K4(R) -^> H4St(R) —> 0,

where the rows are the exact sequences given by Theorem 4.3 (a). D

The argument of the proof of Proposition 5.1 (d) produces also the next two
corollaries

Corollary 5.3. Let R be a ring such that the composition of j : S —s- Xi with
the obvious map Xz —s- Xr induces an isomorphism ^(ii^S) -^^ ^(K3(R)). Then

=ker(/i5 : K5{R) -+ H5St{R)).

Corollary 5.4. If R is a ring as in Corollary 5.3 (for instance, if R Z or any
localization ofZ), then the iterated homology suspension H^St(R) H^BSt(R)^ —>

{2) is an isomorphism.

Proof. By hypothesis, one has actually the exact sequences

K5(R) —> H5XR(2) —> H5XR(2,A] —> 0

î=
h

î Î'
K5(R) i H5BSt(R)+ -^ H5BSt(R)+[A] -^ 0,

and the iterated homology suspension a is clearly an isomorphism; the same is

true for a' because of the commutativity of

H5BSt(R)+[4] > H5K(K3(R),3).
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The assertion then follows from the five lemma D

Let us now consider maps

Kt(Z) <g> Kk{Z) -U Kl+k{Z) —> Kl+k{Z) <g) Z2

for all positive integers i and k, where the second arrow is the tensor product
of lfj_|_fc(Z) with the inclusion of Z into the ring of 2-adic integers Z2 We call
these maps 2-adic products for K*(Z) and continue to denote them by the symbol
• Again because of Table 1 of [35] (see also Theorem 0 6 of [28]), K%{Z) is
a finite odd torsion group if 1 is a positive integer 0, 4, or 6 mod 8 and

Z © (finite odd torsion group) if 1 5 mod 8, thus, the only 2-adic products
which can be non trivial are the following

K8s+l(Z) ® K8t+l(Z) -^ K8{s+t)+2(Z)®Z2

K8s+l(Z) <g> K8t+2(Z) -^ K8{s+t)+3(Z)®Z2

K8s+2(Z) <g> K8t+5(Z) -^ K8{s+t)+7(Z)®Z2

K8s+2(Z) ® K8t+7(Z) -^ K8{s+t+l)+l(Z)®Z2

K8s+3(Z) «g) K8t+7(Z) -^ K8{s+t+l)+2(Z)®Z2

K8s+5(Z) ® K8t+5(Z) -^ if8(s+t+1)+2(Z)®Z2

for s and t > 0 We now want to determine these products

The inclusion Z ^ R induces a map A BGL(Z)+ —> _BO and the induced
homomorphism

A* ift(Z) —>

is a ring homomorphism since it can be written as the composition A* K*(Z) -^
K*(WL) -^ tt^BO, where both arrows are ring homomorphisms (see [13], p 50 and
Section 3) One can understand the kernel of A* at the prime 2 by the following
argument If p is a prime 3 or 5 mod 8, M Bokstedt introduced in [12] (see also
[23] and Section 4 of [18]) a space J(p) which is defined by the pull-back diagram

J{p) > BO

fP

—b—^ BU,

I
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where F^p is the fiber of (**> - 1) : BU -> BU (recall that FW ~ SGL(Fp)+ by
Theorem 7 of [24]), b the Brauer lifting and c the complexification. The fibers of
the horizontal maps are homotopy equivalent to the unitary group U ~ SU x S*1.

More precisely, Bökstedt was interested in the covering space JK(Z,p) of J(p)
corresponding to the cyclic subgroup of order 2 of tv\ J(p) Z® Z/2. After
completion at the prime 2, he constructed a map

Cp : {BGL{Z)+)2 -^ JK{Z,p)2

which induces a split surjection on all homotopy groups. Let us write A and A'
for the 2-completion of the maps A and A' respectively: it turns out that the
composition

{BGL{Z)+)2 -1+ JK(Z,pf2 -^ J(p)2 -

is exactly A. Recall that the localization exact sequence in if-theory implies that

(BGL(Z$])+)2 ^ (BGL(Z)+)2 x (S>1)2

Therefore, (p provides a map

l+)2 -^ J(p)â

which also induces a split surjection on all homotopy groups. Since the 2-torsion
of K*(Z) is known by Table 1 of [35] and Theorem 0.6 of [28], it is easy to check
that ip and (p are actually homotopy equivalences. Consequently, we obtain (see
also Corollary 8 of [35]):

Proposition 5.5. For all primes p 3 or 5 mod 8, there is a pull-hack diagram

(BGL(Z)+)2 x (S>1)2 -^^ BO2

b
> BU2.

Consequently, there is a fibration

SU2 ^U (BGL(Z)+)2 -^ BO2
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This fibration induces the long exact sequence

• • • —> ¦KlSU <g Z2 —^ Kt(Z) <g Z2 —^ TTtBO <g Z2 —*• irx_\SU <g Z2 —*• • • •

Remember that -k%SU 0 if i is even and -k%SU Z if i is odd > 3.

Theorem 5.6. 77ie 2-adic products

are trivial for all integers s and t > 0.

Proof. For any product mentioned in the statement of the theorem, let us consider
the commutative diagram

Kl+k{Z) > Kl+k(Z)(E)Z2

(g) 7TkBO > TTt+kBO > TTt+kBO (g

where the bottom left horizontal arrow is the product map in tt^BO and where
the right horizontal arrows denote the tensor product with Z2. Let x G Kt{X)
and y G Kk(Z). One has clearly A*(y) 0 since iikBO 0 for k 8t + 5 or
k 8t + 7. Thus, A*(x-ky) A*(x)A*(y) 0. This shows that the 2-adic product
x -k y G Kt-\-k (Z) (g Z2 belongs to the kernel of A*, and consequently to the image
of ?y* : irt-\-kSU <g Z2 -^ Kt-\-k(Z) (g Z2. Since i + k is even, the group irt-\-kSU is

trivial and x • y vanishes. D

In the next theorem, we look at the groups Kgs^\(Z) for s > 0. Remember that
K\(Z) Z/2 and that K8s+i(Z) Z0Z/20 (finite odd torsion group) for s > 1

by Table 1 of [35] and Theorem 0.6 of [28]. The fibration given by Proposition 5.5

provides the exact sequence

0 —> ttss+iSU <g Z2 Z2 -^ K8s+1(Z) <g Z2 -^ 7t8s+iSO <g Z2 Z/2 —> 0

if s > 1 (if s 0, -k\SU 0). Let us write xs for the element of order 2 in
We denote by ys, for s > 1, the generator of the infinité cyclic summand
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of Ä8s_|_i(Z) whose image under the 2-adic completion Kgs^\(Z) —> Kgs^\(Z)<gZ2
is exactly the image of a generator of ttss+iSU <g Z2 under the homomorphism
77* : 7t8s+i5C/ <g Z2 Z2 -> #8s+i(Z) <g Z2.

Theorem 5.7. Consider the 2-adic product

K8s+1(Z) <g X8t+i(Z) -^ if8(s+t)+2(Z) <g) Z2

/or any integers s, t > 0.

(aj _Fbr a// s and t > 1, ys * yt 0.

^ _Fbr a// s > 0 ararf a//1 > 1, xs *j/j 0.

fcj -For a// s and t > 0, xs -k xt is the generator of Xg(s+t)+2(Z;) (g) Z2 Z/2.

Proof. The commutativity of the square

K8s+1(Z)®Z2

TTgs+\BO > TTgs+\BO (g Z2

where the horizontal arrows denote the tensor product with Z2, and the définition
of ys show that A*(ys) 0. We deduce similarily that A*(yt) 0. This implies the

vanishing of X*(ys*yt) and A*(xs*yt). The fact that ^g{s-\-t)+2^^ 0 then enables

us to deduce the triviality of the products ys*yt and xs-kyt in K~g/s_|_t\_|_2(Z) <g>Z2.

The image of xs under A* is the generator cs of Tvgs^\BO Z/2 and it is known
that csct is non trivial in 7r8(s+t)+2-B^ (see [32], p. 304). Therefore, it follows from
the equality A*(xs *xt) csct that the product xs -kxt does not vanish. D

Corollary 5.8. The 2-adic products

K8s+2(Z) <g> K8t+5(Z) -^ Kg{s+t)+7(Z) «g) Z2

(g) If8t+7(Z) -^ X8(s+t+1)+1(Z) (gZ2

are trivial for all s and t > 0.

Proof. According to Theorem 5.7 (c),

<8> Z2 (Kt(Z) * K8s+l(Z)) ® Z2
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This implies the assertion because the products

Ä8s+i(Z) <g) X8t+5(Z) -^ X8(s+t)+6(Z) <g> Z2 0

and
® K8t+7(Z) -i if8(s+t+1)(Z) <8> Z2 0

are obviously trivial (see Table 1 of [35] and Theorem 0.6 of [28]). D

For the next result, let us call zt the element of order 2 in Ä"8t_|_2(Z) Z/2 ©

(finite odd torsion group).

Theorem 5.9. Consider the 2-adic product

Kgs+i(Z) (g) K~8t+2(Z) -^ if8(s+t)+3(Z) (g) Z2

/or any integers s, t > 0.

(aj _Fbr a// s > 1 ararf a//1 > 0, ys -k zt 0.

(b) For all s and t > 0, xs -k zt is an element of order 2 in -K^8(s+t)+3(^) ® ^2

Proof. Because of Theorem 5.7 (c),

(K8s+1(Z) * K8t+2(Z)) <E> %2 (ifi(Z)*if8s+i(Z)*if8t+i(Z))<g)Z2
and assertion (a) follows from ys-k zt xq * ys • xt 0 by Theorem 5.7 (b).
Similarly, xs -k zt xq *xs *xt is non trivial according to Proposition 12.17 of [1]

and Corollary 4.6 of [13]. D

We may summarize our results on the 2-adic products in the if-theory of Z as
follows.

Corollary 5.10. The 2-adic product

• : Kt(Z) <g> Kk(Z) —> Kl+k{Z) ® Z2

is trivial for all positive integers i and k, except if i k 1 mod 8 or i 1 mod
8 and k 2 mod 8 (or i 2 mod 8 and k 1 mod 8) where its image is cyclic of
order 2.

Let us conclude this section by the following observation about the relationships
between products in algebraic if-theory of the ring of integers Z and the Dwyer-
Friedlander map relating the algebraic if-theory of Z to its étale if-theory (see
Section 4 of [17]).

Proposition 5.11. For any odd prime I and any integer n > 2, the image of the

product map
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is contained in the kernel of the Dwyer-Fnedlander map i^4n_2(Z) —*¦ ^tn—2(^7])

Proof The products in algebraic if-theory and étale if-theory commute with the
Dwyer-Friedlander map Observe that

{Z;
if n is odd,

Z/|wn(Q)|, if n is even

Hence Kf^^Z^]) ffe\(Z[{], Z;(n)) is cyclic But the product in étale if-theory
is just the cup product in étale cohomology This shows that the product

is zero because the cup product i?e\ <g> i?e\ —> H^t is anticommutative D

6. Products in the algebraic if-theory of cyclotomic fields

The results of Section 5 indicate that the 2-adic products in if*(Z) are trivial or
have a very small image In this section, we show that in the case of products in
the if-theory of number fields, the image of product maps can be quite big In the
proof, we use the methods of [9] and [10] Let us consider an odd prime number
/, a positive integer m, and the cyclotomic field E Q(Cim) obtained from Q by
adding a primitive root of unity £;m of order lm Our goal is to show that for n
odd, the product homomorphism

has a big image

If R is a commutative ring, Xr is a ring spectrum with respect to /x XrAXr —s-

Xr®r —s- Xr, where the first map is the pairing which was also called /x at the
beginning of Section 3 (see [21], Proposition 2 4 2) and the second is induced by
the multiplication I? <g> R —s- R The product structure of K*(R), also denoted by
*, is given by the composition

* K%{R)®Kk{R) ntXR<S>nkXR -^ nt+k{XRhXR) -^ nt+kXR Kl+k(R)

Recall that the if-theory with Z//m-coefficients (for a prime / and a positive integer
m, with m > 2 if / 2) may be denned by Kk(R,Z/lm) -Kk(M A XR), where
M is the mod lm Moore spectrum (1 e such that H0M Z//m, HkM 0 for
k ^ 0) Notice that M is a ring spectrum with identity %m and product /xm (see

[27], p 22) We also consider the following products (see also [13])

• K%{R)®Kk{R,Z/lm)=TT%XR®TTk{MAXR)
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TTl+k(M A XR) Kl+k(R;Z/r)

and

• : K,XR;Z/r) <g> Kk(R;Z/lm) tt,(M A XR) <g> Trk(M A XR) -^

Remark 6.1. Since M is a ring spectrum, the diagram

SAS > SAM > MAM

id
M > M

commutes and implies the compatibility of the three products, i.e., the commuta-
tivity of the diagram

Kl{R)®Kk{R) > Kt(R)®Kk(R;Z/lm) > Kt(R;Z/lm) <g> Kk(R;Z/lm)

I * I* I*

Kt+k(R) -^ Kt+k(R;Z/lm) —^ Kt+k(R;Z/lm),

where red is the map which is induced on if-theory by the reduction of coefficients
mod lm.

For any ring R, there is the following Bockstein long exact sequence

> Kk{R) ^ Kk{R) -^ Kk(R; Z/T) -L Kk^{R) -^ ¦ ¦ ¦

where b is the Bockstein homomorphism.

Lemma 6.2. For any x G Kt(R) and any y G Kk(R;Z/lm), one has b(x-ky)
x * b(y) G Aj_|_fc_i(iî).



Vol. 74 (1999) On products in algebraic K-theory 503

Proof. The Bockstein homomorphism b is induced by the obvious map e : M —s-

T-1S which fits into the commutative diagram

SAM > M

I ldAe | e

SAT^S T^S

and provides the commutativity of

Kt(R)®Kk(R;Z/lm) -^ Kl+k(R;Z/lm)

b

and the statement of the lemma. D

This lemma implies the formula

b (TrE/Q (u * ß£ TrE/Q (u * b (ß£

where u is any element G i^i(S) Ex, ßm ßfa™) e K2{E;Z/lm) is the Bott
element (see Définition 2.7.2 of [34]) and TrE/q is the transfer map (see [25],
Section 4). Using this equality, we can rewrite the définition of the Stickelberger
pseudosplitting homomorphism A from [8], Section IV. 1, or [10], Définition 3.2, as
follows.

Definition 6.3. There is a homomorphism

A : 0if2n-i(Fp)i -^ K2n(Q)i,
p

where A J7 Ap and Ap : K2n-i{¥p)i —> Ä2n(Q)i is given by the formula

Ap(kp)
TrE/Q(Xb(p) * b(ßk*n)bn'n if / does not divide n,

\
I TrE/Q(Xb(p) * b(/Vn)n6"7i if / divides n,
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where b is a natural number such that (6,wn_|_i(Q)) 1 and kp is a generator of
the group K2n-i(¥p)i- In addition, A&(p) G i?x are the twisted Gauss sums (see

[9], Definition 3) and 7i f + ln + fin + l3n ¦ ¦ ¦ -^ G Z;.

Theorem 6.4. Let I be the image of the map

where n is an odd integer. Then the exponent of the group K2n(<Qf)i/I divides the
number '2

Proof. Consider the localization sequence

0 -^ K2n(Z)i -^ K2n{q)i -^ ffi^2n-l(FP)j -^ 0.

By Définition 6.3, we see that image A Ç /. On the other hand, by Proposition
2 of [9], the composition d A acts by raising into the power with exponent an
integer |(6n+1 — 1)Cq(—r*)lï~ (recall that the Gauss sums used in the construction
of A depend on 6), where Cq(s) is the Riemann zeta function. Consider now
x G Ä2n(Q)i an(i z d(x) G 0p K2n-i(¥p)i. The computations above show that
for every b,

The greatest common divisor of all |(6n+1 — 1)|; over the integers b which are

relatively prime to wn+i(Q) equals the number |wn_|_i(Q)|;~ by Lemma 2.3 of
[15]. Since the integer |wn+l(Q)CQ(~n)lT divides the number t of elements in

the group K.2n(ft)i, it follows that xl G image A Ç /.

Remark 6.5. Observe that in an abelian group the product of a torsion element
and a nontorsion element is again nontorsion. Hence, every torsion element in
Kin-\{E) can be written as a quotient of two nontorsion elements. Consequently,
the subgroup of K\(E)*K2n_\(E) generated by the subset {x*y \ x G K\(E), y G

Kin-\{E), y nontorsion } contains the subgroup K\(E) * K.2n_\(E)i of K<2n(E).

Remark 6.6. It follows from Theorem 6.4 and Theorem 3.4 of [10] that the image
of Ki(E)*K2n_i(E)i under the transfer TrE/Q : K2n(E) —> Ä2n(Q) contains the

group of divisible elements D(n)t K|^(Z[j]) from Section 5.2 of [9] (see also [8],
Section IV. 3).
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