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On products in algebraic K-theory

Dominique Arlettaz, Grzegorz Banaszak and Wojciech Gajda

Abstract. This paper investigates the product structure in algebraic K-theory of rings. The
first objective is to understand the relationships between products and the kernel of the Hurewicz
homomorphism relating the algebraic K-theory of any ring to the integral homology of its linear
groups. The second part of the paper is devoted to the ring of integers Z. Using recent results of
V. Voevodsky we completely determine the products in K4 (Z) tensored with the ring of 2-adic
integers.

Mathematics Subject Classification (1991). Primary 19 D 55; Secondary 19 D 50, 20 G
10, 55 N 15, 55 P 42.

Keywords. Algebraic K-theory, product structure, Hurewicz homomorphism, Whitehead exact
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0. Introduction

The purpose of this paper is to study the Loday’s product homomorphism
*: Ki(R)® Ki(Z) — Kiyi(R)

in the algebraic K-theory of any ring R with identity, for positive integers ¢ and &
(see [21]). Our first goal is to exhibit very strong connections between the image of
that product and the kernel of the non-stable Hurewicz homomorphisms relating
the K-groups of R to the integral homology groups of its linear groups

h; : Ki(R) = m; BGL(R)" — H;BGL(R)" = H;GL(R) for i>1,

respectively h; : K;(R) — H;E(R) for ¢ > 2 and h; : K;(R) — H;St(R) for
¢ > 3, where GL(R) is the infinite general linear group (considered as a discrete
group) over R, E(R) its subgroup generated by elementary matrices, and St(R) the
infinite Steinberg group over R. A universal approximation of the exponent of the
kernel and some information on the cokernel of these Hurewicz homomorphisms

The second and third authors were partially supported by the KBN grant 2 PO3A 00511.
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have been obtained in [3], [4] and Section 5 of [5]. Our argument is based on the
understanding, from various viewpoints, of the stable Hurewicz homomorphism
between the algebraic K-theory and the homology of the K-theory spectrum. We
establish in particular the following result (see Theorem 3.2):

For any ring R and any integer © > 2, the image of x : K;(R) ®
Ki(Z) — K;11(R) is contained in the kernel of the Hurewicz homo-
morphisms hiy1 @ Ki1(R) — H;1GL(R) and hipq1 @ Kip1(R) —
H;11E(R); the same holds for hiy1 : Kip1(R) — H;15t(R) if i > 3.

In low dimensions, we actually prove exactness results for any ring R (see Theorems
4.1 and 4.3).

(a) There is an exact sequence

Ky(R) % HyB(R) — T(K2(R)) — K3(R) 2% H3E(R) — 0,

where I'(=) is the quadratic functor defined on abelian groups by
J.H.C. Whitehead in Section 5 of [37]; moreover, ker h3 is isomor-
phic to Ko(R)» K1(Z).

(b) There is an exact sequence
K5(R) 25 HsSt(R) — K3(R)®K1(Z) = Ka(R) 2% HySt(R) — 0
and the kernel of hy fits into a short exact sequence
0 — Ky(R)x K1(Z) — kerhy — Q — 0,

where Q) is a quotient of the subgroup of elements of order 2 in the
group K3(R).

The second objective of the paper is to compute explicitely products in the
algebraic K-theory of the ring of integers Z. First of all, we determine in low
dimensions the products K;(Z)x K (Z), the homology groups of SL(Z) and St(Z),
and the Hurewicz homomorphism (see Proposition 5.1). Secondly, we consider
maps

Ki(Z) ® Ky(Z) = Kiyh(Z) — Ki13(Z) ® Zo
for all positive integers ¢ and k, where the second arrow is the tensor product of
K #(Z) with the inclusion of Z into the ring of 2-adic integers Zo. We call these
maps 2-adic products for K,(Z) and continue to denote them by the symbol *.

We deduce from a topological argument based on results by M. Bokstedt [12], V.
Voevodsky [33], J. Rognes and C. Weibel [35] and [28] the calculation of all such
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2-adic products (see Theorems 5.6, 5.7, Corollary 5.8 and Theorem 5.9):

The 2-adic product » = Ki(Z) ® Ki(Z) — K;y1(Z) ® Ly is
trivial for all positive integers © and k, except ift = k =1 mod 8
ori=1 mod 8 and k =2 mod 8 (ori=2 mod 8 and k =1 mod
8) where its image is cyclic of order 2.

We also mention in Proposition 5.11 an interesting relationship between prod-
ucts in algebraic K-theory and the kernel of the Dwyer-Friedlander map.

For any odd prime | and any integer n > 2, the image of the
product map

*: Koy 1(Z) ® Koy 1(Z) — Kuan—2(Z)

is contained in the kernel of the Dwyer-Friedlander map K4, 2(Z) —
K§i, 5(ZI1)).

Observe that the 2-adic products in the K-theory of Z have a very small image.
On the other hand, we finally prove in Theorem 6.4 that the image of the product
*: K1(E) ® Koy, 1(E) — Kon(E)

is huge when F is a cyclotomic field and n and odd integer.

The paper is organized as follows. In Section 1, we give a new construction of
the Whitehead exact sequence for spectra. Section 2 presents another approach of
the study of the Hurewicz homomorphism for spectra using the so-called Postnikov
cofibrations. Section 3 is devoted to general results on the relations between
products in algebraic K-theory and the kernel of the stable and of the non-stable
Hurewicz homomorphism. Section 4 provides the above exact sequences involving
the K-groups and the homology groups of the linear groups in dimensions < 5. In
Section 5, we calculate the 2-adic products in the algebraic K-theory of the ring of
integers Z. We finally discuss in Section 6 products in the K-theory of cyclotomic
fields.

Throughout the paper, all rings are supposed to have an identity. We consider
all ordinary homology groups with (trivial) coefficients in Z except if explicitly
mentioned. If G is an abelian group, G; denotes the [-torsion subgroup of G (for a
prime [), K(G, s) the Eilenberg-MacLane space having all homotopy groups trivial
except for G in dimension s and H(G) the Eilenberg-MacLane spectrum having all
homotopy groups trivial except for G in dimension 0. If X is any CW-complex or
any CW-spectrum and ¢ any integer, we write a; : X — X[¢] for its ¢-th Postnikov
section (le., mp X[i] = 0 for & > ¢ and (o), : mp X = mX[i] for k < i) and
vi : X (1) — X for the fiber of «;; in other words, X (4) is the i-connected cover of
X. For j >i+1, X(4, ] denotes X (4)[7], whose homotopy groups are 7 X (4, 7] = 0
ifk<iork>jand mX(i,j]=2mXifi+1<k<j.
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1. The Whitehead exact sequence for spectra

Let S be the sphere spectrum and S —% S[0] = H(Z) its 0-th Postnikov section.

By taking the smash product of any spectrum X with the cofibration S(0) L,

5 2%, 510], where S(0) is O-connected, one obtains the cofibration of spectra

X AS0)' DY x A S~ x9N XA H(Z),

whose homotopy exact sequence is the long Whitehead exact sequence
(X AS0) X X S X P (X A S(0) — -

of X; here 7 is any integer, 7; is the connecting homomorphism, x; is induced
by (id A vp) and h; by (id A ag), ie., h; is the stable Hurewicz homomorphism.
The groups m;(X A S(0)) are usually denoted by I';(X): that definition coincides
actually with the homotopy groups of the fiber of the Dold-Thom map (see [16])
and it was recently proved in [29] that they are isomorphic to the groups introduced
in the original paper [37] by J.H.C. Whitehead.

Now, let us assume that the spectrum X is (r — 1)-connected for some integer
r. The advantage of the above approach is that one can compute the groups I';(X)

with the Atiyah-Hirzebruch spectral sequence for the S(0)-homology of X:
E2, =~ Hy(X;mS(0)) = Dype(X).

Notice that ESQt =0if s <r—1ort <0. This implies in particular that I';(X) =0
fori <r (Hufewicz theorem) and that (p1p2--- pi—r)I%(X) = 0 for ¢ > r 41,
where pj, denotes the exponent of the homotopy group 7S for k > 1 (see also [29]
for another proof and [5] for corresponding results for the generalized Hurewicz
homomorphisms). The first interesting Gamma group of an (r — 1)-connected
spectrum X is

L1 (X) = Ezl =X ®mTS

(this was in fact established a long time ago by J.H.C. Whitehead, see for instance
Section 14 of [37]). Our first goal is to understand the homomorphism ¥,41 :
Fp1(X) =2 nX @78 — 141X, Let us start with the following general result
on the external product m; X @ 1S — gk (X AS) =2 w1, X (see [32], p. 270 for
the definition of the external product).

Lemma 1.1. Let X be any spectrum, i and k two integers with k > 1. Then the
image of the external product A : m; X ® mp,S — mi 1 X is contained in the kernel
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of the stable Hurewicz homomorphism ﬁiJrk C ik X — Hip 1, X for all integers ¢
and all positive integers k.

Proof. The commutative diagram

(id) «®(70)«

m X @ mS(0) X QS
[ B
Xi+k
Litr(X) — itk X

I

shovys that the image of A : m; X ® mpS — m4,X Is contained in image X;4#
ker h;4r. Another proof of this fact is given by Lemma 1 of [6].

O

In the case where X is (r—1)-connected and 7 = r, k = 1, we have the following
exactness result:

Proposition 1.2. For an (r—1)-connected spectrum X, the homomorphism X,41 :
I 1(X) — 741X in the Whitehead exact sequence is exactly the external product
A X @mS — w1 X.

Proof. Consider the commutative diagram

HX © H1S(0) —— H,1(X AS(0))

I -

X ®mS0) —— mpi(XAS0) = Tpypq(X)

zl (id)+®(0) l Xr+1

A
X ®@mS — w41 (X AS) = 1 X.

The top horizontal homomorphism is an isomorphism by Kiinneth formula and the
two top vertical arrows, which are Hurewicz homomorphisms, are isomorphisms
since X is (r — 1)-connected, S(0) is O-connected and X A S(0) is r-connected.
Consequently, the external product in the middle of the diagram is an isomorphism.
The homomorphism (id). ® (yg)« is an isomorphism because (vg)« : 71.5(0) =
m1.S. Therefore, x,41 is exactly the external product m, X ® 7.5 2, 1 X. O



Vol. 74 (1999) On products in algebraic K-theory 481

Corollary 1.3. For any (r — 1)-connected spectrum X, the following sequence is
exact:

Xr+2 hoyo V2
— F'r—f—Q(X) I 7Tr+2X - Hr—f—QX I

B,
X ®mS 2 mp1 X =5 Hyp1 X — 0.

2. Postnikov cofibrations

The purpose of this section is to present another approach of the study of the
Hurewicz homomorphism. For an (r — 1)-connected spectrum X, consider for all
integers 7 > r + 1 the cofibrations of spectra

Y H(mX) 2= X[ 22 X[ 1],

where «;_1 is the (i —1)-st Postnikov section of X [¢]: let us call them the Postnikov
cofibrations of X. The associated homology exact sequences are

s o X[ e X -1 2 B x0))
N !

2. X

) fxfi- 1] —o0,

=

X[i]
N
=H; X

and it is easy to check that (y;,_1)« is the stable Hurewicz homomorphism A;.
Thus, we obtain the following

Proposition 2.1. Let X be an (r—1)-connected spectrum and i an integer > r+1.
There is an eract sequence

(1) (as-1)w

Now let us try to understand the homomorphism @ for the cases i = 4 1 and
t=1r+2.

Proposition 2.2. (a) For any (r — 1)-connected spectrum X, there is an eract
sequence

0 — HypoXfr+1] 2 mXoms 2 mX " H 1 X —0.
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(b) The homomorphism 0 is again eractly the external product A : 7, X ® 1S —
7TT+1X.

Proof. Let us look at the Postnikov cofibration of X for ¢ =r 41,
Y HH@ X)) S X[r+1] 25 X[r] = 2T H(r, X)),

and take its homology exact sequence

T p r 8
H, o™ HH(m 1 X)) — Hy o X[r +1] -5 Hyyo(STH(m, X)) -
=0

mot X T H X — Hy (ST H (X)),
N ——
=0

where @ is written for (a,).. Since ¥."H (7, X) is an Eilenberg-MacLane spectrum,
it is clear that

Hoo(¥"H(m X)) = 1 (X H(m X)) =2 m, X @ m S,

and we get assertion (a). Then, consider the map «qg : S — H(Z) and denote by
¢ the composition

(dAag)y : D HHm 1 X) — X[r+1] = X[r+1]AS — X[r+ 1] A H(Z),
and by F its fiber. By smashing with H(Z) the cofibration obtained by looping

the base spectrum of the cofibration X" T H (7, 1 X) 2% X[r+1] =% %7 H (7, X),
we get the commutative diagram

/ATl
SUHmX)AHZ) — S Hm o X)AHZ) TS X[+ 1] A H(Z)

T T idAag id

F s S H (41 X) S Xp+1AH®Z)
! |-
idAvyg idAag

X[r+1] A S(0) — Xr+1] — X[r+1AH(Z)
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in which all rows are cofibrations. Then look at their homotopy exact sequences

~H,  o(E"H(7mr X)) ELINED e ~H,. 11X
r—1 8 r+1 (yrnid) s s
Hr+2X[r —+ 1] — 'r+1<2’ H(”ITTX» — r+1(2 H(WT+1X)) —_— HT+1X[T‘ + 1]
=h, 41
T = T HurewiczT = T =
Co
HT+2X[7'+1] —_— Tryp1 F — Trr1 X — HT+1X[7‘+ 1]
J/ = J/ (vr) s l = J/ =
Xrt1 (]
HyjoX[r+1] — g (X[r+1]) — Trp1 X[r + 1] — Hyp1 X[r+1].
LS " N [
=T, 1(X) sm g X ~H, (X

Observe that the three horizontal arrows on the left of the diagram are injective
and conclude by the five lemma that the two vertical arrows starting from 7,1 F
are isomorphisms: assertion (b) can then be deduced from Proposition 1.2. O

Remark 2.3. It follows from Corollary 1.3 and Proposition 2.2 that the cokernel
of hyyo : mry2X — H,42X is isomorphic to image v, 1o = ker (A : m X @ m S —
41X ) = Hyq 9 X[r + 1] for any (r — 1)-connected spectrum X.

Similarly, we can investigate the stable Hurewicz homomorphism in dimension
r 4 2. Consider the Postnikov cofibration of an (r — 1)-connected spectrum X for
¢ =r + 2 and its homology exact sequence

) .
— Hoya X[+ 1] -5 Hyo (72 H (9 X)) 222

By g X
HT+2X[7”+2] — T+QX[’/'+1] —0,
N—— —

EH X

where ) is written for . 'The next two lemmas describe the group H, 3 X[r + 1]
and the homomorphism .

Lemma 2.4. There is an exact sequence
T X @ mS - HyyaX[r 4+ 1) 2 (m X) — 0,

where 2(7TTX) denotes the subgroup of elements of order dividing 2 in the group
T X
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Proof. Let us look again at the cofibration
Y H(r, 1 X) 25 X[r 41 25 2T H(r, X)

and at its homology exact sequence

C— Ho s (S H (m 1 X)) 5 HyysX[r+1] =5 Hyya3(3 H(r, X)) — 0,
where @ and 7 are the homomorphisms induced by «, and «, respectively. It turns
out that
H,s(Y M H(r 1 X)) 2 Ty o (XM H(m, 1 X)) 2 7,01X ® m1S because of the
results of Section 1 and that

H,43(X"H(m, X)) 2 (7, X), according to Théoréme 2 of [14]. m|

Lemma 2.5. The composition ¢ 8 : T 1 X ® TS — 49X is the external prod-
uct A.

Proof. The obvious map X (r) — X provides the commutative diagram of cofibra-
tions

S 2H(my9X) —— X(rr+2 —— X(rr+1] =~ YHH@X)
l id l l Tr
S 2H(m9X) ——  X[r+2 ——  X[r+1]

which induces the commutative square

Hyy3(S M H(m 1 X)) ——  Hyyo(82H(m,42X)

=1 X®m S =m0 X
o |-
7
H, 1 3X[r+1] — & H, (X T2H(m,19X)) .
S 0X

Then, the statement of Proposition 2.2 for the r-connected spectrum X (r) shows
that the top horizontal arrow is the external product. |
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We may summarize our results on the stable Hurewicz homomorphism BT+2 as
follows.

Proposition 2.6. Let X be an (r — 1)-connected spectrum.
(a) There is an exact sequence

_ 5
s Hypa X+ 1] 2 mgoX 8 H, 90X — Ho o X[r + 1] — 0.
(b) The kernel of h,49 fits into the short ezact sequence
0 — A(mp1 X ®mS) — kerh, 9 — Q — 0,

where Q is a quotient of o(m, X).

Remark 2.7. Since m; X[r+ 1] =0 for i > r + 2,
HopsX[r+ 1] 2Ty X [+ 1]).

The Postnikov section X — X[r + 1] induces a map f between the Atiyah-
Hirzebruch spectral sequences

H (X;mS5(0)) = T'syo(X) and Hy(X[r+ 1];75(0)) = [t (X[r +1]) .
The lines s +¢ = r + 2 in these spectral sequences give the following picture:

a2
HT+2(X;7T15) — T X ® 7S — FT+2(X) — HT+1(X;7T15) —s 0

L S P

a2
Hro(X[r+1;m8) — me X[r + 1] @ m2S — I'ryo (X[r + 1)) — Hrp 1 (X[r+1];m8) — 0.

By the universal coefficient theorem, one has H,9(X;715) = (H, 42X ® m5) ®
Tor(H,41X,m15) and H,1o(X[r+1];715) = (Hypo( X [r+1])@m S)@Tor(H, 41X,
m1.5); thus, one can check that fi is surjective because of Whitehead’s theorem
and deduce from the five lemma that

Dol X) 2 Dga(Xr+ 1)) &2 Hop3 X[r +1].

Moreover, one can show with the argument of the proof of Proposition 2.2 (b) that
the homomorphism v of Proposition 2.6 (a) is actually x,42: I'yyo(X) — mrq2X
of Corollary 1.3. Consequently, the part

HypsX[r+ 1] 2 mpo X T2 H, X
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of the sequence given by Proposition 2.6 (a) is a piece of the Whitehead exact
sequence.

Remark 2.8. It follows from Lemma 2.4 and the previous remark that the group
I';42(X) is described by the exact sequence

s mp X @mS -5 Tyya(X) s (m,X) — 0,

and in particular that its exponent divides 4 (this was already known by [11],
Section 4).

Remark 2.9. All exact sequences introduced in Sections 1 and 2 are obviously
natural in X.

3. Products and Hurewicz homomorphisms in algebraic K-theory

If R is any ring, let us denote by X g the connective K-theory spectrum of R, i.e., a
(—1)-connected Q-spectrum whose 0-th space is the infinite loop space BGL(R) 1 x
Ko(R). We shall also consider the (r—1)-connected spectra X g(r—1) forr > 0, i.e.,
the fiber of the Postnikov section Xgr — Xg[r — 1], and call v,_1 the obvious map
Xgr(r —1) — Xg. Observe that K;(R) = m;Xg(r — 1) for ¢ > r. Remember that
the infinite loop spaces corresponding to Xg(0), Xg(1) and X(2) are BGL(R) T,
BE(R)" and BSt(R)1 respectively. If R and R’ are two rings, there is a pairing
1 XpAXr — Xgrer and the product in algebraic K-theory is defined as follows

* KZ(R) ® Kk(R/) > mXp QT Xp L 7Ti+k(XR A XR/)
2 ik Xror = Kipn(R® R')

for any two integers ¢ > 0 and k > 0 (see for instance [21], Proposition 2.4.2). We
shall actually concentrate our attention to the special case where R’ is the ring of
integers Z: the goal of Sections 3 and 4 is to investigate the relationships between
the image of the product

and the kernel of the stable and the non-stable Hurewicz homomorphism.

Remember that X7 is a ring spectrum and let us call 7 : S — Xy its identity.
Notice that j corresponds to the map BYE, — BGL(Z)T given by the inclusion of
the infinite symmetric group Yo into GL(Z). This map j induces an isomorphism
Jx 1 TS = m Xz =2 K1(Z) and the image of j, : mpS — Ki(Z) for k > 2 is
described in [22] and [26]. For any ring R, the above pairing p provides then Xg
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with an Xz-module structure. Let us first translate the results of Sections 1 and
2 in terms of algebraic K-theory.

Proposition 3.1. Let R be a ring, ¢ and k two integers with ¢ > 0, k > 1, and
consider an element x € K;(R) and an element y € Ki(Z) belonging to the image
of ju : TS — Ki(Z).

(a) For all r < i, zxy is an element of the kernel of the stable Hurewicz homo-
morphism hiyk : Kiyx(R) — Hipx Xp(r —1).

(b) If k <i—1, then x*xy is an element of the kernel of the non-stable Hurewicz
homommphisms hiJrk ‘ Kl+k(R) — HZJrkE(R) and hi+k i KHL]{(R) = Hi+k
GL(R).

(¢) If i > 3 and k < i — 1, then x xy is an element of the kernel of hity :
Kitr(R) — HipxSHR).

Proof. The first assertion is a consequence of Lemma 1.1 and of the commutativity
of the diagram

A Ritr
WiXR(T—l)(X)?TkS —_— 7Ti+kXR(7"_1) _— iJrkXR(T_l)
2 | (roaueta > | e
A
T XR ® TS — Ti+kXR

l =Qj. l =

KR ®KiZ) ——  Kin(R),

where the bottom square commutes because Xg is an Xz-module. In order to
prove the last two assertions, consider the (i — 1)-connected cover BGL(R)™ (i —
1) of the CW-complex BGL(R)T, for ¢ > k +1 > 2. The iterated homology
suspension o : H;1x BGL(R)T (i — 1) — H;4£Xg(i — 1), which is an isomorphism
since k£ <7 — 1, and the commutative diagram

hite iy
Kitx(R) —— Hy1xsBGL(R)"(i - 1)

| ] .| =

hite )
Kity(R) —— Hiy, Xgr(i —1)

show that k¢ : Kiyr(R) — H x BGL(R)T(i—1) fulfills h; 44 (zxy) = 0 according
to (a) for r = 4. Since ¢ > 2, assertion (b) then follows from the composition with
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the obvious homomorphism
Hiy#xBGL(R)T (i —1) — Hyyx BE(R)" — H, {1, BGL(R)" .
If ¢ > 3, this homomorphism factors even through H;, . BSt(R)™T and we get (c).O

Now, let us consider the case k = 1 and 7 = r: the fact that 7, : m.S — K1{(Z)
is an isomorphism implies the following result, where X g(¢ — 1,7 1] is written for
Xp(i— 1[4 1].

Theorem 3.2. Let R be any ring.
(a) For any integer i > 0, there is a natural exact sequence

Bi . 7@'
Kiyo(R) 22 Hy o Xp(i— 1) 28 Ky(R) ® Ky(Z) =

hs .
Ki1(R) =5 Hy 1 Xg(i —1) — 0.

Moreover, ker(x) = image ;49 = H;1 9 Xp(4 — 1,1+ 1].

(b) For any integer i > 2, the image of x : K;(R)® K1(Z) — K;41(R) is contained
in the kernel of the non-stable Hurewicz homomorphisms hiy1 @ Kiy1(R) —
Hl+]E(R) and h7;+1 i KZ+1(R) —F l+1GL(R)

(¢) For any integer i > 3, the image of x : K;(R)®@ K1(Z) — K;y1(R) is contained
in the kernel of hiy1 : Kiy1(R) — Hi11St(R).

Proof. Assertion (a) follows from Corollary 1.3 and Remark 2.3 for the spectrum
Xpg(i — 1) since the diagram

A
KiR)®mS —— myp1Xr

%l id®7, l B

K(R)®K((Z) —— Kij1(R)

commutes again because of the Xz-module structure of Xg. Assertions (b) and
(c) are direct consequences of Proposition 3.1. (b) and (c). |

It is possible to obtain a similar information on the stable and the non-stable
Hurewicz homomorphism in any dimension 2 > r+ 1. Proposition 2.1 provides the
exact sequence

s Hyt Xa(r — 1,4 S By X —1,i— 1] 2

(az'—l)*

Ri(B) 2 HiXalr — 1) Y B Xplr —1,i— 1] — 0.
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Proposition 3.3. Let R be any ring, ¢ and r positive integers such that r <1 <
2r — 1, then the kernel of the non-stable Hurewicz homomorphism

h; : Ki(R) — HiBGL(R) (r — 1)
is exactly the image of 0.
Proof. Let us consider the homology exact sequence of the Postnikov cofibration
SHH(K(R)) 22 Xp(r —1,i] 22 Xp(r — 1,6 — 1],

and the corresponding homology exact sequence obtained from the Serre spectral
sequence of the fibration of CW-complexes

K(Ki(R),i) — BGL(R)*(r —1,i] — BGL(R)*(r —1,i —1].

We obtain the commutative diagram

o
Hip1 Xp(r—1,5—1] — Ki(R

K I-

] h
Hi1BGL(R)Y(r —1,i—1] — K;j(R) — H;BGLR)*(r-1),

|

=
S

3
=

!

where the horizontal sequences are exact and the three vertical arrows are iterated
suspensions. The left iterated homology suspension o is surjective if ¢ +1 < 2r
and even an isomorphism if i + 1 < 2r — 1 (see [36], p. 382); consequently we may
conclude that image @ = image 0. O

4. Products and the non-stable Hurewicz homomorphism in low
dimensions

The purpose of this section is to study the relationships between the algebraic K-
theory of a ring R and the integral homology of its linear groups in low dimensions.
In dimension 2, the following isomorphisms are known (see [4]):

Ky(R) =~ HyE(R) and HyGL(R) = Ko(R) @ A2(K1(R)).

Let us start by looking at dimensions 3 and 4. Let I'(—) be the quadratic
functor defined on abelian groups by J.H.C. Whitehead in Section 5 of [37]: if YV
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is a simply connected CW-complex, then the group I's(Y') in the Whitehead exact
sequence of the space Y turns out to be isomorphic to I'(moY).

Theorem 4.1. For any ring R, there is a natural exact sequence
Ky(R) 4 HyE(R) 25 T(Ka(R)) X% K3(R) 22 H3E(R) — 0

and ker hg is isomorphic to the image of the product homomorphism » : Ka(R) ®
K1(Z) — K3(R). In particular, H3E(R) = K3(R)/(Ka(R) x K1(Z)).

Proof. The exact sequence is just the Whitehead exact sequence (see [37]) of the
space BE(R)1 since T's(BE(R)T) = I'(K2(R)). In order to determine the image
of x3, consider the exact sequence given by Proposition 2.2 for X = Xg(1) and
r = 2, and also the corresponding exact sequence obtained from the Serre spectral
sequence of the fibration of CW-complexes

K(K3(R),3) — BE(R)"[3] — K(K3(R),2).

We get the commutative diagram

=Ky (R)®K1(7)

hg

@ P %
0 — HyXgr(1,3] — Hy(Y?H(K2(R)) — K3(R) — H3Xg(l) — 0

I - = 1

@ o h3
0 — HyBE(R)"[3] = Hy(K(K3(R),2)) — K3(R) — H3BE(R)t — 0,

where the vertical arrows are iterated suspensions. It turns out that
Hy(K(K2(R),2)) = I's(K(K2(R),2)) = T'(Ka(R))

and the argument of the proof of Proposition 2.2 shows again that the homomor-
phism x3 in the Whitehed exact sequence is exactly 9. According to the proof
of Proposition 3.3, the iterated homology suspension ¢ is surjective and one gets
image 3 = image @ = Ka(R) ~ K1(Z). Notice that this computation of the image
of xs can also be deduced from Section 2.2.6 of [21]. m]

Remark 4.2. This extends the result for fields given in [31], Corollary 5.2, to the
case of any ring R.

In order to understand the 4-dimensional and 5-dimensional Hurewicz homo-
morphisms, let us use exactly the same idea (but now for » = 3) for the 2-connected
CW-complex BSt(R)1, respectively the 2-connected K-theory spectrum Xg(2).

Theorem 4.3. Let R be any ring.
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(a) There is a natural eract sequence

HeXr(2,4 2> K5(R) 25 HySt(R) 22 K3(R) ® K((Z) =
K4(R) 2% HySHR) — 0.
In particular, HySt(R) = K4(R)/(K3(R)x K1(Z)).
(b) There is a natural exact sequence
K4(R) ® K1(Z) % HeXp(2,4] -5 ,(K3(R)) — 0.

(¢) The composition 0 is the product map * : K4(R) ® K1(Z) — Ks(R). Con-

sequently, there is a natural short exact sequence
0 — K4(R)» K1(Z) — kerhs — Q — 0,
where Q) is a quotient of ,(K3(R)).

Proof. As in the previous proof, we use Proposition 2.2, but consider in this case
the following commutative diagram:

=K3(R)®K1(Z)
— * 7
0 — HsXp(24] 2 Hs(OPH(Ks(R) - Ki(R) 2% HiXp(2) — 0

| [ - I

0 — HsBSHR)H4] = Hy(K(K3(R),3)) —= Ki(R) - HyBSHR)T — 0.

However, this time, o is even an isomorphism. Observe that HsBSt(R)T[4] is
isomorphic to the kernel of x : K3(R) ® K1(Z) — K4(R). The Whitehead exact
sequence of BSt(R)1 is

- Ts(BSHR)T) 22 Ky(R) 25 HySt(R) 22 T4(BSHR)™)
X4, K4(R) 24 HySt(R) — 0

and it is easy to check that Ty(BSt(R)T) = K3(R) ® K{(Z) = H5(K(K3(R),3)).
In order to understand the kernel of hy, let us use the exact sequence given by
Proposition 2.6 for » = 3, ¢ = 5, and the exact sequence coming from the homology
Serre spectral sequence of the fibration of CW-complexes

K(K5(R),5) — BSt(R)"[5] — BSt(R)"[4].
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We obtain the commutative diagram

¥
HeXr(2,4 — Ks(R) — HsXp(2) —  HsXg(2,4 — 0

[ I I I

HgBSt(R)H4] - Ks(R) —% HsBSHR)* — HsBStR)] — o0,

Il

where the vertical arrows are iterated suspensions. According to the proof of
Proposition 3.3, the iterated homology suspension o is surjective and therefore
image 1 = image ¢». On the other hand, the group HgXr(2,4] and the image of ¥
may be described by Proposition 2.6 and Lemmas 2.4 and 2.5. O

The following corollary follows from the five lemma and the argument of the
proofs of Theorems 4.1 and 4.3.

Corollary 4.4. For any ring R, the iterated homology suspensions HsE(R) =2
H3BE(R)Y — H3Xg(1) and HySt(R) = H4BSt(R)Y — HyXRg(2) are isomor-
phisms.

Remark 4.5. Observe that hy : K4(R) — H4St(R) is an isomorphism up to
2-torsion. This produces the following consequence of Proposition 9 of [9]. Let [
be an odd prime, £ a primitive l-root of unity of order [. Let R = Z[¢; + 5;1] be
the ring of integers of the maximal real subfield of the cyclotomic field Q(&;). The
vanishing of the group H4St(R) in this case would imply the Kummer-Vandiver
conjecture for the prime /.

5. Products in the algebraic K-theory of the ring of integers Z

This section is devoted to the study of products in the algebraic K-theory of the
ring of integers Z:
* 1 Kl(Z) & Kk(Z) — th(Z) .

Let us start by describing the results on low-dimensional products given by Section
4 in the case where R = Z.

Proposition 5.1.

(a) The product homomorphism * : K;(Z)® K1(Z) — K;11(Z) is an isomorphism
if i = 1, injective if i = 2, and trivial if i Z 1 or 2 mod 8.

(b) The product homomorphism  : K;(Z) ® Ko(Z) — K;y2(Z) is trivial if 1 £ 1
mod 8.
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(¢) HiSL(Z) = Z/2 and HaSt(Z) = 0.
(d) There is a short eract sequence

0 — K5(Z) 25 HySt(Z) 25 Z/2 — 0.

Proof. The assertion (a) is well known for ¢ = 1. Theorem 4.1 produces the exact
sequence

Ko(Z) 2% HySL(Z) Y4 T(Z/2) 2 Ka(Z) 23 HaSL(Z) — 0
N N — N’
7/4 7/48 z/24

(see [2], [19] and [37], Sections 5 and 13) and asserts that the product x : Ko(Z) ®
K1(Z) — K3(Z) is injective. Recently, J. Rognes and C. Weibel deduced from the
work of V. Voevodsky [33] the complete calculation of the 2-torsion of the algebraic
K-theory of Z (see Table 1 of [35] and Theorem 0.6 of [28]). This, together with
another argument of J. Rognes, shows that K4(Z) = 0 and implies that H4SL(Z)
is cyclic of order 2. Moreover, K;(Z) is a finite odd torsion group if ¢ is a positive
integer = 0, 4, or 6 mod 8. Therefore, K;(Z) « K1(Z) = 0if : = 0, 4, or 6
mod 8 orif i +1 = 0, 4, or 6 mod 8. This gives (a), and (b) follows from (a)
since K9o(Z) = K1(Z) ~ K1(Z). Note that the first author proved the triviality
of x : K3(Z) ® K1(Z) — K4(Z) in [6] before Rognes and Weibel’s proof of the
vanishing of K4(Z). The calculation of K;(Z)x K1(Z) when i =1 or 2 mod 8 and
of K;,(Z)» Ko(Z) when ¢ = 1 mod 8 will be given by Theorems 5.7 and 5.9 below.

Now, let us apply Theorem 4.3. The map ¢ is actually the connecting homo-
morphism of the homology exact sequence of the cofibration

YH(Ky(Z)) — Xz(2,5] — Xz(2,4].

It is of course possible to consider the analogous cofibration for the sphere spectrum
S
YO H (m58) — S(2,5] — S(2,4].

The identity 7 : 8 — X7z of the ring spectrum Xz induces the commutative diagram

HeS(2,4] —— mS = 0

[ I

¥
HeXz(2,4] —— Ks(Z)
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which shows that ¢ j, = 0. Now, look at the following commutative diagram
where the bottom homomorphism is given by the second assertion of Theorem
4.3:

HeS(2,4] —— He(PH(mS) = ,(mS)

| |

HeXz(2,4] —— He(SPH(K3(Z)) = ,(K3(Z).

R

The top horizontal arrow is an isomorphism because the vanishing of 745 ex-
hibits an equivalence S(2,4] ~ ¥3 H(73S). The right vertical arrow is an isomor-
phism since the homomorphism 735 — K3(Z), induced by j, is injective (remem-
ber that w35 = Z/24 and K3(Z) = Z/48). Therefore, there exists a splitting
71 5(K3(Z)) — HeXz(2,4] of 77 such that 7 is the composition of an isomorphism
o(K3(Z)) = HgS(2,4] with j,. It then follows from the vanishing of the compo-
sition ¢ 4, that ¢»7 = 0. Consequently, the group @ of Theorem 4.3 (c) is trivial if
R = Z since Q = image (77), and ker hs =2 image (¢ §) is the image of the product
map * : K4(Z) ® K1(Z) — Kxs(Z). Consequently, there is an exact sequence

0 — Ka(Z) x K1(Z) 2% K5(Z) 25 HySt(Z) 25 K3(Z) ® K1(Z) =
K4(Z) 22 HySt(Z) — 0.

The fact that K4(Z) = 0 provides the vanishing of H45t(Z) and the short exact
sequence (d) (which was already given in Section 6 of [7])

0 — K5(Z) 25 HsSH(Z) 2 Z/2 — 0.

According to Theorem 1 of [20], Theorem 1 of [30], Table 1 of [35] and Theorem 0.6
of 28], K5(Z) = Z&T, where T is a finite abelian 3-group: thus, H5St(Z) =~ ZaT
and hg is multiplication by 2 on the infinite cyclic factor of Kx(Z). O

Corollary 5.2. Let R be a ring such that the homomorphism ¢, : K3(Z) — Ks(R)
(induced by the obvious map € : Z — R) induces an isomorphism €, ®id : K3(Z)®
Z/2 = K3(R)® Z/2 (for instance, if R = Q or any localization of Z.). Then the
non-stable Hurewicz homomorphism hy : K4(R) — H4St(R) is an isomorphism.
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Proof. This follows from the commutativity of the diagram

K3(Z)® K1(Z) — KuZ) = 0

%l £, ®id l £y

Ka(R)® K\(Z) — Ky(R) —% HySHR) — o0,

where the rows are the exact sequences given by Theorem 4.3 (a). O

The argument of the proof of Proposition 5.1 (d) produces also the next two
corollaries

Corollary 5.3. Let R be a ring such that the composition of 7 : S — Xg with

the obvious map Xz — Xg induces an isomorphism (m3S) =, o(K3(R)). Then
Ky(R)x K1(Z) = ker (hs : K5(R) — HgSt(R)).

Corollary 5.4. If R is a ring as in Corollary 5.3 (for instance, if R = Z or any lo-
calization of Z), then the iterated homology suspension HsSt(R) =2 Hy BSt(R)T —

Hys X gr(2) is an isomorphism.

Proof. By hypothesis, one has actually the exact sequences

He U HK(R)) 2 Ks(R) 25 HsXn@) — HsXa(24] — 0

E - I-

HeK(Ky(R),4) 2 Ks(R) - HyBSt(R)' — HsBSt(R)'[4] — o0,

A=Y
B

|

and the iterated homology suspension ¢ is clearly an isomorphism; the same is
true for o/ because of the commutativity of

~

HsXgp(2,4] —— Hs(33H(K3(R))

[ IE

HsBSt(R)T[4] —— HsK(K3(R),3).
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The assertion then follows from the five lemma. O

Let us now consider maps
Ki(Z) ® K(Z) > Kiyr(Z) — Kipr(2) © Za

for all positive integers ¢ and k, where the second arrow is the tensor product
of K41 (Z) with the inclusion of Z into the ring of 2-adic integers Z;. We call
these maps 2-adic products for K,(Z) and continue to denote them by the symbol
*. Again because of Table 1 of [35] (see also Theorem 0.6 of [28]), K;(Z) is
a finite odd torsion group if ¢ is a positive integer = 0, 4, or 6 mod 8 and
2 Z @ (finite odd torsion group) if ¢ = 5 mod 8; thus, the only 2-adic products
which can be non trivial are the following:

K3, 41(Z) ® K11 1(Z) > Kg(op42(2) @2y

Kgs11(Z) ® Kgy12(Z)

Kg(ste)+3(Z) ® Zs
Ky (o1 47(Z) ® L
Kg(orei1)41(2) ® Zy
Kg(orei1)42(2) ® Zy

Kg(otit1)+2(Z) ® Zg

for s and ¢ > 0. We now want to determine these products.

The inclusion Z — R induces a map A : BGL(Z)T — BO and the induced
homomorphism
As : Ko (Z) — 7.BO

is a ring homomorphism since it can be written as the composition A\, : K, (Z) —
K.(R) — m.BO, where both arrows are ring homomorphisms (see [13], p. 50 and
Section 3). One can understand the kernel of A, at the prime 2 by the following
argument. If p is a prime = 3 or 5 mod 8, M. Bokstedt introduced in [12] (see also
[23] and Section 4 of [18]) a space J(p) which is defined by the pull-back diagram
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where F'WP is the fiber of (VP — 1) : BU — BU (recall that FU? ~ BGL(F,)* by
Theorem 7 of [24]), b the Brauer lifting and ¢ the complexification. The fibers of
the horizontal maps are homotopy equivalent to the unitary group U ~ SU x S1.
More precisely, Bokstedt was interested in the covering space JK(Z,p) of J(p)
corresponding to the cyclic subgroup of order 2 of m1.J(p) = Z ® Z/2. After
completion at the prime 2, he constructed a map

¢ (BAL(Z)Y)y — JK(Z.p)
which induces a split surjection on all homotopy groups. Let us write X and N

for the 2-completion of the maps X\ and X\ respectively: it turns out that the
composition

(BGL(Z) 1)y %+ JK(Z,p)s — J(p)2 > BO3

is exactly . Recall that the localization exact sequence in K-theory implies that

~

(BGL(Z[3]) 1)z = (BGL(Z) ")y x (51)s.
Therefore, ¢ provides a map
¢ (BGL(Z[3)M)2 — J(p)2
which also induces a split surjection on all homotopy groups. Since the 2-torsion
of K.(Z) is known by Table 1 of [35] and Theorem 0.6 of [28], it is easy to check
that ¢ and ¢ are actually homotopy equivalences. Consequently, we obtain (see

also Corollary 8 of [35]):

Proposition 5.5. For all primes p =3 or 5 mod 8, there is a pull-back diagram

o~

~ ~ A ~
(BGL(Z)T)2 x (81)2 —— BO»

L B

o~

N b N
(F'¥P)g —— BU,.

Consequently, there is a fibration

SUy L (BGL(Z)T)y 2 BOs .
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This fibration induces the long exact sequence

s mSU®Zy 5 Ky(Z) ® Zo 25 mBO ® Zy —s mi_1SU @ Ly — -+ -
Remember that m;SU = 0 if ¢ is even and m;SU =2 Z if ¢ is odd > 3.

Theorem 5.6. The 2-adic products
K3, 13(Z) ® Kgr7(Z) = Kg(ops11)42(Z) ® Ly

Ko 15(Z) ® Kgey5(2) = Kg(opop1)42(2) © 2o

are trivial for all integers s and t > 0.

Proof. For any product mentioned in the statement of the theorem, let us consider
the commutative diagram

Ki(Z) @ KnZ) —— KipnZ) —— Kin(Z)®Zs

l Aw @A l A li*

mBO @ m,BO ——— muyBO —— w4 BO®Zs,

where the bottom left horizontal arrow is the product map in 7,BO and where
the right horizontal arrows denote the tensor product with Zy. Let z € Ki(Z)
and y € Ki(Z). One has clearly A.(y) = 0 since m;BO = 0 for k = 8t + 5 or
k = 8t+ 7. Thus, A (2 xy) = A(2)A(y) = 0. This shows that the 2-adic product
zxy € Kiyy(Z) ® Z; belongs to the kernel of X*, and consequently to the image
of ny @ Mk SU ® Z; — Kiyx(Z2)® Z;. Since i + k is even, the group m;SU is
trivial and z x y vanishes. O

In the next theorem, we look at the groups Kg41(Z) for s > 0. Remember that
K1(Z) =2 Z/2 and that Kgy1(Z) = Z & 7Z/2® (finite odd torsion group) for s > 1
by Table 1 of [35] and Theorem 0.6 of [28]. The fibration given by Proposition 5.5
provides the exact sequence

0 — 1o 1SU ® Zp = Ty 2 Koy 1(Z) ® Zy 2 73541 BO ® Ly =2 ZJ2 — 0

if s > 1 (if s =0, 7;SU = 0). Let us write z; for the element of order 2 in
Kgs+1(Z). We denote by y,, for s > 1, the generator of the infinite cyclic summand
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of Kgs11(Z) whose image under the 2-adic completion Kg.1(Z) — Kgs41 (Z)®Z;
is exactly the image of a generator of mg;4 15U ® Zg under the homomorphism
N 1 T8e 415U ® Zg = Zg — Ksgy1(Z) ® Za.

Theorem 5.7. Consider the 2-adic product
Kg.11(Z) ® Kgi11(Z) = Kg(o 1) 42(Z) ® Zy
for any integers s, t > 0.

(a) Foralls andt > 1, ys*y, = 0.
(b) For alls >0 and allt > 1, 5%y, = 0.

(¢) For all s andt >0, x5 x 2 is the generator of Kg(sy4)12(Z) ® Zs = Z/2.

Proof. The commutativity of the square

Kgs11(Z) —— Kzot1(Z)® Zg

lx* lﬁ*

8.4 1B0 —— 7. 1BO®Zy,

where the horizontal arrows denote the tensor product with Z;, and the definition
of ys show that A\ (ys) = 0. We deduce similarily that A.(y;) = 0. This implies the
vanishing of Ay (ys*y:) and Ay (zs*y;). The fact that mg(, )49 SU = 0 then enables

us to deduce the triviality of the products ys xy; and z; *y, in K8(5+z)+2(Z) ®Zs.
The image of , under A, is the generator ¢, of mg,41BO = Z/2 and it is known
that cscq is non trivial in mg(, 4 ) 19 BO (see [32], p. 304). Therefore, it follows from
the equality A (zs x 2:) = ¢s¢; that the product zs 2, does not vanish. O

Corollary 5.8. The 2-adic products
Kgo12(Z) ® Kgy5(Z) = Kg(y ) 47(Z) ® Zo

Kgs2(Z) ® Kgyy7(Z) — Kg(ste41)41(2) ® Zs

are trivial for all s and t > 0.
Proof. According to Theorem 5.7 (c),

Kgs12(Z) ® Zo = (K1(Z) * Kss+1(Z)) ® Zs .
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This implies the assertion because the products

Kgs11(Z) © K81 45(Z) = Kg(o 1) 16(Z) ® Zy =0

and
Kg:11(Z) ® Kg147(Z) = Kg(o141)(Z) © Zg =0

are obviously trivial (see Table 1 of [35] and Theorem 0.6 of [28]). |

For the next result, let us call z; the element of order 2 in Kg;12(Z) = Z/2 &
(finite odd torsion group).

Theorem 5.9. Consider the 2-adic product

Kgs11(Z) ® Ko 12(Z) = Kg(yy1)13(Z) ® Zn
for any integers s, t > 0.
(a) Foralls > 1 and allt >0, ys x 2z, = 0.
(b) For all's andt >0, x5 x 2 is an element of order 2 in Kg(, 4y y3(Z) ® Z

Proof. Because of Theorem 5.7 (c),

(Kgs11(Z) % Kgy12(Z)) @ Zy = (K1(Z) » K35 11(2) * K1 41(2)) ® Zy

and assertion (a) follows from ys *x 2, = 29 x ys * ; = 0 by Theorem 5.7 (b).
Similarly, =5 * 2; = 29 * 25 x 2; is non trivial according to Proposition 12.17 of [1]
and Corollary 4.6 of [13]. m|

We may summarize our results on the 2-adic products in the K-theory of Z as
follows.

Corollary 5.10. The 2-adic product
x: Ki(Z) @ Ki(Z) — Kiyk(Z) ® Zo

is trivial for all positive integers i and k, except ifi =k =1 mod 8 or i =1 mod
8and k=2 mod 8 (ori=2 mod 8 and k =1 mod 8) where its image is cyclic of
order 2.

Let us conclude this section by the following observation about the relationships
between products in algebraic K-theory of the ring of integers Z and the Dwyer-
Friedlander map relating the algebraic K-theory of Z to its étale K-theory (see
Section 4 of [17]).

Proposition 5.11. For any odd prime l and any integer n > 2, the image of the
product map
* Kanl(Z) & Kanl(Z) I K4n72(Z)
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is contained in the kernel of the Dwyer-Friedlander map Ka, _9(Z) — Kg}_5(Z[7]).

Proof. The products in algebraic K-theory and étale K-theory commute with the
Dwyer-Friedlander map. Observe that

. . Z if n is odd,
K§, (@) = 1
Z[|lwn(Q)|, "  if n is even.
Hence Kgﬁkl(Z[%]) = Hélt(Z[%]; Z;(n)) is cyclic. But the product in étale K-theory
is just the cup product in étale cohomology. This shows that the product
K5, 1(Z[3) K5, 1 (Z[7)) — Kih »(Z[7])

n—1

is zero because the cup product HY ® HL — HZ is anticommutative. O

6. Products in the algebraic K-theory of cyclotomic fields

The results of Section 5 indicate that the 2-adic products in K.(Z) are trivial or
have a very small image. In this section, we show that in the case of products in
the K-theory of number fields, the image of product maps can be quite big. In the
proof, we use the methods of [9] and [10]. Let us consider an odd prime number
[, a positive integer m, and the cyclotomic field £ = Q(&m~) obtained from Q by
adding a primitive root of unity &~ of order I™. Our goal is to show that for n
odd, the product homomorphism

*: K1(F)® Koy 1(F)i — Ko, (E),
has a big image.

If R is a commutative ring, X g is aring spectrum with respect to p : XgAXg —
Xreor — Xg, where the first map is the pairing which was also called p at the
beginning of Section 3 (see [21], Proposition 2.4.2) and the second is induced by
the multiplication R ® R — R. The product structure of K,(R), also denoted by
*, is given by the composition

* 1 Kz(R)(X)Kk(R) 2 XrpmXR A 7T¢+k(XR/\XR) e W¢+kXR = Kerk(R) .

Recall that the K-theory with Z/I™-coefficients (for a prime [ and a positive integer
m, with m > 2 if [ = 2) may be defined by Ky(R;Z/I™) = (M N Xgr), where
M is the mod I™ Moore spectrum (i.e., such that HoM = Z/I"™, HyM = 0 for
k # 0). Notice that M is a ring spectrum with identity i3, and product s (see
[27], p. 22). We also consider the following products (see also [13]):

*: Ki(R) ® Kip(R; ZJI™) 2 m X g @ mp(M A Xg) 25 mign(M A Xr A Xg) 25
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7Ti+k(M A XR) = Kz—f—k(Ra Z/lm)
and

*: Ky (R Z)I™) ® Ki(R; ZJ)1™) = my(M A XR) ® mp(M A Xg) 2

e (M A M A Xp A Xg) 9% 1 (M A XR) = Koy (R Z/0™Y.

Remark 6.1. Since M is a ring spectrum, the diagram

idAZ s ipr Ald

SANS —— SAM —— MAM

[ N

iM id

S — M —_— M

commutes and implies the compatibility of the three products, i.e., the commuta-
tivity of the diagram

id®red red®id
Ki(R) ® Ki(R) —— Ki(R) ® Kp(R;Z/I™) —— Ki(R;Z/1™) ® Ky(R; Z/1™)

- I -

red id
Kitw(R) ——  Kiu(BZ/I1) —— Kitiu(R;Z/1™),

where red is the map which is induced on K-theory by the reduction of coefficients
mod ™.

For any ring R, there is the following Bockstein long exact sequence

— Ku(R) 5 Ku(R) — Kn(RZ)I™) - K 1(R) — -+

where b is the Bockstein homomorphism.

Lemma 6.2. For any x € K;(R) and any y € Ky(R;Z/I™), one has b(z xy) =
zxb(y) € Kipp-1(R).
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Proof. The Bockstein homomorphism b is induced by the obvious map ¢ : M —
1S which fits into the commutative diagram

SAM —0u M

[ an |-

SAY-ls —— . nlg
and provides the commutativity of

Ki(R)® Ky(RZ/I™) ——  Kijx(R;Z/I™)

| 12t |6

Ki(R)® Ky-1(R) ——  Kip-1(R)

and the statement of the lemma. O

This lemma implies the formula

6(Trpo(uxBy)) =Trgpluxb(By)),
where v is any element € K((E) = E*, 5, = (&) € Ko(E;Z/I™) is the Bott
element (see Definition 2.7.2 of [34]) and 1'rg/q is the transfer map (see [25],
Section 4). Using this equality, we can rewrite the definition of the Stickelberger
pseudosplitting homomorphism A from [8], Section IV.1, or [10], Definition 3.2, as
follows.

Definition 6.3. There is a homomorphism

AP Kon 1(Fp)i — Ko, (Q)r
P

where A — Hp A, and A, 2 Ko, 1(Fp); — K2,(Q); is given by the formula

Treo(Xs(p) *b(8™)P" ) if { does not divide n,
Ap(rp {

Trgo(As(p) * b(B™)"0™ 1) if I divides n,
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where b is a natural number such that (b,w,1(Q)) =1 and &, is a generator of
the group Ko, 1(Fp);. In addition, X\s(p) € £ are the twisted Gauss sums (see

[9], Definition 3) and = 14+ " + 12" + ... = 1= € Z,.
Theorem 6.4. Let I be the image of the map

Trg
K1(E)® Koy 1(E); == Kon(E), —%° K2,(Q)1

where n is an odd integer. Then the exponent of the group Ko, (Q);/I divides the
number (#Koy, (Z),)2.

Proof. Consider the localization sequence

o
0— K?n(Z)l — KQn(Q)l — @Kanl(Fp)l — 0.
p

By Definition 6.3, we see that image A C I. On the other hand, by Proposition
2 of [9], the composition OA acts by raising into the power with exponent an
integer |(b7H1 — 1)CQ(—?’L)|;1 (recall that the Gauss sums used in the construction
of A depend on b), where (g(s) is the Riemann zeta function. Consider now
z € K2,(Q); and z = 9(z) € P, K2,,—1(Fp);. The computations above show that
for every b,

A(z)
x‘(b"+171)<Q(7n)‘;1 € KQn(Z)l v

1
l

The greatest common divisor of all (5”11 — 1)|;"! over the integers b which are

i
l

relatively prime to w,+1(Q) equals the number |w,41(Q)|; ", by Lemma 2.3 of

[15]. Since the integer |wn+1(Q)CQ(—n)|f1 divides the number ¢ of elements in
the group Ko, (Z);, it follows that = imageA C I. O

Remark 6.5. Observe that in an abelian group the product of a torsion element
and a nontorsion element is again nontorsion. Hence, every torsion element in
Ko, _1(F) can be written as a quotient of two nontorsion elements. Consequently,
the subgroup of K1(E)*Ks,, 1(F) generated by the subset {zxy | z € K{(F),y €
Ko, 1(F), y nontorsion } contains the subgroup Ki(F)x Ko, _1(F); of Ko, (F).

Remark 6.6. It follows from Theorem 6.4 and Theorem 3.4 of [10] that the image
of K1(E)* Ko, _1(FE); under the transfer Trp g : K9, (F) — K2,(Q) contains the
group of divisible elements D(n); =2 Kefl(Z[%]) from Section 5.2 of [9] (see also [8],
Section 1V.3).
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