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On 7r-hyperbolic knots and branched coverings

Luisa Paoluzzi*

Abstract. We prove that, for any given n > 2, a 7r-hyperbohc knot is determined by its 2-fold
and ra-fold cyclic branched coverings We also prove that a 27r/m-hyperbolic knot which is not
determined by its m-fold and ra-fold cyclic branched coverings, 2 < m < n, must have genus
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Keywords. Hyperbolic knots, Seifert surfaces, cyclic branched coverings, orbifolds

1. Introduction

The aim of this work is to prove the following result

Theorem 1. Given n > 3, any Conway irreducible hyperbolic knot is determined
by its 2-fold and n-fold cyclic branched, coverings

A knot K is Conway irreducible if it does not admit any Conway sphere, l e a

sphere S which meets K m four points and such that S — U{K) is incompressible
and boundary incompressible m S3 —U(K), where U(K) is a tubular neighbourhood

of if A knot K is hyperbolic if its complement S3 —U{K) admits a complete
hyperbolic structure of finite volume and it is 27r/n-hyperbohc, n > 2, if the orb-
lfold, whose underlying topological space is S3 and whose singular set of order n
is K, is hyperbolic (for basic definitions about orbifolds see [12]) Equivalently, K
is 27r/n-hyperbohc if its n-fold cyclic branched covering is a hyperbolic manifold
and the covering group acts by isoinetries

We want to reduce the statement of Theorem 1 to a simpler form To this
purpose we prove

Proposition 1. Theorem 1 is equivalent to the following
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Theorem 2. Let K and K' be two ix-hyperbolic and 2tt/n-hyperbolic knots, n > 3.

If K and K' have the same 2-fold and n-fold cyclic branched coverings then K and
K' are equivalent, i.e. the pairs (S3,if) and (S3,if') are homeomorphic.

Proof: According to Thurston's orbifold geometrization theorem [13], [14] (see also
[3] for a proof in the case of good orbifolds of cyclic type, those we are dealing
with) and to the classification of 3-dimensional Euclidean crystallographic groups
(compare Dunbar's list of non-hyperbolic orbifolds with underlying space S3 in
[5]), the class of hyperbolic knots coincides with that of 2-n/n-hyperbolic knots
for all n > 3, with the unique exception, in the case n 3, of the figure-eight
knot 4i. Observe now that a closed 3-manifold is geometric if and only if it is

atoroidal. This means that the 2-fold cyclic branched covering M of a hyperbolic
knot K is geometric if and only if the knot is Conway irreducible. Indeed, the only
possible images of incompressible tori of M in the orbifold (S3,if) are Conway
spheres, since K is hyperbolic and thus atoroidal (see [4] for the characteristic toric
decomposition of an orbifold). In particular, a hyperbolic knot is tt-hyperbolic
only if it is Conway irreducible. This proves that Theorem 1 implies Theorem
2. On the other hand, a Conway irreducible hyperbolic knot, which is not tt-
hyperbolic, admits a Seifert fibred 2-fold cyclic branched covering. Thurston's
orbifold geometrization theorem ensures the existence of a Seifert fibration for the
manifold M which is preserved by the action of the covering involution. Involutions
of this type were studied by Montesinos in [7]. The possible quotient knots, which
are also hyperbolic, are either 2-bridge knots or Montesinos knots with at most
three tangles. Hodgson and Rubinstein proved that 2-bridge knots are determined
by their 2-fold cyclic branched coverings [6]. On the contrary, the 2-fold cyclic
branched covering of a Montesinos knot can be also the 2-fold cyclic branched
covering of a torus knot. However, for n > 3, the n-fold cyclic branched covering
of the hyperbolic Montesinos knot is hyperbolic because of Thurston's orbifold
geometrization theorem, while the the n-fold cyclic branched covering of the torus
knot is Seifert fibred. This shows that, for any given n > 3, a Conway irreducible
hyperbolic knot which is not 7r-hyperbolic is determined by its 2-fold and n-fold
cyclic branched coverings.

Remark that the proof of Theorem 2 does not require Thurston's orbifold
geometrization theorem any longer. Under the extra assumption n even, Theorem
2 was proved by Zimmermann. In fact, Zimmermann proved more generally that
a 2ir/n- and 27r/m-hyperbolic knot is determined by its n-fold and m-fold cyclic
branched coverings provided that n and m are not coprime [17]. We are then left
to consider only the case n odd of the Theorem.

The proof of the Theorem relies on the following facts:
i) The existence of a minimal genus iï-equivariant Seifert surface for a knot K

and any given finite group H of symmetries of the knot [15].
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Remark. Throughout the paper the expression symmetry of a knot K will stand
for finite order diffeomorphism of the pair (S3,if) preserving the orientation of
S3.

ii) The positive solution of the Smith conjecture; i.e. if a diffeomorphism of S3 of
finite order fixes pointwise a link L, then L is the trivial knot [8].

iii) A 27r/n-hyperbolic knot K which is not determined by its n-fold cyclic branch¬
ed covering M, n > 3, admits a symmetry of order n with non-empty fixed
point set A such that the quotient of K under the action of the symmetry is

the trivial knot. Let K and A be the images of K and A in this quotient:
K U A is a two trivial component link. If n is not a power of 2 there are at
most two 27r/n-hyperbolic knots K and K' with the same n-fold cyclic branched

covering M. K' is the preimage of A in the cyclic covering of S3 branched
along K. These results are due to Zimmermann [17] and their proof is based on
certain considerations on the Sylow subgroups of Iso^(M) and on the Smith
conjecture.

Notice that the fact that a 7r-hyperbolic knot is determined by its 2-fold and
n-fold cyclic branched coverings for n odd is quite peculiar. Indeed, it was proved
by Zimmermann [16] that, for any two coprime integers n > m > 2, there exist
arbitrarily many pairs of 27r/m- and 27r/n-hyperbolic knots with the same m-fold
and n-fold cyclic branched coverings. As a corollary of the proof of the Theorem
(see Lemma in Section 2) we obtain that all the 27r/m- and 27r/n-hyperbolic knots
which are not determined by both their m-fold and n-fold cyclic branched coverings
have the same genus, which is equal to (m — l)(n — l)/2. Finally, observe that
there are infinitely many sets of four (resp. three) different 7r-hyperbolic knots
with the same 2-fold cyclic branched covering (see [9], [16]), so that the 2-fold
cyclic branched covering alone is not sufficient to determine a tt-hyperbolic knot.

To conclude this Section, we want to remark that the problem solved in this
paper was originally suggested by the following question put by Boileau and Flapan
in [2]:

"Is there an integer n > 3 such that any two prime knots having the same
m-fold cyclic branched coverings for 2 < m < n are necessarily equivalent?"

Notice that, if we restrict our attention to the class of Conway irreducible hyperbolic

knots, the answer to this question is positive and one can choose n 3 which
is obviously the best possible. However, we can also consider the class of all hyperbolic

knots and in this case the answer is still positive. It is easy to see that n 5

is sufficient to determine a hyperbolic knot although perhaps not best possible.
Indeed, suppose that a hyperbolic knot K is not determined by its 2-fold, 3-fold,
4-fold and 5-fold cyclic branched coverings. In particular K is not determined by
its 4-fold and 5-fold cyclic branched coverings and K is tt/2- and 2tt/5-hyperbolic
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because of Thurston's orbifold geometrization theorem Because of the above
remark on the genus of a 27r/m- and 27r/n-hyperbohc knot which is not determined
by both their m-fold and n-fold cyclic branched coverings, K has genus 6 This
means that K is not the figure-eight knot and thus it is 2tt/3-hyperbolic Again,
since it is not determined by its 3-fold and 4-fold cyclic branched coverings its
genus must be 3 which is absurd

The author wishes to thank M Boileau for valuable discussions and the referee
for suggesting improvements to the first version of the paper

2. Proof of Theorem 2

Throughout the paper we shall use the following conventions

p* denotes the covering projection induced by the covering transformation * (l e

* generates the group of covering transformations),
Fix{*) denotes the fixed-point set of the map *
Let if be a knot and h a symmetry of K with Ftx(h) =/= 0, in particular, because
of Smith conjecture, Ftx(h) is the trivial knot If Fix{h)C\K 0 and the order of
h is n we say that h is an n-pertodtc symmetry If Fix{h)C\K ^ 0, then it consists
of two points, the order of h is 2 and we say that h is a strong inversion A knot
is strongly mvertible if it admits a strong inversion For other basic definitions
about knots, the reader is referred to [10]

Assume that K and K' are two it- and 27r/n-hyperbolic knots with the same
2-fold and n-fold cyclic branched coverings for some n odd Denote by M the
hyperbolic manifold which is the common 2-fold cyclic branched covering of K and
K' The orbifold hyperbolic structure of (S3,if) and the one of (S3,K') induce
hyperbolic structures on the manifold M By Mostow's rigidity theorem, these two
structures on M coincide (for the Mostow's rigidity theorem and other basic facts

in hyperbolic geometry see [1]) This means that the we can choose two elements

t and t' G Iso^(M) such that the quotient of M with respect to the action of t
(resp t') is S3 branched along K (resp K') It is easy to see that, if K and K'
are distinct, t and t' cannot be conjugate Since Iso^(M) has finite order, t and

t' generate a dihedral group where the element {tt') has even order, say, 2d, else t
and t' would be conjugate Define r (tt'Y By [17, Corollary 1] both K and K'
admit n-penodic symmetries h and hi respectively whose actions on K and K' give
the trivial knot Let h and hi be lifts of these symmetries in Iso-^(M) and note that

t and h (resp t' and h') commute Note that ph(KUFix(h)) ph,(Fix(h')UK!)
is a two trivial non exchangeable component link [17, Theorem 1] Indeed if the
components were exchangeable K and K' would coincide

Remark now that 'ph(M) S3 since it is the 2-fold cyclic covering of S3

branched along one of the two trivial components of ph(KUFix(h)) In particular



Vol. 74 (1999) On tt-hyperbolic knots and branched coverings 471

M is the n-fold cyclic covering of S3 branched along L which is either a knot, if
the linking number of the two components ofp^K U Fix(h)) is odd, or else a two
component link.

Repeating the same reasoning for h! we obtain another link L' with the same
number of components of L. It is clear that L and L' are 27r/n-hyperbolic.

The idea is now to study these n-fold cyclic branched coverings which are
better understood and easier to handle than the 2-fold cyclic branched coverings
(compare Zimmermann's result stated in iii) Section 1). We distinguish two cases

according to if the groups generated by h and h! are conjugate or not. We shall
see that these two different algebraic situations geometrically stand for the cases
when L and L' are links or knots respectively.

Case A: The groups generated by h and h! are not conjugate in Iso(M).

Let q be any maximal prime power divisor of n and consider the cyclic groups
of order q (hnlq) and (h'nlq). These groups cannot be conjugate in Iso(M) else

the element conjugating the first to the second would map Fix(h) Fix{hn/q) to
Fix(h') Fix{h'n/q) and conjugate the group (h) to the group (h'). In particular,
for each prime p dividing n, the p-Sylow subgroup of (h) is a proper subgroup of
a p-Sylow subgroup of Iso(M).

Claim 1. L and L' are knots.

Suppose, on the contrary, that L and L' are two component links. We need the
following result whose proof can be found in [11, Chapter 2, 1.5].

Proposition 2. Let H be a subgroup of a finite p-group S; then either H is
normal in S or a conjugate subgroup sHs~ of H, different from H, is contained

in the normahzer Ns(H) of H in S.

Let p be a fixed prime divisor of n and q its maximal power dividing n. By
the above discussion, Proposition 2 applies to H := (hn/q) and S a p-Sylow
subgroup of Iso(M) containing (hn^q). We can assume, up to conjugation, that h!nlq

belongs to such p-Sylow subgroup. According to Proposition 2, either h'nlq or
s^n/qs-l normalizes hnlq and thus normalizes h. It is worth remarking that the

groups generated by hnlq and by shnlqs~^ have trivial intersection for, otherwise,
their fixed-point set would coincide implying that the two groups would coincide.
Remark moreover that Fix{h'nlq) and Fix(shn^qs~^) are both non-empty with
exactly two components. This means that there is an element « G Iso(M) of order
q which normalizes (h) and induces a ^-periodic symmetry fj of L; this symmetry
cannot be a strong inversion because q is odd. Fix(fj) is a trivial knot by Smith
conjecture andp^ (Fix(ff)) U"=1h'l(Fix(r/)). Clearly the number of components
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of '/\ (Fix(fj)) divides n. Now we want to prove that h%(Fix(rjj) and h?(Fix(rjj)
either coincide or are disjoint. Since the number of components of hl(Fix(r]))
is two for all i while n is odd, we reach a contradiction. Indeed, assume that
hl(Fix(rj)) and h?(Fix(rj)) have a common component. Then both hlr]h~l and
hPrihr3 would act locally as rotations along such component (and project on fj).
Since hlrjh^1 and hPrihr3 are isometries, the groups they generate would coincide
and their fixed-point sets as well.

Claim 2. K admits two n-periodic symmetries induced by h and hi.

Since the groups generated by h and h' are not conjugate, by [17, pages 668-

669] we have that, up to conjugation, h and hi commute. We also know that
h and t commute thus both hi and t preserve Fix(h) and generate a group of
isometries, which does not contain h, isomorphic to Z2n, for t is not an inversion
of Fix(h). We have that hi and t commute and h and hi project to distinct
n-periodic symmetries of K.

Claim 3. The two n-periodic symmetries induced by h and hi must coincide.

Let hi the isometry induced by h! on the orbifold (S3,K). Obviously hi must

preserve K. By Smith conjecture hi cannot fix K pointwise so it must act as

an n-periodic symmetry of K. Since h and hi have the same order and act by
rotating the knot K, there exist a number t, prime with n, such that hlh1 fixes
K pointwise. By Smith conjecture we obtain that the group generated by h and
that generated by hi coincide.

This contradiction shows that Case A cannot occur.

Case B: The groups generated by h and hi are conjugate in Iso(M).

In this case we can assume h hi (up to a conjugation and perhaps a change of
generator in one of the two groups) and we have the group (t,t' h) Ti^d © ^n-
Since t and r commute, r must project to a symmetry f of K.

Claim 4. f is a 2-penodic symmetry and pr(K) is the trivial knot.

Indeed, remark that f lifts to r and rr in Iso-^(M) and that rr is conjugate either
to t (if d is even) or to t' (if d is odd). Thus rr and consequently f have non-empty
fixed point set. Since f and h commute, f cannot be a strong inversion. Now t and

rr commute and so t induces a 2-periodic symmetry f of prT(M) (this orbifold
is either (S3,K) if d is even or (S3,if if d is odd). Clearly Fix(f) is the trivial
knot because of Smith conjecture. By commutativity Pf(K) pfpT(Fix(r)) and

Pr(Fix(f)) pfprT(Fix(r)) coincide thus proving that Pr{K) is the trivial knot.
We have thus seen that K admits a 2-periodic symmetry f and an n-periodic
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symmetry h such that both Pf(K) and p^K) are the trivial knot. Note that f and
h generate a cyclic group of order 2n. We can then apply the following Lemma to
prove that the genus of K must be (n — l)/2 and L is a two component link.

Lemma. Let H be a cyclic group acting smoothly and orientation preservmgly on
S3 and leaving a non trivial knot K invariant. Assume that two elements h,h' G H
are respectively an n-periodic symmetry and an m-periodic symmetry of K, with
1 < m < n. If both ph(K) and ph>(K) are the trivial knot, then the genus g of K
satisfies g (n — l)(m — l)/2 and m and n are copnme.

Proof: Since H is finite we can assume that it acts as a group of isometries for
some Riemannian metric on S3.

Claim 5. There exists F a Seifert surface of minimal genus g for K which is
invariant by the action of h and hi.

The proof of the Claim follows easily from the existence of a minimal genus Seifert
surface which is iï-equivariant [15]; one must only observe that Fix(h) and Fix(h')
are non empty and must intersect F. Notice, that since F has minimal genus and
since pu{K) and ph>(K) are trivial knots, Ph(F) and Ph>{F) have genus 0. In
particular if Fix(h) and Fix(h') did not intersect F, F would have genus 0, which
is impossible.

We distinguish two cases:

a) Fix(h) Fix(h').
Let k be the number of points in the intersection Fix(h) D F. The Riemann-
Hurwitz formula yields:

(n - 1)0 -l)=2g= (m- 1)0 - 1).

If k 1 the genus of the knot is 0 and the knot is trivial, against the hypothesis.
Then it must be n m and this is again against the hypothesis. So this case
cannot happen.
b) Fix(h) Pi Fix(h') 0; in particular n and m are copnme.
Let k be the number of points in the intersection Fix(h) (~)F and k' the number of
points in the intersection Fix(h') n F. Applying as above the Riemann-Hurwitz
formula we have:

Note that h' (resp. h) acts freely on the k (resp. k') points of intersection of F
with Fix(h) (resp. Fix(h')), so that k mv and k' nv'. Notice moreover that
h (resp. hi) induces an n-periodic (resp. m-periodic) symmetry on the quotient of
(S3,if) by the action of hi (resp. h) by commutativity. We can now apply once
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more the Riemann-Hurwitz formula obtaining

(n - l)(v - 1) 0 (m - l)(v' - 1)

from which one deduces k m, k' n and 2g (n — l)(m — 1)
Assume now that the two fixed-point sets intersect but do not coincide Since

H is a group of isoinetries, the intersection has exactly two points and one of the
two symmetries must be a strong inversion for the fixed-point set of the other In
this case, however the group would be dihedral and not cyclic Since the above

are the only possible cases, this proves the Lemma

Let us go back to the proof of the Theorem We have the following commutative
diagram of coverings

(S3,K) ^- M ^ (S3,K!)
I

Ph
I îv

(S\Ph(KuFix(h))) <£- (S3,L) ^ (S3,ph,(K'uFix(h<)))

where t and t' denote the projections of t and t' on the orbifold ph(M), h and
hi the projections of h on the orbifolds (S3,K) and (S3,K') respectively and

ph(K U Ftx(h)) ph,{Fix{h') U K') are the same link (where components are
taken m the order)

Claim 6. There exists a minimal genus Seifert surface F for K which is preserved,
by the action of h such thai the number of points of intersection of F and Fix(h)
is 2

This is a consequence of the second part of the proof of the Lemma The linking
number of the two components of ph(K U Ftx(h)) is congruent modulo 2 to the
intersection number of F and Ftx(h), which is even This implies m particular that
L is a two component 27r/n-hyperbolic link One can reach the same conclusion
also by considering the group Ü2d © Zn, generated by t, t' and h, which preserves
Fix(h) but cannot be a group of symmetries of a geodesic

Claim 7. The link L has genus 0

Consider ph(F) this is a disk with boundary ph(K) intersecting ph(Fix(h)) m
two points Since the two linksph(KL)Ftx(h)) &ndph,(Ftx(h!)L)K') are the same,
Ph{F) is also a disk with boundaryph,{Fix{h')) intersectingph,(K1) m two points
The lift of this disk to the orbifold (S3,L), l e p,ph(F), is a Seifert surface for
the link L Again an easy computation with the Riemann-Hurwitz formula yields
that its genus is 0 Clearly L must have genus 0

A hyperbolic (27r/n-hyperbolic) two component link cannot have genus 0

because it is anannular This final contradiction proves Theorem 2
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