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Open manifolds with nonnegative Ricci curvature and
large volume growth

Changyu Xia

Abstract. In this paper, we study complete open n-dimensional Riemannian manifolds with
nonnegative Ricci curvature and large volume growth. We prove among other things that such
a manifold is diffeomorphic to a Euclidean n-space R™ if its sectional curvature is bounded from
below and the volume growth of geodesic balls around some point is not too far from that of the
balls in R™.

Mathematics Subject Classification (1991). (1985 Rewision): 53C20; Secondary 53C21,
53R70, 31C12.

Keywords. Open manifolds, nonnegative Ricci curvature, large volume growth.

1. Introduction

Let (M, g) be an n-dimensional complete Riemannian manifold with nonnegative
Ricci curvature. The relative volume comparison theorem [BC, GLP] says that
the function r — M is monotone decreasing, where B(p,r) denotes the
geodesic ball around p € M with radius r and w,, is the volume of the unit ball in
the Kuclidean space R™. Define aps by

s — i YlB@.]

r—00 wnr”

It is easy to show that a;; is independent of p € M, hence it is a global geometric
invariant of M. We always have

apwpr™ <vol[B(z,r)] Swpr™, Yr>0, VYze M. (1.1)

We say (M, g) has large volume growth if apy > 0. It should be noticed that, in
this case, 0 < aps < 1 and when oy = 1, M is isometric to R™ by Bishop-Gromov
comparison theorem [BC, GLP].

A manifold M is said to have finite topological type if there is a compact domain
€2 whose boundary 02 is a topological manifold such that M \ Q is homeomorphic
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to 9Q x [0,00). Abresch-Gromoll [AG] first obtain the finiteness of topological
type for complete n-manifolds (M, g) with Ricy; > 0 and small diameter growth
diam(p,r) = o(%n), provided that the sectional curvature K, > Kg > —o0.

Let (M, g) be an n-dimensional complete manifold with Ricys > 0 and apr > 0.
It has been proved by Li [L] that M has finite fundamental group. Anderson
[A] has showed that the order of the fundamental group of M is bounded from
above by ﬁ Perelman [P] has proved that there is a small constant e(n) > 0
depending only on n such that if ap > 1 — €(n), then M is contractible. It
has been shown by Shen [S2] that M has finite topological type, provided that
w = ap + O(M%r) and, either the conjugate radius conjyr > ¢ > 0
or the sectional curvature Ky > Ko > —oco. Petersen [Pe] conjectured that if
app > % then M is diffeomorphic to R™. Recently, Cheeger and Colding [CC]| gave
a partial answer to Petersen’s conjecture. In fact, they proved that there exists a
small constant d(n) > 0 such that if cpy > 1—6(n), then M is diffeomorphic to R”.
Another result which supports stongly Petersen’s conjecture has been obtained by
do Carmo and the author recently in [CX].

In the present paper, we study complete manifolds with nonnegative Ricci
curvature and large volume growth. Let M be a complete manifold and p € M
be fixed; we say that K;,“i“ > c if for any minimal geodesic « issuing from p all
sectional curvatures of the planes which are tangent to + are greater than or equal
to ¢. This notion was first introduced by Klingenberg [K].

Theorem 1.1. Let (M, g) be a complete Riemannian n-manifold with Ricci cur-
vature Ricpy > 0, apr > 0. Suppose that K;,mn > —C for some point p € M and
some positive constant C. If for all r > 0, we have

then M is diffeomorphic to R™.

The following result is a generalization of Shen’s theorem mentioned above.

Theorem 1.2. Let (M, g) be a complete Riemannian n-manifold with Ricci cur-
vature Ricyr > 0, aps > 0. Suppose that K;nm > —C for somep € M and C > 0.

If 1
. vol[B(p, )] > 71} _ <10g 2>n
lim su — = apy |7 <2 an, 1.3

7’~>+oop { ( wp ™ M 8vC M ( )

then M has finite topological type.

Let (M,g) be an n-dimensional complete noncompact Riemannian manifold.
Fix a point p € M. For any r > 0, let

k = inf K
(7) M\llél(pvr)
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where B(p,r) is the open geodesic ball around p with radius r, K denotes the
sectional curvature of M, and the infimum is taken over all the sections at all
points on M\ B(p,r). It is easy to see that k,(r) <0 and that k,(r) is a monotone
function of r.

U. Abresch [A] proved that if fooo rkp(r)dr > —o0, then M is of finite topological
type. Recently, Sha and Shen [SS] showed that a complete open Riemannian
manifold M has finite topological type if Ricas > 0, ap > 0 and

(1.4)

for some constant C' > 0 and all » > 0.
In this paper we then prove the

Theorem 1.3. Given C > 0, and an integer n > 2, there is a positive constant
€ = ¢(n, C) such that any complete Riemannian n-manifold M with Ricci curvature
Ricpyr >0, apr >0, kp(r) > —ﬁ and

vol[B(p,r)]

< (1 1.5
o <(1+eam (1.5)

for some p € M and all r > 0 is diffeomorphic to R™.

Now we list the following Toponogov-type comparison theorem for complete
manifolds with K;,ni“ > ¢ obtained by Machigashira which will be used in this
paper. Let M 2(c) be the complete simply connected surface of constant curvature
c. Throughout this paper, all geodesics are assumed to have unit speed.

Lemma 1.1 ([M1], [M2]) Let M be a complete Riemannian manifold and p be a
point of M with K™ > c.
(i) Let ~v; : [0,l;] — M, 1 =0,1,2 be minimal geodesics with v1(0) = va(l2) =
p, 70(0) = y1(l1) and vo(lg) = ¥2(0). Then, there erist minimal geodesics ; :
[0,4:] = M?(c), i = 0,1,2 with 71(0) = 72(l2), 70(0) = 71(l1) and Fo(lo) = 2(0)
which are such that
L(vi) = L(%) fori=0,1, 2
and
£(=71(1),70(0)) > £(=7"(11),70'(0)),
£(—0(lo), £(—0'(10),72'(0)).
(i) Let v; = [0,4;] — M, i = 1,2 be two minimizing geodesics starting from
p. Let 5; : [0,1;] — M?(c) for i = 1,2 be minimizing geodesics starting from

same point such that Z(v{(0),75(0)) = £(717(0),72'(0)). Then d(v1(l1),v2(l2)) <
do(71(11),42(12)), where d, denotes the distance function in M?(c).

o~ O~
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2. Proof of Theorem 1.1 and Theorem 1.2

Let M be an n-dimensional Riemannian manifold and 1 < &k < n — 1. If for any
point z € M and any (k+1)-mutually orthogonal unit tangent vectors e, eq, ..., e €

T.M, we have Zle K(e Ae;) > 0, we say that the k-th Ricci curvature of M

is nonnegative and denote this fact by Ricg\? > 0. Here, K(e A ¢;) denote the
sectional curvature of the plane spanned by e and e;(1 < ¢ < k). Notice that if

RicS\Z) > 0 then Ricp, > 0.
We shall prove the following more general theorem than Theorem 1.1.

Theorem 2.1. Let (M, g) be a complete Riemannian n-manifold with Ricg\z) >
0, apy > 0. Suppose that KZ’,’”” > —C for some C > 0 and p € M. If for all
r >0, we have

kn
vol[B(p,r)] B 1 2 kI
_ 1+2™" 1 2.1
T 8vor © \1t e 2vor o @1)

then M 1is diffeomorphic to R™.

For a point p € M; we set dy(z) = d(p,z). Notice that the distance function
dy is not a smooth function (on the cut locus of p). Hence the critical points of d,
are not defined in a usual sense. The notion of critical points of d;,, was introduced
by Grove-Shiohama [GS].

A point ¢(# p) € M is called a critical point of d,, if there is, for any non-zero
vector v € Ty M, a minimal geodesic + from ¢ to p making an angle Z(v,~'(0)) <
with v. We simply say that ¢ is a critical point of p. It is now well-known that a
complete noncompact Riemannian n-manifold M is diffeomorphic to R™ if there
is a p € M such that p has no critical points other than p.

Let 3 be a closed subset of the unit tangent sphere S, M at p € M. Let Bx;(p,r)
denote the set of points z € B(p, r) such that there is a minimizing geodesic « from
p to z with %(0) € ¥. For 0 < r < o0, let ¥p(r) denote the set of unit vectors
v € ¥ such that the geodesic v(t) = exp,(tv) is minimizing on [0, r). Notice that

Sp(r2) C Tp(r1), 0 <1y <rg; Tp(o0) = (1] p(r). (2.2)
r>0

The following generalized Bishop-Gromov volume comparison theorem was ob-
served in [S2].

Lemma 2.1. ([S2]) Let (M,g) be a complete n-manifold with Ricpr > 0. Let

Y C SpM be a closed subset. Then the function r — W is monotone
decreasing.
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Lemma 2.2. ([S2]) Let (M,g) be a complete n-manifold with Ricpyy > 0. The
Sfunction
vol[By, () (p,7)]

W™

r —
is monotone decreasing. If in addtion that M has large volume growth, then

VOI[BEP(T) (p, T’)]

Wi T™

> ap, VYr>0. (2.3)

Lemma 2.3. Let (M,g) be a complete n-manifold with Ricyr > 0 and apr > 0.
Then
vol[By; (o0) (P, 7)]

Wy ™ 2 om

, ¥r>0. (2.4)
Proof. Observe that

vol[ By, (r) (p;7)] _ vollBy, (o0) (P, 7)] + vOllBs;, (r)\53, (00) (P 7)]

™ o (2.5)
By the standard argument, we have
/',,’I'L
volBy, (r)\53, (o) (P51)] < — - vOl(Xp(r) \ Bp(c0)) (2.6)
It follows from (2.2) that
lim vol(%,(r) \ ¥p(o0)) = 0. (2.7)

P—F R,

Substituting (2.6) into (2.5) and letting » — oo, one obtains by virtue of (2.7) and
(2.3)

VOl[BEp<oo)(p7 7’)] > Tifm VO][BEP<T)(p7T)]

im
r—00 wyrh ~ r—oo Wy r™
Z QNS
Using Lemma 2.1, one obtains (2.4). O

Lemma 2.4. Let (M,g) be a complete n-manifold with Ricyy > 0 and apg > 0.
Let R, denote the(point set) union of rays issuwing from p. Then for any r > 0
and any x € OB(p,r),

3=

d(z, Rp) < 204;/[% {w - aM} . (2.9)

Wpr™
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Proof. Let s =d(x, R,); then s <r and
B(z,s) U By, () (p,2r) C B(p,2r). (2.10)
The left hand side of (2.10) is a disjoint union. By (1.1), we have
vol(B(z,s)) > apwys™.
From Lemma 2.1 and Lemma (2.3), one obtains

2"vol[B(p,r)] > vol[B(p, 2r)] (2.11)
> vol|B(z, s)] + vol[ By, (o) (p, 2r)]

> apwns” + aprwn (2r)".

o oo (BB L

WpT™

thus

This proves (2.9). O
Let p,q € M. The excess function epg(x) is defined by
epq(2) = d(p,x) + d(q,z) — d(p, q)

Lemma 2.5. ([AG, S1]) Let (M, g) be a complete n-manifold with Ricg\];) >0 for
some 1 <k<n-—1. Lety:[0,a] — M be a minimal geodesic from p to q. Then

for any x € M,
skt F
crala) <8 (=) (2.12)

T

where s = d(x,v), » = min(d(p,x),d(q,z)).

Let v : [0,00) — M be a ray issuing from p and let z € M. It is easy to see
that e, .y (@) = d(p,z) + d(v(t), ) — t is decreasing in ¢ and that e, () > 0.
We define the excess function e, - associated to p and v as

ep () = tli+moo €p (1) (2)- (2.13)
Then
epy(T) < e )(@), VE>0. (2.14)

Lemma 2.6. Let (M,g) be a complete open Riemannian manifold with K;”m =
—C' for some C >0 and p € M. Suppose that x # p is a eritical point of p. Then
for any ray v : [0,00) — M issuing from p

1 2
€p77(x) Z ﬁlOg (m) . (215)
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Proof. For any t > 0, take a minimal geodesic o; : [0,d(z,v(¢))] — M from z to
~(t). Since z is a critical point of p, there exists a minimal geodesic 7 from z to p

such that ¢7(0) and 7/(0) make an angle at most 5. Applying Lemma 1.1 to the
geodesic triangle (’Y|[O,z]70t77)7 we obtain

cosh(V/Ct) < cosh (\/Gd(m(t))) cosh (\/Ed(m)) . (2.16)

Multiplying the above inequality by 2 exp (x/@(d(p z) — t)) and letting ¢t — o0,
we obtain

exp (\/Ed(p, x)) < exp (\/aepﬂ(m)) cosh (\/6d(p,x)) . (2.17)

Then Lemma 2.6 follows from (2.17).
Proof of Theorem 2.1. We shall prove that M contains no critical points of p(other

than p) and therefore it is diffeomorphic to R™. To do this, take an arbitrary point
z(# p) € M and set r = d(p, z). It follows from (2.1) and (2.9) that

o) < (o () e
, < 0 SPEEL,
DI SA\GVE 8 \1te—2ver :

Thus we can find a ray v : [0,4+00) — M issuing from p and satisfying

d( )<< L ( 2 ))k ot (2.18)
s = d(x, o ST, .
VEARVE B Ty eV

Take q € v such that d(z,q) = d(z,v). By (2.18), d(z,q) < r. Also one can easily
deduce from triangle inequality that

min (d(p,z),d(y(t),z)) =r, Yit>2r

Thus ¢ € v((0,2r)) and so
d(£7’7|[0,2r]) = 8.

Using (2.12), (2.14) and (2.18), we obtain

epy(@) <€)y 2r) () (2.19)
1
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By (2.15) and (2.19), x is not a critical point of p. Thus M is diffeomorphic to
R™. This completes the proof of Theorem 2.1. O

Theorem 1.2 is a consequence of the following more general result.

Theorem 2.2. Let (M, g) be a complete Riemannian n-manifold with Rich];) =
0, apr > 0. Suppose that K;m" > —C for somep e M and C > 0. If

kn
. vol[B(p,r)] > kn } B <log 2) ==
limsu — PR S <27 | —— -, 2.20
'r’~>+o£) {( wp ™ M 8\/0 M ( )

then M has finite topological type.

Proof of Theorem 2.2. By the Isotopy Lemma [C, G, GS], it suffices to show that
for any x € M, if d(p,z) is large enough then z is not a critical point of p. Our
assumption (2.20) enables us to find a small number ¢ > 0 and a sufficiently large
71 such that

kn

vol[B(p,r)] e _,, [log 2 R+I
_— + 27" — Yr > rq. 2.21
( o o | TR < e ap, Yr>mr (2.21)

Since
. 2
 imlog <1+T¢a> =log 2,

there is a sufficiently large ro such that

2
log <1+€72\/a> . log 2
—¢

8/ C 8/C

Let 79 = max(ry,r2); then for any r > rg we have from (2.21) and (2.22) that

Yr > ra. (2.22)

log2 kk?n
<{142 % o (2.23)

1 2 G2l
<<{1l4+2™ lo e
(8\/07" g<1+e*2‘/af>> M

Now one can repeat the arguments as in the proof of Theorem 2.1 to prove that
M\ B(p,rg) contains no critical points of p. Therefore M has finite topological
type. This completes the proof of Theorem 2.2. O

vol[B(p,r)]

W™
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Proof of Theorem 1.3. Let 6 = §(C) < mlj be a solution of the following inequality
cosh?(4v/C6) — cosh (6\/55) <0. (2.24)

We take our € = ¢(n,C) in Theorem 1.3 to be

g <g)n (2.95)

Take an arbityary point z(# p) € M and let r = d(p,z). It suffices to prove
that z is not a critical point of p. Let v : [0,2r] — M be a minimizing geodesic
from p to ¢ = v(2r) such that s := d(z,v) = d(z, By, (o) (p,2r)). Using the same
arguments as in the proof of (2.9), we obtain

d(z, By, (o0)(P,27)) < 2a;4% {M - aM}; T (2.26)

W T™

Take a minimizing geodesic ¢ from z to ¢. For any minimal geodesic o1 from z to
p, let p=01(dr) and § = o(dr). Applying the Toponogov comparison theorem to
the hinge (o[ 5,1, 1l[0,s,]) iIn M — Bz (p), we have

cosh <%d(ﬁ7 cj)) < cosh?(44/C5) — sinh?(4v/C¥) cos 0 (2.27)

where § = Z(07(0),07(0)) be the angle of ¢ and o1 at = and we have used the fact

that the sectional curvature of M satisfies K > —%Q on M — Bz (p). Let m € v

such that d(z,m) = d(x,~); it then follows from the triangle inequality that

d(p,q) > d(p,q) — d(p,p) — d(qq) (2.28)
= d(p,m) + d(g,m) — [d(p,z) — d(p, )]
— [d(=, q) — d(=, q)]
= 20r + [d(p, m) — d(p,2)] + [d(g, m) — d(q,)]
> 26r — 2d(z, m).

From (2.25), (2.26) and our assumption (1.5), we have

d(z,m) = d(z, By, (o) (p, 27)) (2.29)
< 26%1”
or

< —.
— 4
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Thus we have

atp, ) > Sor (2.30)

Substituting (2.30) into (2.27) and using (2.24), we find that

sinh?(4v/C6)cost < cosh?(4VC§) — cosh ) d(p, q) (2.31)
< cosh?(4v/C5) — cosh (6\/56))
<0,
0> g (2.32)

Hence z is not a critical point of p. Thus M is diffoemorphic to R™. The theorem
follows.
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