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Concentration multi-échelles de courbure dans des fibres
de Milnor

Evelia Garcia Barroso et Bernard Teissier

Résumé. Etant donne un germe de morphisme analytique complexe / (C2,0) —> (C,0) a
fibre réduite, nous étudions la manière dont la courbure de Lipschitz-Killing de la fibre de Milnor
C(X)e /^1(A) nBe C C2 pour la métrique induite par celle de C2 se concentre asymptotique-
ment, lorsque (e, A) —> (0,0), dans l'intersection de cette fibre avec des boules dont les centres
Ç ;(A) peuvent être décrits mais surtout dont les rayons sont de la forme | A | ^CQ) ou les p(Q) sont

des nombres rationnels dont la collection ne depend que de la topologie du plongement dans C
du germe de courbe plane réduite C C(0)

Abstract. Given a complex-analytic map-germ / (C2,0) —> (C,0) with reduced fiber, we
study how the Lipschitz-Kilhng curvature of the Milnor fiber C(A)e f~1(X) nBe C C2 for the
metric induced by that of C2 concentrates asymptotically, as (e, A) —> (0, 0), in the intersection of
this fiber with balls, whose centers Ç

^ (A) can be described, but whose radii, more importantly,
are of the form | A|/^CQ) where the p(Q) are rational numbers depending only on the topological
type of the embedding in C2 of the germ of reduced plane curve C C(0)

Mathematics Subject Classification (1991). 32S55

Mots-clès. Singularités, Courbe plane, Fibration de Milnor, Courbure

0. Introduction

Dans ce travail nous étudions le comportement asymptotique de la courbure de la
fibre de Milnor

d'un germe de courbe plane réduite (C,0) C (C2,0) défini par une équation
f{x,y) 0 lorsque e et A tendent vers 0 II s'agit de la courbure de Lipschitz-
Killmg associée à la métrique induite sur C(A) par celle de C2 On connaît déjà,
grâce au travail de Langevm [La] la valeur limite de l'intégrale de cette courbure

c(x)t
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où fi^> est le nombre de Milnor en 0 de la singularité C(0) C et n^> sa
multiplicité en 0 diminuée de 1 II faut souligner que le terme de droite ne dépend que
de la topologie du plongement dans C2 du germe de courbe plane réduite (C, 0)

D'après [Te3], le nombre ^'(C) + n^> (C) est le nombre d'intersection à l'origine
de C avec une de ses courbes polaires relatives génériques, qui sont définies par
les équations

oy ox

C'est aussi le nombre des points d'intersection (transverses) d'une telle courbe
polaire avec une fibre de Milnor f(x,y) — A 0 qui tendent vers 0 avec A Ce

résultat est donc au fond de la nature d'un résultat de théorie de l'intersection,
c'est à dire que l'on compte des points, ou le degré de cycles, sans se préoccuper
de leur position

Nous allons obtenir une information plus précise sur la géométrie de la fibre
de Milnor en essayant de localiser les régions de C(A) où se concentre asympto-
tiquement la courbure, et ce faisant mettre en évidence le fait que la concentration
de courbure est un phénomène mufti-échelles la courbure se concentre (voir le

corollaire 3 1) dans les intersections avec C(A) de boules, dont les centres Ç^ (À)

peuvent être décrits, mais surtout dont les rayons sont de la forme |A|pW) où les

p(Q) sont des nombres rationnels dont la collection ne dépend que de la topologie
du plongement dans C2 du germe de courbe plane réduite (C, 0) II nous semble
intéressant que cette description multi-échelles elle même ne dépende que de la
topologie

Lorsque le germe C est analytiquement irréductible en 0, î e est une branche,
la donnée des exposants p(Q), qui sont alors en nombre égal à celui des exposants
de Puiseux, et celle de la quantité de courbure qui se concentre dans les boules de

rayon p(Q) permettent de déterminer les exposants caractéristiques de Puiseux de

C, et l'on peut donc dire que le comportement asymptotique de la courbure de la
fibre de Milnor permet de déterminer la classe d'équismgulanté de la fibre limite
singulière Le cas réductible est plus compliqué, en particulier parce qu'une partie
de la courbure reste "diffuse", comme dans le cas extrême de xn + yn 0, où il n'y
a pas de concentration de courbure dans des boules de centre différent de l'origine
(et donc dépendant de A) Nous savons mesurer quelle est la partie diffuse

Une autre manière de décrire ce phénomène de concentration est de dire qu'il
exprime en partie comment la structure du diviseur exceptionnel E d'une résolution
des singularités plongée minimale (Z,E) —> (C2,0) de (C,0) se reflète dans la
géométrie de la fibre de Milnor Le caractère multi-échelles provient, de ce point
de vue, de la structure non-lméaire du graphe d'intersection de ce diviseur
exceptionnel, c'est à dire de l'existence de "sommets de rupture" dans ce graphe,
selon une correspondance étudiée en détail dans [GBf], et il serait intéressant de

donner une preuve de notre résultat fondée sur le relèvement à la surface Z où C
est résolue de la métrique de C2 en une métrique singulière le long du diviseur
exceptionnel
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Notre technique de preuve est toute différente et est basée sur l'analyse du
contact (voir le §1 pour une définition précise) avec les branches de C des différentes
branches des courbes polaires génériques qui a été faite dans [GB1], [GB2].

L'idée heuristique part du fait que par définition de la courbe polaire -^-+t-^
0, ses points d'intersection avec C(A) sont les points de C(A) où la tangente a la
direction correspondant au paramètre t. Pour prouver le théorème de Langevin,
on compte le nombre de ces points et on applique la formule d'échange (Théorème
3.1). Nous observons que ces points ont répartis sur les différentes branches de la
courbe polaire, et si le contact avec C en 0 d'une de ces branches est fort, elle varie

peu lorsque l'on varie le paramètre t et par conséquent ses points d'intersection
avec C(A) bougent peu, ce qui signifie que beaucoup de courbure se concentre au
voisinage de ces points. Rappelons que le vocable branche désigne un germe ana-
lytiquement irréductible de courbe, et en particulier une composante irréductible
d'un germe de courbe.

Si l'on souhaite représenter au moyen d'un logiciel graphique une projection
générique dans R3 d'une fibre de Milnor de courbe plane complexe, il sera
impossible de le faire effectivement en respectant la courbure dès qu'il y aura plus
d'une paire de Puiseux, en raison de ce caractère multi-échelles qui implique qu'en
certains points la courbure paraîtra infiniment grande (ou petite) par rapport à

celle d'autres points. Connaître a priori les échelles en jeu devrait permettre de

corriger la représentation de telle manière qu'elle devienne utile.
Remerciements: Ce travail a été en partie déclenché par des questions de

Langevin au second auteur, et Langevin lui-même a obtenu des résultats préliminaires,

poursuivis dans une direction différente de celle suivie ici, la courbure des

feuilletages, par P. Rouillé [Ro]. Nous voulons remercier Patrick Popescu-Pampu,
élève à l'ENS, pour sa lecture aiguë et ses remarques pertinentes sur une version
préliminaire.

1. Invariants du type topologique

Soit f{x,y) 0, f{x,y) G C{x,y} et /(0,y) ^ 0, une équation d'un germe
irréductible de courbe plane à singularité isolée à l'origine (C,0) C (C2,0) de

multiplicité n. Si x 0 est transverse à C il existe une paramétrisation de C de
la forme suivante:

'

x tn

ce qui équivaut à la paramétrisation à la Newton-Puiseux y 2_,aix • Toutes

les autres paramétrisations à la Newton-Puiseux de C sont déduites de celle-ci par
l'action du groupe \in des racines n-ième de l'unité déterminée par x1/" —s- ra1/™
où lu G Un est une racine primitive n-ième de l'unité.
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Soient {/?o, • • • ßg} C N les exposants caractéristiques de C qui sont définis

par récurrence de la manière suivante: ßo m{C) n,
ßq+\ min{i e N : a, ^ 0 et i ^ 0(mod p.g.c.d.(A), • • • Aï))}-

II existe g > 1 minimal tel que p.g.c.d.(/?o, • • • ßg) 1-

Soient alors: Iq m(C) et lq p.g.c.d.(A), • • • ,ßq) p.g.c.d.(/q_i,/3q). Il
existe des paires d'entiers positifs {(nik,nk)9k=i} tels que ßq mqlq, lq-\ nqlq et

p.g.c.d.(mq,nq) 1. Les paires {(Tifc,«fc)fc=i} sont appelés paires caractéristiques
de Puiseux de C.

Soit r(C) {(C, D) / C n'est pas une composante de _D} C N le semi-groupe
de valeurs de C, où (C,D) est la multiplicité d'intersection à l'origine de C avec

une courbe quelconque D.
D'après Zariski [Zal] il existe un système minimal de générateurs {/?o, • • • ßg}

du semi-groupe T(C) qui vérifie Ä) A) to(C)j Ä /?i, et /?q nq_i/?q_i +
Aï ~ Aj-1 pour tout </ G {2,... ,g}. On voit ainsi que la donnée du semi-groupe
r(C) équivaut à celle des paires caractéristiques de Puiseux.

De plus si C et D sont deux branches à l'origine on appelé contact de C avec
D le nombre rationnel

cont(C,D) n max {oYdx(yt(x1/n) - Zj{xl/m))}
l<r<nl<j<m

où 77i(C) n, m(D) 'm, {Vi{x^^n')}^=i est l'ensemble des paramétrisations
de C et {zî(x(-1/m->)}^=1 est l'ensemble des paramétrisations de D. Le contact
entre C et D donne donc une mesure de la coïncidence des paramétrisations à la
Newton-Puiseux de C et de D.

On doit remarquer aussi que

cont(C,L>) _ cont(L>,C)
m{C) ~ m(D)

'

Soient (C, 0) C (C2,0) un germe réduit de courbe analytique plane à singularité
isolée à l'origine de multiplicité n, et C C\ U • • • U Cr sa décomposition en

composantes irréductibles. Notons / l'ensemble {1,... ,r} et {nt /3q, A^}
les exposants caractéristiques de C%, l\= p.g.c.d.(A^, • • • ßlk) on k £ {0,... g,},
{(m\tn\)}9k=i les Paires caractéristiques de Ct, T(Ct) =< {/3g,... ,A^} > le

semi-groupe de valeurs de Ct et atJ cont(Cj, C3) avec j ^ i.
Nous pouvons représenter la topologie de la courbe C au moyen du diagramme

d'Eggers (voir [E] et [GB1]). Rappelions sa définition.
À chaque branche C% de C on associe un ensemble S% := S} U S*2 où S^

et Sf

On appelle chaîne élémentaire de Ct le graphe Kt défini comme suit:

1. Les sommets sont des points noirs et un point blanc; les points noirs sont en
correspondance bijective avec les éléments de St par une application v que
nous appelons valuation.
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2. Le sommet blanc n'a pas de valuation.
3. Les sommets sont reliés de la façon suivante:

Le sommet blanc est relié au sommet noir de valuation la plus grande par une
arête, qui est discontinue si la valuation est un élément de S2 — S}. Si on
prend un sommet noir, disons Q, dont la valuation n'est pas maximale, il est
relié au sommet de valuation supérieure la plus proche par une arête, qui est
discontinue si v{Q) est dans S2 — S}.

Si on prend deux branches différentes Ct Co de C, on appelle graphe partiel
L de a et C,,lQ o, le plus petit sous-graphe connexe de Kt qui contient les

sommets Q G Kt avec v(Q) < —^-. Les graphes partiels KlQ et KQl sont égaux.

Finalement on définit le diagramme d'Eggers T(C) de C comme le graphe
obtenu en identifiant les graphes partiels KlQ, KQl dans la réunion disjointe des

chaînes élémentaires K\,... Kr.
On voit aussitôt que deux germes de courbes réduites sont équisinguliers si et

seulement si ils ont le même diagramme d'Eggers.

Exemple 1.1. Soit la courbe C f /i./2 0 où fi(x,y) (y2 - x3)2 -
Ayx6 - xg et f2(x,y) {y2 - x3)2 - 4yx5 - x7.

Les développements de Puiseux de fi(x,y) 0 sont

j/2 -x3/2

_x3/2 _ lx9

et les développements de Puiseux de Ji{xiV) 0 sont

y2 _x3/2 + ïx7/

y3 x3/2 _ x7/4

v, _x3/2 _ lx7/

Le diagramme d'Eggers de C est

q/4*v

7/4

• 3/2
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On appelle point hase de T{C) le sommet de T{C) de valuation la plus petite.
A chaque sommet noir Q de T{C) on associe trois nombres :

d\{Q) :=nombre d'arêtes discontinues de T(C) qui sortent de Q vers un sommet
noir de valuation plus grande ou vers un sommet blanc de T(C).
di{Q) :=nombre d'arêtes pleines de T(C) qui sortent de Q vers un sommet noir
de valuation plus grande ou vers un sommet blanc de T(C).

Nous dirons qu'un sommet est simple si d\(Q) + d^iQ) 1, un sommet de

bifurcation sinon.

k(Q) := nombre d'arêtes pleines entre Q et le point base.

Soit Q un sommet noir de T{C) tel que d^{Q) > 0. Le fait que l'arête qui
sort de Q dans la chaîne élémentaire Kt de T{C) soit pleine équivaut à dire que

la valuation de Q est égale à —— où k k(Q).

Notons Iq l'ensemble {i G / / Q G Kt} où Kt est la chaîne élémentaire de la
branche Ct, et Iq le sous-ensemble de Iq vérifiant: Iq Iq si d^iQ) 0 et

I*Q UeIQ : v(Q) f^-\ sid2(Q)>0.
n

2. Calculs sur les branches de la courbe polaire

Soient / : C2 —> C un morphisme défini dans un voisinage ouvert V de l'origine
et / l{x,y) : C2 —> C une forme linéaire sur C2.

On appelle courbe de niveau A de / la courbe C(A) C V d'équation f(x, y) A.

On appelle courbe polaire de / dans la direction / le lieu C; des points critiques
dans V de (/,/) : V —> C2.

Ainsi, si P est un point de Ci alors ou bien P est un point singulier de C(A)
ou bien P est un point lisse de C(A) et la droite tangente à C(A) au point P est

parallèle à l{x,y) 0.

Remarque 2.1. La courbe polaire est vide dans un voisinage assez petit de 0 si
et seulement si C f(x, y) 0 est lisse en 0. Nous nous plaçons dans le cas où C
est singulière.

Nous pouvons écrire l'équation d'une courbe polaire de / sous la forme:

D'après les résultats généraux sur l'équisingularité (voir [Za3] et [Tel]), il existe un
ouvert de Zariski U de l'espace P1(C) des directions de projection tel que pour
(<t : t) G U les courbes polaires soient toutes équisingulières. Pour simplifier
nous nous restreindrons à considérer l'intersection de U avec l'ouvert affine a ^ 0,
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poserons er 1 et, pour t G U l~l A1, noterons P(t) la courbe polaire correspondante,

appelée par abus de langage courbe polaire générique. C'est la fibre au
dessus de t G A1 de la surface P définie dans un ouvert de C3 par

Dans toute la suite nous supposerons que le choix de la coordonnée x est assez

général pour que le point t 0 appartienne à l'ouvert U.

Toujours d'après les résultats généraux sur l'équisingularité (voir loc.cit.), il
existe un recouvrement de U par des ouverts relativement compacts (Us)s et pour
chaque ô il existe un rayon e(ô) > 0 tel que dans l'ouvert Us x B^), où Be B(0, e)

est la boule ce centre 0 et de rayon e, la famille des courbes polaires est une famille
équisingulière de courbes planes et en particulier pour tout t g Us le nombre
des composantes irréductibles de P(t) est constant et la surface P de Us x B^n
réunion des (P(t))tç.us est réunion des surfaces Pq paramétrées de la forme:

,mq

Pqn(us x Be(s)) \ x~ q

{) \y y(tq,r) avecy(tg,r)GC{tg,r}

P(t) désigne donc aussi bien la courbe polaire correspondant à la direction t que
la fibre au dessus de t G U de la surface P. Puisque la famille des P(t) est

équisingulière pour t g U, nous nous permettrons souvent de supprimer le t pour
des caractères numériques tels que multiplicités, nombres d'intersection, qui sont
constants pour t g U, et de même pour les composantes irréductibles de P que
nous allons introduire:

Rappelons le résultat suivant:

Théorème 2.1 ([GB2]). Dans Ug X B^) les composantes irréductibles de P(t)
se rassemblent en l ensembles (que nous appellerons "paquets") Y®3 (t) indexés

par les sommets noirs (Qj)i<j<i de T(C). De plus:
1. Toutes les composantes irréductibles d'un paquet T^3(t) ont le même contact

avec chacune des branches de C et cette condition de contact est donnée des

deux manières équivalentes suivantes:
(a) Pour chaque composante irréductible Pq(r) de T^3 (t) et pour toute com¬

posante irréductible Ct de C telle que Q3 appartient a la chaîne élémentaire
de Ct on a l'égalité:

(Ct,Pq(r)) n\ßi + n%v(Q0)-ß>k

m(Pq(r)) n\...n\

où k := k(Qj).
(b) Chaque composante irréductible Pq(r) de F^3(t) a un développement de
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Puiseux de la forme:

il — a /mq -i- -i- n fsrnq _|_ n fßi _|_ _|_ n j-ßq i i

U U /J-, Pq

où t est un paramètre uniformisant, l'indice io est tel que Q3 appartient à

la chaîne élémentaire de la branche CtQ de C, l'entier mq := m(Pq{r)) est
la multiplicité à l'origine de Pq(r), et les bs(r) sont dans C{t}.

Ici le tilde indique que tous les exposants ont été divisés par un facteur commun

q

De plus (a„Hi,... asnlQ, a ,0 a *0 ,an^ v(q^_i) sont les coefficients

d'un développement de Puiseux de CHi, jusqu'au terme nlov(Qj) — 1, et sont donc
indépendants de t pour toute valeur t qui appartient à l'ouvert Ug d'équismgulanté.
Ceci signifie qu'à division près des exposants par un facteur commun, le

développement de Puiseux de Pq{r) coïncide avec le développement de Puiseux de la
branche CtQ de la courbe C au moins jusqu'au dernier terme précédant la valeur
ntov(Qj) — 1. On ne peut être plus précis en général puisque le type topologique
de la courbe polaire (et en particulier le nombre de ses composantes irréductibles)
n'est pas déterminé par celui de la courbe C.
2. La multiplicité de F^3(t) est égale à n\ ¦ ¦ ¦n\(di(QJ) + n^^d^iQj) — 1) où

l'index i e Iq D

L'égalité 2 est due a Eggers [E] et le résultat (a) est dû à Smith [S] et Merle
[Me] dans le cas irréductible.

Remarque 2.2. La décomposition de P{t) M Y®3 (t) donne une décomposition
Q,

dans Us x ~Be(g\ de la surface P de la forme suivante: P MF^3 avec F^3

Q,

U rQ^)-
reus

Le développement (b) est une paramétrisation analytique de la surface Pq C

Du point de vue de (b) on peut montrer le résultat suplémentaire suivant qui
généralise un résultat connu dans le cas irréductible [S], [T4] :

Lemme 2.1 ([GB2]). Si Q est un sommet noir simple de T(C) et Pq(r) est une
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branche du paquet F^(t) alors dans le développement de y(t) de la branche F(t)
le ternie tmqV^' n'apparaît pas.

Nous allons utiliser le théorème pour calculer en fonction de A et t les
coordonnées des points d'intersection de la courbe de niveau C(A) et la courbe polaire
P{t).

Pour simplifier la notation dans le calcul qui suit nous noterons Pq une des

composantes irréductibles de la surface Y®3, que nous continuerons par abus de

langage d'appeler "branche". Nous noterons mq la multiplicité à l'origine de Pq(r)
et eq + mq son nombre d'intersection en 0 avec C, pour t générique (voir [T3]).

Nous noterons jq le plus petit exposant plus grand ou égal à mqv(Qj)
apparaissant dans le développement de Puiseux yq{t,r) de Pq{r) en puissances de t.
Comme l'a montré E. Casas dans [Ca2] dans le cas irréductible, ce nombre ne

dépend pas seulement du paquet F^3, mais bien de la composante Pq choisie. E.
Casas a calculé (Prop. 1.1 de [Ca2]) la valeur de 7q pour une courbe générique
dans sa classe d'équisingularité.

On peut donc écrire la partie (b) du théorème pour la surface Pq sous la forme
suivante:

_ j x tm"

Pq={ yq(t, r) anjm« + ¦¦¦ + asnjsm« + ¦ ¦ ¦ + blq (r)t^ + • • •

où les coefficients des puissances de t plus petites que jq sont indépendants de

t car ils coïncident avec les coefficients d'une développement de Puiseux d'une
branche Ct de C (voir [GB2]).

Nous allons utiliser aussi le fait suivant: Pour tout t G Us, la multiplicité
d'intersection de Pq(r) avec C est strictement plus grande que mq car C est
singulière. Cela permet d'écrire (C,Pq{r)) eq + mq avec eq > 0. En fait, la somme

sur toutes les composantes Pq(r) de P(t) des eq est égale à ^'(C) (voir [Te3]).
Ainsi l'égalité (C,Pq{r)) eq + mq signifie que l'on a une identité

f(tm,yq(t,r)) ceq+mq(T)t^+m* +... avec ceq+mq(r) ± 0

Lemme 2.2. Le coefficient de tk dans la série f(tmq,yq(t,T)) G C{£,t} est

indépendant de t pour k plus petit que eq -\- ~fq.

Démonstration
II faut calculer l'ordre en t de

OT

df(tm",yq(t,T)) _ /ö/\ (dx\ (df\ (dy\
dr \dxJp\dTjp \dy)p [dr]p'e comme
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fdx\
\7T I 0, on a
\dTJpq

df(tm«,yq(t,T)) (df\ fdy\
dr \dy)Pq \dr)Pq

K >

Puisque dans le développement de yq(t,T) les puissances de t de degré plus petit
que 7q sont indépendantes de t on a

(df(tmq,y U,t)) \De plus ordt ^—-—¦ ] e„, il suffit de se placer dans des coordonnées
\ dy J

(s, y) telles que r 0, donc P ?f 0 et
oy

fdf(xq(t),yq(t))\
OTd* m J

II en résulte que nous pouvons écrire

at ox at

eq + mq - 1

et comme ordt (|f rnq — 1 on a ordt

(Pour plus de détails voir le Lemme 3 3 2 de [GB1])

> p -\- ^j I I

cata

II nous reste à en tirer des expressions pour le développement de x et y en fonction
de t, pour chaque valeur de A Or nous avons les faits suivants

1 D'une part la surface de C4 ayant pour équations

oy ox

admet localement sur Us et pour x,y et A assez petits une représentation

paramétrique sous forme d'un développement de t en puissances de Ae9+7<!

à coefficients analytiques en t En effet, en utilisant la paramétrisation simultanée

que nous avons vue plus haut de chacune des composantes irréductibles
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de la surface S d'équation ——hi"—— 0, et en la substituant dans f(x, y) — A,
oy ox

il vient
te«+m«V{t,T) -A 0

où V(t,r) G C{£,t} est une unité.
Si maintenant on considère la surface S' C C3 définie par cette équation, le

discriminant de sa projection dans le plan des (t, A) est défini ensemblistement

par A 0 et d'après le critère discriminant de Zariski (voir [Za3]) cela implique
î

l'existence d'un développement de t en puissances de \'q+mq, à coefficients
holomorphes en t.

2. D'autre part un calcul sans difficulté (voir page 214 de [GB1]) donne, pour A

fixé, l'égalité

(ai) (êk)

Pq

On en déduit que l'ordre en t de —— est au moins 7q — mq + 1. Par
\ÖT J pq

inversion de l'équation f{tmq,yq{t,T)) A comme ci-dessus on obtient un
développement de Puiseux de t en fonction de A. Puisque t est de l'ordre de

\cq+m,q on déduit de la remarque ci-dessus que l'ordre en A de —— ] est au
\dTjPq

moins — Le développement de t en fonction de A s'écrit donc
eq+mq

lq-mq
t

ct=l a>7,—m,+l

avec da(r) G C{t} et d\ ^ 0, où l'écriture signifie ici et dans la suite, que la

plus petite puissance de A dont le coefficient peut dépendre de t est A 'i+mi

Finalement, en utilisant ce que nous venons de voir pour calculer —— et ——,
OT OT

on voit que l'on a des développements de Puiseux pour les coordonnées x et y des

points de Pq(r) D C(X) dans l'espace (x,y, A,t) en fonction de A et t de la forme
suivante:

7,-1
v—> a v—> a

x= 2_^ ga\^+mi + 2_^ ga(T)\'i+->i où gmq y^O

a=mq a>lq ,_

7,-1
y Yl /A^*^ + Yl M)a^*^
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Ainsi quand t varie dans Ug, les coordonnées des points de P(t) où la tangente
à la courbe de niveau f{x,y) A a pour direction t ne dépendent effectivement
de t qu'à partir de l'exposant jq.

Le calcul précédent a été fait dans un ouvert Ug x &e{g), mais il est clair que la
forme du résultat est localement constante sur U, et donc indépendante de l'ouvert
Ug choisi.

3. Concentration de courbure

Le but de cette section est de montrer que la courbure des courbes de niveau
C(A) f(x,y) A de C est concentrée autour des points d'intersection de ces

fibres avec les branches des courbes polaires génériques de C.

3.1. Les boules

Soit £^0(A) le Point

7,-1
Q

,Xsi+ mq

7,-1

y
OL=mr.

h

dont les coordonnées sont les parties indépendants de t des développements (5).
S'il n'existe pas de coefficients indépendants de t dans l'expression (5) alors

egQo(A):=(O,O).

Notons C;(A) le point obtenu en remplaçant dans ^ 0(A) le nombre

complexe A par iulX où lu est une racine primitive (eq + mq)— ième de l'unité et

/€ {0,1,... ,(eq+mq-l)}.

Proposition 3.1. Sott T G U un compact quelconque. Alors il existe c(T) €
et eo > 0 tels que pour tout t £ T et pour tout e < cq les points d'intersection de

C(X) avec la branche Pq(r) du paquet T® de P{t) sont dans les boules fermées de

centre ç ;(A) et de rayon c(T)\X\ci+mi quand A tend vers 0.

Démonstration
T est recouvert par des ouverts Ug C\T. Soit (x,y) un point de C(A) C\Pq. Il existe
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eq + mq - 1)} tel que

M=\\(x,y)-^l(\)\\

\a>~/q

lAh+^llHI- (6)

Mais les gs{r), hs{r) sont holomorphes et restent donc bornées sur le compact T.
Ainsi quand A assez petit il existe une constante c{T) G R+ et il existe a(T) G R+
tels que pour t G T et A plus petit que a(T) on ait \\p\\ < c(T) et donc

M

D
Plus précisément:

Proposition 3.2. Soit T C U un compact quelconque. Soient T® un paquet de

la surface P avec v(Q) > 1 et Pq une surface irréductible de ce paquet. Pour tout

t G T et pour tout |A| assez petit les points d'intersection dans C de Pq{r) et

C{\) sont dans les boules B(£^,(A), | ù l G {0,. - 1)} et

p{Q)

(v(Q)

y(Q)

si Q est simple

si Q est un point de bifurcation différent du point base

si Q est le point base et est un sommet de bifurcation

où e(Q) est l'invariant polaire associé au paquet F^ pour toute branche Pq(r) de

F^ et Q est le prédécesseur de Q sur la chaîne joignant le point base à Q.

Remarque 3.1. Rappelions que l'invariant polaire associé au paquet F^, introduit

dans cf [Te3] où il est noté eq^™q pour chaque branche Pq, de multiplicité

mq du paquet

invariant de type topologique de la courbe C (voir [Te3], [GB2]).

-, est -—;—H) '' pour toute branche P„(t) de
m(Pq(T))

et est un
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Remarque 3.2. S'il existe un sommet de valuation 1 dans T{C) ce ne peut être

que le point base. Cela signifie d'après le lemme 3.1 de [GB2] que la courbe C
contient au moins deux branches transverses. Dans ce cas-là nous noterons F(°)(t)
le paquet de branches de la courbe polaire correspondant au point base.

Démonstration
Si Q est un sommet simple, d'après le lemme 2.1, on a jq > mqv(Q), donc il existe

1] G N - {0} tel que 1] ~fq - mqv{Q).
Ainsi d'après la proposition 3.1 si (x, y) G C(X) D Pq il existe / G {0,... ,(eq +

mq - 1)} et c{T) G R+ tels que

M \\(x,y) - e

et pour |A| assez petit on a a < 1, donc M < |A| e(Q)

Soit maintenant Q un sommet de bifurcation de T{C) différent du point base
de T{C). Ainsi

7g > mqv(Q) > mqv(Q)

où Q est le prédécesseur de Q sur la chaîne joignant le point-base à Q. Un
raisonnement comme ci-dessus donne le résultat.

Cependant si Q est le point base et est un point de bifurcation, alors jq >
mqv(Q) > mq car v(Q) > 1. On obtient le résultat en raisonnant comme ci-
dessus. D

Remarquons alors que pour A assez petit tout point d'intersection de P{t){C) —

T^> avec la courbe de niveau C(A) est dans une des boules que nous venons
d'introduire dans la proposition ci-dessus.

Ainsi nous avons associé à chaque surface Pq d'un paquet F^ de la surface P
des boules en nombre eq + mq ayant toutes le même rayon pour A fixé. Si on prend
une autre surface Pq> du paquet F^ les rayons des boules associées à Pq> et à Pq
coïncident pour A fixé. En conséquence, toutes les boules associées à des branches
du même paquet de la polaire ont le même rayon pour A fixé.

Proposition 3.3. Il existe une famille finie \b^,{\) := 5(£?,(A), |A|^))|
K q' q' Q,q,l

de boules dont
1. Les centres et les rayons dépendent explicitement de A.

2. Tout point d'intersection de P{t) — F' ' avec la fibre C{\) pour A assez petite
est dans une de ces boules.

3. Les exposants p(Q) qui apparaissent dans les rayons des boules ne dépendent
que de la topologie de C.

Démonstration
1 et 2 résultent de ce que nous venons de voir, et 3 du fait que l'invariant po-
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laire e(Q) et le diagramme d'Eggers sont des invariants topologiques (voir [Te2] et
[GB2]). D

Tandis que les rayons des boules de la proposition 3.2 dépendent seulement de

la valeur de A et de la topologie de la courbe C, leurs centres dépendent en général
du type analytique de C et pas seulement du type topologique.

Etudions maintenant le cas où le point base de T(C) est de valuation 1.

Lemme 3.1. Soit T^> le paquet de la courbe polaire P{t) dont le sommet associé

Q(°) vérifie u(Q(°)) 1. Alors
1. (F' ' ,C) (t — l)m(C) où t est le nombre de composantes tangentielles de C.

2. T^> est formé des branches de P{t) qui sont transverses à C.

Démonstration
S'il n'existe aucun sommet de valuation égale à 1 alors F1-0) est vide et (F1-0), C)
0. Cependant s'il existe un sommet Q' de valuation égale à 1, alors (F1- ' ,C)

VJ (Pq(r),C) où la somme est sur toutes les branches Pq du paquet T^>.

P,(r)er(°)
Comme la valuation de Q(o> est égale à 1, Q^> est le point base de T{C) et

cont(Ct,Pq) n% pour toute branche C% de C et pour toute branche Pq de F1-0-1.

Ainsi (Ct,Pq) ntmq et (C,F(o)) m(C)m(T^), c'est-à-dire que F^0) est transverse

à C. Etant donné que chaque composante de la courbe polaire qui est transverse

à C est dans le paquet correspondant à Q^>, F1-0-1 est la partie de P{t) qui est

transverse à C. De plus m(F(0)) d1(Q^)-l t- 1 et (F(o),C) (t-l)m(C).

Remarque 3.3. Ici et dans la suite, les Pq sont des composantes du paquet F^;
les indices q et Q ne sont donc pas indépendants. D

3.2. La courbure

Rappelions qu'à une variété réelle Vp C RN on peut associer en tout point z <eV
une courbure, dite de Lipschitz-Killing (voir [F] pour une définition précise) comme
suit: A chaque vecteur normal unitaire n G $N-p-l ^ y dans RN en z associons
la projection orthogonale Pn de V dans l'espace vectoriel engendré par Tv> et n.
Cette projection a pour image une hypersurface de Rp+1 qui est non singulière
en z, et on note ^j{V,n,z) sa courbure de Gauss au point Pn(z). La courbure de

Lipschitz-Killing est

K(V,z) c(N,p)

où c{N,p) est une constante de normalisation qui ne dépend que de N et p. On a
alors:
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Théorème 3.1 (formule d'échange [La]). Soit W un ouvert d'une courbe
holomorphe de C ; notons K la courbure de Lipschitz-Killing de W pour la 'métrique
induite et \/^(W,L)\ le nombre des points critiques de la projection de W
parallèlement à une direction de droite complexe L G P^C). On a l'égalité où les

intégrales sont prises par rapport aux mesures naturelles):

\K\dv 2ir [ \fj,(W,L)\dL
w

D

On déduit de ce théorème et de l'égalité ^ + ^ ^\C) + ^ (C)
(P(t),C) démontrée par Teissier (voir [Tel], [Te3]) le résultat suivant:

Théorème 3.2 (Langevin ([La])). On a l'égalité:

lim / \K\dv 2tt(ij(''2> +m(1)) (7)

où /x' > est le nombre de Milnor de C et /z' ' -\-1 est la multiplicité m(C) de C en
0. D

Remarque 3.4. On peut vérifier en suivant la démonstration que l'écriture
limei>_>o,|A|<<e peut être interprétée comme ceci: il existe dans le plan des (e, |A|)

une courbe analytique réelle, ne dépendant que du choix des coordonnées et de

l'équation de C, et admettant un développement de Puiseux

h fc+l
|A| ckep + ck+\e p H

telle que la limite ait la valeur annoncée tant que (e, |A|) tendent vers 0 dans le

premier quadrant en restant sous le graphe de la courbe. Cette condition sur le

passage à la limite peut être interprétée ainsi dans la suite de cette article.

Le résultat de Langevin mesure la quantité totale de courbure de C(A) qui se

concentre au point singulier 0 de f{x,y) lorsque e, A —s- 0. Le résultat principal de

cet article décrit de manière bien plus précise comment cette courbure se répartit
asymptotiquement sur la fibre C(A) lorsque (e, A) tend vers (0,0), |A| << e.

Théorème 3.3. Reprenons les notations de la proposition (3.3). Soit T^ ' le

paquet de la courbe polaire P{t) dont le sommet associé Q(o> vérifie v(Q^>) 1.

Alors

\K\dv-f \K\dv | 27r(t - l)m(C) (8)'

1(X([jQ ^ B^(X)) j
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où t est le nombre de composantes tangentielles de C.

Démonstration
Prenons W C(X)€. D'après la formule d'échange et la Proposition 3.3 on a

l'inégalité

\K\dv > 2tt \{P{t),C) - (P(°),C)] (9)

Mais d'après le théorème (3.2), l'inégalité (9) et l'égalité ^ + ^ {C,P{t))
on en déduit:

e \
\K\dv- \K\dv) =2tt(T('0>,C) (10)

D'où le résultat d'après le lemme 3.1. D

Corollaire 3.1. Etant donné un germe de morphisme analytique complexe

/: (C 0) —> (C,0) à fibre réduite, pour tout représentant assez petit, il existe un
système de boules B^^X) dont les centres, décrits au début de la section 3.1, sont
sur des courbes analytiques proches des composantes irréductibles d'une courbe

polaire relative générique de f et dont les rayons sont de la forme \X\P^', où les

p(Q) sont des nombres rationnels ne dépendant que du type topologique du germe
de courbe (C, 0) (/ (0),0), décrits dans la Proposition 3.2. Ces boules ont la

propriété que lorsque e et X tendent vers 0, \X\ << e, une partie de la courbure de

Lipschitz-Killing de la fibre de Milnor C(X)e se concentre asymptotiquement dans

la réunion de ces boules. La valeur de cette partie tend vers 2ir(^ ' -\- (2 —t)rn — 1)

où m est la multiplicité de (C, 0) et t le nombre de ses composantes tangentielles.

Nous dirons qu'il y a concentration de courbure sur C(A) si l'on peut montrer
qu'une partie de courbure est asymptotiquement contenue dans l'intersection avec
C(A) de boules dont le rayon tend vers 0 avec |A|. Le terme 2ir{Y^>, C) mesure la

partie "diffuse" de la courbure. Les deux cas extrêmes sont:

1. (r(°),C) 0, c'est-à-dire que toutes les composantes de C ont la même
tangente (Lemme 3.1) et alors toute la courbure se concentre asymptotiquement
dans des boules évanescentes. C'est en particulier le cas si C est analytiquement
irréductible en 0.

2. (T^\ C) (P, C), c'est-à-dire que toutes les branches de la polaire sont
transverses à C. Cela signifie que ^ +^ (p^ + 1)m(1), donc ^ (m(1))2,

et on sait ([Te3]) que cela implique que C est réunion de /Z1-1 +1 branches lisses

2 à 2 transverses, donc t ^> + 1.
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Remarque 3.5. On doit remarquer que les boules où se concentre asympto-
tiquement la courbure de C(A) quand A —s- 0 sont indépendantes de t, que leurs

rayons dépendent seulement de A et de la topologie de C, mais en principe leurs
centres dépendent du type analytique de C. Bien que les centres dépendent du
type analytique, on peut donc contrôler la "taille" et la géométrie de la région où
se concentre asymptotiquement la courbure de C(A) quand A —s- 0 à partir de la
topologie de la courbe C.

3.3. Le cas d'une branche

Soit f{x,y) 0 une équation pour un germe irréductible (C, 0) de courbe plane
décrite paramétriquement dans des coordonnées générales par le développement
de Puiseux :

x=tm
y =amtm + ¦¦¦ + akmtkm + aßltßi + + aßf> +... + aßgtß° +

Reprenons les notations du §1. Dans le cas d'une branche, l'arbre d'Eggers consiste
en une chaîne élémentaire contenant g sommets noirs, que nous noterons Q(j) par
valuations croissantes, et pour chaque Q(j), on a avec les notations ci-dessus

nn ßi map(Q(j)) — — pour q € Q(j),
m eq + mq

la notation q G Q(j) indique que la composante Tq de la courbe polaire appartient
à ce paquet.

Proposition 3.4. Les p3 p(Q(j)) forment une suite croissante.

En effet, d'après le Théorème de Smith et Merle ([S], [Me]), nous savons que

e ™^ est égal à ni ^j-1
; ce qUj donne après simplification p3 -^J=. Il suffit

donc de montrer pour chaque j l'inégalité ^-i > "^ +1
¦ D'après [Zaf], Chap.II,

3.11, on a l'égalité

et l'inégalité annoncée est alors conséquence de l'inégalité n^inij < mo^\ et de

l'inégalité Ijirij ß3 < ß3 pour j > 2.

On peut remarquer que les p0 sont plus petits que f, et que le plus petit d'entre
eux est ^. Par exemple, pour la courbe d'exposants de Puiseux (3/2,7/4), on a

PI 1/47 PI 7/26.

Proposition 3.5. (P. Popescu-Pampu) La connaissance des exposants p3 et des

nombres d'intersection en 0 de chaque paquet T^' r^'^ de la courbe polaire
avec la branche C détermine le type topologique de C.
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En effet, d'après [Me], le nombre d'intersection (T^\C) vaut a3 (n3 — f)/3j,
et d'après ce que nous venons de voir, p3a3

^"3 ~ 'nh Mais par construction

nous avons pgcd(m3,n3) f, donc pgcd((nj — I)m3,n3) f, et pour obtenir m3
et n3 il suffit de mettre p3a3 sous forme irréductible. Les (toj,«j)i<j<s sont alors
déterminés, et donc la multiplicité m Y\93=i nj e^ les ßj- ^

Géométriquement, le nombre (n3 — l)ß3 s'interprète comme le nombre des

points de C(X)e qui sont contenus dans la réunion des boules |J eC,, \ t Bp ^

correspondant au sommet Q(j); c'est aussi le nombre des boules, comptées avec
multiplicité, de rayon \X\P', c'est à dire enfin la partie de la courbure de C(A)e qui
se concentre à l'échelle p3. En fait, on a:

lim / \K\dv 2ir(n7-l)ß.. (ff)

En résumé, dans le cas d'une branche, si l'on connaît les p3 et la partie de la
courbure qui se concentre à l'échelle p3, on connaît le type topologique de la
singularité limite.

Le cas d'une courbe réductible est plus compliqué et nous renvoyons à [GB2]

pour des résultats utiles.

4. Structure des boules B^(X)

Le but de cette section est d'éclaircir la disposition des boules < bSx > quand Q

varie dans l'ensemble des sommets noirs du diagramme d'Eggers T{C) et Pq dans
celui des branches du paquet F^.

Remarquons d'abord que les boules correspondant aux branches d'un même

paquet ne sont pas nécessairement distinctes.

Proposition 4.1.
1. Si Q est un sommet noir de T(C) tel que p(Q) > (ri-,, alors les boules associées

à une branche fixée Pq(r) du paquet F^(t) sont disjointes quand A est assez

petit.
2. Soient Q et Q1 deux sommets noirs différents sur la même chaîne élémentaire

de T(C) tels que p(Q) ^ p{Q')- Si Pq (resp. Pq/) est une branche du paquet
F^ (resp. F^ alors aucune boule associée à la branche Pq ne rencontre une
boule associée à la branche Pq> quand A est assez petit.

Démonstration
Soit {ct (xt,yt)}^_\q l'ensemble des centres des boules B^t associées à la
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branche Pq du paquet F^. On sait d'après la définition des boules B^t que

xt c(uAA)^+^ H

où c =/= 0, lu est une racine primitive (eq + mq)-ième de l'unité et lt G {0,... eq +
mq — 1}. Si on prend deux centres ct et c0 différents on a:

xt — Xj c(A) '

où c et a sont non nuls si on suppose a 0 alors (l% — lj)mq > (eq + mq)2 ce qui
est une contradiction car lt — l0 et mq sont plus petits que eq + mq).

Ainsi p(g) > -—- —^— et \\\p^> < lAI^ quand A tend vers 0. Donc
e(<3) eq+rriq

la distance entre les centres ct et c0 est plus grande que le rayon des boules et les

boules Bqt et B^t sont disjointes quand A est assez petit.
Soit maintenant c {x,y) (resp. c' (x',y')) le centre d'une boule associée à

la branche Pq (resp. Pq>), on a (remarque 3.1)

x a\'i+mi H aA«(öT _|

x' 6AV+m,' h 6A«(«') H

où a et b sont non nuls.
Comme Q et Q' sont sur la même chaîne élémentaire de T{C) d'après le

corollaire 6.3 de [GB2], quitte à permuter Q et Q1, on a v(Q) < v(Q!) et e(Q) <
e(Q') donc

et Hx

Mais p(Q) > ^ > _i_ et p(Q') > ^ car v{Q') > 1 et Q' ne peut pas être le

point base de T{C) puisque v(Q) < v(Q').
Ainsi max-flAI^), |A|p(Q')} < \\x - x'\\ et quand A est assez petit les boules

B(c, \\\p(<$) et B(c', |A|^')) sont disjointes. D
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