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Concentration multi-échelles de courbure dans des fibres
de Milnor

Evelia Garcia Barroso et Bernard Teissier

Résumé. Etant donné un germe de morphisme analytique complexe f : (C2,0) — (C,0) a
fibre réduite, nous étudions la maniere dont la courbure de Lipschitz-Killing de la fibre de Milnor
C(N)e = f~1(N\)NB. C C? pour la métrique induite par celle de C? se concentre asymptotique-
ment, lorsque (e, \) — (0,0), dans l'intersection de cette fibre avec des boules dont les centres

Equ()\) peuvent étre décrits mais surtout dont les rayons sont de la forme |A|?(?) ot les p(Q) sont

des nombres rationnels dont la collection ne dépend que de la topologie du plongement dans C2
du germe de courbe plane réduite C = C(0).

Abstract. Given a complex-analytic map-germ f : (C2,0) — (C,0) with reduced fiber, we
study how the Lipschitz-Killing curvature of the Milnor fiber C(\)e = f~1(A\) NB. C C? for the
metric induced by that of C2 concentrates asymptotically, as (¢, \) — (0, 0), in the intersection of
this fiber with balls, whose centers Egl(k) can be described, but whose radii, more importantly,

are of the form |A|?(?) where the p(Q) are rational numbers depending only on the topological
type of the embedding in C2 of the germ of reduced plane curve C' = C(0).

Mathematics Subject Classification (1991). 32855,

Mots-clés. Singularités, Courbe plane, Fibration de Milnor, Courbure.

0. Introduction

Dans ce travail nous étudions le comportement asymptotique de la courbure de la
fibre de Milnor

CNe = 1) NB. c C2
d’un germe de courbe plane réduite (C,0) C (C2,0) défini par une équation
flz,y) = 0 lorsque € et X tendent vers 0. Il s’agit de la courbure de Lipschitz-
Killing associée & la métrique induite sur C(A) par celle de C2. On connait déja,
grace au travail de Langevin [La] la valeur limite de I'intégrale de cette courbure:

Bit, s Bl / . K10 = 25:(0) + 4V C),
C(A

e
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oll u@) est le nombre de Milnor en 0 de la singularité C(0) = C et 1) sa multi-
plicité en 0 diminuée de 1. Il faut souligner que le terme de droite ne dépend que
de la topologie du plongement dans C? du germe de courbe plane réduite (C,0).
Dapres [Te3], le nombre 12 (C) + M (C) est le nombre d’intersection a l'origine
de C avec une de ses courbes polaires relatives génériques, qui sont définies par
les équations

of  _of

a_y + T% =0.
C’est aussi le nombre des points d’intersection (transverses) d’une telle courbe
polaire avec une fibre de Milnor f(z,y) — A = 0 qui tendent vers 0 avec A. Ce
résultat est donc au fond de la nature d’un résultat de théorie de I'intersection,
c’est a dire que 'on compte des points, ou le degré de cycles, sans se préoccuper
de leur position.

Nous allons obtenir une information plus précise sur la géométrie de la fibre
de Milnor en essayant de localiser les régions de C'(A) oll se concentre asympto-
tiquement la courbure, et ce faisant mettre en évidence le fait que la concentration
de courbure est un phénomene multi-échelles: la courbure se concentre (voir le
corollaire 3.1) dans les intersections avec C(\) de boules, dont les centres 5(%()\)

peuvent étre décrits, mais surtout dont les rayons sont de la forme |/\|P(Q) ou les
p(Q) sont des nombres rationnels dont la collection ne dépend que de la topologie
du plongement dans C? du germe de courbe plane réduite (C,0). Il nous semble
intéressant que cette description multi-échelles elle méme ne dépende que de la
topologie.

Lorsque le germe C' est analytiquement irréductible en 0, i.e., est une branche,
la donnée des exposants p(@), qui sont alors en nombre égal & celui des exposants
de Puiseux, et celle de la quantité de courbure qui se concentre dans les boules de
rayon p(Q)) permettent de déterminer les exposants caractéristiques de Puiseux de
C, et 'on peut done dire que le comportement asymptotique de la courbure de la
fibre de Milnor permet de déterminer la classe d’équisingularité de la fibre limite
singuliere. Le cas réductible est plus compliqué, en particulier parce qu’'une partie
de la courbure reste ”diffuse”, comme dans le cas extréme de 2™ +y™ =0, ot il n’y
a pas de concentration de courbure dans des boules de centre différent de I'origine
(et donc dépendant de A). Nous savons mesurer quelle est la partie diffuse.

Une autre maniere de décrire ce phénomene de concentration est de dire qu’il ex-
prime en partie comment la structure du diviseur exceptionnel E dune résolution
des singularités plongée minimale (Z, E) — (C?,0) de (C,0) se réflete dans la
géométrie de la fibre de Milnor. Le caractere multi-échelles provient, de ce point
de vue, de la structure non-linéaire du graphe d’intersection de ce diviseur ex-
ceptionnel, c’est & dire de I'existence de “sommets de rupture” dans ce graphe,
selon une correspondance étudiée en détail dans [GB1], et il serait intéressant de
donner une preuve de notre résultat fondée sur le relevement a la surface Z ou C
est résolue de la métrique de C? en une métrique singuliere le long du diviseur
exceptionnel.
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Notre technique de preuve est toute différente et est basée sur I'analyse du
contact (voir le §1 pour une définition précise) avec les branches de C' des différentes
branches des courbes polaires génériques qui a été faite dans [GB1], [GB2].

I’idée heuristique part du fait que par définition de la courbe polaire %5+7%£ =
0, ses points d’intersection avec C(A) sont les points de C'(A) ol la tangente a la
direction correspondant au parametre 7. Pour prouver le théoreme de Langevin,
on compte le nombre de ces points et on applique la formule d’échange (Théoréme
3.1). Nous observons que ces points ont répartis sur les différentes branches de la
courbe polaire, et si le contact avec C en 0 d’une de ces branches est fort, elle varie
peu lorsque l'on varie le parametre 7 et par conséquent ses points d’intersection
avec C(A) bougent peu, ce qui signifie que beaucoup de courbure se concentre au
voisinage de ces points. Rappelons que le vocable branche désigne un germe ana-
lytiquement irréductible de courbe, et en particulier une composante irréductible
d’un germe de courbe.

Si 'on souhaite représenter au moyen d’un logiciel graphique une projection
générique dans R3 d’une fibre de Milnor de courbe plane complexe, il sera im-
possible de le faire effectivement en respectant la courbure des qu’il y aura plus
d’une paire de Puiseux, en raison de ce caractere multi-échelles qui implique qu’en
certains points la courbure paraitra infiniment grande (ou petite) par rapport a
celle d’autres points. Connaitre a priori les échelles en jeu devrait permettre de
corriger la représentation de telle maniere qu’elle devienne utile.

Remerciements: Ce travail a été en partie déclenché par des questions de
Langevin au second auteur, et Langevin lui-méme a obtenu des résultats prélimi-
naires, poursuivis dans une direction différente de celle suivie ici, la courbure des
feuilletages, par P. Rouillé [Ro]. Nous voulons remercier Patrick Popescu-Pampu,
éleve a ’ENS, pour sa lecture aigiie et ses remarques pertinentes sur une version
préliminaire.

1. Invariants du type topologique

Soit f(z,y) = 0, f(z,y) € C{z,y} et f(0,y) £ 0, une équation d’un germe
irréductible de courbe plane & singularité isolée & l'origine (C,0) C (C270) de
multiplicité n. Si x = 0 est transverse a C' il existe une paramétrisation de C de
la forme suivante:

= ™
Y= Zaﬂfi 5

ce qui équivaut a la paramétrisation a la Newton-Puiseux y = Z a;z"™. Toutes
les autres paramétrisations a la Newton-Puiseux de C sont déduites de celle-ci par
Paction du groupe pu,, des racines n-ieme de I'unité determinée par zl/n 1/n
oll w € p, est une racine primitive n-ieme de 'unité.

— WT
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Soient {f,...,3,} C N les exposants caractéristiques de C qui sont définis
par récurrence de la maniére suivante: Sy = m(C) = n,

Bg+1 =min{i € N : a; #0 et i 0(mod p.g.c.d.(Bo,...,0))}

Il existe g > 1 minimal tel que p.g.c.d.(8p,...,53) = 1.

Soient alors: ly = m(C) et l; = p.g.c.d.(fo,...,53) = p.gcd.(l4—1,5,). 1l
existe des paires d’entiers positifs {(m,nx)]_;} tels que By = mgly, lg—1 = ngly et
p.g.c.d.(mgq,ng) = 1. Les paires {(my, ny)7_ } sont appelés paires caractéristiques
de Puiseux de C.

Soit I'(C) = {(C, D) / C n’est pas une composante de D} C N le semi-groupe
de valeurs de C, ou (C, D) est la multiplicité d’intersection & 'origine de C avec
une courbe quelconque D.

D’apres Zariski [Zal] il existe un systéme minimal de génerateurs {fp,...3,}
du semi-groupe I'(C) qui vérifie By = By = m(C), 1 = B, et By = ng—164-1 +
By — Bg—1 pour tout ¢ € {2,...,g}. On voit ainsi que la donnée du semi-groupe
I(C) équivaut a celle des paires caractéristiques de Puiseux.

De plus si C et D sont deux branches a 'origine on appele contact de C avec
D le nombre rationnel

cont(C,D) =n 1§i§1£?)§(j§m{ordw(yi(xl/") — zi(z'/™))}
ot m(C) =n, m(D)=m, {yi(x(l/@)}?:l est I’ensemble des paramétrisations
de C et {zi(a:(l/“”)};”:l est ensemble des paramétrisations de D. Le contact
entre C' et D donne donc une mesure de la coincidence des paramétrisations a la
Newton-Puiseux de C et de D.
On doit remarquer aussi que
cont(C, D)  cont(D,C)
m(C)  m(D)

Soient (C,0) C (C2,0) un germe réduit de courbe analytique plane & singularité
isolée & l'origine de multiplicité n, et C = Cq U --- U C, sa décomposition en
composantes irréductibles. Notons I 'ensemble {1,... 7} et {n; = 8j,... 3. }
les exposants caractéristiques de C;, i = p.g.c.d.(Bf,...,0;) ok € {0,..., 4},
{(mi, n{)}" | les paires caractéristiques de C;, T'(C;) =< {g},... ..} > le
semi-groupe de valeurs de C; et «;; = cont(C;, C;) avec j # 1.

Nous pouvons représenter la topologie de la courbe C au moyen du diagramme

d’Eggers (voir [E] et [GB1]). Rappellons sa définition.
chaque branche C; de C' on associe un ensemble S; = S} US2 ou S} =

i 9i
() w2,
i ) p=1 i ) i

On appelle chaine élémentaire de C; le graphe K; défini comme suit:

1. Les sommets sont des points noirs et un point blanc; les points noirs sont en
correspondance bijective avec les éléments de S; par une application v que
nous appelons valuation.
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2. Le sommet blanc n’a pas de valuation.

3. Les sommets sont reliés de la fagon suivante:
Le sommet blanc est relié au sommet noir de valuation la plus grande par une
aréte, qui est discontinue si la valuation est un élément de Sg — S}. Si on
prend un sommet noir, disons ), dont la valuation n’est pas maximale, il est
relié au sommet de valuation supérieure la plus proche par une aréte, qui est
discontinue si v(Q) est dans S? — S}

Sion prend deux branches différentes C; ,C; de C, on appelle graphe partiel
Ki; de C; et Cj, le plus petit sous-graphe connexe de K; qui contient les

sommets @ € K; avec v(Q) < %. Les graphes partiels K;; et Kj; sont égaux.
Finalement on définit le diagr;mme d’Eggers T(C) de C comme le graphe
obtenu en identifiant les graphes partiels K;;, K;; dans la réunion disjointe des
chaines élémentaires K1, ..., K,.
On voit aussitot que deux germes de courbes réduites sont équisinguliers si et
seulement si ils ont le méme diagramme d’Eggers.

Exemple 1.1. Soit la courbe €' = f = fi.fy = 0 on fi(z,y) = (y? — 2°)? —
4ya® — 2% et fo(z,y) = (¥ — %)% — 4ya® — 27,
Les développements de Puiseux de f1(z,y) = 0 sont
yp = 22 4 g9/
yg = —x3/2 4 i%/4
3/2 _ 9/4
3/2 9/4

Yy =x
Y4 = —x°/° —ix
et les développements de Puiseux de fo(z,y) = 0 sont
yl = 2/2 4 g7/
g = — g} g
gy = /2 _ gT/4

Y4 = —z e

Done S{USt = {3, 7} U{7} et s3Us3 = {3, 7} U{1}-
Le diagramme d’Eggers de C' est

0}\

A
~

— &

312 iz

7/4

3/2
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On appelle point base de T(C) le sommet de T'(C) de valuation la plus petite.

A chaque sommet noir @) de T'(C) on associe trois nombres :
d1(Q) :=nombre d’arétes discontinues de T'(C) qui sortent de (J vers un sommet
noir de valuation plus grande ou vers un sommet blanc de T(C).
do(Q) :=nombre d’arétes pleines de T'(C) qui sortent de ) vers un sommet noir
de valuation plus grande ou vers un sommet blanc de 7'(C).

Nous dirons qu'un sommet est simple si di(Q) + do(Q) = 1, un sommet de
bifurcation sinon.
k(@) := nombre d’arétes pleines entre ) et le point base.

Soit @ un sommet noir de T'(C) tel que da(@) > 0. Le fait que l'aréte qui
sort de ) dans la chaine élémentaire K; de T(C) soit pleine équivaut a dire que
la valuation de @ est égale % ol k = k(Q).

Notons I I'ensemble {i € IZ/ Q € K;} ol K; est la chaine élémentaire de la
branche Cj, et I}, le sous-ensemble de I vérifiant: If) = I si da(Q) =0 et

15—{¢61Q : U(Q)—ﬂ’é—fl} si do(@Q) > 0.

T

2. Calculs sur les branches de la courbe polaire

Soient f : C2 — C un morphisme défini dans un voisinage ouvert V de I’origine
et | =l(z,y) : C? — C une forme linéaire sur C2.

On appelle courbe de niveau A de f la courbe C(A) C V d’équation f(z,y) = .

On appelle courbe polaire de f dans la direction [ le lieu C; des points critiques
dans V de (f,1): V — C2.

Ainsi, si P est un point de C; alors ou bien P est un point singulier de C(\)
ou bien P est un point lisse de C(\) et la droite tangente & C(X) au point P est
parallele & I(z,y) = 0.

Remarque 2.1. La courbe polaire est vide dans un voisinage assez petit de O si
et seulement si C' = f(x,y) = 0 est lisse en 0. Nous nous plagons dans le cas ou C'
est singuliere.

Nous pouvons écrire 1’équation d’une courbe polaire de f sous la forme:

D’apres les résultats généraux sur ’équisingularité (voir [Za3] et [Tel]), il existe un
ouvert de Zariski U de 1’espace PI(C) des directions de projection tel que pour
(0 : 7) € U les courbes polaires soient toutes équisingulieres. Pour simplifier
nous nous restreindrons a considérer I'intersection de U avec 'ouvert affine o # 0,
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poserons ¢ = 1 et, pour 7 € U N Al7 noterons P(7) la courbe polaire correspon-
dante, appelée par abus de langage courbe polaire générique. C’est la fibre au
dessus de 7 € Al de la surface P définie dans un ouvert de C3 par

of +- Tﬁ =0,
oy ox

Dans toute la suite nous supposerons que le choix de la coordonnée z est assez
général pour que le point 7 = 0 appartienne a 'ouvert U.

Toujours d’apres les résultats généraux sur Péquisingularité (voir loc.cit.), il
existe un recouvrement de U par des ouverts relativement compacts (Us)s et pour
chaque 4 il existe un rayon €(d) > 0 tel que dans I'ouvert Us X B.(s), ouBe = B(0,¢)
est la boule ce centre 0 et de rayon ¢, la famille des courbes polaires est une famille
équisinguliere de courbes planes et en particulier pour tout 7 € Us le nombre
des composantes irréductibles de P(7) est constant et la surface P de Us x B
réunion des (P(7))rcu, est réunion des surfaces P, paramétrées de la forme:

_ Mg
T =14

Fa (Us BE(5>) N { y=y(ty, 7) avecy(ly,7) € Clty, 7}

P(7) designe donc aussi bien la courbe polaire correspondant & la direction 7 que
la fibre au dessus de 7 € U de la surface P. Puisque la famille des P(7) est
équisinguliere pour 7 € U, nous nous permettrons souvent de supprimer le 7 pour
des caracteres numériques tels que multiplicités, nombres d’intersection, qui sont
constants pour 7 € U, et de méme pour les composantes irréductibles de P que
nous allons introduire:

Rappelons le résultat suivant:

Théoréme 2.1 ([GB2]). Dans Us X B ;) les composantes irréductibles de P(7)

se rassemblent en | ensembles (que nous appellerons “paquets”) T'9 (1) indexés

par les sommets noirs (Q;)1<;<i de T(C). De plus:

1. Toutes les composantes irréductibles d’un paquet I'93(7) ont le méme contact
avec chacune des branches de C et cette condition de contact est donnée des
deux maniéres équivalentes suivantes:

(a) Pour chaque composante irréductible Py(T) de T'% (1) et pour toute com-
posante irréductible C; de C telle que Q; appartient a la chaine élémentaire
de C; on a Uégalité:

(Ci, Py(r))  niB+niv(Q)) = Bi

m(Py (1)) nzlnz

ou k= k(Q;).
(b) Chaque composante irréductible Py(t) de I'9i(7) a un développement de
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Puiseur de la forme:

o=

Y = G, tmq+...+asnv 15Mq +a ,‘-Otﬂio+...+a 20t520++
ig iQ ﬁl B,

mq(n;v(Q;)—1)
+anz’0“(@j)*1t e + Z bs (T)ts
§2mgu (Q])

ou t est un paramétre uniformisant, Uindice 1g est tel que Q; appartient a
la chaine élémentaire de la branche C;, de C, Uentier mq == m(Py(7)) est
la multiplicité a Uorigine de Py(7), et les bs(7) sont dans C{r}.

Iei le tilde indique que tous les exposants ont été divisés par un facteur commun

Wip

my

De plus (am’O»'” ) Gamigs Gigio -« - @ 7a/nq',0'U<Qj>_1) sont les coefficients

gios -+
dun développement de Puiseur de Cjy, jusqu’au terme n;,v(Q;) — 1, et sont donc
indépendants de T pour toute valeur T qui appartient o Uowvert Us d’équisingularité.
Ceci signifie qu’a division prés des exposants par un facteur commun, le déve-
loppement de Puiseuz de Py(7) coincide avec le développement de Puiseuz de la
branche C;, de la courbe C au moins jusqu’au dernier terme précédant la valeur
ni,v(Q;) — 1. On ne peut étre plus précis en général puisque le type topologique
de la courbe polaire (et en particulier le nombre de ses composantes irréductibles)
n’est pas déterminé par celui de la courbe C.
2. La multiplicité de T9 (1) est égale & n - ni(di(Q;) + nj1d2(Q;) — 1) o
Vindez i € It O

L’égalité 2 est due a Eggers [E] et le résultat (a) est dii & Smith [S] et Merle
[Me] dans le cas irréductible.

Remarque 2.2. Ladécompositionde P(1) = U I'% (1) donne une décomposition
Qs

dans Us X Bs) de la surface P de la forme suivante: P = UFQJ' avec 9 =

Qj
U 1.

T€Us
Le développement (b) est une paramétrisation analytique de la surface P, C

U5 X Bs(é)'

Du point de vue de (b) on peut montrer le résultat suplémentaire suivant qui
généralise un résultat connu dans le cas irréductible [S], [T4]:

Lemme 2.1 ([GB2]). SiQ est un sommet noir simple de T'(C) et Py(7) est une
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branche du paquet T'9(7) alors dans le développement de y(t) de la branche T'(7)
le terme t™a?(Q) n’apparait pas.

Nous allons utiliser le théoréme pour calculer en fonction de X et 7 les coor-
données des points d’intersection de la courbe de niveau C(A) et la courbe polaire
P(r).

Pour simplifier la notation dans le calcul qui suit nous noterons P, une des
composantes irréductibles de la surface I'?7, que nous continuerons par abus de
langage d’appeler ”branche”. Nous noterons m, la multiplicité & l'origine de Py(7)
et eq + mg son nombre d’intersection en 0 avec C, pour 7 générique (voir [T3]).

Nous noterons ~, le plus petit exposant plus grand ou égal & mqv(Q;) appa-
raissant dans le développement de Puiseux y4(¢,7) de P,(7) en puissances de t.
Comme I'a montré E. Casas dans [Ca2] dans le cas irréductible, ce nombre ne
dépend pas seulement du paquet '?7, mais bien de la composante P, choisie. E.
Casas a calculé (Prop. 1.1 de [Ca2]) la valeur de v, pour une courbe générique
dans sa classe d’équisingularité.

On peut donc écrire la partie (b) du théoreme pour la surface P, sous la forme
suivante:

="
7= { yq(t,q—) = ap, ™+ -+ g T+ -+ b% (T)t% SEEET

ol les coefficients des puissances de ¢ plus petites que v, sont indépendants de
7 car ils coincident avec les coefficients d’une développement de Puiseux d’une
branche C; de C (voir [GB2]).

Nous allons utiliser aussi le fait suivant: Pour tout 7 € Uy, la multiplicité
d’intersection de P,(7) avec C est strictement plus grande que mg car C est sin-
guliere. Cela permet d’écrire (C, Py(7)) = eq +mq avec eq > 0. En fait, la somme
sur toutes les composantes Py (7) de P(7) des e, est égale & w2 (C) (voir [Te3]).
Ainsi Iégalité (C, Py(T1)) = eq + my signifie que l'on a une identité

J™,y4(t, 7)) = ey tm, (T)t8q+mq +o0avec Copym,(T)#0

Lemme 2.2. Le coefficient de t* dans la série f(t™,y,(t,7)) € C{t,7} est
indépendant de T pour k plus petit que eq + 4.

Démonstration

Of(t™, yq(t,7))
or '

Mais vt T) _ (O8N (02 (DN (DU
97 oz P, or P, dy P, or P,

Il faut calculer ’'ordre en ¢ de
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(@> =0,o0na
or P,

Puisque dans le développement de y4(¢,7) les puissances de ¢ de degré plus petit
que v, sont indépendantes de 7 on a:

9y
OI‘dt <§>Pq Z Yq- (2)

oOf (t™a t
OF(t™, yg(t, 7)) = egq, il suffit de se placer dans des coordonnées

De plus ord, (

Ay
_ _of _ Of (zq(t),yq(t)) _ Of 0=
(z,y) telles que 7 =0, donc P = 3y 0 et 5 = 5 B alors
ordy (8]”(7&1%3; yq(t))> —egtmg—1
et comme ord; (%) =mg — 1 on a ord; (%5) = &y
(Pour plus de détails voir le Lemme 3.3.2 de [GB1]).
Alors ord; w> > eq+ g O
T
Il en résulte que nous pouvons écrire
eqtye—1
FE™ Lyt = DY ™t D calmi® (3)
A=€ytig aF 81y

Il nous reste & en tirer des expressions pour le développement de z et y en fonction
de 7, pour chaque valeur de A. Or nous avons les faits suivants:

1. D’une part la surface de ct ayant pour équations

of | of _

=0
8y+T8x

flz,y) =X,

admet localement sur Us et pour z,y et A assez petits une représentation
1

paramétrique sous forme d’un développement de ¢ en puissances de A<t
a coefficients analytiques en 7. En effet, en utilisant la paramétrisation simul-
tanée que nous avons vue plus haut de chacune des composantes irréductibles
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0 o

de la surface S d’équation 8_f +fra—f = 0, et en la substituant dans f(z,y) — A,

Yy x
il vient

teatmaV (¢ ) — A =0
ou V(t,7) € C{t,7} est une unité.
Si maintenant on considére la surface S/ ¢ C? définie par cette équation, le
discriminant de sa projection dans le plan des (7, A) est défini ensemblistement
par A = 0 et d’apres le critére discriminant de Zariski (voir [Za3]) cela implique

1

I'existence d’un développement de ¢ en puissances de A<at™a, & coefficients
holomorphes en 7.

2. D’autre part un calcul sans difficulté (voir page 214 de [GB1]) donne, pour A
fixé, ’égalité

& mesmm,

Pq
inversion de Péquation f(¢t™e,y,(t, 7)) A comme ci-dessus on obtient un
développement de Puiseux de ¢ en fonction de A. Puisque ¢ est de I'ordre de

ot
On en déduit que l'ordre en ¢ de < > est au moins v, — myg + 1. Par

- ot
Acatma on déduit de la remarque ci-dessus que 'ordre en A de (8_) est au
T
Pq

. —my+1 , . .
moins ’Yq—qb Le développement de ¢ en fonction de A s’écrit donc
eq +my
Vg Mg ” -
t= Z da>\eq+mq + Z da(T))\54+mq
a=1 a>yq—mg+1

avec do(7) € C{1} et dy # 0, ol Iécriture signifie ici et dans la suite, que la
vg—mg+1

plus petite puissance de A dont le coefficient peut dépendre de 7 est A\™caT™a |

. - . ox dy
Finalement, en utilisant ce que nous venons de voir pour calculer 5 et 5
T T

on voit que ’on a des développements de Puiseux pour les coordonnées = et y des
points de P,(7) N C(X) dans l'espace (z,y,A,7) en fonction de A et 7 de la forme
suivante:

va—1
T= > g AT 4 Y gaPATIE ol g, £0
Q=g azry,
" q (5)
Yq

y= had"m + 3 ho(r)ATIm

a=myq o>
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Ainsi quand 7 varie dans Uy, les coordonnées des points de P(7) ol la tangente
a la courbe de niveau f(z,y) = X a pour direction 7 ne dépendent effectivement
de 7 qu’a partir de I’exposant .

Le calcul précédent a été fait dans un ouvert U x BE(5 , mais il est clair que la
forme du résultat est localement constante sur U, et donc indépendante de ’ouvert
Us choisi.

3. Concentration de courbure

Le but de cette section est de montrer que la courbure des courbes de niveau
C(A) = f(z,y) = X de C est concentrée autour des points d’intersection de ces
fibres avec les branches des courbes polaires génériques de C.

3.1. Les boules

Soit 5?0()\) le point

Yq—1 - Yg—1 -
520()\) = Z goATTTa Z ho A=t ma
a:mq a:mq

dont les coordonnées sont les parties indépendants de 7 des développements (5).
S’il n’existe pas de coefficients indépendants de 7 dans ’expression (5) alors

€2 = (0,0).
Notons fgl()\) le point obtenu en remplacant dans 550(/\) le nombre com-

plexe X\ par w'\ oll w est une racine primitive (eq + mg)— ieme de l'unité et
1e{0,1,...,(eq+mgq—1)}.

Proposition 3.1. Soit T C U un compact quelconque. Alors il existe c(T) € RT

et €9 > 0 tels que pour tout T € T' et pour tout € < €y les points d’intersection de

C(X\) avee la branche Py(7) du paquet T'? de P(7) sont dans les boules fermées de
i

centre 5(%()\) et de rayon c(T)|A| Z¥m quand X tend vers 0.

Démonstration
T est recouvert par des ouverts Us N7T". Soit (z,y) un point de C(X) N FP,. 1l existe
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1e€{0,...,(eq+mg—1)} tel que

M = |[(z,y) — 4

= [P Y ga(r AT, Y ha(r)AE

> Q>

P

g
= |A[==Fme]lp]l. (6)

Mais les gs(7), hs(7) sont holomorphes et restent donc bornées sur le compact 7.
Ainsi quand X assez petit il existe une constante ¢(T) € R1 et il existe o(T) € Rt
tels que pour 7 € T' et A plus petit que o(T") on ait ||| < (1) et done

M < o(T) A7

Plus précisément:

Proposition 3.2. Soit T C U un compact quelconque. Soient T'? un paquet de
la surface P avec v(Q)) > 1 et P, une surface irréductible de ce paquet. Pour tout
7€ T et pour tout |\| assez petit les points d’intersection dans C? de Py(t) et

C(X) sont dans les boules B(é’?l(/\)7 INP@) ou 1 € {0,... J(eg+mg—1)} et

si Q est simple

p(@) = (@) si @ est un point de bifurcation différent du point base

si @ est le point base et est un sommet de bifurcation

«@

ot €(Q) est Uinvariant polaire associé au paquet I'® pour toute branche Py(7) de
I'? et Q est le prédécesseur de Q sur la chaine joignant le point base & Q.

Remarque 3.1. Rappellons que I'invariant polaire associé au paquet I'?, intro-
duit dans (cf [Te3]), ot il est noté %;—mq pour chaque branche Py, de multiplicité
q

(C, Py(7))

m(Py(T))
invariant de type topologique de la courbe C (voir [Te3], [GB2]).

mg du paquet ['?, est pour toute branche P,(7) de I'®(7) et est un
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Remarque 3.2. S'il existe un sommet de valuation 1 dans 7'(C') ce ne peut étre
que le point base. Cela signifie d’apres le lemme 3.1 de [GB2] que la courbe C
contient au moins deux branches transverses. Dans ce cas-1a nous noterons I'©) (1)
le paquet de branches de la courbe polaire correspondant au point base.

Démonstration
Si @ est un sommet simple, d’apres le lemme 2.1, on a v4 > mg4v(Q), donc il existe
n € N — {0} tel que n = v4 — mqu(Q).

Ainsi d’aprés la proposition 3.1 si (z,y) € C(A) N Py il existe € {0,... ,(eq+
mg — 1)} et o(T) € RT tels que

mqu(Q)

M = [(2,5) = €N < M)A = o(T) |77 |75
N——

a
2(Q)
et pour |A| assez petit on a o < 1, done M < |A|<@).
Soit maintenant @ un sommet de bifurcation de T'(C) différent du point base
de T'(C). Ainsi

Vg = mqv(Q) > mqu(Q)
oil Q est le prédécesseur de @ sur la chaine joignant le point-base & Q. Un raison-
nement comme ci-dessus donne le résultat.

Cependant si @ est le point base et est un point de bifurcation, alors ~, >
mqv(Q) > mg car v(Q) > 1. On obtient le résultat en raisonnant comme ci-
dessus. O

Remarquons alors que pour A assez petit tout point d’intersection de P(7)(C) —
'@ avec la courbe de niveau C(A) est dans une des boules que nous venons
d’introduire dans la proposition ci-dessus.

Ainsi nous avons associé & chaque surface P, d’un paquet I'? de la surface P
des boules en nombre ¢, +m, ayant toutes le méme rayon pour A fixé. Sion prend
une autre surface Py du paquet I'? les rayons des boules associées & Py et & P,
coincident pour A fixé. En conséquence, toutes les boules associées a des branches
du méme paquet de la polaire ont le méme rayon pour A fixé.

Proposition 3.3. Il existe une famille finie {Bfl()\) =BG, |/\|P(Q))}

de boules dont

1. Les centres et les rayons dépendent explicitement de \.

2. Tout point d’intersection de P(1) — 'O avec la fibre C(X) pour A assez petite
est dans une de ces boules.

3. Les exposants p(Q) qui apparaissent dans les rayons des boules ne dépendent
que de la topologie de C.

Q.q,l

Démonstration
1 et 2 résultent de ce que nous venons de voir, et 3 du fait que l'invariant po-
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laire €(Q) et le diagramme d’Eggers sont des invariants topologiques (voir [Te2] et
[GB2)). O
Tandis que les rayons des boules de la proposition 3.2 dépendent seulement de
la valeur de X et de la topologie de la courbe C, leurs centres dépendent en général
du type analytique de C et pas seulement du type topologique.
Etudions maintenant le cas ol le point base de T(C) est de valuation 1.

Lemme 3.1. Soit I'©) je paquet de la courbe polaire P(7) dont le sommet associé
QO wérifie v(Q®) = 1. Alors

1. P® 0y = (t = 1)m(C) ot t est le nombre de composantes tangentielles de C.
2. TO) est formé des branches de P(1) qui sont transverses a C.

Démonstration
S’il n’existe aucun sommet de valuation égale & 1 alors T'© est vide et (F(m7 C) =
0. Cependant s’il existe un sommet Q(O> de valuation égale a 1, alors (F<O)7C') —:
Z (Py(7),C) ol la somme est sur toutes les branches P, du paquet r©,
F, ("')GF(O)
Comme la valuation de Q(()) est égale a 1, Q<O) est le point base de T'(C) et
cont(C;, Py) = n; pour toute branche C; de C' et pour toute branche P, de @,
Ainsi (Cy, Py) = nymy et (C, 1) = m(C’)m(F(O))7 cest-d-dire que I'®) est trans-
verse & C. Etant donné que chaque composante de la courbe polaire qui est trans-
verse & C' est dans le paquet correspondant & Q(O), 0 est la partie de P(7) qui est
transverse & C. De plus m(P'@) = d1(QO) =1 =t —1et (IO, C) = (¢ = 1)m(C).

Remarque 3.3. Ici et dans la suite, les P, sont des composantes du paquet I'e;
les indices ¢ et ) ne sont donc pas indépendants. O

3.2. La courbure

Rappellons qu’a une varieté réelle V2 ¢ RN on peut associer en tout point z € V
une courbure, dite de Lipschitz-Killing (voir [F] pour une définition précise) comme
suit: A chaque vecteur normal unitaire n € SN-r-1 5V dans RY en z associons
la projection orthogonale P, de V' dans 'espace vectoriel engendré par Ty, et n.
Cette projection a pour image une hypersurface de Rrtl qui est non singuliere
en z, et on note y(V,n, z) sa courbure de Gauss au point P, (z). La courbure de
Lipschitz-Killing est

K(\V,z)= c(N7p)/ ~(V,n, z)dn

SN—p—1

ol ¢(N,p) est une constante de normalisation qui ne dépend que de N et p. On a
alors:
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Théoréme 3.1 (formule d’échange [La]). Soit W un ouvert d’une courbe holo-
morphe de CQ; notons K la courbure de Lipschitz-Killing de W pour la mélrigue
induite et |u(W, L)| le nombre des points critiques de la projection de W par-
allélement & une direction de droite compleze L € PY(C). On a Uégalité ( o les
intégrales sont prises par rapport aur mesures naturelles):

/ | K |dv = 27r/ |pe(W, L)|dL
w P1(C)

O
On déduit de ce théoreme et de Dégalité u2 4 ) = 1@ () + M (C) =
(P(7),C) démontrée par Teissier (voir [Tel], [Te3]) le résultat suivant:
Théoreme 3.2 (Langevin ([La])). On a Uégalité:
i / K]dv = 22(1@ + pD) (7
e,A—0,| A <<e (M),

ot ;i) est le nombre de Milnor de C et p\V) + 1 est la multiplicité m(C) de C en
0. O

Remarque 3.4. On peut vérifier en suivant la démonstration que I'écriture
lime x—,0,)x|<<c Peut étre interprétée comme ceci: il existe dans le plan des (e, [A])
une courbe analytique réelle, ne dépendant que du choix des coordonnées et de
I’équation de C, et admettant un développement de Puiseux

k41

E
N[ = cke? + cp1e7® + -
telle que la limite ait la valeur annoncée tant que (e, |A|) tendent vers 0 dans le

premier quadrant en restant sous le graphe de la courbe. Cette condition sur le
passage a la limite peut étre interprétée ainsi dans la suite de cette article.

Le résultat de Langevin mesure la quantité totale de courbure de C(X) qui se
concentre au point singulier 0 de f(z,y) lorsque e, A — 0. Le résultat principal de
cet article décrit de maniere bien plus précise comment cette courbure se répartit
asymptotiquement sur la fibre C(\) lorsque (e, A) tend vers (0,0), [\ << e.

Théoréme 3.3. Reprenons les notations de la proposition (3.3). Soit 1O e

paquet de la courbe polaire P(1) dont le sommet associé QO vérifie U(Q(O)) = 1y
Alors

lim / | K |dv —/ |K|dv | =27(t —1)m(C) (8)
e A0, [A<<e \ Jo). cMenlUg,, Bar V)
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ou t est le nombre de composantes tangentielles de C.

Démonstration
Prenons W = C(\)e. D’apreés la formule d’échange et la Proposition 3.3 on a
I'inégalité

K|dv > 2r |(P(7),C) — (I'©) ¢ 9
/O el gy 2 2 [ ) (9)

Mais d’aprés le théoreme (3.2), I'inégalité (9) et Iégalité (2 + p) = (€, P(7))
on en déduit:

lim / |K|dv—/ |K|dv | = 27T @ ) (10)
Ae=0,x<<e \ Jo). C(A)EO(UQ’q’lBZl(A))

D’ou le résultat d’apres le lemme 3.1. O

Corollaire 3.1. Ftant donné un germe de morphisme analytique complere

f:(C2,0) — (C,0) 4 fibre réduite, pour tout représentant assez petit, il existe un
systéme de boules Bgl(/\) dont les centres, décrils au début de la section 3.1, sont
sur des courbes analytiques proches des composantes irréductibles d’une courbe
polaire relative générique de f et dont les rayons sont de la forme |/\|p(Q), ou les
p(Q) sont des nombres rationnels ne dépendant que du type topologique du germe
de courbe (C,0) = (f1(0),0), décrits dans la Proposition 3.2. Ces boules ont la
propriété que lorsque € et A tendent vers 0, || << €, une partie de la courbure de
Lipschitz-Killing de la fibre de Milnor C(X). se concentre asymptotiquement dans
la réunion de ces boules. La valeur de cette partie tend vers 2m(u® + (2—t)m —1)
ot m est la multiplicité de (C,0) et t le nombre de ses composantes tangentielles.

Nous dirons qu’il y a concentration de courbure sur C(A) si 'on peut montrer
qu’une partie de courbure est asymptotiquement contenue dans I’'intersection avec
C()) de boules dont le rayon tend vers 0 avec |[A|. Le terme 27(I'® | ) mesure la
partie "diffuse” de la courbure. Les deux cas extrémes sont:

1. (F(O)7C’) = 0, c’est-a-dire que toutes les composantes de C ont la méme tan-
gente (Lemme 3.1) et alors toute la courbure se concentre asymptotiquement
dans des boules évanescentes. C’est en particulier le cas si C est analytiquement
irréductible en 0.

2. (F(O)7 C) = (P,C), c’est-a-dire que toutes les branches de la polaire sont trans-
verses & C. Cela signifie que p(2) + () = (x4 l)um7 done p? = (,u(1>)27
et on sait ([Te3]) que cela implique que C est réunion de M(D +1 branches lisses
2 a 2 transverses, donc t = ,um + 1.
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Remarque 3.5. On doit remarquer que les boules ou se concentre asympto-
tiquement la courbure de C(A) quand A — 0 sont indépendantes de 7, que leurs
rayons dépendent seulement de A et de la topologie de C, mais en principe leurs
centres dépendent du type analytique de C. Bien que les centres dépendent du
type analytique, on peut donc controler la "taille” et la géométrie de la région ol
se concentre asymptotiquement la courbure de C(X) quand A — 0 & partir de la
topologie de la courbe C.

3.3. Le cas d’une branche

Soit f(z,y) = 0 une équation pour un germe irréductible (C,0) de courbe plane
décrite paramétriquement dans des coordonnées générales par le développement
de Puiseux :

7=t
Y =amt™ + ...+ agmt™ +ag tP + . tagt? + . tagtPo + ...
Reprenons les notations du §1. Dans le cas d'une branche, I'arbre d’Eggers consiste

en une chaine élémentaire contenant g sommets noirs, que nous noterons () par
valuations croissantes, et pour chaque Q(j), on a avec les notations ci-dessus

= ————— pour q¢& .
P(Q(4)) meatomy PO 4 Q@)
la notation ¢ € Q(j) indique que la composante I'; de la courbe polaire appartient
a ce paquet.

Proposition 3.4. Les p; = p(Q(j)) forment une suite croissante.

En effet, d’apres le Théoréme de Smith et Merle ([S], [Me]), nous savons que

m ; T | " N . . . _ omy
Equjnq est égal a T'J’ ce qui donne apres simplification p; = Té_g 1l suffit

donc de montrer pour chaque j I'inégalité n;@—ﬁj g nJ:f—f’lH D’apres [Zal], Chap.II,
7 < J
3.11, on a I’égalité
Mi410541 = nip1ns By + (M1 — nypimy)ly

et 'inégalité annoncée est alors conséquence de 'inégalité n;1m; < m;iq et de
I'inégalité I;m; = B; < B; pour j > 2.

On peut remarquer que les p; sont plus petits que 1, et que le plus petit d’entre
eux est % Par exemple, pour la courbe d’exposants de Puiseux (3/2,7/4), on a

p1=1/4, po =17/26.

Proposition 3.5. (P. Popescu-Pampu) La connaissance des exposants p; et des
nombres d’intersection en 0 de chaque paquet '@ = 120 de la courbe polaire
avec la branche C' détermine le type topologique de C.
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En effet, d’aprés [Me], le nombre d’intersection (') C) vaut o5 =(n; — l)ﬁj7
(ng—Lm;

— . Mais par construction

et d’apres ce que nous venons de voir, p;o; =
nous avons pged(m;,n;) = 1, done pged((n; — 1)m;,n;) = 1, et pour obtenir m;
et n; il suffit de mettre p;o; sous forme irréductible. Les (m;,n;)1<;j<, sont alors
déterminés, et donc la multiplicité m = H;I.:l n; et les G;. |

Géométriquement, le nombre (n; — l)ﬁj s’interprete comme le nombre des

Q@)

points de C(A) qui sont contenus dans la réunion des boules UqEQ(j) By o/ cor-
2 Q-

respondant au sommet Q(j); c’est aussi le nombre des boules, comptées avec
multiplicité, de rayon |A|?7, c’est & dire enfin la partie de la courbure de C(\), qui
se concentre a ’échelle p;. En fait, on a:

lim |K|dv = 2m(n; — 1)B;. (11)

Byl | e /3(*)6 m<qu<z(j),l Bl?:’jl) )

En résumé, dans le cas d’une branche, si 'on connait les p; et la partie de la
courbure qui se concentre a l'échelle p;, on connait le type topologique de la
singularité limite.

Le cas d’'une courbe réductible est plus compliqué et nous renvoyons a [GB2]
pour des résultats utiles.

4. Structure des boules Bfl()\)

Le but de cette section est d’éclaircir la disposition des boules {Bqu} quand @
TQ

varie dans I'ensemble des sommets noirs du diagramme d’Eggers T'(C) Vgt P, dans
celui des branches du paquet I'%.

Remarquons d’abord que les boules correspondant aux branches d’un méme
paquet ne sont pas nécessairement distinctes.

Proposition 4.1.
1. SiQ est un sommet noir de T'(C) tel que p(Q) > Tg)’ alors les boules associées

a une branche fivée Py(1) du paquet T'9(7) sont disjointes quand X\ est assez
petit.

2. Soient Q et Q' deuz sommets noirs différents sur la méme chaine élémentaire
de T(C) tels que p(Q) # p(Q'). Si Py (resp. Py ) est une branche du paquet
I'? (resp. FQ/), alors aucune boule associée a la branche Py ne rencontre une
boule associée a la branche Py quand X est assez petit.

Démonstration
s R ) X (Cqu) ’ Q .z N
Soit {c; = (zi,y:)};_} " l'ensemble des centres des boules B, associées & la
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branche P, du paquet I'?. On sait d’aprés la définition des boules Bgl que

mg
Ty = C(wliA) eqtmgq + - 5

oll ¢ # 0, w est une racine primitive (e, + mg)-iéme de l'unité et [; € {0,... ;e +
mg — 1}. Sion prend deux centres ¢; et ¢; différents on a:

mg Ijmg ijmg

z; — x5 = c(N) et |weaFma — w=aFmg | 4. ..

oil ¢ et o sont non nuls ( si on suppose o = 0 alors (I; — I;)my > (eq +my)? ce qui
est une contradiction car [; — I; et mg sont plus petits que eq 4+ myg).
m

insi L T @
Ainsi p(Q) > Q) " et m et AP\ < A

la distance entre les centres ¢; et ¢; est plus grande que le rayon des boules et les

_1_
«(@ quand X tend vers 0. Donc

boules Bfli et B?lj sont disjointes quand A est assez petit.

Soit maintenant ¢ = (z,y) (resp. ¢’ = (z/,y)) le centre d’une boule associée &
la branche Py, (resp. Py), on a (remarque 3.1)

mg L
z=aleat™s ... =A@ ...
m 1
x/:bAeq”Lmq/ + e =bAQ) ..

oll @ et b sont non nuls.

Comme @ et @ sont sur la méme chaine élémentaire de T'(C) d’apres le
corollaire 6.3 de [GB2], quitte & permuter Q et Q’, on a v(Q) < v(Q') et €(Q) <
€(Q’) done

m(P, () m(P, (7))

z—a2' =bA T et [z -2 ~ N GR )
~ 1 1 / 1 / / A
Mais p(Q) > © 7@ et p(Q') > oy car v(Q") > 1 et Q' ne peut pas étre le

point base de T'(C) puisque v(Q) < v(Q’).
Ainsi max{|A|?@ |\F(@)} < ||z — 2/|| et quand A est assez petit les boules
Ble, |A[P@) et B(c, |A]P(@)) sont disjointes. O
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