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Milnor link invariants and quantum 3-manifold invariants

Nathan Habegger* and Kent E. Orr**

Abstract. Let Z(M) be the 3-manifold invariant of Le, Murakami and Ohtsuki. We show that
Z(M) = 14+ o(n), where o(n) denotes terms of degree > n, if M is a homology 3-sphere obtained
from S® by surgery on an n-component Brunnian link whose Milnor It-invariants of length < 2n
vanish.

We prove a realization theorem which is a partial converse to the above theorem.

Using the Milnor filtration on links, we define a new bifiltration on the Q vector space
with basis the set of oriented diffeomorphism classes of homology 3-spheres. This includes the
Milnor level 2 filtration defined by Ohtsuki. We show that the Milnor level 2 and level 3 filtrations
coincide after reindexing.

Mathematics Subject Classification (1991). 57M25, 57M99, 81Q30, 81T18.

Keywords. Kontsevich Integral, Milnor link invariants, 3-manifolds Homology spheres, quan-
tum invariants, Feynman diagrams, finite type invariants.

1. Introduction

The field of finite type 3-manifold invariants (also known as “perturbative quantum
invariants”) has developed quite rapidly over the past two years. A wuniversal
invariant of 3-manifolds, taking values in an algebra of Feynman diagrams, was
introduced by Le, Murakami and Ohtsuki [LMO]. More generally, their invariant
is defined for a (3-manifold, framed-link) pair. Here, universal means the invariant
has been “decoupled” from Lie algebras, i.e., it involves no other choice of data.
Beginning with Ohtsuki [Oh], with subsequent important contributions of Ga-
roufalidis-Levine [GL1] and Garoufalidis-Ohtsuki [GO], the study of finite-type
3-manifold invariants culminated in the work of Le [Le]. Le showed that the
LMO invariant, restricted to homology 3-spheres, was of finite type in the sense of
Ohtsuki. Furthermore, in direct analogy with the universality of the Kontsevich

*This and related preprints can be obtained at http://www.math.sciences.univ-nantes.fr or
http://php.indiana.edu/ korr
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integral for the Vassiliev filtration on links in the 3-sphere (see [B2] and [LM1]),
Le showed that for homology 3-spheres, the LMO invariant is also universal in the
sense that it factors any other finite type invariant.

In [HM], G. Masbaum and the first author investigated the relation between
finite type link invariants and Milnor’s G-invariants of string-links. (Milnor’s in-
variants had been shown earlier to be finite type string-link invariants [B1], [Lin].)
They showed that Milnor’s invariants vanish if and only if the Kontsevich integral
(the universal finite type invariant of tangles) vanished in a quotient of the algebra
of Feynman diagrams. This quotient is obtained by setting to zero those graphs
having homology. Here the Milnor filtration of links, where a link lies in the n**
Milnor filtration if it has vanishing Milnor invariants of length < n, corresponds to
the degree of the first non-vanishing term in the “treelike” part of the Kontsevich
expansion. They also proved realization theorems for Milnor’s invariants and the
Kontsevich integral.

This paper grew from an attempt to understand the Feynman diagrams with
homology and their relation to links and 3-manifolds. It represents partial progress
towards that goal. Roughly, the main idea is to fracture a Feynman diagram into
contractible components. Each such diagram is the first non-vanishing part of
the Kontsevich integral of some link (by the realization result of [HM]). One then
pieces together links and 3-manifolds realizing the given Feynman diagram in an
amalgamation procedure defined in Section 7. (See in particular Theorems 7.1
and 7.3.) This interplay, between a diagram and its contractible pieces, provides a
double edged sword from which vanishing results are proven as well (Theorem 6.5).

This paper is greatly indebted to the work of Le [Le]. Both conceptually and
technically speaking, one may see our results as variations on the counting argu-
ments developed in [Le] and used to prove the universality of the Le-Murakami-
Ohtsuki invariant. (See the Fundamental Known Results, parts (3) and (4) of
Section 5.) Together with the recently discovered relationship, mentioned above,
between the “treelike” part of the Kontsevich integral and Milnor’s invariants,
these techniques lead to more general realization and vanishing results for the
LMO invariant. (For applications of these ideas to the computation of the LM O
invariant, see also [H2], [BH], [GH].)

To express and motivate these results, we give a new bifiltration on the rational
vector space of integral homology 3-spheres, defined using Milnor’s filtration on
links.

We arrange this paper as follows. Section 2 gives a brief description of the
universal invariant of Le, Murakami and Ohtsuki, as well as a few needed and
known results. Many of the ideas from sections 3 and 4 can be found in Section
5.3 of [Le]. In these sections, we establish the necessary technical tools for proving
our realization and vanishing theorems. In particular, we define the notions of
the wvariation of a link, and introduce types of Feynman diagrams together with
some special lemmas about types. Section 5 defines the aforementioned bifiltration
on the Q vector space of integral homology 3-spheres, and discusses its relation
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to known results on previously defined filtrations. Section 6 begins the heart
of the paper. Here we state and prove the vanishing result that says that the
LMO invariant of a certain sum of manifolds obtained via surgery, from a link
with vanishing Milnor invariants of high order, will live in high degree in the
corresponding algebra of Feynman diagrams. To prove this, we need what appears
to be a new lemma concerning Milnor’s invariants of links and proven in a separate
appendix. Section 7 gives our main realization Theorems 7.1 and 7.3. These
may be interpreted as a partial converse to the vanishing Theorem 6.5. Some
applications will appear in the forthcoming paper [HO]. The paper concludes with
an appendix which reviews the definitions of Milnor’s link invariants and states
some needed results regarding these profound invariants (mostly folklore, but a
few new). In particular, many of the known results about Milnor’s invariants
work equally well for links in homology spheres, but have not appeared in this
form.

2. The universal finite type invariant

This section provides a brief review of the universal finite type 3-manifold invariant,
and some known results.

A tangle in a manifold M is a smooth compact 1-manifold X, and a smooth
embedding T (X,0X) — (M3,9M?3), transverse to the boundary. If X = ]_[le I,
M = D? x I, and the smooth embedding is fixed to be the obvious standard
embedding on the boundary, this is called a string link (see [LD] or [HL1]). More
generally, we may take M = B, a homology 3-ball with a fixed identification (and
standard embedding) of the boundary with d(D? x I), and we refer to such a
tangle as a string link in a homology ball. A framed tangle (vesp., framed string
link) is a tangle (resp., string link) with a non-vanishing section of the normal
bundle. (N.b., if the 1-manifold is oriented, the homotopy class of this section
determines and is determined by a homotopy class of section of the frame bundle
of the normal bundle. Also, for a knot in a homology sphere, an isotopy class
of framing may be specified by an integer, known as the self-linking number or
writhe.) Note that tangles may have empty boundary, so that links (in particular,
the empty link) are special cases of tangles. By gluing a string link o C B, along
the boundary, with the trivial -component string link in D2 x I, we have the
notion of the closure 6 of o, lying in the closure Bof B, where B is the homology
3-sphere B Usp (D2 x I). Every link in a homology 3-sphere is the closure of a
string link in a homology ball.

We refer the reader to [B2] [B3] for definitions and discussions of the (graded,
completed) Q-vector space A(X) of Feynman diagrams on the 1-manifold X. Ele-
ments of A(X) are represented by linear combinations of vertex-oriented diagrams
X UT, subject to the AS and IHX relations. Here I' is a uni-trivalent graph, whose
univalent vertices lie in the interior of X. It is customary to refer to the trivalent
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vertices of I' as internal vertices and to the univalent vertices of I' as external
vertices. It is also customary to refer to the components of X as solid, and to
the components of I' as dashed. The space A(X) is graded by the degree, where
the degree of a diagram is half the number of vertices of I'. The degree n part of
A(X) will be denoted by A, (X). Note that for X = [['_; I;, A(X) has a product
defined by stacking diagrams. In this case we often denote A(X) by A(f). An
inclusion of I in X defines an injection of A(1) into A(X), and an action of A(1)
on A(X), called connect summing. For X = Sl, such an inclusion induces an
isomorphism of A(1) with A(S1), which thus inherits a product structure, which
is known to be abelian. For X = 0, A(X) has a product given by disjoint union.

In [LM2], (see also [LM1]), T. Le and J. Murakami constructed an invari-
ant Z(7T') € A(X), a version of the Kontsevich integral, for any framed ¢-tangle
T:X — R? x I. (This was denoted by Z;(T) in [LM2] and should not be con-
fused with its precursor Z¢(1'). See [LM2] for the definition of ¢g-structure, which
technically is necessary for the definition of Z. However, we suppress this from
the notation. In what follows, one may choose the standard g-structure, where
needed.)

In [LMO], Le, Murakami and Ohtsuki give a 3-manifold invariant, called the
LMO invariant, defined as follows:

Zo(M) = (

Here f(") denotes the degree n part of £ € A((). L: ]_Ile S} — 8% is a framed link
such that surgery on L gives the 3-manifold M. Z(L) = v®*¢Z(L) is obtained by
successively taking the connected sum of Z (L) with v along each component of L,
where v is the value of Z on the unknot with zero framing. U, is the trivial knot
with positive one and negative one framing, respectively. o is the dimension of
the positive and negative eigenspaces of the linking matrix for the framed link L.

e AT, SH — A(0)

is a map, which reduces degree by nf, defined in [LMO].

We will need the following facts about the LMO and Kontsevich invariants.
In this paper we use the notation o(n) to denote terms of degree greater than or
equal to n.

Some Useful facts

1. LetT be a framed tangle. A change of framing of £1 onT results in a change of
Z(T) € A(X) by multiplying, along the appropriate component, by ei%, where
0 is the degree one diagram on a circle with a single dashed chord, ([LM1]
Theorem 3).
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2. For an €-component string link o, Z(5) is the image, in A(Hle Sil), of veZ (o),
where vy € A({) is obtained from v by the map induced from the projection of £
intervals to a single interval, ([LM2], Theorem 6.1). (N.b., Feynman diagrams
form a contravariant homotopy functor by sending a diagram to the sum of
diagrams obtained by lifting the univalent vertices lying on the target 1-manifold
to their preimages.)

3. Z(Uy) = v2et$, (This follows from the definition and the above two state-
ments. )

4. v =1+ terms with > 1 internal vertices ([Lef, Lemma 2.2).

5. Z is multiplicative, i.e., for integral homology 3-spheres My, Ma, one has
Z(Mi#Ma) = Z(My)Z(Ms), [LMO].

6. If T is any tangle, then Z(T) = 1+ o(1). (This is easily seen for generators
of the monoid of tangles, and follows from the monoidal functor property of Z.
See [LM1].)

7. w(Z(UL)) = (F1)* + o(1), [LMO].

3. Variations of links

Many of the ideas in this section can be found in Section 5.3 of [Le].

Definition 3.1. Let o be an ¢-component framed string link. For a subset S C
{1,...,£}, let 75(c) be the string link obtained by replacing the i"* component,
for each ¢ € S, with the trivial string, lying above all the other strings and having
the same framing as the original. If S = {4}, then we also denote 75 by 7;. If ¢’ is a
sublink of o, then we set 7,» = 7, where S = {i| 7 is an index of the sublink ¢'}.

Definition 3.2. For a framed link L and a collection of indices S, let 75(L)
be the link obtained by replacing those components with indices in S, by the
split trivial link with the same framing. We set 77/(L) = 75(L), where S =
{¢ | 4 is an index of L' C L}.

I

Thus 75(6) = 75(0).

Definition 3.3. Let A C {1,...,¢}. For an ¢-component framed string link o,
define the A wvariation of o by,

a(o) = [T =m)(o).

iceA

For a link L, 55 (L) is defined analogously.
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Note that for a framed link J U L, with A = {4 | 7 is an index of L},
o(JUL) = [0 =m)(JUL) = Spcr(-1)Flrp (JUL).
icA
For a closed 3-manifold M, [M] denotes its oriented diffeomorphism class.

Definition 3.4. Given a framed link L in a manifold M, we set
M, L] = Sper(-D)F M (L)).
Here M (L) denotes the result of surgery along L’. We will also use the notation
[M(z)] = Xz [M(L;)],
if z = ¥;x; L; is a formal linear combination of links, L; C M.

We call a framed link in a homology sphere unit-framed if the self-linking
numbers of each component are +1. We call a framed link admissible if it is unit-
framed and has vanishing pairwise linking numbers. The results below hold for
unit-framed links and in particular, for admissible links.

Note that surgery on a split unit-framed unknot does not change the diffeomor-
phism type of the three manifold. Thus, if L' C L, and L\ L' is a unit-framed link,
then [S3(L))] = [S3(7(z\1)(L))]. So for J C % a framed link with $3(J) = M,
and L C (83\ J) ¢ M, with L ¢ $3 unit-framed,

[M, L] = Sy (-D)F[M(L))] (2)
= Spcn(-1)F1[S¥}(JU L)
= (=) 8 p e (-1)EVNS3 (7 oy (J U L))]
= (~)IH[s3(8L(J U L))).

Lemma 3.5. Let L C M be a framed link in a 3-manifold, and let J C S3 be a
link such that S3(J) = M and such that L C (S3\ J) € M. Assume that L C S>
is unit-framed. Let m be the minimal number of internal vertices in each non-
zero summand of Z(6r,(Jo U Lo)), where (Jo U Lo) 4s (J U L) with zero framing
on each component. Then for all n, 1,(Z(dr(J U L))) = o(%). Consequently
Z(M, L)) = o).

Proof. Recall that ¢, applied to a diagram X U, where X is a disjoint union of
circles, is a linear combination of trivalent diagrams I, each of which contains "
as a subspace. (It is obtained by gluing to I' certain elements 7", and replacing
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each resulting circle component with the value —2n. See [LMO].) So the number
of vertices of each ' is at least the number of internal vertices of I'. Hence the
number of vertices of each non-zero term of ¢, (Z(61,(JUL))) is at least the number
of internal vertices of each non-zero term in Z(d(J U L)).

By Useful Facts 1 of Section 2, one computes Z(6(J U L)) from
Z(65(JoULg)) by connect summing with venit along the i-th component of JUL,
whose framing is n;. As this cannot decrease the number of internal vertices by
Useful Fact 4, this yields ¢, (Z(65(JUL))) = o(%).

By equation (2) above,

Z(IM, L) = (-1 2(5%(81.(J L L))).

Moreover, Z,(S3(61,(JUL))) is computed from ¢,,(Z (81, (JUL))) using equation (1).
The result follows from Useful Fact 7. O

4. Special types of Feynman diagrams

For each ¢ € {1,..., ¢}, we have an inclusion j;: A(¢ — 1) — A(£) and a projection
€;: A(f) — A(€) onto the image of j;. Here, for a diagram £ = X UTI", X = ]_[le I,
representing a class in A(¢) = A([[*_; L), we have

© { ¢ if I' has no vertex on the ith component
€; =

0 otherwise.

For an ¢ component string link o, the operation 7; is conjugate to the oper-
ation 7o(0), ie., 7o) = ﬂ[l(fg(ﬁiaﬁjl))ﬂi, for a certain braid 3; inducing the
permutation s; = (€,€—1,...,¢). Thus, Z(m(0)) = ee(Z(c)) (see [LM2], or [LMO]
Proposition 1.1) and, for ¢ #£ ¢, Z(7;(c)) = o/;lego/i(Z(a)), where o/; is the op-
erator which conjugates by Z(3;) = b;. Let a; = o/;s;. Note that s, “egs; = ¢;.
Thus Z(7;(0)) = o Le0i(Z()).

Define 7;: A(¢) — A(¢) by 7 = €, and, for ¢ # ¢, 7, = oc;lqozi. Thus, by
definition, we have that Z(7;(0)) = 7(Z(0)).

Definition 4.1. Let X = [['_; X;.

We say a diagram £ = X UT is of type A C {1,...,£€} if I has at least one
vertex on Xj, for all j € A.

& = X UI is said to be of degree (resp. tree, resp. loop) type n if each component
(resp. tree component, resp. component) of I' has degree (resp. degree, resp. rank
of its first homology group) > n.

Lemma 4.2. Let X = [[*_ ;. Let € = X UT, € = o(n), be of type A, of
degree type p, of tree type q and of loop type r. Let b € A(€) be grouplike. Then
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bfb_1 =&+, n=o(n+1), where n is a linear combination of terms X UT" of
type A, of degree type p, of tree type q and of loop type r.

Proof. In a complete Hopf algebra, grouplike elements are exponentials of primi-
k
tives. Note that for b = exp(), b¢b~ ! is given by Ekz()(a%d"k)‘ﬁ, where (adﬁ)o(m) —

z,adg(z) = Bz — z3 and (adg)® is the i"™ composition of adg with itself. Since 3
is primitive, 5 = o(1) and is a linear combination of terms with connected dashed
graph.

Observe that if one uses the STU relation to permute two univalent vertices on
distinet dashed components, this produces a third graph with one less univalent
vertex and one fewer component which contains subgraphs isomorphic to each of
the original dashed components. So if we expand the commutator 3¢ —£/3 using the
STU relation to successively permute the univalent vertices of I' with those of the
connected dashed graph of a term in /3, the result is a sum of terms each of whose
connected components of their dashed graphs contain as subgraph a connected
component of I'. The result follows. |

Lemma 4.3. Let X = Hle L. Let & = X UTy; be of degree type p;, of tree
type g; and of loop type r;. Assume [[& is of type A and that [[& = o(n). Then
(1-7)T1&) = (1 —e)[]&)+n, wheren=o(n+1) and is a linear combination
of terms which are of type (AU{i}) and which are products [[n; of terms n;, where
= X UTY is of degree type p;, of tree type q; and of loop type r;.

Remark 4.4. Note that under the hypothesis that []&; is of type A, one has that
[1& if[I& is of type (AU {j})
(- <)M - {

0 otherwise.

Proof. For i = ¢ there is nothing to prove, since 7o = €,. For ¢ £ ¢, one has that
_ -1 _ -1
l—-m=1-—0; o =0; (1 —¢)oy,

where «; is conjugation by a grouplike element. The lemma follows by applying
Lemma 4.2 twice, using the above remark and the fact that the conjugate of a
product is the product of conjugates. O

Repeated application of Lemma 4.3 proves the following.

Corollary 4.5. Let X = Hle I;. Let & = X ULy be of degree type p;, of tree
type q; and of loop type r;. Assume [[& = o(n). Then [[;ca(1 — m)([[&) =
[Lea(l —€)(I11&) +n, where n = o(n+ 1) and is a linear combination of terms
which are of type A and which are products [[n; of terms n; = X UTY of degree
type p;, of tree type q; and of loop type r;.
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[1& if []& is of type A

R k 4.6. Note that J[..A(1 —¢; i) =
emar ore e HJEA( )11&) {O otherwise.

5. A bifiltration on the space of integral homology 3-spheres

We designate by & the rational vector space with basis the set of oriented dif-

feomorphism classes of integral homology 3-spheres. This is an algebra under

connected sum. Z extends linearly to define an algebra homomorphism on S.
Denote by S,, the universal filtration (or LMO filtration), i.e.,

Sp =ker(Z.,:S — A, (0)).

We extend the Ohtsuki filtration (see below) to a bifiltration using Milnor’s
filtration as follows. (See the appendix for definitions and brief discussions on
Milnor’s invariants.)

Recall that we say that a link in a homology 3-sphere is admissible, if it is unit-
framed and the linking numbers of its 2-component sublinks vanish. A sublink of
an admissible link is admissible. If L = JU J' C M is an admissible link, then
M (J) is a homology sphere and J' C M(J) is again admissible.

Definition 5.1. For a fixed n, define the length + Milnor filtration, S, to be the
subspace of S generated by the elements [M, L], where L denotes an admissible
n-component framed link with vanishing Milnor Z-invariants of length < r.

The length two Milnor filtration, Sg, is the well known Ohtsuki filtration of S.

If M is an integral homology 3-sphere, K a knot, and (LU K) C M is an
admissible link with vanishing Milnor invariants of length < r, then the Milnor
invariants of L C M (K) vanish up to length » by Lemma A.3 of the Appendix. It
follows from the fundamental equation

(M,LUK]=[M,L] - [M(K),L], (3)

that the vector spaces S, form a bifiltration, i.e., that S;,y C S;. (That S+l
S; is immediate. )

We now state, in approximate historical order, and using the above notation,
the fundamental known results regarding the Ohtsuki filtration and its relation to
the LM O invariant. We recommend that the reader pause here to become familiar
with these results and with the notation.

Fundamental Known Results

2 2 2
L 83,11 = 32 = Sinys: )
2. There is a surjective map A, (D) — —‘QSL

St
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2
3. S?erl C Spt1- .
4. The map Z,: 82 — A, (D) induces a map 523# — A, (D), which is (up to
CIRE
2
sign) a left inverse to the map in (2). Consequently, the map A, () — g‘jﬁ
3n+1

2
in (2), and the induced map g}s?’# — A, (D), are inverse isomorphisms.

341
b. &2 =15,
6. The map Z<p: SLH — A<, (0) is an isomorphism.

Remark 5.2. Building on [Oh], (1) is proven in [GL1]. Building on [Oh] and
[GL1], (2) is proven in [GO]. (3) and (4) are proven in ([Le]), and (5) and (6)
follow inductively from (1)-(4).

In summary, the Ohtsuki and LM O filtrations agree after a shift in indexing,
and the LM O expansion, restricted to homology 3-spheres, is the universal finite
type invariant. Here, a finite type invariant in the sense of Ohtsuki is one which
vanishes on ST%, for some n. Z is universal in the sense that any such finite type
invariant factors through Z<,, for some n. (More precisely, combining (1), (5),
and (6) above, one has that an invariant vanishes on S§n+1 = S§n+2 = S§n+3 if
and only if the invariant factors through Z<,,.)

6. A vanishing theorem

For a 1-manifold X, let A'(X) be the quotient of A(X) obtained by consider-
ing as relations all trivalent diagrams containing a non-simply connected, dashed
component. For a tangle T', we denote by Z*(T') the image of Z(T') in A*(X). In
particular, for a string link o, Z%(o) lies in A*(#).

There is a coalgebra isomorphism A(¢) with B(¢), the Hopf algebra of ¢-labeled
chinese characters (i.e., linear combinations, modulo AS and I HX relations of
vertex-oriented uni-trivalent graphs, whose univalent vertices are labeled with el-
ements of the set {1,...,¢}). This isomorphism sends the primitives of A(¢),
denoted P(¢), to the primitives of B(¢), denoted C(¢), which is the span of the
connected chinese characters.

The above isomorphism passes to a coalgebra isomorphism of A*(¢) with B*(¢),
the Hopf algebra of ¢-labeled forests (i.e., chinese characters whose components are
trees). This yields an isomorphism of the primitives of A" (£), denoted P*(¢), with
the primitives of B(¢), denoted C*(£), which is the span of the chinese characters
which are trees.

In [HM], an investigation of the relationship of the Kontsevich integral and
Milnor’s invariants produced the following theorem.

Habegger-Masbaum Theorem. Let L C S 3 be a O-framed link with vanishing
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Milnor invariants of length < r + 1. Then the Kontsevich expansion, Z(L), can
be expressed as a linear combination of diagrams, none of which contain a dashed
component which is a tree of degree < r.

Lemma 6.1 below will be combined with a slight refinement (Proposition 6.3)
of the Habegger-Masbaum theorem to prove our main vanishing result, Theorem
6.5.

From equation (2), Z([M,L]) = (=) 2(S3(6,(J U L)), for a framed link
J c 83 such that S3(J) = M and L C (S3\ J) € M, provided JUL C S% is
admissible. One key point here is that one has the liberty to choose J conveniently.
Lemma 6.1 provides such a convenient choice for .J.

Lemma 6.1. Suppose that M = 53(J’) is a homology sphere, where J' is an
admissible framed link with m components. Let L C M be a link with vanishing
Milnor invariants of length < r. Then there is an m-component link J C S3, with
M = S3(J), such that L C (S®\ J) C M, and such that all Milnor invariants of
length < r vanish for (JUL) C S3.

Lemma 6.1 is proven in the Appendix on Milnor’s invariants, and has the
following corollary.

Corollary 6.2. S7 is the subspace S.(S%) of S,, spanned by the elements [S®, L],
where L is an admissible m-component framed link (i.e., trivial pairwise linking
numbers and framing £1 on each component), with m > n, whose Milnor Ti-
invariants of length < r vanish.

Proof. Clearly S7(5%) c S7.

Let [M, L] be a generator of §7, i.e., L is an admissible framed link with
> n components and vanishing Milnor invariants of length < r. By Lemma 6.1,
M = 83(J) for some admissible framed link .J, such that JUL C S has vanishing
Milnor invariants of length < r. The proof that [M, L] € S.(S3) proceeds by
induction on |J|, the number of components of J.

The result holds for |.J| = 1 by Lemma A.3 of the Appendix, since in this case,
we have the fundamental equation (3) of Section 5,

[M,L] = [S3(J), L] = [$3, L] — [$,JU L] € S7(5?).

Assume the result for |J| < n. Let J = J UK, K a knot. Then, using the
fundamental equation, the inductive hypothesis, and Lemma A.3, we have

[S3(0), I) = [(S*(IN(K), L] = [S*(J)), ) - [S*(J"), K U L] € 8}, (5),
which proves the inductive step. O

The following is the promised refinement of the Habegger-Masbaum Theorem.
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Proposition 6.3. Letr > 2. Let JU L be a O-framed link in 53 with vanishing

Milnor invariants of length < r. Then Z(65(J U L)) has the following properties.

1. Z(6r,(JU L)) can be expressed as a linear combination of diagrams, none of
which contain a dashed component which is a tree of degree < r, and

2. each such diagram has at least two vertices on each component of L.

Proof. Let o 7Uoy, be a string link such that oy Uy, = JUL. By [HM], ZL (o5 U
or) = 1. It follows (as in [HM], see also the proof of Theorem 7.1 below) that
Z(ogUor) — 1 is of tree type r. Z(6.,(J U L)) is the image, in A(Hf:] sh, of
the result of multiplying Z(d,, (07 Uoy,)) by ve (Useful Fact 2). Since 1y is a sum
of diagrams without trees, part (1) of the Proposition follows from Corollary 4.5,
which also gives that each diagram has at least one vertex on each component of
L.

Since r > 2, there are no dashed components without internal vertices. It
follows that each non-zero diagram must have at least two vertices on each com-
ponent of L, since the STU relation implies that a term with only one vertex on
a solid circle, which is not the vertex of a chord, must be zero. (To see this, push
an internal vertex next to a solid circle to the solid circle using the STU relation.
The result is the difference of 2 terms, each having 2 vertices on the circle. As
these vertices may be interchanged, up to isotopy, the 2 terms are the same and
hence their difference is zero.) d

For a real number n, let [n] denote the greatest integer < n.

Lemma 6.4. Let I' be a uni-trivalent graph. Suppose I' has at least 2n external
vertices, and that each tree component has at least 2r vertices. Then I' has at least
2n

2n — 2|
r+1

|—1
internal vertices.

Proof. By an Euler characteristic counting argument, every tree with 2s vertices
has s + 1 external vertices and s — 1 internal vertices, and thus 2 fewer internal
vertices than external vertices. Every component which is not a tree has at least
as many internal vertices as external vertices.

Let k be the number of tree components. If k < [TZT”I], then since by hypothesis

there are at least 2n external vertices, there are at least 2n — 2k > 2n — 2[%

internal vertices. Suppose k > [rQ_J:Ll] Then since each tree component has at least
r — 1 internal vertices, one has that there are at least

2n 2n
1 —1)>2n—-2|——| -1
=D = 1) > 20 -2 =]

internal vertices. O

k(r—1) 2 ([
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Theorem 6.5 is the main theorem of this section.

Theorem 6.5. Letr > 2. Let . C M be an admissible n-component link with

vanishing Milnor Ti-invariants of length < r. Then
2n

r+41

Z(IM, L]) = o(n — [—=]).
That is,
S CS 2
n C S 2n]

In particular, 33" C Sy

Proof. By Lemma 6.1 above, there is a link J C §3 with M = $3(.J), such that
L C (S*\ J) € M and such that all Milnor invariants of length < 7 vanish for
JUL C 82, (Here, J U L has unit-framing and Jg U Lo denotes the same link but
with zero framing.) By Proposition 6.3, each term in the expansion Z (61, (JoULg))
has at least two vertices on each component of L, no dashed component of which
is a tree of degree < r. By Lemma 6.4, each summand has at least 2n — 2[T2T”1-] -1
internal vertices. The result follows from Lemma 3.5.

Remark 6.6. For r = 2, Theorem 6.5 is the Fundamental Result (3) of Section
5. For r = 3, this gives S%n C S, Using Fundamental Result (5), the inclusion
Sg’n C S, is equivalent to the main theorem of [H], which was proven geometrically,
without mention of the LM O invariant.

7. Realization results

In this section we prove a realization theorem which is a partial converse to the
vanishing Theorem 6.5.

Suppose a collection of k& connected uni-trivalent graphs, I';, has a total of 2/
univalent vertices labeled with elements of the set {1,... , ¢}, where each of the ¢
labels occurs exactly twice. The amalgam of the graphs I'; is the trivalent graph
obtained by joining the univalent vertices in pairs according to their labels.

We define the amalgamation map

AP (6 x ... xPL(6) =C (£) x ... x CL (£) — An(D)

to be the map which sends collections of chinese characters which are trees to the
amalgam of these trees if together they have exactly 2 univalent vertices of each
label, and sends the collection to zero otherwise. One has that 2¢ — k = ¥n;, and
that n =0+ k.

In the following theorem, we use the symbol 1 to denote both the trivial string
link and 1 € Ag(X). The usage should be clear from context.



Vol. 74 (1999) Milnor link invariants and quantum 3-manifold invariants 335

Theorem 7.1. Let £ = A(&q,... ,&) € An(D) be the amalgam of the primitive
elements & € AL, (0). Leto; C D2 XTI be (-component zero framed string links such
that Z%(0;) = 1+&;+o(|n;|+1). Assume in addition that Z(o;) = 14+o0(n;—m+1),
where m is the minimum of the n;. Then

e

2(15%, ([ (o — 1)

where L1 denotes the link L, with positive one framing on each component.

LD =Erolnt),

Remark 7.2. This theorem is a generalization of the case (considered by Le)
where the ¢; are split unions of a trivial string link and a Borromean string link.
This special case was used to prove Fundamental Result (4). Note that if all the
n; are the same, the condition Z(o;) = 1+o(n; —m+ 1) is automatically satisfied.
In particular, we have the following special case.

Theorem 7.3. Let & C S° be the closure of an £-component O-framed string link o.
Let 61 denote the same link, but with +1 framing on every component. Suppose
the Milnor invariants of length < 20—2 of & vanish. Then Z([S3,611]) = o(£—1)
and

Zo1([5%,6.11]) = A(ZS,_1(0)),

where A: Py, () =C5, ((£) — Ae_1(0) is the amalgamation map described above.

Remark 7.4. The hypothesis of vanishing Milnor invariants implies that, Z*(c) =
1+ o(2¢—1) and hence that Z5, (o) is primitive (see [HM], Remark 2.2). More-
over, in [HM], Z5, (o) was identified with Milnor’s invariants of length 2¢ of
.

Proof of Theorem 7.1. We set X = I_[le Iyand A ={1,...,¢}.
We claim that

Z@A i =) =TT —en( [ &) +n.

jeA

where 7 consists of a linear combination of terms of type A which are products
[T of terms 7, = X UT;, where I'; is of degree type n, — m + 1 and tree type
n;, and such that not every I'; is a tree of degree n;. To see this, note that (see
[HM]), one has that Z(o;) = exp(&! + &), where & = & + o(n; + 1) is a linear
combination of diagrams whose dashed graphs are trees, and 5}‘ =o(n; —m+1)
is a linear combination of diagrams whose dashed graphs are connected, none of
which is a tree. It follows that Z(o;) = & + n;, where 7; is a linear combination of
terms of degree type n; —m + 1 and tree type n;, none of which has dashed graph
a tree of degree n;.

Since Z (0 [1(0: — 1)) = da([1(Z(0:) — 1)), with 65 = [[;co(1 —7;), the claim
is a direct application of Corollary 4.5.
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By Useful Fact 2 and the definition of Z, one obtains Z((SA((H(;\— 1))) by
multiplying Z (55 [[(e; — 1)) by the element v®v, to get a new element of A(¢)
and taking the image in A(]['_; S}). Note that ¥®s, = 1 4 o(1) and is a sum
of terms without trees by Useful Fact 4. Thus Z (3 (([J(es — 1))) is the image in

A7 S of
[Ta-epe)+,
jeA

where 7’ satisfies the same conditions as 7.

By the same argument used in Proposition 6.3, the map to A(]_[le S5 kills
any term in the above expression with just one vertex on some component. Thus
we may eliminate each term in the above expression which does not have at least
2 vertices on every component. Note that the expression [[;c 4 (1 —¢;)([[&) is the
sum of those terms in [] & with at least one vertex on each component. Let 7(J]&;)
be the sum of those terms in [ & with at least two vertices on each component.

Thus we have that Z(éA((H(a/Z\— 1))) is the image in A(]_[le Sy of

W(H &) +n",

where 7" satisfies the same conditions as 1 and each term []#; in 1 has at least
2 vertices on every component.

Note that any term in 7([]&;) has exactly 2 vertices on each component, and
exactly 2n internal vertices, since it is a linear combination of products of k£ terms
with degree ny,...,n;, whose dashed components are trees. We claim that the
terms [[#; in 0" have strictly more than 2n internal vertices. To see this, note
that since any such term has at least 2 external vertices, if it had < 2n = 2¢ — 2k
internal vertices, it’s dashed graph would have to contain at least k trees (see the
proof of 6.4). Let I be the collection of indices in {1,... ,k} for which I'; does not
contain a tree. Note that if I = (), then each I'; contains a tree which contributes
at least n; — 1 internal vertices and if I'; has exactly n; — 1 internal vertices, then it
is a tree of degree n;. Since not all the I'; are trees of degree n;, the total number
of internal vertices is > »(n; — 1) = 2n in this case. Thus we may assume that
I # 0. For all ¢ in I, we have that the degree of I'; is > n; —m + 1, and since
I'; does not contain a tree, I'; contributes at least n; — m + 1 internal vertices.
For each index ¢ not in I, I'; contains at least one tree which contributes at least
n; — 1 internal vertices. This accounts for k — |I| trees. The remaining |I| trees
must have at least m — 1 internal vertices each. Thus the total number of internal
vertices is at least X;cq1, . gpr(ne — 1) + Bier((ns —m + 1) + (m — 1)|I]| > 2n.

Thus we have shown that any term in Z(éA((H(U/Z\— 1))), other than those
in w([]&), must have strictly more internal vertices than 2n. It follows from
equations (1) and (2) that Z([S3, (H(;l\— 1)44]) = o(n) and that

e e

2,18 ([to: = 1), 1) = D" (ZGa([ [ (e = 1), ™,
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(sincis by Useful Fact (7) of Section 2, the denominator in equation (1) satisfies
(e (Z(U)) = (=1)™ + o(1)). -

To compute Z (55 (([](c: — 1)) 1)), we multiply Z(6A(([T(es = 1)))) by %,
along each component. Proceeding as in Section 5 of [Le], since ¢,, decreases degree
by nf and annihilates any summand with < 2n vertices on any component, and
since the terms in 7(J[&;) each have two vertices on each component of ]_[le I,
the only terms having > 2n vertices on each component in degree n(¢ + 1) are
obtained by multiplying 7(J] &) and the degree n — 1 term in each exponential,
¢%. Thus we have

R

2,183, ([J(e: = 1)) D) = (1) T2, (27 Y m - 1)) ),

+1

where v consists of 7(]]&;) together with n — 1 trivial chords added to each solid
component of ]_[le I;. Applying ¢, replaces each pair of external vertices of a term
in w([J&) by a dashed chord connecting them, and multiplies by ((—=2)" (n —
1)N%. (This follows from the definition of ¢,, in [LMO], as the element 72" consists
of n dashed chords and all resulting circle components are replaced by —2n. See
also Lemma 5.4 of [Le].) This yields £, proving the theorem. O

The following Theorems are application of the results in this paper. They will
appear with proof along with other applications in [HO].

The following application of Theorem 7.3 is a slight refinement of a result
announced in [Le], which states that a degree n primitive can be realized as the
first non-vanishing term of surgery on an n-component link.

Theorem 7.5. (Compare with [Le].) Let £ € A, (D) be primitive and represented
by a connected graph I'. Then there is a knot K C 5% with +1 framing, such that

Z(SY(K)) = 1+ (=1)"He + o(n + 1).

There are numerous questions that naturally arise regarding our bifiltration on
the space of homology three spheres. (See Definition 5.1.) Recall that after rein-
dexing, the Ohtsuki and LMO filtrations agree, i.e, S??n = S, (see the Fundamental
Result (5)). The following is also true.

Theorem 7.6. Sgn =8,

Thus the LM O, Ohtsuki and length 3 Milnor filtration all agree after indexing
changes.

We conclude the paper with another question regarding our bifiltration that is
suggested by the vanishing Theorem 6.5.
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Question. Are any of the inclusions S C S C NySY c S¥trtl ¢ §2ntr ¢
Sy, equalities, r > 07 In particular, is S?L” =8,7*

Appendix A. Milnor’s invariants

This appendix is divided into two sections. The first gives a brief account of
Milnor’s m-invariants for string links in homology balls and links in homology
spheres. Although some of this is new to the literature, it is all<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>