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Projectively equivalent metrics, exact transverse line fields
and the geodesic flow on the ellipsoid

Serge Tabachmkov

Abstract. We give a new proof of the complete integrability of the geodesic flow on the ellipsoid
(in Euclidean, spherical or hyperbolic space) The proof is based on the construction of a metric
on the ellipsoid whose non-parameterized geodesies coincide with those of the standard metric
This new metric is induced by the hyperbolic metric inside the ellipsoid (Klein's model)

Mathematics Subject Classification (1991). 53

Keywords. Riemanman and Finsler metrics, symplectic and contact structures, geodesic flow,
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1. Introduction

The geodesic flow on the ellipsoid is one of the most popular examples of a
completely mtegrable dynamical system (for the triaxial ellipsoid integrability was
established by Jacobi m 1838) A number of proofs of integrability is known
by separation of variables Jacobi's original approach), by confocal quadncs, by
isospectral deformations An interested reader is referred to [2, 3, 4, 7, 9, 10, 14]

In this paper we give still another proof of complete integrability of the geodesic
flow on the ellipsoid Our proof is based on the simple remark if a dynamical
system (with continuous or discrete time) on a 2n-dimensional manifold possesses
two invariant differential 2-forms one of which is nondegenerate then the system
has n invariant functions Namely, let the invariant forms be io\ and uji where io\
is nondegenerate Then the functions

^ 1

are integrals (not necessarily independent) Alternatively, consider the (1,1)-
tensor field E relating the two forms W2{u,v) io\{Eu,v) for every tangent
vectors u and v Then the eigenvalues of E are invariant functions, and these

integrals are functionally dependent on the previous ones
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A much deeper result (which we do not use) is that if io\ and uji are Poisson

compatible symplectic forms then these integrals Poisson commute with respect
to both forms - see, eg, [5, 12] concerning bihamiltonian formalism

In Section 2 we slightly modify and apply the above general observation as
follows Consider the geodesic flow of a Fmsler metric on a manifold M One
identifies the tangent and cotangent bundles via the Legendre transformation and
considers the differential 1-forin A corresponding to the Liouville form on T*M and
the respective symplectic structure lu dX The geodesic flow is a Hamiltoman
flow on TM whose Hamiltoman function is identified with the Lagrangian defining
the Fmsler metric Let S C TM be the hypersurface consisting of Fmsler unit
vectors The leaves of the characteristic foliation r\ on S are identified with non-
parameterized trajectories of the geodesic flow

Two Fmsler metrics on M are called projectively equivalent if, up to reparam-
etenzation, their geodesies coincide We show that if there exist two projectively
equivalent Fmsler metrics on Mn then the geodesic flow of either metric has n
invariant functions If the metrics are generic enough then these integrals are
functionally independent

The argument goes as follows Given two projectively equivalent Fmsler metrics
on M, consider the transformation </> of TM that rescales the tangent vectors and
takes the first unit vector hypersurface Si to the second one, S% Then </> takes the
characteristic foliation 771 to 772 Therefore the symplectic forms wi and 4>*{io<2)

have the same characteristic foliation 771 on Si and both forms are holonomy
invariant along 771 It follows that the functions

Ai Aojr^AoJÎ
1 1

Ai A UJ^

are integrals of the geodesic flow of the first Fmsler metric, the n-th integral being
the Lagrangian (once again one may also consider the spectrum of the field of the
linear transformations relating the two forms)

It is an interesting problem to describe the pairs of projectively equivalent
Fmsler metrics for which the constructed integrals Poisson commute with respect
to the symplectic structure ivi In particular, when are the forms ivi and </>*(w2)

Poisson compatible7
We apply this construction to the geodesic flow on the ellipsoid One of the

metrics is, of course, the Euclidean metric in the ambient space restricted to the
ellipsoid The other metric is provided by the following general construction
discussed in Section 3

Consider a smooth hypersurface M C Rn equipped with a smooth transverse
line field £ A smooth curve 7 on M is called a ^-geodesic if at every point x G 7
the 2-plane generated by the tangent line to 7 and the line £(x) is second-order

tangent to 7, in other words, the osculating 2-plane of a ^-geodesic at every point
x contains the line £(x) In particular, if £ consists of the Euclidean normals
then a ^-geodesic is the usual geodesic line on M We show that if M is an
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ellipsoid and £ is a so-called exact field (introduced and studied in [15, 16, 17] and
defined in Section 3) then there exists a metric on M whose geodesies coincide
with ^-geodesies (this result was conjectured in [15]) Since the field of Euclidean
normals to a hypersurface is exact one obtains the second metric on the ellipsoid,
projectively equivalent to the Euclidean one

This second metric comes from the hyperbolic metric inside the ellipsoid
considered as the Klein model of the hyperbolic space Hn, the ellipsoid plays the role
of the sphere at infinity Namely, there exists a one-parameter family of closed

hypersurfaces in Hn that are orthogonal, in the hyperbolic sense, to the lines from
the field £ These surfaces have the metrics induced from Hn, and the desired
metric on the ellipsoid is the limit of these, appropriately renormalized, metrics as

the hypersurfaces tend, in the Euclidean sense, to the sphere at infinity
This construction is closely related with a result from [15] concerning the

billiard inside the ellipsoid The billiard transformation is a map of the space of
oriented lines (rays) intersecting the billiard table, this map preserves the sym-
plectic structure on the space of rays associated with the Euclidean metric (see,

e g [18]) It was observed in [15] that if the billiard table is an ellipsoid then the
billiard map also preserves the symplectic structure on the space of rays associated
with the hyperbolic metric inside the ellipsoid This observation gives a proof of
complete mtegrability of the billiard map

In Section 4 we compute the integrals for the geodesic flow on the ellipsoid
provided by the preceding constructions Remarkably, we obtain precisely the
classical integrals (as given in [8, 9, 10])

In Section 5 we show that the same techniques apply to the geodesic flow on the
ellipsoid in the spherical or hyperbolic space These flows are completely integrable
- see [20], our method provides a new proof

We also describe the Riemanman metrics in a domain D C Rn with the property

that for every smooth hypersurface M C D there exists a smooth transverse
line field £ along M such that the geodesies on M are the ^-geodesies It turns out
that such a metric is a metric of constant curvature whose geodesies are straight
lines, that is, the Euclidean, spherical or hyperbolic one, the respective transverse
line field consists of the normals to a hypersurface

It would be interesting to describe the Finsler metrics with the same property,
at the present writing we do not know whether there are any which are not
Riemanman Such a Finsler metric would be a candidate for application of the above
described techniques, and one might expect its geodesic flow on the ellipsoid to be

integrable
In the Appendix we prove Hamel's characterization of Finsler metrics in a

domain in linear space that are projectively equivalent to the Euclidean ones
We use vector notation throughout the paper if x, u G Rn and L is a function

on Rn then

xu x\u\ -\- -\-xnun, udx u\dx\ -\- -\-undxn,

dx A du dx\ A du\ + + dxn A dun, dL/du Lu (LU1, LUn),
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u{L) uLu u\Lul + + unLUn etc

2. Projectively equivalent Finsler metrics

Start with a description of relevant facts about Finsler metrics (see, eg, [3, 13])
Finsler geometry describes the propagation of light m an mhoinogeneous an-

îsotropic medium This means that the velocity of light depends on the point and
the direction There are two equivalent descriptions of this process corresponding
to the Lagrangian and the Hamiltoman approaches m classical mechanics, we will
focus on the former

A Finsler metric on a manifold M is described by a smooth field of strictly
convex smooth hypersurfaces, containing the origin (and not necessarily centrally-
symmetric), m the tangent space at each point These hypersurfaces are called
indicatrices The mdicatrix consists of the Finsler unit vectors and plays the role
of the unit sphere m Riemanman geometry

Equivalently, a Finsler metric is determined by a smooth nonnegative fiber-
wise convex Lagrangian function L on the tangent bundle TM whose unit level
hypersurface S intersects each fiber of TM along the mdicatrix Unless otherwise
specified, we assume that L is fiber-wise homogeneous of degree 2

A Finsler geodesic is an extremal of the Lagrangian L The Finsler geodesic
flow v is a flow m TM m which the foot point of a tangent vector moves along a
Finsler geodesic, the vector remains tangent to this geodesic and has a constant
Finsler length

The Lagrangian L determines a diffeomorphisin, called the Legendre transformation,

between the tangent and cotangent bundles If (x,u), x G M, u G TXM
is a tangent vector and {x,p), x G M, p G T*M is a cotangent one then the
Legendre transformation is given by the formula p Lu

Denote by A the differential 1-forin m TM corresponding to the Liouville form
m T*M, one has A Ludx Let lu dX, then w is a symplectic form m TM
The flow v is a Hamiltoman flow with respect to this symplectic structure, the
Hamilton function being L One has X(v) 2L and ivio —dL CVX (where
Cv is the Lie derivative)

The unit level hypersurface S C TM is foliated by the trajectories of the
geodesic flow These trajectories coincide with the leaves of the characteristic
foliation rj generated by the kernels of to restricted to S Thus the leaves of rj are
identified with non-parameterized Finsler geodesies The 1-forin A determines a
contact structure on S

Let two projectively equivalent Finsler metrics be given on Mn, we use the
subscript i 1,2 to indicate that an object relates to the first or the second

metric Consider the diffeomorphisin </> of TM given by the formula

4> (x,u)^(X,U) where X x, U {Li{u)/L2{u))l/2 u
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This transformation has the following properties.

Lemma 2.1. (i) 4>{S\) S^.
(n) The 2-forms w\ and 4>*iV2 have the same characteristic foliation r\\ on S\ and
both are holonomy invariant along the leaves of this foliation.

Proof. Since L\(u) 1 on S\, one has: L^iU) (L\(u)/L^iu)) L^iu) 1, and
the first claim follows. Since the Finsler metrics are projectively equivalent, </>

takes the leaves of r\\ to those of r\i. Since r\i is the characteristic foliation of 102

on Si the characteristic foliation of 4>*u>2 on S\ is r\\. If v is a vector field tangent
to 771 then iviü\ 0 and Lv{w\) ivdw\ + divw\ =0onSi. The same applies to
4>*lo<2, and the second claim is proved.

It follows that the functions invariantly associated with the forms w\ and </>*W2

are constant on the leaves of 771, that is, are integrals of the geodesic flow of the
first Finsler metric.

One way to obtain such functions is as follows. Let E be the (l,l)-tensor
field relating the two forms: (p*iV2(u,v) ivi(Eu,v) for every tangent vectors
u and v. Since r\\ is the common characteristic foliation of the two forms, E
preserves the tangent directions to r\\. It follows that the n — 1 eigenvalues of the
linear transformations induced by E on the fibers of the normal bundle TS/rj\ are
integrals of the geodesic flow; still another integral is, of course, the Lagrangian
Li.

Another construction of invariant functions goes as follows. The integrals
constructed below are functionally dependent on the above ones.

Lemma 2.2. The functions

are constant along the leaves of rj\.

Proof. Since Ai is a contact form the denominator does not vanish. Similarly to
Lemma 2.1, LV1(\\) 0 and Lvi(u)\) Lvl{4>*Lüi) 0 on S\. It follows that

=° for every i.

Notice that the symplectic form <j>*W2 is not necessarily «i-invariant on the
whole TM. We modify the form uji as follows.

I/OLemma 2.3. The kernel of the 2-form uj^ à{Jj^ A2) contains the vector V2,
and for every function g this 2-form is invariant on TM under the flow gv2 ¦a
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Proof. One has:

J2 (1/2)L2 3/2(2L2dA2 - dL2 A A2).

Therefore

iV2J2 (l/2)L23/2(2L2iV2d\2 + A2(v2)dL2)

(l/2)L23/2(-2L2dL2 + 2L2dL2) 0.

It follows that gv2 G ker u;2. Since u;2 is closed, the Cartan's formula for the Lie
derivative implies that u;2 is (gw^-invariant. The lemma is proved.

Since the map </> takes L\ to L2 an(i the vector field </>*(t>i) is equal, up to a
functional multiplier, to v2 we obtain the following corollary.

I/O
Corollary 2.4. The 2-form </>*u;2 d(L^ </>*A2) «s invariant, along with ui\,
under the geodesic flow of the first Fmsler metric on TM.

3. Exact transverse line fields along the sphere

Let M C Rn be a smooth hypersurface equipped with a smooth transverse line
field £. Denote by n(x), x G M the unit normal vector field along M. Let v be
the vector field along £ normalized so that v(x) n(x) 1 for all x G M.

Definition. A transverse field £ is called exact if the 1-form vdn on M is exact.

Clearly, the field of Euclidean normals is exact. Exact fields enjoy many
properties of the Euclidean normals. For example, the following generalization of the
classical 4-vertex theorem holds (see [19]): given a generic exact transverse line
field £ along a closed convex smooth plane curve 7, the envelope of the 1-parameter
family of lines £(#), 1G7 has at least 4 cusp singularities.

Below we list a few relevant properties of exact transverse line fields - see [15,
16]:

(i) Although defined in Euclidean terms, exactness is a projective property.
Namely, let £ be an exact transverse line field along M C Rn, and F be a projective
transformation of Rn whose domain contains M. Then the line field DF(£) along
F(M) is also exact.

(ii) Let / be a smooth function on the unit sphere S"^1. Then the line field
generated by the vector field v(x) x + grad /(#), x G S"^1 is exact. Every exact
field along the unit sphere is obtained this way.

(iii) Let £ be an exact transverse line field along a sphere. Identifying the
interior of the sphere with the hyperbolic space Hn (Klein's model), one has an
imbedding of the sphere to the space of oriented lines in Hn: to a point x G S*"^1
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there corresponds the line £(#), oriented outward. Let L be the image of this map.
Then L is a Lagrangian submanifold of the space of oriented lines in Hn with its
canonical symplectic structure, associated with the hyperbolic metric, and if n > 3

this condition is equivalent to exactness. It follows that if £ is exact then the lines
from this field are the hyperbolic normals to a one-parameter family of equidistant
closed hypersurfaces in Hn. In view of Property (i), an analogous property holds
for the ellipsoid.

(iv) Let g be a Riemannian metric of constant positive or negative curvature in
a domain D C Rn whose geodesies are straight lines. Then, for every hypersurface
M C D the field of ^-normals to M is an exact line field.

Let £ be an exact transverse line field along the unit sphere. According to
Property (ii), £ is generated by the vector field v(x) x + grad f(x) where / is a
smooth function on the sphere. Let (x,u), x G S""1, u G TxSn~^ be coordinates
in TSn~^. We ask whether there exists a metric on the sphere whose geodesies
are the ^-geodesies. The affirmative answer is provided by the next theorem.

Theorem 3.1. The geodesies of the metric L{x,u) u2e~2f(x">/2 are the £-
geodesies.

Proof. One wants to show that if x(t) is a geodesic of L then for every t the
acceleration vector x"(t) belongs to the plane spanned by x'(t) and v(x(t)).

The Euler-Lagrange equation with constraints reads (see, e.g., [3]):

T r" -i- T t1 — T — rV

where C is an unknown function and x' u. One easily computes:

Lx -w2e~2/grad /, Lu e~2/w, Lux -2e~2fu <g> grad /, Luu e~2fId,

where u <g> grad / is the endomorphism

(w<g> grad f)l3 =V^-Q^r-

Thus the Euler-Lagrange equation is:

e-2f(x" - 2u(f)u + w2grad /) Cx,

where u(f) is the directional derivative of the function /. To find C, dot-multiply
by x and use the fact that ux 0 and x ¦ grad / 0; one finds that

the last equality obtained by differentiating the identity xu 0. Therefore

x" - 2u(f)u + w2grad / -u2x, hence x" 2u(f)u + u2v{x).
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It follows that the acceleration x" is a linear combination of the velocity x' and
the transverse vector v(x) The theorem is proved

It would be interesting to describe all pairs (M, £) where M is a hypersurface
and £ is a transverse line field for which there exists a Lagrangian on M whose
extremals are the ^-geodesies

Next we discuss the relation between the Lagrangian from the previous theorem
and the above mentioned Property (m) of exact transverse line fields We use the
notation introduced prior to Theorem 3 1

The idea is as follows Consider the one-parameter family of equidistant closed

hypersurfaces inside the sphere which are orthogonal with respect to the hyperbolic
metric to the lines of the exact transverse field S, along S"^1 Let N be such a

hypersurface, it has the metric induced from the ambient hyperbolic space We

want to consider the limit of these metrics as N tends to S"^1 We need, however,
to renormahze the metrics, otherwise the limit will be infinite

To this end let N be a hypersurface which is, in the Euclidean sense, înfînites-
îmally close to the unit sphere Denote by y G N the point that lies on the line
£(#), the correspondence ip x —s- y is a diffeomorphisin from Sn to N One
has

y x - eh(x)v(x) + O(e2)

where feisa positive function on the sphere and e denotes an infinitesimal parameter

Let ge be the metric on the sphere induced by ip from the metric on N and
rescaled by the factor e

Theorem 3.2. The metric from Theorem 3 1 is equal, up to a constant, to
hme_>o 9e

Proof To start with, the hyperbolic metric inside the unit ball is given, in
Euclidean terms, by the formula

v? (wy)2
+

where y is a point inside the ball, w is a tangent vector and multiplication is
the Euclidean scalar product (see, e g [15]) Respectively, the hyperbolic scalar
product at point y is

{w\y){w<2y)

(l-y2)2
Recall that £ is generated by the vector field v(x) x + grad /(#) and that

xv(x) 1 Write the unknown function h(x) as exp</>(x) Let u G TxSn~^ be a

tangent vector and w Di/j(u) The function </> is determined by the condition
that the lowest term in e in the scalar product < w, v > vanishes for every u
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It is straightforward to compute that

w u-ee4>(u(4>)v + u(v)) + O(e2), 1 -y2 2ee0 + O(e2), yv 1 - ee^v2 + O(e2).

It follows that

yw =—ee^(u((j>)+xu(v)+uv) + O(e) and vw uv + O(e).

Take the directional derivative of the identity xv 1 and use the tautological
identity u(x) u to obtain: uv + xu(v) 0. In addition, uv u- grad / «(/);
therefore

yw -ee0w(</>) + O(e2) and w «(/) + O(e).

Hence the lowest term in < w,v > is

2u(f)-u(4>)

Equating to zero for every u one finds: </> 2/ + const.
Finally, ge(x,u) eLff(y,w) where (y,w) is related to (x,u) as above. The

formula for Lh and the preceding computations imply that

ge(x,u) Const ^mV2^) + O(e),

and the result follows.

Remark. We give an explicit parameterization of the equidistant hypersurfaces
orthogonal to the lines of the field £: these hypersurfaces, indexed by a parameter
e which is an arbitrary positive real number, are the loci of the points

2e v[x) e2^*) xyX X&S

This formula is a result of a direct computation similar to the one in the proof
of the above theorem; we do not reproduce this computation here. The previous
result concerned the case of an infinitesimal e.

4. Integrals of the geodesic flow on the ellipsoid

In this section we compute the integrals of the geodesic flow on the ellipsoid
provided by the construction from Section 2.

Let E C Rn be the ellipsoid given by the equation ^2a,ty2 1. Let (y,v), y G

E, v G TyE be coordinates in the tangent bundle TE. Consider the linear
transformation A that takes the ellipsoid to the unit sphere S"^1 and extend A to
TE:

A: (y,v) ^ (x,u); x,
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The geodesies on E are transformed by A to the geodesies of the following metric
on the sphere:

Let n(y) be a normal vector to E at point y. For every geodesic through y its
osculating 2-plane contains n{y). Therefore the A-images of the geodesies on the
sphere are ^-geodesies where the transverse line field £ is generated by the vectors
A{n). Due to projective invariance of exactness (Property (i) in Section 3) the
field £ is exact. We compute the metric associated with this field according to
Theorem 3.1.

Lemma 4.1. This metric is given by the formula:

L2(x,u) -— 7>.

Proof. We may take n(y) to have the components atyt; then A{n){x) has the
components atxt. Rescale this vector to the vector v(x) with the components
atxt/J2ajx^i then xv(x) 1. One easily vérifies that v(x) x + grad f(x) where

/ is the following function on the sphere: f{x) ln(£ajX2)/2. It follows that the
metric provided by Theorem 3.1 is

1 1 2

The lemma is proved.

Thus L\ and Li are projectively equivalent metrics. We are ready to apply the
construction from Section 2.

Introduce the following notation:

EM? a V^ 2 ^1 t
1 t I"2

—-, f3=y^aixt'j then L\ -a, L<i

Using the notation from Section 2, first compute the 1-forms on TS"^1
corresponding to both Lagrangians:

v^ utdxt udx
Ai > A2 ——.^ a% ß

Next, the map </> that takes the unit level hypersurface of L\ to that of L% is the
rescaling by the factor of y'aßju^. It follows that

4>*(A2) S^r udX] let 7 (w2/?)-1^.
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Therefore

lüX V dUt A dXt, 4>*J2 d{L~1lß4>*\2) V2~f(du Adx + dln-yA (udx)).

We drop the subscript and denote uj\ by lu; let also Q du A dx + d\n~/ A (udx).
We need an explicit formula for the geodesic flow V of L\.

Lemma 4.2. One has:

d u2 d

dxt ß du,

Proof. The tangent vectors to TSn 1 belong in the kernels of the 1-forms xdx and
udx + xdu; one sees that the above V annihilates both forms. Next, the geodesic
flow is the Hamiltonian flow of L\ with respect to the symplectic structure lu; and
indeed, the above V satisfies the formula: iyu —dL\. The lemma is proved.

We also make an observation that is verified by a direct computation.

Lemma 4.3. ^(7) 0.

Thus, in addition to a, the quadratic function u ß is an integral of the geodesic
flow V; being expressed in terms of the original ellipsoid, this is the classical
Joachimsthal integral. It follows that Q is an invariant form (neither closed nor
non-degenerate). This form is easily computed:

(udu) A (udx) (xéa) A(YJa,lxld,xl)
ß

We are ready to compute integrals of the geodesic flow from the invariant forms
lu and Q.

Consider the ^-invariant 2-form ujt t^uj + Q. Then the function ft
u!™~ /ujn~^ is an integral of the flow V for every t.

Consider TS"^1 as a submanifold in TRn; then the 1-forms xdu + udx and xdx
vanish on TS"^1. The computation of the functions ft simplifies if one wedge-
multiplies the numerator and denominator by the 2-form (xdu + udx) A (xdx)
and considers the resulting 2n-forms in TRn. Moreover, wedge-multiplying the
numerator by udx A xdx yields zero because it contributes n + 1 factors of the type
dxt. Also note that wedge-multiplying the numerator by xdu annihilates the term
(xdu) A Ç}2a,x%d,x%) in Q. Furthermore, since ((udu) A (udx)) 0, the function
ft is equal to the ratio of the two volume forms W\ and W% in TRn where W\

du% AdxA (n1) f^,dulAdxl\ \^ > A(udu)A(udx))A(xdu)A(xdx),
J
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and

att 1 + att

Let Wo be the standard volume form Il(dut A dxt). To find the volume forms W\
and W2 we need the next result.

Lemma 4.4. Consider the 2-form

Edut A dxt

—ö—
mTR". Then

to71-1 A (xdu) A (xdx) _ (n-1)! ^ 2

w0 nc, 2-^c%x% '

^n-2 ^ (udu) A (udx) A (xdu) A (xdx) (n — 2)!

Proof. We prove the first equality; the second one is established similarly. The
desired volume form is found as follows: choose a 2-dimensional subspace Lt
Span(xj,Mj); consider the area form (xdu) A (xdx) on Lt and the volume form
^n-1 on yR/y^; multiply the two and sum over i 1, ...,n. The area form is
x2 dut A dxt, and the symplectic volume form equals

(n — l)!nj7tj duj A dxj

The result follows by summation.

The previous lemma implies that, up to a constant,

The denominator is the invariant function 7. Therefore the numerator is an integral

too; denote it by gt. It is easy to see that

gt u2(J2b,x2) -
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Consider the bilinear form in Rn:

+ o,%t

Since x2 1 and ux 0, one has:

2
1 -Qt(x,x), ^huf u2 -Qt(u,u), ^b.u.x, -Qt(u,x).

It follows that
9t Qt(u,u) - Qt(x,x)Qt(u,u) + Qt(u,x).

Following J. Moser [8,, 9, 10] one extracts n integrals from this one-parameter
family of invariant functions by expressing gt in partial fractions and taking the
coefficient of (1 + a%t)~^, divided by at, to be the i-th integral:

3^Fl

Being expressed in terms of the coordinates (y,v) on the original ellipsoid these
functions coincide with the classical integrals of the geodesic flow as given in the
quoted papers by Moser.

Remark. The geometrical meaning of the equation gt(x, u) 0 is that the straight
line in Rn through the point x in the direction of m is tangent to the quadric Qt 0;

this quadric is the image under the linear map A of a quadric, confocal with the
original ellipsoid E - [8, 9, 10].

5. Ellipsoids in the spherical and hyperbolic spaces

It is natural to ask whether the methods of the previous sections are applicable
to other Fins1er metrics. A natural candidate would be a metric in a domain
D C Rn with the following property: for every hypersurface M C D there exists
a transverse line field £ such that the Fmsler geodesies on M are the ^-geodesies.
The next result shows that if one restricts attention to the Riemannian case then
the supply of such metrics is rather limited. Assume that the dimension n is not
less than 3.

Theorem 5.1. A Riemannian metric g enjoys the above property if and only if
it is a metric of constant curvature whose geodesies are straight lines. In this case
the transverse line field £ consists of the g-normals to a hypersurface.

Proof. Let a Finsler metric with the above property be given. First, we claim that
the geodesies of this metric in D are straight lines. Let M be an affine hyperplane.
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Since the osculating 2-planes of every curve in M lie in M and cannot contain a
transverse direction £, the Fmsler geodesies in M are straight lines

Let L be the Lagrangian, quadratic in the velocities u, defining the metric, and
let Q L1/2 The non-parameterized extremals of Q coincide with those of L

We make use of Hamel's theorem that gives a necessary and sufficient condition
for the extremals of a Lagrangian in a domain in Rn, homogeneous of degree 1,

to be straight lines This condition is the matrix Qx%u3 is symmetric - see [1] In
particular, if M has the equation xu const then the Hamel condition holds for
all i,j ^ k Since n > 3 the Hamel condition holds for all i,j, and the extremals
of Q in Rn are straight lines

A Beltrami theorem states that a Riemanman metric whose geodesies are
straight lines is a metric of constant curvature (see, e g [6]) To finish the proof
one may use explicit formulas for the spherical or hyperbolic metric We prefer,
however, to derive a necessary and sufficient condition in terms of the Lagrangian

The extremals x(t) of the Lagrangian Q on a hypersurface M satisfy the Euler-
Lagrange equation

Quux" + Quxx' -Qx Cn{x)

where n(x) is a normal vector field to M and x' u Since Q is homogeneous of
degree 1, Euler's equation implies uQu Q, u,Quu 0 Using Hamel's condition
one obtains Quxu Qxuu Qx, thus Quxx' — Qx 0 The condition imposed
on the Fmsler metric means that x" is a linear combination of £ and u Since

uQuu 0 the Euler-Lagrange equation simplifies as follows

Quu{x,u) i{x) Cn{x)

Next we express this condition in terms of the Lagrangian L One has

Quu (1/2) IT3/2 (2 L Luu - LTU Lu),

thus the condition on the transverse field £ is

Luu{x,u) £(z) "2
' Lu{x,u) Cn{x)

for every u, orthogonal to n(x)
Fix a point x G M If the metric is Riemanman then Luu is a symmetric

matrix, say, A Then Lu Au and 2L Au u Our condition reads

_ AuÇ
Au u

for all u, orthogonal to n This equality is satisfied by S, A~^n (and C 1),
that is, by the ^-normal to M at x The theorem is proved
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We do not know whether the above theorem extends to all Fins1er metrics. We

conjecture this to be the case.
Use the standard models for the spherical and hyperbolic spaces: for the former

it is, naturally, the sphere in the Euclidean space with the induced metric; for the
latter it is one sheet of the 2-sheeted hyperboloid with the metric induced by
the Lorentz metric of signature (n, 1) in the ambient space. An ellipsoid in the
spherical or hyperbolic space is the intersection of the sphere or hyperboloid with
a positive-definite quadratic cone.

Using Theorem 5.1 and Property (iv) of exact transverse line fields from Section
3, one can prove that the geodesic flow on the ellipsoid in the spherical or hyperbolic

space is integrable (see [20] for a different approach). This proof essentially
repeats the one given for the Euclidean case, and we do not dwell on it.

6. Appendix: proof of Hamel's theorem

For the reader's convenience we provide a proof of Hamel's theorem. This theorem
is related to Hilbert's 4-th problem, integral and symplectic geometry - see [1].

Let Q(x,u) be a Lagrangian, homogeneous of degree 1, whose extremals are
straight lines. The Euler-Lagrange equation reads:

Quux" + Quxx' -Qx 0

where x' u. If the extremals are straight lines then x" is proportional to u.
Since Qu is homogeneous of degree 0 one has, by Euler's equation: Quuu 0. The
Euler-Lagrange equation implies that ^2kQu^xkUk Qx% for all i. Differentiate
with respect to u3 to obtain:

for all i,j. The left hand side is symmetric in i, j while the right hand side is

skew-symmetric. Therefore both vanish, and Qx^u, Qx3uz-
Conversely, let the matrix Qx%u3 be symmetric. Then Quxu Qxuu Qx,

and QuxU — Qx 0. The Euler-Lagrange equation implies that Quux" 0. The
matrix Quu(x,u) is degenerate and its kernel is generated by the vector u. Thus
x" is proportional to x', and the extremals are straight lines.

Added in proof: After the submission of my paper I learned about the paper
by V. Matveev and P. Topalov "Geodesic equivalence and integrability" (MPIM
preprint, 1998) that contains a similar approach to the geodesic flow on the ellipsoid.
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