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A character formula for a family of simple modular
representations of GL,,

Olivier Mathieu and Georges Papadopoulo

Abstract. Let K be an algebraically closed field of finite characteristic p, and let n > 1 be
an integer. In the paper, we give a character formula for all simple rational representations of
GLy(K) with highest weight any multiple of any fundamental weight. Our formula is slightly
more general: say that a dominant weight A is special if there are integers ¢ < j such that
A= Zigkg;‘ ay wy and Zigkgj ar <inf(p — (j —1),p—1). Indeed, we compute the character
of any simple module whose highest weight A can be written as A = A\g + pA1 + ... +p" A with
all \; are special. By stabilization, we get a character formula for a family of irreducible rational
G Lo (K)-modules.

Mathematics Subject Classification (1991). 20C20, 17 Bxx.

Keywords. Tilting modules, modular representations, character formula, polynomial functors,
Verlinde’s formula.

Introduction

In the paper, we will prove a character formula for a stable family of simple poly-
nomial representations of GL,(K). Unfortunately, the main result of the paper
requires some preparatory explanations. Therefore, the introduction is organized
as follows. We first define the basic notions about polynomial weights and we
describe some combinatorics involving Young diagrams. Next, we recall the usual
correspondence between dominant polynomial weights and Young diagrams and
we compare the corresponding definitions. After the statement of the main re-
sult, we explain the meaning of a stable family in terms of polynomial functors.
Then, we briefly compare our result with the main result of [AJS] about Lusztig’s
Conjecture. At the end of the introduction, we describe the main ingredients of
the proof which uses tilting modules [D2][R] and the modular Verlinde formula
[GM1][GM2].

The research of the two authors was supported by UMR 7501 du CNRS. The second author
was also supported by UA 748 du CNRS.
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Let us start with definitions involving weights. From now on, fix a positive
integer n and an algebraically closed field K of characteristic p > 0. Let H be
the Cartan subgroup of GL,,(K) consisting of diagonal matrices and let P be the
group of characters of H. An element of P will be called a weight and the group
structure of P will be denoted additively. Denote by €q,¢€a,... the natural basis
P, ie. ¢(h) is the i diagonal entry of the matrix h € H. Therefore any weight
o can be written as g = Y <, <, i €, where r; € Z. Its degree is |p| = > 1 <;<p T4-
The weight p is called polynomial if r; > 0 for all ¢. It is called dominant if
r1 > ro > .... By definition, the k*-fundamental weight is w;, = Y i<k €k
for any k with 1 < k < n. Therefore a weight A is polynomial and dominant if
and only if A\ = > ., ., arwi where a; > 0 for any k. The main definition of
the paper is the definition of special weights. A dominant polynomial weight X is
special if and only if there exist integers ¢ < j such that:

(D) A= <<y @ Wi,

(i) m(A) <p — (§ —4) and m(A) < p, where m(A) = > 7, < ak.

Note that the last inequality m(A) < p is automatically satisfied whenever i # j.
We will also use the notion of the p-adic expansion of a polynomial weight. Recall
that any integer [ > 0 admits a unique p-adic expansion [ = Zj>0 1(5)p?, where
0 < I{j) < p for all j > 0 (this expansion is finite since {(j) = 0 for j >> 0).
Similarly, any polynomial weight p admits a unique finite p-adic expansion p =
22750 pIu(5), which is defined by p(5) = 31 <<, 7i(J) €. Also set C,, the set of all
dominant polynomial weights A of the form A= 3", ., p* Ak, where all weights Ay,
are special and Ay = 0 for k >> 0. Indeed, it is easy to see that > ,<¢ pF A is the
p-adic expansion of A, i.e. we have A\, = A(k) for all k> 0 (see Lemma 5.1 (i)).

Now, we will define a few notions involving Young diagrams. The degree of a
Young diagram Y, denoted by |Y], is the total number of boxes and its height is
the number of rows. A tableau of shape Y is a labeling of the boxes of Y by the
integers 1,2,...,n. It is convenient to draw Young diagrams and tableaux and the
convention used in the paper is better explained by giving one example of a Young
diagram Y of degree 8 and height 3 and one example of a tableau 1" of shape Y:

¥ T

3[3[3]
15

|C\')[\DH

As usual, a tableau is called semi-standard if the filling is non decreasing from
left to right and increasing from top to bottom, e.g. the tableau in the previous
example is semi-standard. For a tableau T', denote by T[¢] the subset of boxes with
labels < ¢. Therefore, when 7' is semi-standard, T'[¢] is again a Young diagram.
The weight of T'is w(T') = Y i<, m(T)e;, where 7;(T) equals the number of
times the label ¢ occurs in T (i.e. 7;(1) is the cardinality of T'[¢] \ T'[¢ —1]). For
a Young diagram Y, we denote by ¢;(Y) the number of boxes on the i** column
and by r;(Y) the number of boxes on the j* row. In the previous example,
1Y) =3, r(Y) =4, c2Y) =2, r9(Y) =3 and soon .... Let m < p be a
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positive integer. We say that Y is m-special if the number of columns is < m and
if c1(Y) — (V) < p— m. By definition, a semi-standard tableau T is m-semi-
standard if all Young diagrams T[] are m-special.

There is a one-to-one correspondence A — Y () between dominant polynomial
weights A and Young diagrams of height < n. Indeed, Y(A) is defined by the
requirement: A = > i .., 7:(Y)e. This correspondence preserves the degree.
Moreover a polynomial dominant weight X is special if and only if Y () is m(A)-
special, see Lemma 4.1 (i). Let A be a special weight, let i be a polynomial weight.
Set N (A, i) the number of m(A)-semi-standard tableaux of shape Y (\) and weight
w. By definition, we have N(0,0) = 1 and N(A, i) = 0 if the degrees of A and p
are distinct.

For any dominant weight A, set V' = K™ and let Ly (\) be the simple GL(V)-
module with highest weight A (this simple G L,,(K)-module is usually denoted by
L(X)). For p € P, its weight space corresponding to the weight p is denoted by
Ly (A),,. The main result of the paper is the following:

Theorem 5.3. Let A € C,,. Any weight of Ly (X) is polynomial, and for any
polynomial weight ., we have:

dim Ly (A)p = [0 N(AK), u(k)).

In the theorem, we stated the obvious fact that any weight p of Ly (\) is
polynomial because this property is necessary to define its p-adic expansion. Also,
the infinite product is well defined because N(A(k), u(k)) = N(0,0) =1 for k >>
0.

It remains to explain what means a stable family of simple modules. The
definition of special weights is indeed independent of n, i.e. if X is a special weight
for GL,(K) its natural extension to GLy(K) is again special for any N > n.
Otherwise stated, the family (Cn),>1 is stable, i.e. C;, C Cyq1. Thus the previous
theorem gives rise to a character formula for any simple G L. (K )-module with
highest weight A € Coo, Where GLoo(K) = Up>1 GLy(K), Coo = Up>1Cy. The
stability notion can be better explained in terms of polynomial functors. Let Y
be a Young diagram and let A be the corresponding polynomial dominant weight.
It will be convenient to extend the notation Ly (\) by requiring Ly (X\) = 0 if A is
not a dominant weight for GL,,(K), i.e. if the height of Y is > n. Then there is a
polynomial functor Sy such that Sy : V +— Ly ()) for all n > 0 (our definition of
the functor Sy is not complete, because we only describe the values of the functor
on objects). Therefore, the previous theorem is indeed a character formula for any
simple polynomial functor Sy, where Y = Y'(X) for some A € Cwo.

Example. For any s with 0 < s < p — 1, the weight sw; is special. Therefore,
N w; € Cy, for any N > 0, and the theorem gives a character formula for any simple
module whose highest weight is a multiple of a fundamental weight.
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There is a general conjecture, due to Lusztig [Lul,Lu2], about the character of
a simple rational G L,,( K)-module. The experts believe that this conjecture holds
for p > n (see e.g. the introduction of [So]) and it has been proved for p >> n by
Andersen, Jantzen and Soergel [AJS]. In contrast, our character formulas apply
only to some peculiar highest weights, but they hold for any n and are therefore
outside the validity domain of Lusztig’s Conjecture. Indeed Lusztig’s Conjecture
does not seem adapted to the investigation of simple polynomial functors. Using
Weyl’s polarizations, the simple polynomial functor Sy is entirely determined by
the GL,(K)-module Sy (K"), where n = |Y|. Therefore, Lusztig’s Conjecture
only applies to polynomial functors of degree < p and simple polynomial functors
of degree < p can be easily determined by elementary computations or by Theorem
5.3.

The proof is based on the following three ingredients:

(i) First, one uses Steinberg’s tensor product formula [St] to reduce the state-
ment to the case where X is special. It turns out that Steinberg’s formula is espe-
cially simple in our setting, because any weight of Ly () is a unique combination
of weights of the modules Ly (p® A(k)) (Lemma 5.2).

(ii) We strongly use an idea of Donkin [D2]: Donkin proved that M = A(VeW)
is a dual pair under GL(V) x GL(W') (here W is another vector space). This
dual pair is called Howe’s skew dual pair, because it has been found by Howe in
the context of fields of characteristic zero [H]. Donkin showed that the character
of all simple modules can be deduced from the character of all tilting modules,
and conversely. However, we do not have such an information. This is why we
need to modify a bit Donkin’s approach. Using the same dual pair, we show
that the character of simple GL(V )-modules can be also deduced from the tensor
product mutiplicity of a given tilting GL(W )-module (Corollary 2.3) in some direct
summands of the GL(W )-module M.

(iii) Similarly, the general tensor product multiplicities of tilting modules are
unknown. However the main result of [GM1,GM2] (Verlinde’s formula for algebraic
groups) describes some of them. More precisely, we use Verlinde's formula for
GL(W) with W of dimension 1,2,...,p — 1, and then the computable tilting
multiplicities in M correspond exactly to the special weights (see e.g. Lemma 3.4).

Remark. It follows from the character formula that the restriction to GL(n — 1)
of representations considered here are semi-simple (Theorem 6.2). This result has
been obtained independently and simultaneously by J. Brundan, A. Kleshchev
and I. Suprunenko [BKS] by very different methods. Indeed, the result of [BKS] is
more precise, because it characterizes all simple representations of GL(n) whose
restrictions to GL(n — 1) are semi-simple. Later, these three authors have been
able to recover the main result of our paper (Theorem 5.3) by using their semi-
simplicity theorem (thus providing a very different proof).
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1. General results about tilting modules

Let K be an algebraically closed field of characteristic p, let G be a reductive
group over K, let B be a Borel subgroup, and let H C B be a Cartan subgroup.
We will set by U the unipotent radical of B and by U~ the unipotent radical of
the opposed Borel subgroup. Denote by PT the set of dominant weights relative
to B. For A € P, denote by L(\) (respectively A(X), V(X)) the simple module
(respectively the Weyl module, the dual of the Weyl module) with highest weight
A

By G-module, we mean rational G-module of finite dimension. A good filtration
of a G-module M is a filtration whose subquotients are dual of Weyl modules. A
G-module M is tilting if M and M* have a good filtration. Recall the following
known result:

Theorem 1.1.

(i) For each A € P, there exists a unique indecomposable tilting module T(\)
which admits X as highest weight. Moreover, dimT(X\)y = 1.

(i) Any tilting module is the direct sum of indecomposable tilting modules of
type T'(N). The tilting modules T(X) and T'(p) are isomorphic if and only if X = p.

(i) The tensor product of two tilting modules is a tilting module.

References for the Theorem are as follows: the general notion of tilting modules
for any quasi-hereditary algebra is due to Ringel [R]. In the context of algebraic
groups, the assertions (i), (ii) are due to Donkin [D2] (Theorem 1.1). Assertion
(iii) follows from the fact that the tensor product of two G-modules with a good
filtration has a good filtration: for groups of type A (which are indeed the only
groups used here), it has been established in [W], for the general case see [D1],
[M1].

Let M be a G-module. Denote by T%(M) the image of the composite map
MY — M — My- where MV is the space of U-invariants of M and M- =
Ho(U—, M) is the space of U -coinvariants of M. Since T%(M) is an H-module,
there is a weight decomposition T'%(M) = &, p+ T (M).

Lemma 1.2. Let M be an indecomposable tilting module.
(i) T(M) has dimension one.
(ii) Let X be the unique weight of TS (M). Then we have M ~ T(\).

Proof. 1t is clear that T(N) # 0 for any non-zero G-module N, because any
maximal weight of N is a weight of T¢(N). Let A be any weight of T (M)
and choose v € MY such that its image in T%(M) is not zero. Denote by the
same notation vy a highest weight vector in A(XA), in V(A) and in T'(A). By the
universal property of Weyl modules, there is a map 11 : A(A\) — M sending vy to
v. Similarly, there is a map 9 : M — V() sending v to vy.
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Now, there is a canonical injection A(X) — T'(A) (sending vy to vy) whose
quotient has a filtration by Weyl modules. We have ExtL(A(u), V(i')) = 0,
for any u,p/ € PT ([CPSV], corollary 3.3). Since M has a good filtration, we
have EatL(T(N\)/A(N), M) = 0. Thus, the map ¢ can be extended to a map
¢1 1 T'(A\) — M. In the same way, there is a canonical surjection 17'(\) — V(A)
(sending vy to vy ), and the map 9 can be lifted to a map ¢o : M — T'(X). So we
get the following commutative diagram:

T\

By definition, we have 19 o 11(vx) = vx. Therefore, ¢g o ¢1 is a non nilpotent
endomorphism of the indecomposable module M. By Fitting’s Lemma, ¢9 o ¢1 is
an invertible map. Thus, T'(A) is a direct factor of M and so we have M ~ T'(X).

If v is another weight of T¢(M), we get T(v) ~ M ~ T()). Therefore by
Theorem 1.1 (i), A is the unique weight of T%(M). As T(A)x has dimension 1
(Theorem 1.1 (i)), it follows that T%(M) has dimension one. O

Corollary 1.3. Let M be a tilting G-module and let C be its commutant.
(i) We have M =~ @ e p+ TS (M) ® T(X) as a G-module.
(ii) For any A € P, the C-module T (M) is zero or simple.

Proof. By Theorem 1.1, there exists an isomorphism of G-modules

M =~ @ycpts T(N)®M>. By Lemma 1.2 we have Ny = dim T (M) and Assertion
(i) follows. For N > 0, denote by Maty(K) be the K-algebra of N x N matrices.
Clearly, C' contains a subalgebra €0 ~ @rcprMaty, (K) and we have M «~
PTE(M)® T\ as O x G-modules. Hence Assertion (ii) follows from the fact
that for any X, T"(M) is zero or is a simple CO-module. O

Lemma 1.4. Let M, N be two G-modules. If M is indecomposable of dimension
divisible by p, then the dimension of any direct summand of M ® N is divisible by
p.

Proof. This follows easily from Theorem 2.1 of [BC], see also [GM1] (Lemma 2.7.).
O
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2. Howe’s skew duality for the pair (GL(V),GL(W))

From now on, fix an integer n > 1 and set V = K". We need to modify some
notations of the introduction. The Cartan subgroup of GL(V') will be denoted by
Hy (instead of H), the group of characters of Hy by Py (instead of P), the basis
elements of Py by €} (instead of ¢;) and the fundamental weights by w; (instead
of wy). We will also modify some notations of Section 1. The set of dominant
weights will be denoted by P‘)L and for a A € P;r , we will denote by Ly (A),
Vv (A) and Ty (A) the simple module, the dual of the Weyl module and the tilting
module with highest weight A. We will use the following additional notations.
Let (v;)1<i<n be the natural basis of V. = K"™. Let Uy (respectively U, ) be
the subgroup of unipotent upper diagonal (respectively lower diagonal) matrices.
Indeed P{,F = P1<icnN le &) ZwX , and the dominant weights are relative to the
Borel subgroup Hy .Uy .

In what follows, we will use another vector space W of dimension m, with basis
(w;)1<i<m- Notations relative to GL(W) will be similar to those for GL(V).

For any Young diagram Y contained in the n x m rectangle (i.e. such that
c1(Y) < noand r1(Y) < m), we set \(Y) = Y1, i(Y)el and AT(Y) =
Sicicm ci(Y) eV, By definition, A(Y) belongs to P;f and AT(Y) belongs to Py,
The map Y +— A(Y') is the inverse of the map A — Y'(XA) defined in the introduction.
Set M = A(V @ W), let K|[GL(V)] be the group algebra of GL(V) and let py :
K[GL(V)] — Endg (M) the map induced by the action of GL(V) on M.

Theorem 2.1. (Donkin)
(i) We have py (K[GL(V)]) = Endg,mw)(M).
(i) As a GL(W)-module, M is tilting.

Proof. Theorem 2.1 (i) is proved in [D2], proposition (3.11) (see also [AR] for a
generalization to other classical groups). As a GL(W)-modules, A W is titling (see
[D2] or Lemma 3.2) and M is isomorphic to (A W)®". Therefore, by Theorem 1.1
(iii) the GL(W)-module M is tilting (see also [D2]). O

Indeed, we obtain dual statements by exchanging V and W. However, it should
be noted that usually M is not tilting as a GL(V) x GL(W)-module. In Howe’s
terminology, (GL(V),GL(W)) is a dual pair in GL(M). Indeed, for fields of char-
acteristic zero, this duality is due to Howe [H]. In this setting, Howe showed that
the GL(V) x GL(W)-module M is isomorphic to @y Ly (A(Y)) ® Lw (AT (Y)),
where Y runs over all Young diagrams contained in the n x m rectangle. A certain
generalization of this property in finite characteristics is stated in the next lemma:

Lemma 2.2. Let Y be a Young diagram of degree d contained in the n X m
rectangle.

(i) As GL(V)-module, TAGTL(;V‘)/)(M) is isomorphic to Ly (A(Y)).
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(i) Let p = Y j1cpan kil be a polynomial weight of degree d. We have

GL(W), p k k
Ly(A(Y)), = T/\T(;))(/\ TWeoN?We...).
Proof. For 1 <¢ <nand1 <7 <m,let b; ; the box of the n X m rectangle located
at the intersection of the i** row and the 5** column and set zij; =v; @wy. In
the case d > 0, we place the Young diagram Y inside the rectangle in a such way
that it contains the upper left box b1 1. For example:

Let X (respectively X ) be the subspace of V ® W generated by all z; ; with
b;; € Y (respectively with b; ; ¢ Y'). Note that X is a d-dimensional Uy x Uy-
submodule of V ® W and X~ is a (nm — d)-dimensional Uy, x Uy,-submodule of
V ® W. Choose non zero vectors = € /\d Xandz™ € /\"mfd X~

We claim that T;;L(g/)

welght A e vector z 1s Uy X Uy-Invariant of weight . Hence
ight A(Y'). Th is U Uy -i i f weigh ()\(Y),)\T(Y)) H

it defines a Uy-invariant element T € TAC;L(;V;/) (M). Fory € M, set 7(y) = [y A

xz, where [ : M — A" (V ® W) is the projection over the top component of
AV ® W). Since 2~ is Up-invariant and A" (V ® W) is a trivial Uy-module,
the map 7 : M — A" (V ® W) is Uy -equivariant and therefore factors trough
MUV_V. By definition, x A 2~ # 0 therefore 7(z) # 0. As the image of z in MUV_V

. — GL(W . . .
is not zero, we have T # 0. Hence TAT(;) )(M) contains a non-zero Uy -invariant

(M) contains a non-zero Uy-invariant vector of

vector of weight A(Y'), namely Z.

However, by Corollary 1.3 and Theorem 2.1 (ii), the non-zero GL(V)-module
TGL(W)
AT(Y)
GL(V)-modules by the weight of their Uy-invariant vectors [St] implies that

T/\GTL(E,V;/) (M) ~ Ly (A(Y)). Thus Assertion (i) is proved.

Identify VoW ~ Wa@W & ..., where the i**-factor W is v; @ W. Accordingly,
we get M~ AW ® AW ... (n times). Thus the eigenspace of weight s of the
GL(V)-module T¢LMW) (M) is TELW(AM W o A2 W ®...), and Assertion (ii)
follows. O

(M) is simple. The previous claim and the classification of the simple

Corollary 2.3. Let Y be a Young diagram of degree d contained in the n X m
rectangle, and let (1 = > 1 <p<n ki e}/ be a polynomial weight of degree d. The
dimension of Ly (NY)),, is the multiplicity (as a direct summand) of the indecom-
posable GL(W )-module Tw(MNT(Y)) in NP W o A2 We .. ..

Proof. The assertion follows from Corollary 1.3 and Lemma 2.2. O
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Remark. By Corollary 2.3, the knowledge of tensor product multiplicities of
tilting modules determines the character formula of simple modules. This formula
can be compared with Donkin’s formula for decomposition numbers. The formula
is (see [D2], Lemma 3.1):

[Ty (A(Y)) : Ve AY )] = [Vw (AT (Y)) : Lw (AT (Y)].

Therefore, each of the following computations (for all GL(n))

(i) all decomposition numbers [V (p) : Ly (A\)],

(ii) the character formula of all the simple modules Ly (A),

(iii) the character formula of all the tilting modules Ty (\),

(iv) the tensor product multiplicities of all the tensor products of two tilting
modules,
are equivalent with each other (see [D2] for further details). It should be noted
that the determination of the character of all tilting modules is a very difficult
problem: e.g. there is no conjecture for them, even for the small group GL3(K)
(in contrast, the character formulas for simple G L3( K )-modules can be obtained
very easily). The main observation of the paper is based on the fact that a partial
information about tensor product multiplicities (namely, the modular Verlinde
formula [GM1], [GM2]) is enough to determine the character formula of a certain
class of simple modules.

3. Some multiplicities of tilting GL(W)-modules in A\(V ® W)

Let W be a vector space of dimension m < p. We will use the notations of

Section 2 together with the following notations. Set Al = (e} )* — (eV)*, where

((€/)*)1<i<m is the dual basis of Hom(Pw,Z) (i.e. h{ is the highest coroot of
GL(W)). Denote by Q}’V the set of all weights of the form ex + eg +- 4 e};‘;
with k1 < kg9 < --- < k;. Thus Q;’V is the set of weights of /\j W and w]W is its
highest weight. Set Cy = {\ € PLIA(RY) < p —m}. Usually, Cw is called the
interior of the fundamental alcove.

Lemma 3.1. Let A € Pyl,. Then p divides dim Ty (\) if and only if X\ ¢ Cyw.

Lemma 3.2. Let j be an integer with 0 < 5 < m. We have Tw(w}/v) ~ /\j w.

In particular, the set of weights of Tw(w;/v) is Q;/V and each weight appears with
multiplicity one.

Lemma 3.3. Let A € Cw and let j with 0 < j < m. We have Ty (A\)@Tw (w}¥) =
@, Tw (A + v), where the sum runs over all v € Q;’V such that (A +v) € Py.

References for the previous three lemmas are as follows: Lemma 3.2 follows
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from the fact that /\j W is simple (see [D2] for details). Lemma 3.1 and Lemma
3.3 follow from the main result of [GM1], [GM2] (the modular Verlinde formula).
For the peculiar case considered here, there is a quick proof of both lemmas , see
Proposition 10 of [M2] and Lemma 12 of [M2] (m — 1 is the value of p(h{) of loc.
eit.). This quick proof is based on Andersen’s linkage principle [A] and on Lemma
14..

Lemma 3.4. Let kq, ..., ky, be integers with 0 < k; < m. We have:
/\kl We.. o /\kn W=Te [@(ul,.”,un)TW(Vl + .t

where T' is a sum of indecomposable tilting modules of dimension divisible by p
and where the sum runs over all n-tuples (v1,...,vm) € Q}X X oo X QZ‘; such that
vi+ o+ ...+ belongs to Cw, for any i with 1 < i< n.

Proof. Let X € PV}L/ and let k& be an integer with 0 < k£ < m. Assume first that
A € Cyw. It follows from lemmas 3.1, 3.2 and 3.3 that we have:

k
TwN) @ AW =T e [B,Tw+v)], (3.4.1)

where T' is a sum of indecomposable tilting modules of dimension divisible by p
and where the sum runs over all v € ka such that A\ 4+ v belongs to Cy . Next,
assume that A ¢ Cy,. From lemmas 1.4 and 3.1, we get:

k
Tw(\) ® AW ~T, (3.4.2)

where T' is a sum of indecomposable tilting modules of dimension divisible by p.
Note that for n = 1, the assertion of Lemma 3.4 is obvious: indeed the conditions
v € Cw and vy € Q?{ simply mean vy = w}’. Thus, Lemma 3.4 follows, by
induction over n, from the assertions (3.4.1) and (3.4.2). O
Example 3.5. For this example, we will consider the case m = p — 1. For any
keZ, set 0] =w! +bw), where k = a+mband 0 < a <m. It is clear that
Cw = {0}V |k € Z} and Lemma 3.4 can be stated as follows:

k1 kn
AVWe.o A\W=ToTwb i)

where T' is a sum of indecomposable tilting modules of dimension divisible by p.
Using Corollary 2.3, we get that for any special weight A with m(A) = p — 1, the
module Ly (A) is multiplicity free. Indeed, we recover a well-known fact: for such
a weight, we have A = awiv |- bwly 1, for some integers a, b, ¢ with a +b=p — 1.
Set N =ai+b(i+1). As Ly () is the degree N restricted symmetric power of
V (see [Do]), it is multiplicity free.
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4. Character of Ly (\), XA being a special weight

We will use the notations of the previous two sections. In particular, the dimen-
sions of V and W are n and m. We will always assume that m < p. Also denote
by C’ﬁfl the set of all polynomial weights in Cy/. A polynomial weight A P‘J,r is
called m-special if there are integers i,j with A = Y, s arwy', Ycpey @k <m
and j —i < p —m. To compare the notion of m-special weights with the notion of
special weights given in the introduction, we need the following two observations:
(i) A is special if and only if m(X) < p and X is m(A)-special,
(ii) if A is m-special for some m < p, then m(A\) < m and X is special,
for any dominant polynomial weight A. In particular, any m-special weight is
m(A)-special and special. Let Young(n,m) be the set of all m-special Young
diagrams of height < n.

Lemma 4.1. (i) The map Y — A(Y) is a bijection from the set Young(n,m) to
the set of all m-special weights of P‘j'.
(ii) The map Y +— AT (Y) is a bijection from the set Y oung(n,m) to C{j‘fl.

Proof of Assertion (i). The map Y +— A(Y) is a bijection between the set of all
Young diagrams of height < n and the set of all dominant polynomial weights
of GL(V'). More explicitly, this map is given by: ¥ — >, WXC(Y)‘ We have
m(A(Y)) = r1(Y), hence Young diagrams with at most m columns correspond with
weights A with m(A) < m. Moreover if r1(Y) < m, we have A(Y) = >, <, apwy
where i = ¢, (Y), 7 = ¢1(Y). Thus A(Y') is m-special if and only if Y is m-special.

Proof of Assertion (i). The map Y — AT(Y) is a bijection between the set of
all Young diagrams of height < m and the set of all dominant polynomial weights
of GL(W). We have \T(Y) = Yot ck(Y) e/, therefore we have AT (Y)(h{)

=c1(Y) = ¢n(Y). Hence Y is m-special, if and only if AT(Y") belongs to C’ﬁfl‘ O

Lemma 4.2. Let Y € Young(n,m) and let pp = Y 1 <,<,, ki€! be a polynomial
weight such that |Y| = |u|. There is a natural bijection W,, from

(i) the set of all m-semi-standard tableaur of shape Y and weight 11, to

(i) the set of all n-tuples (v1,...,vn) € QZ‘; X - X QZ‘; such that Y 1 <;<p, Vi
= XT(Y) and such that vi + vo + ... +v; belongs to Cyy, for any i with 1 <i < n.

Proof. Let T be a tableau of shape Y and weight p. Define n weights vq,...,1,, €
Py by the requirement:

v+ -+ = AT(T[i]), for all i with 1 <4 < n.

Note that T'[¢]\T'[¢ — 1] contains exactly k; boxes. Assume that T is semi-standard.
Then any two boxes of T'[i] \ T'[¢ — 1] are located on different columns. Denote
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by j1 < -+ < ji, the numbering of the non empty columns of T'[;] \ I'[¢ — 1]. We
have v; = e};‘l/ + e}’;/ + ..., hence v; belongs to Q}:V Thus it is clear that the map
¥ : T+ (v1,...,vy) is a bijection from

(i) the set of all semi-standard tableaux of shape Y and weight p, to

(ii) the set of all n-tuples (vq,...,v,) € Q}X X oo X Q}?i such that 37y <<, vs
= AT(Y) and such that vy +v9 + ... + 14 belongs to P‘;{}, for any ¢ with 1 < ¢ < n.
Indeed, this bijection ¥ is equivalent to the rule of Richardson and Littlewood
([LR], see also [Li]). Denote by W¥,, the restriction of ¥ to the set of all m-semi-
standard tableaux of shape Y and weight p. As the weights vq + 1o + ... + 14 are
polynomial, it follows from Lemma 4.1 (ii) that W,, is the bijection required by
Lemma 4.2. O

Theorem 4.3. Let X be a special weight. Any weight of Ly (\) is polynomial and
for any polynomial weight p, the dimension of Ly (X), is the number of m(X)-
semi-standard tableaux of shape Y (X) and of weight p.

Proof. It is well known that the weights of Ly(A) are polynomial ([G]). Set
Y = Y(A) and m = m()\) and let p = > y.;c, kiel be a polynomial weight.
By Corollary 2.3, the dimension of Ly (A(Y)), is the multiplicity of the indecom-
posable GL(W )-module Ty (AT (Y)) in A" W @ AW @ .... By Lemma 4.1
(i), Y belongs to Young(n,m) and by Lemma 4.1 (ii), AT(Y) belongs to Cy .
By Lemma 3.1, the dimension of the tilting GL(W)-module Ty (AT(Y)) is not
divisible by p. Hence by Lemma 3.4, dim Ly (A(Y)), is the number of all n-
tuples (v1,...,v) € QK X o+ x QF such that 3"y ;. v = AT(Y) and such that
v1 +v9 + ... + v; belongs to Cy, for any ¢ with 1 <4 < n. Hence by Lemma 4.2,
dim Ly (A(Y)), is also the number of m-semi-standard tableaux of shape Y'(\)
and of weight p. (|

Example 4.4. Consider the polynomial dominant weight A = 2w‘1/ + Wi‘%/ and set
Y =Y(\). The Young diagram Y is the hook:

The notion of m-special Young diagrams depends on the characteristic p of the
ground field K. In our example, Y is 3-special if and only if p > 5. Therefore,
Theorem 4.3 determines the character formula of the simple GL(V)-module Ly (\)
for any p > 5. As the height of Y is 3, we need to require n > 3, but to find an
interesting weight multiplicity, we will assume n > 4.

Set pn = €} +€¥ + e +2¢) . There are three semi-standard tableaux T', 7" and
T” of shape Y and weight 1, namely:
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1 2|4| il 3|4| 1 4|4|
T:i T/:l T”:l
4] 4] 13

It is clear that for any p > 7, these three tableaux are 3-semi-standard. Therefore
dim Ly (X), = 3 if p > 7 (or if the characteristic is zero). If K is a field of char-
acteristic 5, the semi-standard Young tableau T” is not 3-semi-standard, because
T7[3] is not 3-special. Since the other two tabeaux are 3-semi-standard, we have
dim Ly (X), = 2.

Using only Theorem 4.3, one can get the full character formula of Ly (A) for
all p > 5, but not for p = 2 or p = 3. However, it is also possible to compute
the character formula for Ly () in characteric 2 using Theorem 5.3: in such case
we get dim Ly (), = 1. Of course, the Young diagram Y is so small that it is
also possible to determine the character formula of Ly (A) in all characteristics
by an explicit computations, but this is not the goal of the example. Using only
theorems 4.3 and 5.3, it is not possible to compute the character formula of Ly (\)
in characteristic 3.

5. Proof of the Main Theorem

Say that a polynomial weight pn = > .., ki €} is reduced if all k; are < p—1. For
any polynomial weight u, the weights (k) oceurring in its p-adic decomposition
are reduced.

Lemma 5.1. (i) Any special weight is reduced.

(ii) Let p = 3,50 " ui be a polynomial weight where all iy, are reduced and
i =0 for k >>0. Then pp = p(k) for all k > 0.

(#1) Let X be a reduced dominant polynomial weight. Then any weight of Ly ()
is reduced.

Proof. Let A be a special weight. We have A = > .. k; e, with k1 = m(\) < p.
As X is dominant, we have k; < ki, and A is reduced. Thus Assertion (i) holds.
Assertion (ii) is obvious. Let A be a reduced dominant polynomial weight. Let X
be the set of all linear combinations ., <, e;/, where the z; are real numbers
with 0 < @; < p—1. Then A € X and X is a convex set which is stable by S,
(the Weyl group of GL, (K)). Hence any weight p of Ly (\) belongs to X, and p
is reduced. Thus Assertion (iii) holds. O

Lemma 5.2. Let A be a polynomial dominant weight of the form A =3 ,<q PF A,
where are all \y are reduced and dominant. Let i be a polynomial weight. Then
all weights X(k) are dominant and we have:
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Ly (W = Ly(A0) 40) ® Ly(A(1)u) © -

Proof. The weights A(k) are dominant, because A(k) = Ay (Lemma 5.1 (ii)). We
only stated this obvious fact to explain the notation Ly (A(k)). Moreover the infi-
nite tensor product is indeed finite, because A(k) = p(k) = 0 and Ly (A(k)) ) =
K for k >> 0.

For g = (gij)1<ij<n € GLu(K), set Fr(g) = (9 ;)1<i j<n- The map Fr :
GL,(K) — GL,(K), called the Frobenius map, is a morphism of groups. Note
that any reduced dominant polynomial weight is restricted (as it is defined by
Steinberg [St]). Therefore, by Steinberg’s product formula (see [St], Theorem
41), there is an isomorphism L(A\) =~ L(A(0)) ® L(A\(1)) ® ..., where the ac-
tion of GL,(K) on the k''-factor is shifted by Frf. Thus we have L(\), =
DB (o pir s ) LA0)) o ® L(A(L) )y ®. .., Where the sum runs over all tuples (1 )x>0
such that = Y7, P and each py, is a weight of L(A(k)). By Assertion (iii)
of Lemma 5.1, the weights p, are reduced. Then, by Assertion (ii) of Lemma 5.1,
we have py, = p(k). Thus Lemma 5.2 holds. O

In the introduction, we have already noticed that C, and the GL,(K)-module
Ly (X\) (X being a polynomial and dominant weight) are well defined also for n = oc.

Theorem 5.3. Let A € C,, where n is finite or infinite. Any weight of the
GL,(K)-module Ly (X) is polynomial, and for any polynomial weight 11, we have
dim Ly (\),, = [Tez0 NOE), (k).

Proof. First assume that n is finite. By Assertion (i) of Lemma 5.1, any special
weight is reduced. Hence Theorem 5.3 follows from Lemma 5.2 and Theorem 4.3.
The case n infinite follows by inductive limit. (|

6. Semi-simplicity of restrictions to Young subgroups

Let us consider G L,, 1(K) as the subgroup of GL,,(K) as usual. For any GL,, _1(K)-
module L, denotes by ch(L) its character. Set V' = K"~!. Therefore the simple
GL,,_1(K)-modules will be denoted by Ly~ (\'), with X € Pl,.

Lemma 6.1. Let A € P‘J} and let A be a finite subset of Pf,. Assume that
Ch(LV()‘”GLn,l(K)) = ZXEA Ch(Lv/(A/)). Then we have LVO‘)|GLH,1(K) —
Sxealy:(XN). In particular Ly (Nlgr, (k) is semi-simple.

Proof. As the characters of simple GL,,_1(K)-modules are linearly independent,
the module Ly (A)|qr,, (k) has a composition series in which each Ly/()\'), for
all ' € A, occurs exactly once. Note that Ly (\) carries a non degenerate con-
travariant form. Let S be a simple GL,_1(K)-submodule of Ly (N)|qp | (x)-



294 O. Mathieu and G. Papadopoulo CMH

Thus LV()\)|GL“1(K)/SL is isomorphic to S. As S does not occur as a quotient
of Lv(Nlgr, ,(k)/S, we have SN S+ = 0. Hence S is a direct summand and
Lv(Mlar, (k) s semi-simple. Thus, we have Lv(M)|gr, (k) = @vealv(X).
|

Let m < p. For any Young diagram Y € Young(n,m), let V(Y') be the set of
all Young diagrams Y such that:

(i) cx(Y) <cp(Y) <cp(Y)+1, forall k > 1,

(i) Y € Young(n — 1, m).
These conditions are indeed equivalent to the fact that there is a m-semi-standard
tableau T' of shape Y such that T'ln — 1] = Y’, T'[n] =Y. Also the definition of
V(Y) is independent of m. Namely if Y is m-special and also m’-special for some
m’ # m, then condition (ii) is automatically satisfied.

Theorem 6.2. For A € Cp, set Yy, = Y(A(k)) for all k > 0. Then we have:
Lv(Nler, i (k) = @ vy Iy (CisoP" M),

where the direct swum runs over all tuples (Y§,Y{,...) e V(Yo) x V(Y1) x .... In
particular, Ly (N, (k) s semi-simple. Moreover each simple direct summand
occurs with multiplicity one, and its highest weight is in C,,_1.

Proof. Let Y € Young(n,m). There is a natural bijection from

(i) the set of all m-semi-standard tableaux T of shape Y with labels < n, to

(ii) the set of all pairs (Y',T"), where Y’ € V(Y) and 7" is a m-semi-standard
tableaux of shape Y/ with labels <n — 1.

Explicitly, Y/ = T'[n — 1] and T is the tableau induced by 7. It follows from
Theorem 5.3 that we have:

ch(Ly (Mo, () = Zgvr,..) v (Eyso2* AY))),

where the sum runs over all tuples (Y§,Y{,...) € V(Yp) x V(Y1) x .... Let
(Y§,Y{,...) be such a tuple and set X' = >, < qp" A(Y)). It follows from the as-
sertions (i) and (ii) of Lemma 5.1 that (A(Y})) x>0 are the terms of the p-adic expan-
sion of the polynomial weight \'. Hence the decomposition X' = 37, o (p*A(Y}))
with (Yg,Y{,...) € V(Yp) x V(Y1) x ... is unique. Thus Ly (\') occurs exact-
ly once in the composition series of L(A)|¢p, (k) and the theorem follows from
Lemma 6.1. O

Lemma 6.3. Let Gy ...,Gy be k groups and let L be a finite dimensional G1 X
<+ X Gr-module. Assume that L is semi-simple as G;-module for all 1 < i < k.
Then L is semi-simple as G1 X -+ - X Gg-module.
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A proof of this lemma can be found in [K] (lemma 1.6). O

For any k-tuple (ay,...ax) of non-negative integers with n = ay; +ag + ...,
there is a natural embedding of GLg, (K) X -+ X GL,, (K) inside GL,(K).

Corollary 6.4. Let A € Cp,. As a GLo (K) X -+ X GLg (K)-module, Ly () is

semi-simple.

Proof. Using Theorem 6.2, we prove by induction over b that LV()‘)|GLn,b(K) is
semi-simple for all 6 < n. Thus the corollary follows from Lemma 6.3.

Remark. Let A be a special weight of degree n. The weight space
LV()‘)€Y+"'+€X is the simple representation of the symmetric group 5, associat-
ed with the Young diagram transposed of Y(X) (see [J]). Its dimension is com-
puted by Theorem 4.3, and its restriction to the subgroup S,; X --- X 8§, is
semi-simple by Corollary 6.4. These two results for the symmetric groups were
already established: we recover respectively the main results of [M2] (dimension
formula) and of [K] (semi-simplicity). Indeed the proof of the semi-simplicity of
LV()‘)|GLEI(K)X~-»><GL% (k) s similar to the proof of [K].
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