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The singly periodic genus-one helicoid

David Hoffman, Hermann Karcher and Fusheng Wei

Abstract. We prove the existence of a complete, embedded, singly periodic minimal surface,
whose quotient by vertical translations has genus one and two ends. The existence of this surface
was announced in our paper in Bulletin of the AMS, 29(1):77-84, 1993. Its ends in the quotient
are asymptotic to one full turn of the helicoid, and, like the helicoid, it contains a vertical
line. Modulo vertical translations, it has two parallel horizontal lines crossing the vertical axis.
The nontrivial symmetries of the surface, modulo vertical translations, consist of: 180°-rotation
about the vertical line; 180° rotation about the horizontal lines (the same symmetry); and their
composition.

Mathematics Subject Classification (1991). 53A10, 53C42, 49F10.

Keywords. Minimal surface, embedded, elliptic functions, Riemann surfaces.

Introduction

In this paper, we prove the existence of a complete, embedded, singly periodic min-
imal surface, whose quotient by vertical translations has genus one and two ends.
The existence of this surface was announced in [4] and its significance discussed
in [5]. Its ends in the quotient are asymptotic to one full turn of the helicoid,
and, like the helicoid, it contains a vertical line. Modulo vertical translations, it
has two parallel horizontal lines crossing the vertical axis. The nontrivial symme-
tries of the surface, modulo vertical translations, consist of: 180° rotation about
the vertical line; 180° rotation about the horizontal lines (the same symmetry);
and their composition—a 180° rotation about a line, orthogonal to the lines on
the surface, and passing through their point of intersection. This line meets the

Hoffman was supported by research grant DE-FG03-95ER25250 of the Applied Mathematical
Science subprogram of the Office of Energy Research, U.S. Department of Energy. Hoffman
and Wei were supported by research grant DMS-95-96201 of the National Science Foundation,
Division of Mathematical Sciences. Research at MSRI is supported in part by NSF grant DMS-
90-22140.
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Figure 1.
The periodic genus-one helicoid.

surface orthogonally and is referred to as a normal symmetry line.

The description of the qualitative properties of the surface in the paragraph
above is sufficient to determine a two-parameter family of Weierstrass data (1.7)
that must contain the Weierstrass data for any surface with these properties—if
it exists. One parameter controls the conformal type of the quotient, in this case
a rhombic torus. The other can be considered as controlling the placement of
the punctures corresponding to the ends. This is worked out in Section 1 and
presented in Theorem 1.

The proof of existence of the singly periodic genus-one helicoid consists of show-
ing that the period problem ((1.8),(1.9)) is solvable. This is done in Theorem 2 of
Section 2. In Theorem 3 of Section 3, we prove that the surface is embedded by
decomposing a fundamental domain into disjoint graphs. As usual, the existence
and embeddedness proofs are independent. We do not use any special properties
of the parameters that kill the periods. In fact we show that any singly periodic
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(by translations) minimal surface that, in the quotient, is asymptotic to the heli-
coid (1.1) and contains a vertical axis and two horizontal parallel lines must be
embedded.

Other than the helicoid itself, this example was the first embedded minimal
surface ever found that is asymptotic to the helicoid. It was one of the important
steps in the discovery and construction of the non-periodic genus-one helicoid,
whose existence is proved in [5]. We hope that a complete understanding of this
periodic surface will be helpful in giving a non-computational proof, which is not
complete as of this writing, of the embeddedness of the genus-one helicoid.

We might have discovered this periodic surface earlier, had we been looking for
it at the time. In 1989, the first two authors realized that a construction of Fischer
and Koch [1, 2] could be modified to produce singly periodic, embedded minimal
surfaces with multiple helicoidal ends. The Fischer-Koch triply periodic surface is
formed of pieces congruent to the solution to the disk-type Plateau Problem for
the boundary in Figure 2.

The surface extends, by 180° rotation about its boundary line segments, to
a triply periodic embedded surface. Our modification consisted of two simple
steps. First, we realized that the length of the sides marked a; could be increased
without limit, producing an embedded minimal graph over a strip. This extends to
an embedded, singly periodic surface with six flat ends of Scherk-type. Second, we
observed that the fundamental piece could be modified by rotating the horizontal
sides a1 in Figure 2 by a fixed angle, say #, with respect to the sides ay. Each fixed
0 produces a fundamental embedded piece that extends, by 180° rotation about
the line segments on the boundary, to an embedded minimal surface, asymptotic
to three coaxial helicoids, and invariant under a vertical screw motion of the form

p— e%gp + (0,0, 8b).

Its Weierstrass representation is suggestive of the surface to which we now turn
our attention.

1. Determination of the Weierstrass Representation

The helicoid can be described by the data

i d.
g==z, dh = — (1.1)

z

on § = C — {0} in the Weierstrass representation ([3])

X(p) :X(po)+Re/p P, = G(g’1 - 9), %(9’1 +g)71> dh.  (1.2)
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Figure 2.

Above left: The boundary of a fundamental building block of one of the Fischer-Koch triply
periodic surfaces. Above right: Six copies of the fundamental building block, which together form
a fundamental domain of the triply periodic surface. The surface is computed using the discrete
minimal surface ideas and subsequent code of Pinkall and Polthier [7]. The computation was
carried out by Bernd Oberknapp. The original computation of the surface was done by Ortwin
Wohlrab; it was his pictures that suggested to the first two authors the singly periodic surfaces
described in the text, one of which is illustrated below. Below: A singly periodic minimal
surface, invariant under a vertical screw-motion and asymptotic to three coaxial helicoids. It

was suggested by the Fischer-Koch surface, above right.

The integration produces a conformal minimal immersion, but has a period equal
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to (0,0,%27) on any closed curve v homotopic to |z| = 1. Thus the immersion in
(1.2) with data (1.1) is multivalued, and its image, the helicoid, is invariant under
a vertical translation produced by the period of (1.2) on the cycle |z| = 1.

The minimal surface we wish to construct is singly periodic, has a helicoidal-
type end and, modulo translations, will have genus equal to one. From general
results [6] and our assumptions about the geometry and topology of the surface in
the Introduction, we know that (if it exists) it will have a Weierstrass representa-
tion on a twice-punctured torus and that g and dh will extend meromorphically
to the compact torus.! Our goal is to determine the Weierstrass representation
from this information and from the symmetry we assume the surface to have.

1.1. The lines on the surface

We assume that, like the helicoid, our surface contains a single vertical line and—
again like the helicoid—the symmetry of 180° rotation about this line fixes this
line and no other points. This implies that the torus is a rhombic torus, which we
denote by T2,

We assume in addition that the surface contains, modulo translations, two par-
allel horizontal lines, each meeting the vertical line in a single point. Rotation of
180° about either of these lines fixes both lines in the quotient. Because each of
these lines connects the two punctures, such a rotation leaves the punctures corre-
sponding to the ends unmoved . Each line diverges to both ends, forcing the fixed-
point set on the torus of this 180° rotation to be a single closed symmetry curve
that contains both end-punctures. This curve must cross the curve corresponding
to the vertical axis in two points. The two punctures separate the symmetry line
into two components corresponding to the two horizontal lines. These two points
must be symmetrically placed with respect to 180° rotation about the vertical line.

We choose a fundamental domain for our torus so that the lines on the surface
correspond to the diagonals of a rhombus. Because we will use our development of
elliptic functions in [5], these diagonals are placed to make a +45° angle with the
real axis in C. See Figure 3. We think of them as the horizontal and the vertical
diagonal, according to the lines on the surface in space, which are their images.
To avoid possible confusion with lines in the C and in R3, we will refer to them
as the v-diagonal and the h-diagonal. Without loss of generality, we may assume
that the h-diagonal is the one making a 45° angle with the real axis.

Wherever possible, we will deal only with elliptic functions, avoiding any no-
tational reference to the complex variable in C, which is not well defined on the
torus. However we will have need of du—the differential of a complex variable
u—which projects to the torus and is free of poles and zeros.

Rotation by 180° about a point on the surface where the straight lines meet is

1 The helicoid data in (1.1) is defined on a twice-punctured sphere and it clearly extends
meromorphically.
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a rotation about the line determined by the normal to the surface at that point,
we refer to it as a normal symmetry. On the quotient torus it is an orientation-
preserving involution: 180° rotation about the center of the torus. We denote
this rotation by 7,. It fixes four points that are on a half-period lattice. We may
choose as a fundamental domain for the torus a rhombus whose center is at one
of these points and whose vertex is another such point. These two points are the
intersection of the diagonals of the rhombus. The other two fixed points of the
normal symmetry both lie at the same height as one or the other of the fixed points
that lie on the vertical axis. We assume, without loss of generality, that they lie
at the same height as the fized point corresponding to the center of the rhombus.

vertical diagonal

horizontal diagonal

DO fixed points of rp

Unitary

® fixedpointsofry e Imaginary

Figure 3.
Left: Fixed points of r, and r, The diagonals are labeled vertical and horizontal here because
they are the preimages of the vertical and horizontal lines on the surface. In the text, they are

referred to as the v- and h-diagonals. Right: Values of the elliptic function z.

1.2. Elliptic functions associated to our construction

Euler’s formula implies that T2/7"P is the sphere. The quotient map 72 — T2/rp is
meromorphic, has degree two, and is branched at the half-period points. We want
to use this map to describe the torus analytically. To do this it is necessary to
turn it into a function by identifying three points of the sphere 72 /7, with points
in the complex plane. The motivation for our choice is to make the symmetries of
the torus induce simple symmetries of C U {oo}. This is explained in detail in [5].

Denote by O (resp. O') the center point (resp. the vertex) of T2. The choice
we make is to have 0 € C equal the projection of O, and oo equal the projection of
O’ (since these points are fixed by r,, these values are branch values) and +¢ equal
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the projection of the midpoint of the h-diagonal. This determines a degree-two
elliptic function, which we denote by z. See Figure 3.

Let 7, denote 180° rotation around a midpoint of a diagonal between O and
O'. 1t fixes all four such midpoints. Observe that r, interchanges O and O’ in
T 27 where z = 0, oo respectively, and fixes a point where z = ¢. This implies
that z or, = —1/2. Thus z = %¢ at the fixed points of r,. Since z 07, = z, by
definition, and the degree of z is two, the values of z = %7 at the fixed points of
1, must be as in Figure 3.

Let u be reflection in a diagonal of T2, Then o = —z. To see this, first
observe that both functions in question are meromorphic on 72. Their quotient
has no zero or poles, and takes on the value 1 at a fixed point of r,. This implies
that z has imaginary values on the diagonals. Similarly, let v denote reflection
in the line parallel to a diagonal and passing through a fixed point of r,. Then
Zov =1/z. Thus |z|] =1 on this line.

@ Fixed points of 7

(the branch points of w)
[ Half periods

(fixed points ofrP)

Q Fixed points of e

n Fixed points of e

Figure 4.
The fixed point sets of the four involutions of the torus. Each involution is 180° rotation about

its fixed points.

In particular, the values of z at the two half-period points other than O, O’ € P2
are of the form e? and —e =%, because 7, interchanges these points and z o7, =
—1/z.

In fact, z is a geometric normalization of the Weierstrass p-function. It satisfies
the differential equation

(i )2 2 e—i Biging) (1.3)
Lduys — 2—=—2i .
2 cos p z e

The value of p characterizes the rhombic torus as can be seen explicitly in (1.3)
above and Lemma 1 iii) below.
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Before returning to the determination of the Weierstrass data, we will construct
another elliptic function intimately related to the minimal surface. This time we
will use the involution r,,, which fixes four points on the diagonals. The projection
T A /1, is a degree-two meromorphic map that we will turn into an elliptic
function by specifying its values at three points of 52 — TQ/TD. At the projection
of O € T we specify the value 0. At the projection of one of the half periods (not
0’ we specify the value co. Because w o r, = w by definition, this determines w
at the half-period points. (See Figure 5.) We now determine w by specifying its
value to be 1 at the point ¢ indicated in Figure 4.

The following Lemma contains information we will need about w in our discus-
sion of the surface. In the proof of the lemma and in discussions that follow, we will
need to distinguish between reflection in the h-diagonal and the v-diagonal. Let p
denote reflection in the h-diagonal and write fiyer¢ for reflection in the v-diagonal.

® Branch points, where W:*Dirl

D=R giTC/ 4

— Lines on which w takes values
in FTVAR

Figure 5.
The values of the elliptic function w.

Lemma 1. The degree-two elliptic function w on a rhombic torus has values as

indicated in Figure 5:

(i) Along the diagonals and along the lines through the branch points, w takes on
values in e/ R. In particular, its branch values are of the form +Re™/4
the constant R > 0 being determined by the choice of rhombus;

(ii) For a fized thombic torus, the branch values of w are related to the branch value
€ of z by R2 = cot(rw/4 — p/2);

(iii) The rhombic torus is determined by the algebraic relation

(2cos p)w2 = —(z — 2~ 1 — 2isinp).

Proof of Lemma 1. We will prove (i) here. Statement (iii) implies Statement
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(ii) by explicit calculation. Both are proved in [5], where there is a fuller discussion
of Jacobian elliptic functions.

By definition, w o r, = w, so the placement of the points where w = 1 is
determined. Let rp denote 180°-rotation around ¢, an involution whose other
fixed points are marked by o in Figure 4. The meromorphic functions w o rp and
w~! agree at ¢ and have the same zeros and poles. Hence worp = w—1. We
already knew w = 1 at two of the fixed points of rp; hence w = —1 at the other
two. In the same manner w or, and w have the same zeros and poles and, noting
the values of w at the fixed points of rp, one sees that w or, = —w. Similarly,
rg is 180° rotation about p (see Figure 4), and worg = —w 1. This implies that
w = 41 at the fixed points of rg. The signs are determined by the fact that w is
orientation preserving.

The meromorphic function W o fiyer: has the same zeros and poles as w. Eval-
uation at ¢ gives the relation W o figer; = fw. This means that w takes on values
in e *"/4R on the v-diagonal. If y is reflection in the h-diagonal Wo i = —iw and
therefore w takes on values in e/™/4R on this line. Similarly, reflection v (resp.)
in the lines parallel to the diagonals of the rhombus and passing through the other
two fixed points of r, satisfies wWo v = 4w (resp. wo ¥ = —w), so w takes values
in ¢’/4R (resp. e *"/4R) on these lines.

Figure 6.

A e marks the branch points of g on the h-diagonal, and a o marks the points on the surface
where the Gauss map is vertical, i.e. g is zero or infinity. An x marks the punctures. For this
illustration, we are assuming that A < 1; for A > 1, the punctures (x) and vertical points (o) are

interchanged.

1.3. The Gauss map in terms of w

From [6], we know that the total curvature of our desired quotient surface is
=27 (x(M)—W(M)), where x(M) is the Euler characteristic of the quotient surface
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M, and W (M) is the total winding number of the ends of M . In our case, M
is a torus 72 punctured twice, so x(M) = —2. Both ends are asymptotic to a
single full turn of the helicoid, so each end contributes 1 to W(M). Hence the
total curvature is —87 and the degree of g is 2.

Because we want a helicoidal end on the surface, as well as a vertical line
that corresponds to the axis of the helicoid, we see from (1.1) that g = 0 at one
puncture and g = oo at the other. There must be one other zero and one other
pole. Because rotation about a vertical (or horizontal) line in R? will leave zeros
and poles of g unchanged (or interchange them), the other zero and pole of g must
lie on the symmetry lines; otherwise there would be too many zeros and poles. On
the v-diagonal, g must be unitary, so the zeros and poles are on the h-diagonal.

As is the case for any degree-two elliptic function, the branch points of g are
symmetrically placed with respect to the zeros and poles.(See [5].) Because the
end-punctures are also on the h-diagonal, two branch points are on this diagonal,
too. The four branch points of g form a set that is invariant under symmetries of
the surface. In particular, the branch-point set is invariant under r, (induced by
the normal symmetry). This, together with the fact that two branch points of g
are on the h-diagonal, implies that the branch points of ¢ are the quarter-points
of the diagonals; these are exactly the branch points of w. Thus g and w differ by
a Mobius transformation.

At a puncture, w = +re™/* for some r > 0, a consequence of Lemma 1(ii) in
Section 1.2. Because g is unitary at O € T2, it follows that
W — reim/4
9= e

and, after a rotation about a vertical axis, if necessary, we may assume that § =0,
ie. ]
W — 7”67'7"/4

TR .

1.4. The complex height differential in terms of 2

We can easily determine the differential dh, which is holomorphic on the punctured
surface. From (1.2) (or see [3]) the metric on the surface is given by ds = (|g| +
lg|~1)|dh|. Because we require ds to be everywhere nonzero (for regularity), dh
has simple zeros at the two points where the Gauss map is vertical on the surface.
Thus it has only two poles, which must be located at the punctures. In particular,
dhor, = dh.

In Section 1.1 we set up the parameter domain so that the h-diagonal would
be mapped into a horizontal line in R3. This forces dh to be imaginary on the
h-diagonal; i.e. z3 = Refdh must be constant on this line.

Just as w was well adapted to g, z is a good match for dh. Recall (or see
Figure 3) that z is imaginary on both diagonals and, by definition, zor, = z. We
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define A by the requirement that z = i/X at the punctures. Since zor, = —1/z,
z = A at the vertical points of g on the h-diagonal. On this diagonal, z takes
values on the nonnegative imaginary axis and therefore A > 0. Also, A # 1 because
this g is not branched at a helicoidal end. The function

zZ— 1A
z— A1

has the same poles and zeros as dh and is real on the diagonals.

We can express dh in terms of the standard pole-and-zero-free holomorphic form
du, described in Section 1.1. Under our assumption that the h-diagonal makes a
45° angle with the real axis, '™/ du is imaginary on this diagonal. Hence, we may
assume without loss of generality that

. —A
dh = e™/A 22 g 1.5
© I L5
because we are free to scale the surface by a real constant.

Remark 1. Using Lemma 1 (iii) we can relate A to r:

A4 A1 = 2(sin p 4 (cos p) /72). (1.6)

1.5. The Ansatz for the periodic genus-one helicoid

Figure 7.

Left: Two cycles that, together with their reflections across the v-diagonal, generate the homology
of the punctured torus. Center: Paths used to derive the period conditions (1.8) and (1.9). Right:
A cycle homologous to B.
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Our geometric description of the surface has led to an explicit two-parameter
family of Weierstrass data: For p € (—7n/2,7/2) and X € (0,1) U (1,00),
w — 7”6”-/4

dh = e/t 2=

w + ref/4’ z—i)\*ldu 1.5}

g =
on the rhombic torus

(2cos p)w2 = —(z — 2~ 1 = 2isinp),
punctured at the two points where z = il

Theorem 1. For every p € (—n/2,7/2) and every A € (0,1)U(1,00), the Weier-

strass data, (1.7)—defined on the rhombic torus determined by p, with punctures

where z = iA~1 on the h-diagonal—produces in (1.2) a multivalued, regular, com-

plete minimal immersion of the punctured torus. It has the following properties:

(i) Reflection in the v-diagonal (resp. h-diagonal) of the torus induces an isometry
of the minimal surface corresponding to 180° rotation about a vertical line (resp.
horizontal line) in R3;

(ii)) The immersion (1.2) is singly periodic if and only if A € (0,1), p € (0,7/2)
and

Re/Idh:o (1.8)
Refuz'(g*1+g)dh:07 (1.9)

where the paths I and II are as indicated in Figure 7. The period? is a vertical
vector of the form (0,0,T), where T is given in (1.16) and

T= / dh = £2mi(Residue,_;\-1dh). (1.10)
“v—diagonal”

Conversely, any reqular, complete, periodic, minimal surface containing a verti-
cal line, whose quotient by vertical translations has genus one, contains two parallel
horizontal lines and has two helicoidal ends, is representable with Weierstass data
of the form (1.7) with A € (0,1) and p € (0,7/2).

Proof. The "converse” part of the Theorem is clear— from the development in
previous sections, any such surface must be represented by the data as given in

2 Since the surface can be scaled by multiplying dh by a nonzero real constant,
the value of T' has no geometric significance. For the representation we use here,
T is given explicitly in (1.16) as a function of p and .
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(1.7) with punctures at the two points where z = iA~!. The statements that
A € (0,1) and that p € (0,7/2) will be proved below.

We begin the proof of (i) and (ii) by considering the one-form dh in (1.7), which
was constructed to have its zeros precisely at the two points where g = 0 or g = o0
on the punctured torus. Hence the metric

1 -
ds = 5 (lg] + gl bldh|

is regular. It is complete because at the punctures, where g = 0 or g = oo, dh has
a simple pole.

Since the h- (resp. v-) diagonal makes an angle of 45° (resp. -45°) with the
positive real axis, y*du = idu (vesp. pk,,,du = —idu). From Section 1.2, we know
that z o pyers = 20 p = —%. It follows from the definition of dh in (1.7) that

p*dh = —dh and .., dh = dh. (1.11)

From Section 1.2 we have w o y = 4w (resp. w o pyerr = —iw). A computation
using the definition of ¢ in (1.7) gives

gop=39 and go fiyerr = 1/7. (1.12)

The Weierstrass representation (1.2) is X(p) = X(pg) + Re fzf)o D,

& (ordn.d) — (37 ~0), 3o +0)1) dn

From (1.11), (1.12) and the relation r, = 1 0 f1yers We have:

pre = (=1, $2, —dh)
Proert® = (=1, —¢2,dh) (1.13)
rp*q) - (QSL —¢2, _¢3) .

Statement (i) of the theorem follows immediately from the Weierstrass represen-
tation and these relations: writing X =: (z1,29,23), and assuming, without loss
of generality, that pg is at the center of the rhombus and and X (pg) = (0,0,0),
then

X op(p) = (—z1,22, —23) (p)
Xo Huert (P) — (_117 —I, 13) (p) (114)
X or,(p) = (x1,—2x9, —x3) (p)

We now address the period problem and begin by computing the period at a
puncture corresponding to an end. At the punctures where z = i)\*l, ¢3 = dh
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has a pole. Note that when z = 2')\_17 w = :I:re”/‘l, so g = 0 or oo there.
Because g’ldh and gdh both have their only pole at one of the punctures—
and therefore no residue—¢; and ¢o have no residues there. Let o be a sim-
ple closed curve in the homotopy class of a puncture. (See Figure 7.) Then
[, ® =2mi (0,0, Residue,,_;5—1dh) . From (1.7) we have

/

; — A . z—1iA z dz
dh = im/d_* 1 g = in /4 £ \—18<
‘ P z—i)\*l(z) z
§ -1/2
_gnaZ T 22 g _de
e ; cosp(z # 2isinp) T
Hence
~1 A 1 -1/2
Residue,_\-1dh = ei”/4>\ o A <C0:Zp(>\ +2)\ —sin p))
VT Apal T
=—— 5 sin p
and
Period, X — Re/ B — (0,0,+T), (1.15)
(o3
where 1/
A+ A1 -
T :=m/cosp(1 — A2) <+T —sinp) #£0. (1.16)

Let ay and 3 be as in Figure 7. Note that we may write o = a1 — pcy. We
note for use below that because (from (1.13)) p*dh = —dh and p*¢1 = —¢1,

Re/ ¢v1:Re/ ¢1 and Re/ dh:Re/ dh.
o — oy [e3] —Ha

It follows from this and (1.15) that
Re | &1 = Re/ ¢1 =0 and Re/ dh = Re/ dh =+T/2.  (1.17)
a1 —pa aq —He

At the end of Section 1.1 we chose, without loss of generality, to represent the
surface so that the image of the center point of the torus was at the same height
as the two off-axis fixed points of the normal symmetry, i.e. these are the fixed
points of 7, (see Figure 3). Thus we must require

Re/ dh 0, (1.18)
s
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where 3 is the curve in Figure 7. By (1.14), it follows that Re fuﬂ dh = 0, so both
off-axis fixed points are at the same level, thus satisfying a necessary condition
from Section 1.1.

Any branch of X maps the v-diagonal to a vertical line segment and, since
g(0O) = —1, the h-diagonal is mapped to a line parallel to the z9—axis. Hence the
image under any branch of X of the off-axis fixed points of r, must lie on a line,
passing through X (O), which is parallel to the z1—axis. That is

Re/ﬁ@ :Re/ﬂ %(g_lJrg)dh:O. (1.19)

Hence Refﬁq) — (Refﬁm7 0, O).
For 3 := 753, we have from (1.13) that Re f@ P = (Re fﬂ 91, 0, O). This means
that on the closed cycle B := +5 — B,

Periodg X = Re/ ¢ = (0,0,0). (1.20)
B

The four closed curves { B, uB, o, piyert} form a spanning set for the homology
of the punctured torus. By (1.13) it follows that Periodg X = (0,0,0) if and only
if Period,gX = (0,0,0). This means that the necessary conditions (1.18) and
(1.19) are sufficient to insure that X has no real period on either B or uB. By
(1.15) and (1.16), X always has a nonzero vertical period on o and—by symmetry,
using (1.13)—on pyerra. Therefore, (1.18) and (1.19) are sufficient to guarantee
that X is singly periodic with vertical period (0,0,T).

Before translating (1.18) and (1.19) into (1.8) and (1.9), we will show that
(1.10) is valid. Observe that B is homotopic to D + v1 + a1 + 2. (See Figure 7.)
We know that D is mapped into a vertical line line segment so Re f7 4 P is

. . . . 1tarty
also a vertical vector. The ~; lie on the horizontal diagonal and are mapped to
horizontal line segments parallel to the xg-axis. It follows from this and (1.17)

that
Re/ d = — <O7O,Re/ dh) =(0,0,-T/2)
D ay

This is equivalent to (1.10) in the statement of Theorem 1.

Equations (1.18) and (1.19) are the period conditions: necessary and sufficient
conditions for the surface in question to be singly periodic. We wish to express
them in a form more convenient for subsequent calculation, i.e. as equations (1.8)
and (1.9). When A < 1, g2 is homotopic to F'+ I and to F + II. See Figure 7.
Along F, we know that x3 is constant. Thus (1.18) is equivalent to

Re/dh:m
I
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which is (1.8). Similarly, 2o is constant along F, so (1.19) is equivalent to

Re/ Z(g '+ g)dn =0,
II2

which is (1.9).

We now show that the period conditions cannot be satisfied when A > 1. On
E, z=—it, 0 <t <1 We may use z to parametrize I/ by t:z 0 E(t) = —it;
E(t) = f(t)e "™/, where f(t) is some positive increasing function. Then

imja_ =it =i
¢ T —aa-ic
£+ A

= ——f(t).
i

dh(E) = —in/4 (t)

Hence

a:=uz3(E(1)) = Re/ dh > 0.
E
Along II, which begins at b == E(1), 2 = —ie™™, for 0 < t < 7/2 + p.
Also, 2 is branch-point-free along II, so we may use z to parametrize II by t¢:
zo II(t) = —ie™; II(t) = b — f(t)et™/4 where f(t) is, again, some positive
increasing function. Then

_iein — Z)\ ,”‘./4
T T
—je—it — g 1

dh(IT) = &i™/4 (—f(2)

L0 —— (1.21)
N ‘ (¢
:(()\—)\ 1)Slnt+l(...))%

Thus Re dh(IT) is strictly positive when A > 1. This means that 23(¢) is strictly in-
creasing. But since a = z3(b) > 0, this would imply that Re f,@ dh =Re [ dh >
0, violating (1.18).

This completes the proof of Theorem 1, with the exception of showing that the
period conditions cannot be solved for p < 0. This will be proved in Lemma 2
below.

Remark 2. We note for use in Section 3 that (1.21) implies that when A < 1,
z3 o I1(t) is strictly decreasing.
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1.6. The period conditions in terms of definite integrals

In this section we express the integrals in (1.8) and (1.9) in terms of explicit definite
integrals. We will need this for the existence proof in Section 2 as well as for the
proof of

Lemma 2. The period condition (1.9) is not solvable when p < 0.

Along paths I and 11, where z = €*?, we have
e/ dy = e”/4i/ ) — ¢in/4 (— 2 (9 — e — 2isin p)) _1/2i d¢
2 z cos p
Jo5p dg
2  /sing —sinp
/08 p de

—1 for —m/2<d<p

2  /sinp—sing¢

for p < ¢ < 7/2,

and
2 — 1A B P — X A 4
z— XL et a1 Ne—ib 1
_ 2— A+ A Dsing +i(A 1 =X cosg
A+ A1 —2sing ’

Let A = A+ A1 Using (1.7) and the expressions above, we see that the first
period condition (1.8) is equivalent to

/% 2 — Asiné dé -
» A —2sing \/sing —sinp N

To write the second period condition (1.9), we first compute

0. (1.22)

1 w—ref™/t w4t/ w? + ir?
g+§:w+re”/4 w—ren/E T — 2
72A—4sinp+2sin¢
A —2sing ’

The last equality follows from (1.6) and the definition of A = A + AL Together
with the expression for dh computed above, this shows that condition (1.9) is
equivalent to

P A—4sinp+2sin¢g 2 — Asing d¢o B
_z A —2sing A —2sing \sinp —sing

For p < 0, no factor of the integrand of (1.23) changes sign, so the second
period condition is not solvable for —w/2 < p < 0.

0. (1.23)
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2. Existence

Theorem 2. There ezists (po, o) € (0, 7/2) x (0,1) satisfying the period condi-
tions (1.8) and (1.9).

Proof. In Section 1.6, we wrote the period conditions (1.8) and (1.9) as the definite
integrals (1.22) and (1.23). We will work with these relations without reference to
the geometry of their derivation:

/% 9 Asiné dé 5 2.1)
s A—2sing Vsing —sinp ‘
/” A —4sinp+2sing 2 — Asing d¢ _ 0 (2.2)
-5 A —2sing A—2sin¢ sinp—sing ’

where A = A+ A1, We need to find a pair (p, A) solving both of these equations
simultaneously.

The proof goes as follows. Using the intermediate value theorem, we show
in Section 2.1 that condition (2.1) can be solved for (p, A(p)), where A(p) is a
differentiable function of p and 0 < p < 7/2. Then we show in Section 2.2 that
the period integral in (2.2) changes sign along the graph of A = A(p). By the
intermediate value theorem again, there exists (po, A(po)) at which both (2.1) and
(2.2) hold. O

2.1. Solution of the first period integral as a function of p

Consider, for 0 < p < 7/2, the first period integral in (2.1). Observe that the
sign of the differentiable function

- A)_/?”zz_As'mgb do
P ) K=2sing Ang —simp’

can be determined from the sign of the integrand: positive for A = 2; negative for
A > 2/sinp. In particular,

2
F(p,2) >0 and F(p,@> <0. (2.3)

Also since the integrand is, for each fixed p, a decreasing function of A, the same
is true of F(p,A). Therefore we may define a differentiable function A(p), for
0 < p < w/2, by the condition

F(p,Alp)) = 0.
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By (2.3) we have

2<Ap) <

; 24
sinp (249

In order to estimate the second period integral along the graph of A = A(p),
we need to control A(p).

Lemma 3. For p € (0,7/2) we have
. 2
2<Ap) < m1n<‘—, 8).
sin p
For pe (n/2 —¢€, m/2), where ¢ is sufficiently small, we have

2<Ap) <24+ (1 —sinp).

Proof. Since we already have (2.3) and (2.4), it is enough to show that F(p,8) <0
for p € (0,7/2), and F(p, 2+(1—sinp)) < 0 for p near 7/2. Define, for A < 2/sinp,
@A to be the zero of the integrand of F, i.e.

singpp = %

Then

F(p7A)—/¢A2_AS:m¢ 0P
», A —2sing \sing—sinp
_/% Asing —2 dé

sy A —2sing \sing —sinp

(2.5)

Both integrands are positive. Since (2 — Asin¢)/(A — 2sin ¢) is decreasing in
the interval (p, ¢p) and (cos@)/(cospp) > 1, we have

?A 9 Asing d¢ <2—Asinp PA cos ¢ / cos Py y
p N—2sing /sing —sinp =~ A —2sinp J, +/sing—sinp

~ 2—Asinp 2y/singp —sinp
A —2sinp cos ¢

~ 2—Asinp 9 2/A —sinp
A —2sinp 1—4/A2 "
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Turning our attention to the second integral in (2.5), we first estimate a term

in the integrand. Let
Asing — 2
)= A —2sing’

By the definition of ¢p, f(¢a) = 0 and clearly f(n/2) = 1. It is easy to check
that f/(¢) > 0 on (¢p, 7/2), so f(¢) is increasing on this interval. Also one can
compute that f/(¢p) =1/ cos(pp) > 1/(w/2— ¢p). Furthermore, f”(pp) > 0 and
f"(#) has only one zero on (¢a, 7/2). The linear function

¢ — Pa
/2 — ¢p

satisfies [(¢pp) = 0 = f(dp) and I(7/2) =1 = f(xw/2). Since U'(¢p) = 1/(w/2 — pp),
we have f/'(¢p) > U/(¢p). Because I"(¢) = 0, f(¢) > I(¢) at least up to the first
zero of f”. On the remaining subinterval, f is concave, so it is above its secant,
which is in turn above [. It follows that

Asing — 2 " ¢ — dp
A —2sing — w/2 — ¢p

l¢) =

f() =

on (¢p,7/2).
We now can now estimate the integral in (2.5).

/2 Asing — 2 dé B iy do
A —2sin¢ m on T/2—dA m
1 w/2—¢) 51 sin(m/2 — ¢ )
T2 V1—sinp = 2 +/T—sinp
1 cosgp 1—4/A2

75\/1—sinp7§ VI =sinp

These two integral estimates and (2.5) give

2 —Asinp [2/A —sinp 1 [1—4/A2
< — =y —
Flo.M) <235 T=a/az 2\ T=sinp

The right-hand side consists of the difference between two terms. For
p € (0, w/2) the subtracted function is increasing in p while the two terms in the
first expression are decreasing functions of p. All together, the right-hand side is
a decreasing function of p € (0, 7/2). At A = 8 we have

F(p78)§F(0,8)§2§, 1_2{582 F
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This proves the first part of Lemma 3, that is,
. 2
2<Ap) < mm(,— ’ 8)
sin p
for p € (0, 7/2).
We now wish to estimate A(p) for p near /2. Let Ay, := 2+ k(1 —sinp). Then

9 (2 — ksin p)3/2 Ay
2+ k k(4 + k(1 —sinp))

F(p,Ax) < —— V(A + k(1 —sinp)).
2Ak

As p — /2, we have A — 2 by (2.4) and

. (Z_k):a/?\/E vk
SRR 2 VE
g e S VR T

If k =1, then
V2 1

limsup F(p, Ay) < - <0.

p—7 /2 3

Do

Together with the fact that F'(p,2) > 0, this shows that there exists ¢ > 0 such
that
2<A(p) <2+ (1 —sinp)

for p € (n/2 — ¢, w/2), which is the second estimate of the lemma. O
2.2. Solution of the second period integral along the graph A = A(p)

We now show that the second period integral in (2.2),

a( A)7/" A—4sinp+2sin¢g 2 — Asing d¢
il = . A —2sing A —2sing \/sihp —sing’

changes sign along A = A(p). This will guarantee that there exists (pg, A(pg)) at
which both the period conditions (2.1) and (2.2), or, equivalently, (1.8) and (1.9),
are satisfied.

According to Lemma 3, it suffices for the discussion of p — 0 to consider
2 < A < 8. The integrand of G(p, A) converges to a positive function as p decreases
to zero. Therefore G(p,A) > 0 for p near 0. We will now show that G(p,A) <0
for p near w/2.

As p — w/2, the function G(p, A) may or may not have a limit, depending on
how fast A(p) converges to 2. So we estimate limsup,_, /9 G(p,A) instead, using
the second part of the estimates in Lemma 3.



Vol. 74 (1999) The singly periodic genus-one helicoid 269

For each p smaller than and sufficiently close to 7/2, define ¢, € (0, p) by the
condition

A —4sinp+2sin¢, = 0.

By Lemma 3, all the terms in the integrand of G(p,A) are positive on (—7/2, p),
except A — 45sin p + 2sin ¢, whose sign is the sign of the integrand. This allows us
to estimate G(p,A) by two integrals we can control:

®p P 0 4
o)~ [+ [ <+
-9 3 ) P

since the integrand of G(p,A) is negative on (—m/2,¢,) D (0,¢,).
The integral on (—m/2, 0) is easy to control. It is continuous at p = 7/2 and
A = 2, and we have

lim 0 A —4sinp+ 2sing 2 — Asing do
/2 ) % A —2sin¢ A —2sin¢g /sinp —sing

_ /0 dg
T -3 V1 —sin¢

< — ——— =2(1 — /1 2) ~ —1.2067. 2.6
<- [y =y - VIE (26)

On the interval (¢,, p), the function sin ¢ is monotonic increasing. It is easy to
check that
A —4sinp+ 2sin¢
A —2sin¢

g(sin @) :=
is a convex increasing function of sin ¢ with range [0, 1]. Therefore

g(sinp) — g(sin ¢,)

g(sing) < g(sing,) + sin p —sin ¢,

(sing —sing,).

That is,
A—4sinp+25'1n¢5<sinq§—sin¢p
A —2sing ~ sinp—sing,’

Since A > 2 by (2.4), we have

2 — Asing
A —2sing = 7’
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so we estimate the integral on (¢,,p) as follows:

PA—4sinp+ 2sing 2 — Asing do
) A —2sin¢ A —2sin¢g /sinp — sing
1 /” sin¢ —sin ¢, i
~ sinp —sing, 6, VSinp —sing
1 P sing —sing, cos¢
<= . - . d¢
sinp —sing, J,, /sinp —sing cosp

1 4 ) 4 4/sinp —sing
:(sinp—simb)cosp'g(smp_smgbp)?)ﬂ:g / 2 ~
H 1—sinp

Since A —4sinp+ 2sin¢g, = 0, by the definition of ¢,, and A <2+ (1 —sinp) by
Lemma 3, we know that

2(sinp —sing,) = A — 2sinp < 3(1 —sin p).

. 3
sinp — sin ¢, < 4 %(1 —sinp) 4\/;
1—sin®p ~ 3\ 1—sin?p 3VI+sinp

3
. PA—4sinp+2sing 2 — Asing d¢ 4\/;
| < ~ 1.1547.
1msup/¢P A —2sin¢ A —2sing /sinp —sing ~ 32

Therefore

Thus we have

p—mw/2
This estimate, together with (2.6), shows that

limsup G(p,A) < 0.
p—m /2

Therefore G(p, A) < 0 for p near ¢/2, as desired.

3. Embeddedness

Theorem 3. Any minimal immersion with Weierstrass data (1.7), which is singly
periodic (i.e. satisfies (1.8) and (1.9)), must be an embedding.

We begin by giving a sketch of the proof, which we hope is easy to understand
in outline, with references to subsequent sections where the details are carried out.
The key idea is to cut a translational fundamental domain of the surface into four
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congruent pieces and then show that each piece is a graph over a domain in the
(z1,z9)-plane. The graphs meet only along their embedded boundary arcs.

To produce a translational fundamental domain, we cut the torus on the h-
diagonal from one puncture to the other, along the segment of the diagonal that
contains the vertex (labelled O' in Figure 8). The Weierstrass integral (1.2) is
single valued on this slit torus and produces as image a fundamental domain
bounded above and below by horizontal straight lines that cross the vertical axis
of the surface. These lines are the images of the slit.

We now want to cut up the slit torus into regions whose images are graphs
over the (z1,z9)-plane. This means that the cuts must include all points where
the Gauss map is horizontal, i.e. all points where |g| = 1. This set consists of
the v-diagonal, together with the line (on the torus) parallel to the h-diagonal
and passing through the branch points of ¢ (labelled bJA) in Figure 8) on the v-
diagonal. This decomposes the slit torus into two rectangular pieces. We cut once
more along the h-diagonal from end to end along the segment through the center
point (labelled O in Figure 8), producing four rectangles.

From Theorem 1i) in Section 1, we know that the images of the four rectangles
under the Weierstrass integral X in (1.2) are congruent. On the interior of each
rectangle, |g| # 1, so the projection onto the (z1,z9)-plane of its image under X
is an immersion. We will prove in Proposition 1 below that, in fact, the projection
is one-to-one, i.e. the image of the interior of each rectangle is a graph. This
requires us to control carefully the behavior of the image of the boundaries of the
rectangles. These boundaries consist of three different parts (See Figure 9):

e The image of half the h-diagonal. This consists of two parallel horizontal half-
rays. One, the image of Hy, begins at X (O), which we will place at the origin
in R3. The other, the image of Hy, begins at X (0O’) on the z3-axis;

e The image of two segments of the v-diagonal. (These are F and E, which add
up to half of the v-diagonal. Each piece connects X (b) or X (b) to a point of
intersection of the v- and h-diagonals.) This consists of two disjoint segments
on the vertical axis, separated by half a period;

e The image of the remaining arc, on which |g| = 1 (labelled C in Figure 9). This
curve joins the branch points of g on the vertical axis. The third component
of the curve is a decreasing function on C, which implies that the curve is
embedded. Since the arc contains no branch points of g in its interior, it
projects to a curve in the (z1,z2)-plane whose tangent vector rotates at a
speed that is never zero. This means that the projected loop, ¢, is everywhere
locally convex. Since the total turning of its tangent vector is less than 27, it
is convex.

Putting together the above information, which will be established in Proposi-
tion 1, with some more details and arguments, we will show that the boundary
of each rectangle is embedded by X and that the interior of each rectangle is em-
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bedded as a graph over a halfplane, minus the interior of the convex loop c.® The
curve ¢ has one point in common with the boundary of the halfplane.(See Figure 9,
bottom left.)

The proof of Theorem 3 is completed in Section 3.3, where it is shown that
the four open graphs are disjoint and that the union of their boundary curves is
embedded.

3.1. The statement of Proposition 1

As described in the previous section, we cut the torus into four rectangles by
removing the points where |g| = 1, as well as the h-diagonal, along which g is real.
The function

w — ret™/4

7= w + rem/4

is unitary precisely on the set of points where w takes values in e /4R, and we
know from Section 1.3 that this set consists of the v-diagonal, together with the
line orthogonal to this diagonal passing through the branch points of g. (Note
that this curve passes through the off-axis fixed points of the normal symmetry,
which are also branch points of 2.) Reflection in the diagonals and rotation about
O € T2 induce Euclidean motions that act transitively on the four images of these
regions under X. (See Figures 8 and 9).

Each of the four regions has the property that |g| # 1 on its interior. In two of
them, |g| > 1, while |g| < 1 in the other two. We will work with the closed region
labeled D in Figure 8, where |g| > 1 on the interior, with |g| = 1 on EFU EuC,
and g(HyU Hy) C R.

We choose to integrate from O € T2 in the Weierstrass representation (1.2)
and we place X(O) at the origin of R?; i.e. X(0O) = O := (0,0,0). With this
normalization, it follows from Theorem 1 that the v-diagonal is mapped into the
x3-axis. The form of dh in (1.7) and the fact that z takes values of the form it,
t < 0, on this axis (see Figure 3), imply that z3 increases monotonically as one
descends the v-diagonal from 0 to b.

The segment of the h-diagonal passing through O and terminating at the punc-
tures must be mapped onto a horizontal line through X (O) = O in R3. Observing
that g(O) = g(O') = —1, while g = 1 at the other fixed points of the normal
symmetry (where z = 00), we can conclude that this horizontal line must be the
z9-axis. Orientation considerations or a direct computation of z9 imply that z9
is decreasing as one travels from O along H1 on the h-diagonal.

3 Note that if the normal to a minimal surface is horizontal along a curve that projects to a
strictly convex curve, ¢, the minimal surface near the curve projects to the outside of c.
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Figure 8.

Left and Center: The region D, whose image is a graph over a halfplane minus a compact convex
set. Right: The four regions, each congruent to D by automorphisms that extend to Euclidean
symmetries. The region D = rpD is referred to in the proof of Theorem 3. The puncture (x)

divides the segment OO’ into the subsegments Hy and Hs.

Proposition 1.

(i) X(D) is the bounded graph of a function F over an unbounded domain Q in
the half plane {(x1,z9)|x1 < 0}. The boundary of Q consists of the xo-azxis,
together with a compact conver curve c, that begins and ends at (0,0) and
is symmetric with respect to the xi-axis. The function F satisfies —T/2 <
F(z1,29) < a, where T is the translational period defined in (1.10), and a > 0
is defined by X (b) = (0,0, a), where b is the endpoint of E in Figure 8;

(ii) X(9D) is an embedding: X (H1) is the negative zo-axis; X (Ha) is the positive
xg-azxis translated by (0,0, —T/2); X(F) is the segment (0,a) on the x3-axis;
X(E) is the segment (—a,—T/2) on the x3-azis; X(C) is a monotone graph
over the curve ¢ defined in (i) above. It joins X(b) = (0,0,a) to X(b) =
(0,0, —a).

We will prove Proposition 1 in the next section. The reader may wish to read
Section 3.3 first, where Theorem 3 is proved using Proposition 1.

3.2. The proof of Proposition 1

We will follow the boundary of D, beginning at O and we will show that oD is
embedded by X and that—except for the vertical line segments X (E) and X (F)
on the z3-axis—X (9D) is a graph over a curve in the (z1,z9)-plane. Along the
way, we show that points of D near 9D are mapped by X to points that project into

), and that points of D near 8D are mapped by X to a graph over a neighborhood
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Figure 9.

Left Column: The domain D with the image under X of 8D above and 2 the projection of X (D)
below. The curves of X (8D) are labelled by their preimages in 8D. Right Column: The graph
X (D) at the top, with X(D) U X (D) in the middle. Extending the surface by rotation about
the vertical axis produces the fundamental domain, bottom right. Note that these surfaces are
tilted forward, so 23(C) does not appear to be monotonic, which it actually is.

of 69 in Q. This, together with the behavior of X near the puncture, will allow
us to conclude that X (D) is a graph over €.
We define

p=molX,
where 7 is the projection of R3 onto the (z1,z2)-plane. Because |g| > 1 on ﬁ, pis

an immersion. Beginning at O € T2, which is mapped to O € R3, the v-diagonal
is mapped into the zs-axis and z3 increases monotonically as one descends the
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v-diagonal 4 In particular, p(E) = (0,0) and
X(b) = (0,0,a)

for some a > 0. We may describe the normal symmetry of the surface by X orp =
s o X, where

s(z1, 2, 23) = (21, —72, —73). (3.1)

Writing b= r,b, we have

~

X(b) =s0X(b)=(0,0,—a).

We have shown earlier that X maps H{, monotonically onto the nonpositive xo-
axis. Therefore p = X on Hj.

At O € TQ, g = —1. Moreover, g is real and initially decreasing along H1; after
passing through the vertical point, where ¢ = o0, g continues to decrease until
one reaches a branch point, where g has a value between 1 and oco. (We know
from Theorem 1 that A < 1, so the branch point of g comes before one reaches the
puncture. See Figure 6.) Then g increases to co as Hj diverges to the end. We
can deduce two things from this.

First, because D is to the left of H{ as one travels along Hq away from O, a
neighborhood of Hy in D is a graph over a one-sided neighborhood of the negative
z9-axis, on the side where z1 < 0. Consequently a suitably small neighborhood in
D of the end, which is asymptotic to a helicoidal graph, must be a graph over a
region in {(x1,x9)|x; < 0}.

Second, we can conclude that the surface normal rotates counter-clockwise as
one moves away from O along Hi and it keeps rotating in this sense until one
reaches the branch point of g. The two straight lines on the surface, which cross
at O € R3, are geodesic asymptotic curves. On the conjugate minimal immersion
X*, defined in a neighborhood of O € T’ 2, the lines correspond to geodesic principal
curvature lines, with principal curvatures given by the rate of change of the surface
normal along E and Hj. Since O € T2 is not a branch point of g and X and X*
have the same principal curvatures, it follows that the normal to the surface rotates
clockwise as one descends FE from O. Because D is on the right as one descends
E on the torus, it follows that, near X(F), X (D) is a graph over a region in
{(z1,z2)|z1 < 0}. (This can also be deduced from computation of the values of ¢
along F.) It also implies that, near X (b) = (0,0,a), X(C — {b}) is a graph over a
curve in {(z1,z2)|z1 < 0}.

Along C, z is unitary. On C, z is branched only at the midpoint of C', where
2z = —e . We may use the phase of z to parameterize C from b, where z = —i,
to the midpoint of C, where z = —ie~Hm/2+0)  That is

Ct) = b+ ft)e™/4

1 See the computation of dh(E) near the end of Section 1.5.
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is the point where z 0 C(t) = —ie ", 0 <t < 7w/2+ p <.

From Remark 2 at the end of Section 1.5, x3 0 [I(¢) is a strictly decreasing
function. (See Figure 7.) But I is one half of C, from b to the midpoint. By
using the normal symmetry we can conclude that z3 is a decreasing function on
all of C. In particular X embeds C.

Because g is unitary on C, the projection

c:=p(C) =m0 X(C)

is a plane curve whose normal vector at ¢(t) is g(C(¢)). The Gauss map is branched
at b and ?), where g assumes complex conjugate values, but has no branch points
on the interior of C. Hence ¢, which begins and ends at (0,0), has a normal that
turns at a nonzero rate all along ¢, and turns more than = but less than 27 from
beginning to end.® We have already established that near X (b), X (C) projects
into the half space {(x1,2z2)|z1 < 0}. (See Figure 9.) Hence ¢ is an embedded
convex curve in {(zy,x9)|z1 < 0} that begins and ends at (0,0). It is symmetric
with respect to the zj-axis: Since mo s = §ow, where 5(z1,z9) := (z1, —72),

c(t)=polC(t)=mo X(C(t)) =moso X(C(—t)) =8omo X(C(—t)) = 8(c(—1)).

We define © to be the unbounded region of {(z1,z2)|z1 < 0} bounded by the
z9-axis and c¢. Observe that the normal to the surface along ¢ points out from €.
Since ¢ is strictly convex and the Gaussian curvature K is never zero along X (c),
except at the end points, the projection of any curve on the surface orthogonal to
X(C) must lie in Q for points sufficiently close to X(C). In particular, C has a
neighborhood U with p(U) C Q. Because D is to the right of C as one travels from
b toward b, X (UND) is below X (C), and X U ND) is a graph over pUdND) C D.

We can now continue around oD. X(E) is a segment of the z3-axis beginning
at X(b2) = (0,0, —a) and descending to X (O’). Since successive rotation about
the horizontal lines generates a translational period, X(0’) = (0,0, —-T/2), where
(0,0,T) is the period vector of the singly periodic surface.

Near X (b), X (D) projects into €. The normal to the surface along V turns
clockwise as one ascends from b to O’ (descending from X (b) X (0')) and g(0’) =
—1. Since D lies to the right of E as one ascends, points of D near E are mapped
by p = wo X to points near (0,0) lying in {(x1,22)|z1 < 0} and to the right of the

5 180° rotation around the v-diagonal produces a curve C on T? with g(é) —
—g(C). Since the degree of g is two, and g is unitary along C, g(C) is an arc of
length less than 2. Because it begins and ends at (0,0) and has g = +1 at its
midpoint, g(C) is an arc of length greater than . Alternatively, using the fact
(established in Theorem 1) that p > 0, we can show that the g(C) is an arc of
length less than 2.
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tangent line to c at its end point (i.e. to the right of g(IA))L) In particular, near
E, D is a graph over a region of Q.
Arguments similar to those given above easily show that X (Hs) is the ray

{(O,7,=T/2)|r > 0},

and 7 — o0 as one approaches the puncture at the end of Hy. We already know
that, near the puncture, X (D) is a graph over a region of 2. We also know this at
O’, the other end of Ha. Since g is never unitary on Hy — {O'}, it follows that Ho
has a neighborhood in D that is a graph over a neighborhood in € of the positive
To-axis.

We now have established statement (ii) as well as the fact that X (9D) projects
onto 9. In addition, we have shown that a neighborhood of 9D in 1077 say R, is
mapped to a graph over a neighborhood in © of 9Q and that a neighborhood in
D of the puncture is a graph over a region in  of the form {|(z1,z2)| > M}, for
M sufficiently large. This means that X (R — dD) is a graph over a region in Q
of the form p(R)U {(z1,2z2) € Q| |(z1,22)] > M}. The complement of this region
in © is compact and simply connected and has a boundary over which X (9R) is
graph. Since p is an immersion on D, it follows that X (D —R) is a graph over this
complementary region. Hence X (D) is a graph of some function, which we call F,
over €2, and is asymptotic to a helicoidal graph as |(z1,22)| — 0. In particular,
we have proved the first claim of statement (i). Because Q lies in the half plane
{(z1,22)|z1 <0} and —T/2 < 23 < a on X(9D), it follows that X (D) lies in the
slab of R? defined by these two constraints. This gives the bounds on F stated in
statement (i).

3.3. The proof of Theorem 3

It suffices to prove that a fundamental piece of the surface, modulo translations,
is embedded. We know that such a fundamental piece is made up of four copies
of the closure of the graph X (D), described in Proposition 1. Let D = r,D.

Claim. X is an embedding of D UD with values in the slab {{z1,z2,23)| z1 <
0,-T/2 < x3 <T/2} and boundary values consisting of vertical line segments and
horizontal rays on {x1 = 0}.

Assuming the claim, which we will prove below, we can complete the proof of
Theorem 3.

The rest of a fundamental domain of the surface is produced from X (D U 15)
by 180° rotation about the z3-axis; according to (1.14),

X 0 pyert(p) = (—z1, —z2,23)(p) =: 0 0 X(p)

This means that oo X (DUD) lies in the slab {(z1,z2,23)|21 > 0, |z3] <T/2},
and is therefore disjoint from X (D U D) except along their common boundary,
where we already know that X is one-to-one. Hence X is an embedding.
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Proof of the Claim. Recall from (3.1) that s(z1,z9,23) = (8(x1,22), —x3), where

3(z1,29) = (z1,—x9). Since X(D) = X(rpoD) = so X (D), X(D) is the graph
of the function
F(ay,29) = —F o §(z1,x2) (3.2)
on  — {0}, where F' is the function, described in Proposition 1, whose graph
is X (D) Since § interchanges the positive and negative xo-axis, on which F =
—T/2 >0 and F = 0, respectively, (3.2) implies that E'> F on these rays.
For |(z1,z2)| large, X (D) is asymptotic to the graph of a helicoid over

{(z1,22)|z1 <0, (z1,22) # (0,0)}

whose boundary values are —7'/2 on {z9 > 0} and 0 on {z9 < 0}. From (3.2) it
follows that [ > F for |(z1,z2)| large.

Recall that ¢ is the projection of X(C) onto the (z1,x9)-plane. Because s o
X(C) = X(C) and co§ = ¢, F' = F on ¢. According to Proposition 1, X is
one-to-one on C. Therefore X is one-to-one on a neighborhood of C, so F # F
near, but not on, c¢. The line segments X (H1) and X (Hs) are disjoint segments
of the zg-axis and s o X(Hj) and s o X(Hp) meet X (H1) U X (H2) only at X (b)

and X (b), near which X is an embedding.

We have shown at each point (z1,z9) € 9 that either F(xol,xg) > F(z1,z9) or
F(xl,xg) = F(x1,z2) and that F'> F for nearby points in D. Also, F(xhxg) >
F(zq1,29) for |(x1,x9)| sufficiently large. By the Maximum Principle, F>F
on € because the set of points in Q where F < F' is bounded and can have
no limit points on 9. Thus the graphs of F and F over Q are disjoint, which
means that X (D UD) is an embedding, as claimed. The boundary of X (D U D)

N

consists of the two vertical line segments of X (D) and X (D), together with the
two horizontal rays {z3 = —T/2, 21 =0, 29 > 0},{z3 = T/2, 21 =0, z9 <0}
and the horizontal line {z] = z3 = 0}. O
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