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Compactification of moduli space of harmonic mappings

Jmgyi Chen and Gang Tian

Abstract. We introduce the notion of harmonic nodal maps from the stratified Riemann
surfaces into any compact Riemanman manifolds and prove that the space of the energy minimizing
nodal maps is sequentially compact We also give an existence result for the energy minimizing
nodal maps As an application, we obtain a general existence theorem for minimal surfaces with
arbitrary genus in any compact Riemanman manifolds

Mathematics Subject Classification (1991). 53C42, 58E20
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1. Introduction

In many cases, a sequence of harmonic maps contains a subsequence which
converges to a limit map The limit map is a union of smooth harmonic maps
However, it is often difficult to keep track of how topology changes during the
limiting process On the other hand, we do have satisfactory compactness results
in certain cases, for example, Gromov's compactness theorem for pseudoholomor-
phic curves and for perturbed Cauchy-Riemann equations ([Gr], [PW], [RT], [Ye])
In this paper, we make a few new observations on compactness for 2-dimensional
harmonic maps and derive some consequences

To motivate our discussion, let us mention a few well-known examples First,
J Eells and J C Wood [EW] show that there are no harmonic maps of degree
1 or -1 from the 2-torus T2 to the 2-sphere S2 Second, A Futaki ([A]) proves
that an energy minimizing map from S into a Hirzebruch surface M m the class

a + ß, where a and ß are two generators of tt2(M) Z © Z, has to splits into
two spheres representing a and ß respectively Finally, if one starts from a long
cylinder in R3 and deforms it continuously to minimize area of surfaces spanning
the two boundary circles, then one gets two flat discs joined by a line

Let S be a stable curve of genus g in the sense of Dehgne-Mumford, possibly
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with nodes as singularities. Recall S is obtained by collapsing finitely many circles
on a smooth compact Riemann surface of genus g to points and requiring any
component which is homeomorphic to S2 touches at least three other components.
Let M be a smooth compact Riemannian manifold with a Riemannian metric h.
As usual, the moduli space of all such S is denoted by Aig, which is compact. The

open subset of A4g consisting of all smooth curves is denoted by Aig. A stratified,
Riemann surface T associated to S is defined to be a union of smooth compact
Riemann surfaces Si,..., S^ and line segments l\, ...,lp of unit length such that (i)
SjflSj =0 and 1%C\13 0 for any i =/= j; (ii) each lt intersects Ufc=1Sj transversely
at two points and T is connected; (iii) if l3 's are removed and the end points of l3 are
identified, we obtain a surface £' possibly with nodes as singularities. Moreover,
£' l/LjSj is the union of components in S and some 2-spheres. Each S^ is called
a 2-dimensional component of T while l3 a 1-dimensional component of T. Also,
if Sj is a component of S, we call it a principal component of T, otherwise, Yj% is a

bubbling component of T. Note that all bubbling components are 2-spheres, but
some principal components may be also 2-spheres. If there are at most two lines

connecting a 2-sphere with other components, we say the 2-sphere is an unstable
component of T. A conformai structure on T is given by assigning a conformai
structure on each 2-dimensional component. A smooth metric \i on T consists
of smooth metrics \i% on S^ and the standard metric ds3 on l3. The regular part
Reg(T) is T\Lf=1lt. Note that Reg(T) is the disjoint union of punctured Riemann
surfaces. Let x(Reg(T)) be the Euler characteristic class of Reg(T). The genus
g{T) of T is given by

9(T) 1 - ix(Reg(T)).

For example, take two 2-spheres Si,S<2. (a) if T {Si,S<2; 1) with / joining Si, S%,

then g(T) 0; (b) if T (Si,S2;h,l2) with each of h,l2 joining Si,S2, then
g{T) 1. We are interested in maps / from T to M satisfying: (1) / is smooth on
each Sj and each lt; (2) / is Lipschitz on T. The set of all such maps is denoted by
C°°(T, M). We call a map / G C°°(T, M) harmonic nodal map if (i) it is harmonic
on each surface (EJ;/Xj) and on each line lt; (ii) if / is constant on some bubbling
component Ej, then Yj% intersects with at least three 1-dimensional components
of T. The requirement on 1-dimensional components in (i) simply means that /
maps the interval [0,1] into a geodesic in M. The energy E(f) of / G C°°(T,M)
is defined to be

Note that (ii) implies that the automorphism group of T is finite.
We have the following compactness theorem for harmonic nodal mappings.

Theorem 1.1. Let M he a compact Riemannian manifold without boundary. Let
Tn be a stratified Riemann surfaces associated to a stable curve Sn G A4g of the
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same genus for n 1, ...,oo. Assume that Sn converges to some stable curve Sqq

in -Mg- Suppose that {un} is a sequence of energy minimizing harmonic nodal

maps from Tn to M in the same homotopy class whose energies are uniformly
bounded above. Then a subsequence of {un} converges to an energy minimizing
harmonic map from T^ to M, where T^ is a stratified Riemann surface associated
to Sqo G -Mg- Further, un(Tn) converges to Moo(Too) continuously in the Hausdorff
distance. The geodesies from the unstable components are trivial.

We point out that since the total energy of un is uniformly bounded above,
there are at most finitely many extra S2's, i.e., the bubbles in T^. If gn,g<x,
are the metrics compatible with conformai structures on En, Soo respectively (i.e.
Kahler metrics with respect to the conformai structures cn,Coo), then that Sn

converges to Sqq, means that gn —> g^ uniformly on every compact subset away
from the singular set of Sqq and we say the conformai structures cn converge to the

conformai structure c^. In a special case that Tn S is a fixed Riemann surface,
the result in Theorem 1.1 was already obtained by Parker in [P].

The existence of harmonic maps in given homotopy class has been a central
problem in geometric analysis. The important work of Sacks-Uhlenbeck [SU1]
asserts the existence of a non-constant harmonic map from S2 into a compact
Riemannian manifold N with non-contractible universal cover. Sacks-Uhlenbeck
[SU2] and Schoen-Yau [SU] proved independently the following beautiful result
on incompressible minimal surfaces: if </> : tti(E) —> -k\(M) is an injective homo-
morphism, then there exists a branched minimal immersion from S to M which
minimizes area among maps in the same conjugacy class of </>. Note that this does

not say that each homotopy class of maps from S (even S2) to N contains a
harmonic representative. If allowing degeneration of conformai structure on domain
surface S, one can obtain the general existence result (see Theorem 1.2).

In proving the existence theorem in [SU1], Sacks and Uhlenbeck used the min-
imizers of perturbed energy and then take their limit. The limit may not be

necessarily a single smooth harmonic map. It is often a union of several harmonic
maps, which may not be connected. One new result of this paper is to provide
a complete understanding of the behavior of the minimizing sequence along the
"necks" which connect those harmonic components. In particular, we provide
detailed analysis on convergence of critical points of Sacks-Uhlenbeck's functional.
As a simple corollary, we deduce the existence of harmonic nodal map with given
genus in each homotopy class.

Theorem 1.2. Let M be a compact Riemannian manifold without boundary and
T a stratified Riemann surface associated to S in A4g. For any homotopy class

[wo] € [T, M] defined, by a map uq € C°°(T,M), there exists an energy minimizing
harmonic map u from T', a stratified, Riemann surface associated, to S in Aig, to
M in the homotopy class [mo]- Moreover, u is non-constant on the bubbles and

maps the lines in T" to geodesies with finite length in M. In fact, (u,T') is the
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limit of a sequence of minimizers of the perturbed energies in [SU1].

One consequence of Theorem 1.1 and Theorem 1.2 is:

Theorem 1.3. For any fixed genus g and homotopy class a, there is a minimizing
harmonic nodal map into M, which is also conformai.

This harmonic nodal map actually parameterizes a generalized minimal surface
which minimizes the area among surfaces with genus g and homotopy class a in
M. In particular, any immersed surface S in M can be deformed to Ê, a finite
union of compact admissible (see Section 4) minimal surfaces and geodesies of
finite length, such that S and Ë have the same genus.

Other possible applications include developing the Morse theory on the space
of maps from a Riemann surface via the energy functional. Our theorems here
indicate that one can achieve certain compactness by partially compactifying the
moduli space of maps.

Large portion of this paper consists of asymptotic analysis near singularities
arising either from bubbling off of harmonic maps or from degeneration of conformai

structure on domain. Applications of asymptotic analysis to geometric problems

were given by Almgren-Allard [AA], Cheeger-Tian [CT], Schoen-Uhlenbeck
[ScU], Simon [SI], [S2] and other people in various situations. The second author of
the present paper observed the possible collapsing of harmonic maps to geodesies
in a unpublished note. Also, there are related important works on singularities of
harmonic maps and maps with L2-bounded tension fields, notably by Jost, Qing,
Wang ([Jl], [Q], [DT], [QT], [W]), etc.

We prove the compactness theorem for minimizing harmonic nodal mappings
in Section 2 and the existence of harmonic maps in any given homotopy class in
Section 3. Then in Section 4, we apply the techniques and results developed in the
previous two sections to study the existence of minimal surfaces in given homotopy
classes. The construction of minimal surfaces requires two minimizing processes.
In the given homotopy class, first find minimizing harmonic nodal maps for the
given conformai structures; then minimize the energy among conformai structures.
The existence of minimal surfaces has been extensively studied by many people
for a very long time and many important results have been obtained (see [Do],
[Gu], [Hi], [J2], [Mo], [MY], [MSY1,2], [Os], [SU1], [SU2], [SY], [TT] for example).

We would like to thank M. Struwe for his interests in this work and point out
some errors in the early version of this paper. We are grateful to the referee for
useful and detailed comments.
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2. Compactness of minimizing harmonic nodal maps

In this section, our main goal is to prove Theorem 1.1.

Let cn be the conformai structure with respect to which the map un is harmonic.
By the compactness of E, there exists a subsequence of {cn}, which is still denoted
by {cn}, converges to a conformai structure c^ (refer to the previous section for
définition), c^ may have nodes as singularities. In each conformai class cn, there
exists a metric gn on Sn satisfying the following properties: (1) the curvature
K{gn) is bounded by |if((;n)| < 1; (2) the injectivity radius of Sn with respect
to gn is not less than 1; (3) gn converges uniformly to a complete metric g^, on
Soo\{nodes} in C6-topology; (4) the limit metric g^ is quasi-isometric to the
standard Euclidean metric on cylinder near each node of Sqq, i.e. C~^gcyiinder <
ffoo < Cgcyimder for some constant C > 1. The existence of the metric gn is

well-known. Note that since the domain spaces are 2-dimensional, harmonicity
is invariant under conformai changes of domain, and hence un is harmonic with
respect to the metric gn. In particular, the Dirichlet energy of un is unchanged
under conformai transformations.

The following e-regularity theorem is due to Sacks-Uhlenbeck [SU1] and Schoen-
Uhlenbeck [ScU]. Note that we choose the geodesic ball of unit size for simplicity.

Lemma 2.1. There exist constants eo > 0 and C > 0 depending only on M,
the mjectwity radius and the curvature hound for the metric g such that if u is
harmonic on B2(xQ,g) C M and

\Vu\2dvg < eo

then

sup \Vf\2g<cf
Bi(xo,g) JB1(x0,g)

We will also need the Removable Singularity Theorem of Sacks-Uhlenbeck
[SU1]:

Lemma 2.2. Let f be any continuous harmonic map from a punctured disk D\{0}
in a Riemann surface into a manifold X with finite total energy. Then f extends
to a smooth harmonic map from D to X.

Note that the regularity of / improves from C° to C°° is well known.
Set rm 2~m where m G Z+. Define

/¦

Em,n {x G S| / |Vwn|g dv9n > eo},
JBrm(x,gn)
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where eo is given in Lemma 1. It is clear that Em2in Ç Emitn if mi > mi. The
following claim is proved in p. 281 in [RT]:

Claim. For n sufficiently large, each Em^n can be covered by a collection of balls

B%rm(xn\,gn), ...,B%rm(xns,gn) where s is independent ofn.

We may assume that the sequence {xnk} converges to a point x% for A; 1,..., s

without loss of generality. Also, we may assume that the injectivity radius in gn
is larger than 1. Within each ball B\ (xni,gn) for i 1,..., s, there is a point yni

o
so that

em \Vun\2gn(ynl) max \Vun\2gn(y).eB()
Then we may assume that

lim em oo.
n—>oo

Define a new metric on B\(xni,gn) by

/ &m9n
9nl= ^(l + 16e

where r is the distance function from yni of gn and </> is a cut-off function defined
by

em if t > 2 + em

and

K,(*)I<1,IC(*)I<C foralH
for some constant C independent of n. We change the metric gn on all balls
B\{xni,gn) for i 1,..., s to get a new metric g^ on E. With respect to the new
metric g'n, we have

Notice that <;^ coincides with gn in the annulus Bi(xnt,gn)\Bi(xnt,gn) and

IVwnl^ is uniformly bounded over this annulus. Recall if h! eJh is a con-
formal change of metrics in 2-dimensional manifold, then the Ricci tensors are
related by

Therefore it is easy to see that the curvature K(g'n) is also bounded from above and
below on B\ (xnl,g'n) by noting that / In enl — In </>m for our choice of conformai
change. Since un is an energy minimizer, the standard elliptic estimates imply

f \Vun\2g, dAg,n > Ö
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where ö is a positive number independent of n. Next, if |Vwn|g/ is not uniformly
bounded on Bi(xnl,gn), then there is a point zm G Bi {xni,gn)\B±(yni, g'n), such

that
Wun\2gn(zm)= sup \Vun\2g, =e'nt

Bi(^.a)
and

lim e'rn oo.

Then we change the metric g'n conformally in a small neighborhood of zm as we

just did for gn to obtain a new metric g£. We have B\(yni,g'n) C\B\{zni,g'^) 0

and

/ (5.

Again, if |Vwn|;L is not uniformly bounded, we repeat the above arguments and
obtain wni and so on. Note that each time we use a positive amount of energy,
which is at least 5. But the total energy is fixed under conformai transformations
on the domain surface. Therefore this process will stop after finitely many steps.
In this way, we find a metric and with respect to it the energy density of un is

uniformly bounded. By Courant-Lebesque lemma (cf. [Jl]), a subsequence of
{«„} will converge to a harmonic map as n —> oo from Sqq union with some
2-spheres each with a point (the blow up point of IVunl^) deleted. Then the
Removable Singularity Theorem implies the limit harmonic map extends to the
whole 2-spheres.

By the e-regularity theorem for harmonic maps and Arzela-Ascoli theorem, un,
taking a subsequence if necessary, converges strongly to a harmonic map Mqo on

£\{x G T,\dgn(x, EmjOO) < 4rm} where

oo s

Em,oo C\Emn Ç lim II Bsrm(x,,,gn).
n i=l

We set

r 12rm.

On the other hand, for any given constant K,

9-

if the distance r from ynl in gn satisfying

r<e-jK.
Now we decompose (£,<;„) into three parts: the regular part

fl„(x,Em,n) <4rm},
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the bubbling part
s

I \B i (ym,g„)

and the connecting part

Anl(r,K) {x G Bi(xnl,gn) : em2K <\x - ym\9n < t}.

Our main interests will be focused on the connecting part. Along a connecting
annulus, we consider the map

which maps Arn conformally with factor £~2 to a cylinder

Cm(r,K) [- logr, - log(em^)] x S1

with coordinate (t,6) and metric

ds2 dt2 + d62.

A harmonic map u from the flat cylinder C [0, R] x S1 into M, which is

isometrically embedded in some Euclidean space ~RN takes the form of

2 2 dvJdv?

where B is the second fundamental form of M in ~RN. In particular, if a harmonic

map from [0,1?] x S1 into M is ^-independent, i.e., ff 0, then it satisfies the
equation for geodesies in M

d2u ,dul dv?
N

If the length of C is R, then we divide C into m equal length pieces and set

Il {(t,6) : (i-l)l <t<il}
where R ml and i 1, ...,m. If wi and W2 are two solutions of (2.1), we put

w w\ — w<i (2-3)

here we embed M into some Euclidean space isometrically ~RN and set

Ml? dB. (2.4)
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It is easy to check that w satisfies

where

\A\ < C(|Vwi| + |Vw2|) and \B\ < Cmin{|Vwi|2, |Vw2|2}

for some uniform constant C'. We now prove a result regarding the asymptotic
behavior of solutions of equation (2.5).

Proposition 2.3. Suppose that m and I are fixed and I is large (say I > In 2). Let
v be a solution of (2.5). There is a constant Sq such that if and \A\L2(c)-\-\B\L2(c) <
öq, then we have the following alternatives:
(i) if\\v\\% > e*|M|,+i, then ||v||»_i > eb\\v\\t;

(n) if\\v\\% > e2\\v\\t_i, then \\v\\l+i > e2\\v\\t;
(in) if

r
/ vdtd6 0 (2.6)

Jh

and
f/ tvdtde 0, (2.7)

then either \\v\\t < e~5 ||u||j_|_i or \\v\\t < e~'2\\v\\l_i.

Proof. First, we consider the limit case when |-A|^2(c) + |-B|L2(c) < ö -^ 0. For
each ô > 0, we denote the solution of (2.5) with |-A|^2(c) + |-B|L2(c) < ö by vs.
Suppose that (i) does not hold. So we have

>

We normalize vs such that \\vs\\t 1. Then by taking a subsequence of vs in

3^0 and by the standard elliptic estimates, we may assume that vs converge to
a harmonic map vq from the cylinder into Euclidean space ~RN

(2.8)dt2 de2

and

>
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Therefore we only need to prove the proposition for a solution vq of (2.8). By
separation of variables, the expansion of vq is

vo a0 + bot + Y(ak cos kO + bk sin k6)ekt. (2.9)

It follows that

/ll
1-2-K

I («0-
S-l)l Jo

°° ,.%i ,.<2ir

+ y^ / (e2kt(aî +a2_i.) +e~2kt(bî +b2Lk) dt / cos2 kOdO
f^J(x-l)l V J JO

2tt (aQl + aobol2(2i- 1) + -6^/3(3i2 - 3i + 1)

fc=l

-ie-2^1)^ (1 - e-2kl){bl + 62 fc)) (2.10)

If (i) does not hold, then

Then applying the recursive formula (2.10) for i — 1, i, i +1 to the above inequality,
we obtain

fc=l

fc=l

-l-2M)e2(t-l)kl{e2kl_1){a2 + a2_k^

)e-^-^kl(l-e-^)(bt+bik)).

fc=l
OO

e-'+2fc')e-2(*-1)fc'(l - e-2fc')(6^ + 62

It is impossible as e'+2fci + e-'-2fci > 2 and e'-2fci + e-l+2kl > 2. Similarly, one
can prove (ii). For (iii), we have ciq O,6o 0. Now

fc=l
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and

k=\
Ie~' E {k-le^-1)kl+'2kl (e2ld - l)(a2k + a2 k)

k\

By term by term comparison, it is easy to see that if / > In 2

Therefore we have shown the proposition for harmonic functions. Now the general
case follows since v$ converges to vo in M^2'2 (see also the proof of Corollary 2.4

below). D

In fact, the same method yields the following more general result (cf. [QT]).

Corollary 2.4. Let v satisfy

Av + At:>Dlv + B-Vv + C-v f (2.11)

on the cylinder C [0,ml] X S*1. Then for a given p > I, there exists a positive
number S\ such that if

\\f\\Lp(c) <<5l(imax^||v||2vl>2([(î_1)iu]xSl)+sup|V|2) (2.12)

and

~(c) < *i, (2-13)

then for 2 < i < m — 1 the following alternatives hold:

(2.14)

tvdtde < «5i(||u||^i,2(c)+sup|t;|2), (2.15)

i/iera either \\v\\t < e~^ ||u||j_|_i or \\v\\t < e~^||u||j_i.

M
(ni)

f\\v\
*f\\v
*f

1* > e2\\v\
\\t > ei\\i

\\t-\-l, then ||w||j_

'||î—1, then ||w||j_|.

/ vdt d9 <

1 >e
1 >«

^i(IK

si H^IU

'II2 12
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Proof. If the corollary were not true, then there would be a sequence of ôk —? 0

and a sequence of solutions vk of the equation (2.11) with

and

(c) < 4- (2.13)

Let us assume (i) is not true for V]~ (the other case can be argued similarly).
Therefore for some i,2 <i < m — 2, we have

(a) |M,>e'/2H||,+i,
(b) |M, >e-'/2H||,_i.

Normalize vi~ over [(i —1)1, (i + 2)l] x S*1 by dividing the norm of -u^ over the middle
interval I,^\

Now (a), (b) and the elliptic estimates assert that the norms oîv'k over It,It^2 are
bounded above by that over I,^\ times a uniform constant (depends on el). The
interior estimates (cf. [GT]) then imply that on every domain [(i — l)/ + e, (i + 2)l —

e] x S*1 for sufficiently small positive e there exists a subsequence of v'k converges
to a harmonic function. So by a diagonal process, a subsequence of uj[, converges
to a harmonic function v'q on ((i — 1)/, (i + 2)/) x S*1 and v'q satisfies (a) and (b)
(">" replaced by ">"). But the norm of v'q on It^\ is 1 hence v'q is nonzero. We
then obtain a contradiction to Proposition 2.3. D

Along the cylinder, there is a unique solution of (2.2),«.e., ^-independent solution

of (2.1), for any given initial data, and this solution is a geodesic in M. We

will show that if S in (2.3) is sufficiently small then any solution of (2.1) is very
close to a geodesic. Recall that harmonicity and the Dirichlet integral is invariant
under conformai transformations if the domain is 2-dimensional. For the harmonic

map un the composition un o f~^ is harmonic on the corresponding cylinder
f(Ant(T, K)). For the sake of simplicity, we will still use un to denote the harmonic
maps on the cylinders. After rescaling the metric

for some positive constant e which is so small that Proposition 2.5 and Proposition
2.6 can be applied (refer to Proposition 2.5 and Proposition 2.6).

Proposition 2.5. There is a constant e > 0 such that if ||VMn||co(c) < e? then

on each It, there exists a curve in M given by a solution ùn of (2.2) such thai v,n
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and satisfies the following normalization

(un - ün)dtd6 0, (2 16)

t(un - ün)dtd6 0 (2 17)
'h

and

l|Vü„||co([,i (,+!)«]) < Ce (2 18)

where C is a positive constant depending only on M

Proof A 6>-independent solution vn of (2 8) is of the form

Vn{t) =Pn+tqn

where pn is a point m M and qn is a fixed vector m TPnM In fact, pn and qn

can be viewed as vectors m ~RN where M is isoinetrically embedded The two
constrains on ù can be interpreted as initial values as follows Integrating over It,

27r[lPn + -lzqn I I un(t,6)dtdß

i

tun(t,6)dtd6
s1 Jo

Since / ^ 0, there exists a unique solution {pm<ln) for the system The first
derivative at vn of the functional <9t2 on C°°([il, {i + 1)/]^^) is

d

=0

for any / G C°°{[il,{i + 1)/],^) It is straightforward to check that the first
derivative of the functional is both surjective and mjective on the subspace of
C°°([il, (^ + 1)/],^^) whose elements satisfy (2 16) and (2 17) Then the Inverse
Function Theorem implies that there is some constant Sy > 0 such that if \h\ < Sy

for h £ C°°([il, {i + l)l],RN) then the equation

dff h

has a unique solution in C°°{[il, (^ + 1)/],^) with (2 16), (2 17) satisfied Next,
since |Vm| < e on C by assumption, the image of It under u is contained in a small
convex region In fact, there is a point xq in M such that for any (t,6) G It,

un(t,e)-x0\ <2/||Vm„||co <2le
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If ùn is a geodesic from [il, (i + 1)/] to the same small region in M, it has constant
speed, we have

*~dT ~ T ~

Therefore if we pick e sufficiently small in advance, we have

|-B»j(Mn)9tM^9tM^| < Ce < 02

where C depends only on the second fundamental form of M in R*, and the
Inverse Function Theorem then asserts the existence of a geodesic which satisfying
the two normalization conditions (2.16) and (2.17). This completes the proof of
Proposition 2.5. D

Proposition 2.6. Let un,ùn he as before and \\Vun\\c°(c) < e < C\5\ where c,5\
are given in Proposition 2.5 and Corollary 2.4 respectively and C\ < 1 is some

positive constant independent of n. Then there exists io > 2 such that

\un(t,6) -un(t)\ + \Vun(t,6) - Vm„(£)| < JiCe~2(fl-*); tft>iol, (2.19)

un(t,6) -ùn(t)\ + \Vun(t,6) - Vùn(t)\ < öiCe~^, ift<iol (2.20)

where C is a universal constant.

Proof. By Proposition 2.5 and (iii) in Corollary 2.4, for any fixed io > 2 either

h ~ h i / ¦ ¦ ~ h

or

Suppose the first case is true. Then by (ii) in Proposition 2.4,

\\un — ün\\t+i > eä \\un — ùn\\t

for any i >io- We claim

II ~ ii ^x ô
\\Un -Un\\m < dl —.

If this were not the case, then there would be some i > io such that

\\un - ùn\\t > ô\.

On the other hand,

II7» 'Ti II <^ II7» 7» II -L IIV7^7» 'Ti *\ll Ott]

<||w„-«„IL2 + 2tt/(1
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It follows

< 2tt/(1 + C2)e2.

This is impossible since e < Ci Ji and we can require in advance that

C?>M^>. 0.21,

Therefore by iteration, we have

For the second case, we can argue similarly. Indeed, if

\\Un ~ "nlU ^ e~2l\\un ~ Wn||jo

we conclude first that
||«n -Mn||0 < <^l,

and then

IK-Ün||.o <öie-^l°l.

Choose io to be the smallest one so that

Note that after this i$, the above inequality remains to hold. Then the foregoing
discussions show the following. As m —> oo or equivalently R ml goes to infinity,
u decays exponentially over IlQ to ùn from left if i < io and from right if i >îq.

The difference of two harmonic maps, especially un — ùn, satisfies differential
equation (2.5) where the coefficients A and B may depend on w but

\\A\\co,\\B\\co<Ce

for some constant C depending only on M. Then by the Lp-theory in the elliptic
partial differential equations ([GT]) for p 2, \\un — un\\W2,2 can be bounded
by the L2-norm of un — ùn. The Sobolev embedding theorem implies that the
\\un — Mn||c° is bounded by the L2-norm. Soforanyp > 2, ||m„— ün||.Lp is bounded
by \\un — ùn\\L2. Apply the Lp-theory again, we see that \\un —ùn\\W2,P is bounded
by \\un —ün\\LP, hence by \\un — ùn\\L2. Applying the Sobolev embedding theorem
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again, so the C^-norm of u — ù is bounded by \\un — ùn\\L2 Then by Proposition
2 4 and Proposition 2 5, we conclude

un{t,6) - ün{t)\ + \Vun{t,6) -Vün(t)\ KCSie-^-^, if t > iol

unit, 9) - ün{t)\ + |V«n(t, 6») - Vü„(i)| < CJie-i*, if t < iol

Now Proposition 2 6 is proved D

The rescahng procedure results in that R tends to infinity as n does Within
any fixed distance, measured in t, from each of the two ends of the cylinders, the
standard elliptic estimates imply that un, a subsequence if necessary, converges to
a limit On the middle portion of the cylinders, we have just proved that ||m — ù\\ci
decays exponentially in t Therefore we have shown that there is a harmonic map
v? from Sj U S2 's into M and v? converges to geodesies in M along the connecting
cylinders

Next, we need to show that these geodesies all have finite length Note that
fimteness of the length of the geodesies does not follow simply from smallness
of energy on the necks It requires arguments involving global properties of the
ambient manifold However, if M is simply connected there is a direct proof of
the fimteness by constructing distance contracting maps on M (cf [Jl])

In fact, since M is simply connected, there exists a map / M —s- Br(0) C M,
such that

d{f{x),f{y))<d{x,y), for all x, y G M,
f(x)=x, iîxeBr(0) '

Now if the length of a connecting geodesic 7 is very large, then there are two points
p,q G 7 satisfying (1) the length of the portion of 7 from p to q is large, (2) the
distance between p and q is small in M, say p,q G Br(0) (otherwise we move the
center of the ball) Take a connecting cylinder C such that un(C) converges to 7
So for sufficiently large n, there are points pn, qn G un(C) P\Br(0), and the portion
of un(C) from pn to qn is very long Without loss of generality, we may assume
that

r < - min{——, mjectivity radius of 0}

where K is the upper bound of the length of the curvature on -E>2r(0) It is clear

|V(/oun)| < |Vun|

since / is distance contracting Therefore

E(foun) <E(un)

In particular, strict inequality holds if un(x) does not belong to Br(0) for some

x G C Recall that un C —> M is energy minimizing among all maps from C
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to M which send dC into Br(0) and homotopic to un Obviously, / o un belongs
to this class of mappings It then follows that un(C) C Br(0) Therefore the
geodesic 7 from p to q lies inside Br(0) So the length of 7 cannot be large since
otherwise we can reduce the energy of un We point out that the above arguments
for the simply connected case holds for maps which minimize the perturbed energy
functional also Now let us consider the general case

Proposition 2.7. The geodesies arising from the blowing up process all have finite
length

Proof Recall that we have a sequence of energy inmimizer un converges to a

minimizing harmonic map Mqo from Sqq U"^ S^ to M We will derive estimates
on the Dinchlet energy and length on a long connecting cylinder C first As

n —> 00, un(C) converges to a geodesic 7 pomtwise exponentially In the sequel,
we will also use C to denote positive uniform constants, and this should not cause

any confusions with the notion for cylinders By Proposition 2 6,

^),ift>W, (2 23)

\^j-(t,e)\<CSie-?\ iftKiol (2 24)

Suppose that the speed of the geodesic 7 is en when it is parameterized by t G

[0, Rn] We are interested in the case when there is a lower bound on the length
of 7, namely for some C > 0,

tnRn > G

Notice that in Proposition 2 6, the first estimate holds for large t, so if we let t
decrease to to W from right, we still have the exponential decay estimate as in
the second estimate In fact, if toi < -^, we use the first inequality in Proposition
2 6 for t G [-^S ^p] and if xqI > -^ we use the second inequality in Proposition

(2 25)

2 6 for t G [-if, -^f ] So we have

dt v ' ; dt

for t belongs to the intervals described above The Dinchlet energy of un on
C [^S ^fH x S1 if iQl < ^f- or on C2 [-^, ^f-} x S1 if iol>fy, then can be
estimated by

E(un,C) -Afin + O(öle~% + 5xene-^)Rn (2 26)
4

The length of the cylinder un(C), which is very close to the length of the geodesic

7 for n large, is

\enRn + O{51e-^)Rn (2 27)
4
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Recall that we have the following situation: there are finitely many long cylinders

connecting the regular parts and these cylinders converge to geodesies

71, • • •, 7fc • These connecting cylinders arise either from the bubbling spheres or
at the singularities of the stable curve compactification. We consider the following
two cases.

Case 1. there is only one connecting geodesic 7, i.e., k 1. Assume the
two end points of 7 are x and y. Then we pick two points p, q G 7 such that
the length of the portion of 7 from x to p and from y to q is fixed. Denote the
portions of 7 from x to p and from y to q by j(x,p) and ^j{y,q) respectively. Let
7'(p, q) be a distance minimizing geodesic in M from p to q. Now we have two
curves from x to y, namely 7 and j(x,p) L)^/'(p, q) U~/(y, q). We divide 7(p, q) into
unit length pieces 7(sî; Sj_|_i) where i 0,1,... and so p. Since M is compact,
there exists a subsequence {sÎQ} of {st} converges to a point xq in M. Since

M is path-connected, 7ri(M,rel(sî; s^)), the group of homotopy equivalent maps
from [0,1] to M with the same initial point st and then same terminal point s3,
is isomorphic to tti(M,rel(p, q)) for i ^ j. Each curve j(sla, sla+1) represents a
non-trivial element in tti(M, rel(sî; s^)). This is because otherwise the length of 7
could be reduced by ia-\-\ —ia — \ in the same homotopy class in ir\{M, rel(p, </)) as

long as d{s%a+1,s%a) < \ an(i then for sufficiently large n (2.26) and (2.27) would
imply that un were not energy minimizing in its homotopy class. A contradiction
to the assumption. The group ir\{M,ie\{p,q)) is isomorphic to Z x x Z, the
direct product of finite, say m, copies of Z. For any iai < iO2 < iO3, there are
integers a,j,bj,Cj for j l,...,m such that

[7(^,^02)] («I,-,««») € TTi(M,rel(p,q))

h(^aiy^c2) u 7(s»o2Js»o3)] (ci,...,cm) G 7ri(M,rel(p,(jr)).

If there is j, 1 < j <m, such that

Wj\ + \bj\ > \c3\

then we can shorten j(sla sîa in its homotopy class, and this in turn yields a
contradiction as before. Now we have ruled out possible cancelation of homotopy
along j(p,q). If we denote the homotopy class of j'(p,q) U T1tx>\7(Pj9) by [ß],
then the homotopy class of the loop j(p, q) U 7'(p, q) is equal to [mo] — [/?]. Hence
[7(Pi<z) U7'(p,ij)] is bounded, since [mo] is fixed and [ß] is bounded. Therefore
l"/'(p,q)} is large since [7(^,9)] is large, here the homotopy is relative to the fixed
boundary {p, q}. If enRn -^ooasti goes to infinity, we would have the largest one

among the absolute values of the components of [y(j>, q)} G Z x x Z tending to
infinity. This would imply that 7'(p, q) is also arbitrarily long. But this contradicts
to the choice of 7'(p, q). So we conclude that the length of the geodesic 7 is finite
if 7 is the only connecting geodesic line.
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Case 2. there are more than one connecting geodesies. We have un(Ct)
converges to 7j for i 1,..., k where CtJs are the connecting cylinders. We parameterize
the cylinder Ct by [O,i?JJ x S*1. Assume 71 is very long. As before, this means
e^Rn is very large. Since M is compact there must exist two points p\ and q\ on
un{C\) so that the length the shortest geodesic j'ip^q^) from p\ and q\ in M
is very small comparing to e\R\. By taking a subsequence if necessary, we can
assume liirin^oop^ p\ and liirin^oo q\ q\ where p\,q\ G 71. As in Case 1, we
conclude that the homotopy class of 7i(pi,gi) must be very large. Although the
total homotopy is fixed and equals to [mo] we cannot draw conclusion as in Case

1, since the cancelation of the large homotopy of 7i(pi,gi) may comes from other
connecting geodesies. Assume 72, •••,7s f°r some s < k are the geodesies such that

M [7l(pi,9l)] + [72(P2,ffi)] + ••• + hsips-q*)] (2.28)

is bounded. Without loss of generality, we may assume that 7^'s are all very long
for i 2,...,s. There exist shortest geodesies ^/'(p,,,q,) from pt to qt in M for
i 1, ...s in the homotopy class — [a]. In particular,

is bounded since [a] is bounded where L(^/'(pt,qt)) is the length of 7î/(pî,qrî).
Now for i l,...,s, we replace the cylinder un(Ct) from pln to q^, denoted by
un{Ci(jp\n<fn)), by the geodesic j'(pt,qt) and identify the boundary components
9Ci(pln, q%n) at p\ and q%n to p\ and q%n respectively. More precisely, we can define
comparison maps

n on E\ Us -, Ct,

and on Uts=1(C»)\(C»(p^,^))), u'n is defined by shrinking Mn(5C»(p^, ^)) to p,,%
respectively for each i 1..., s. Note that for sufficiently large n, wn(Ct) converges
pointwise to the geodesic 7^. Hence, in this replacement process, the change in
homotopy is zero, and u'n is homotopic to un. Further, if Ct is parameterized by
[0,i?'^] x S1 with speed of u'n close to that of un, which is close to e'ln, we can

arrange u'n to satisfy

én + Che «*» (2.31)

and on the cylinder Ct ^"t (2.32)

where the constant C may be different from those in the estimates for un. As
before we have the following estimates for the competing map u'n over Ct

E[u'n,Ct) \{êjR'\ + O(ô2ie-< + ii4ei)fi':, (2.33)
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7« + O{dxéne:tX. (2.34)
4

But the way the surgery was done implies

L(u'n(Ct))<L(un(Ct))+C0 (2.35)

for some fixed constant Cq > 0 and all n > no for some fixed no. It follows
immediately that there is n0 > 0 such that for all n > min{no,no}

E{u'n,C)<E{un,C). (2.36)

This contradicts to un is energy minimizing in the fixed homotopy class with given
conformai structure on domain. Therefore we conclude that the length of 71 is

finite at the first place. We now complete the proof of Proposition 2.7. D

Note that the length of a connecting geodesic is bounded by CenRn and the

energy of un is bounded by Ce^Rn for some uniform constant C, where Rn —>

00 and en —> 0 as n —> 00. Therefore, the fmiteness of the geodesies implies
immediately that there is no loss of energy on the connecting cylinders in the limit
process. This conclusion also holds for the minimizers of the perturbed energy
functional in the next section.

In fact, the geodesies arise only from the change of conformai structures, not
from the bubbles of harmonic maps. This was proved by Parker in [P] for a

sequence of harmonic maps and Qing-Tian in [QT] for maps with L2-bounded
tension fields. We only mention some keys points. Recall the Hopf quadratic
differential for a map u from a surface is given by

$(m) 4>(u)dz2 (2.37)

where
4>{u) \ux\2-\uy\2-2V^îux-uy. (2.38)

It is well known that if u is harmonic, then $(m) is holomorphic, namely,

dcj)(u) 0. (2.39)

The bubbles arising from the convergence of the harmonic maps un form bubble
trees. By a bubble tree, we mean finitely many S2's connected by thin cylinders of
finite length, and with a half cylinder connect one 2-sphere to a principal component.

Before reaching the final limit tt«,, each bubble tree is topologically a disk.
The Z^-norm of the Hopf differential is conformally invariant. It follows that

</>(«„) IK)t| " IK)er - 2V-1K)* • K)e (2.40)

has small L1(_Dr)-norm if r is small ([DT]). But |(wn)e| decays exponentially in
cylindrical coordinates. Hence, the Z^-norm of |(wn)t| also decays exponentially
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in t. So after passing to limit, the length of geodesies connecting the bubbles is

zero.
It remains to analyze the local structure near singularities at the nodes on

Soo (S, Coo). We need two steps for scaling of metrics: first we scale the metrics

gn on S near the points which will eventually develop cusps as n —> oo to make the
geometry uniform; second we scale the new metrics near the points where energy
concentrates. The analysis involved in the second step is similar to that for the
necks which connect the bubbles.

As n approaching to infinity, Sn may develop some regions which eventually
converge to cusps of Sqq (see definition in Section 4). We normalize the metrics

gn by conformai changes such that the curvature is everywhere bounded on S and
there is a uniform lower bound on the injectivity radius with respect to the new
metrics gn for all n. Notice that the Dirichlet energy and harmonicity of maps
are invariant under conformai transformations on £. Therefore, in metrics gn, un
is energy minimizing in the given homotopy class, E(un) is uniformly bounded
above and on (£,<;„) the injectivity radius is uniformly bounded below and the
curvature is uniformly bounded. As before, there are points xn\, ...,xnm and such
that for any point x $ L/

\Vun\jJAg~n <Ce.

Note that m is independent of n. The e-regularity theorem then asserts

Now we turn our attention to the unit balls, measured in the metric g~n, centered
in LP.jB2(^m). These are the regions where the Dirichlet energy concentrated.
For simplicity, we assume that m 1 and the general case can be handled in the
same way. Rescale the metric gn on the unit ball such that ||VMn||co < 1. After
rescaling, ||wn||c2 ^ C^ß everywhere. By a selection of subsequence from {un}
and we still use {un} to denote it, {un} converge to a harmonic map u^ from
SooM^oolj ¦¦¦,xoom} union with m 2-spheres S^ into M. Next, according to the
removable singularity theorem, Mqo extends to a harmonic map from Sqq Lf^ S^.
Note that harmonic maps from S2 are conformai. Finally, since after rescaling,
the energy density of un is small pointwise. The image of long cylinders converges
to geodesies of finite length as before.

Finally, we maps the 1-dimensional component of the stratified Riemann
surfaces into geodesies in M with finite length. Now the proof of Theorem 1.1 is

completed.
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3. Harmonic nodal maps as limit of critical points of Sacks-
Uhlenbeck's functional

In order to study the existence problem, we will investigate a broader class of
elliptic equations, namely the critical point of the perturbed energy functional. We

point out that in order to prove Theorem 1.1, we only need to consider harmonic
maps rather than the perturbed energy, on the other hand, to conclude the
existence of harmonic maps, we only need to deal with the perturbed energy with
fixed domain metric.

We first recall the perturbed energy functional introduced in [SU1]. Let S be

a compact Riemann surface with a metric g. For any n and a constant ß > 1 and
a map u : S —s- M, define

Eß{u) \- I (1 + \Vu\2)ßdA - ]-Area{Y:). (3.1)

Since ß > 1, it is clear that
Ep{u) > E{u) (3.2)

where E{u) is the Dirichlet energy of u with respect to the metric g. The Euler-
Lagrange equation for the functional Er is

Auk + — >^-v ° 3I
o (3.3)

for k 1,..., dim M where

Auk gstd2stuk - g^'T^u^u*dou'

and F^'s are the Christoffel symbols of (M, h).

Lemma 3.1. For eachun and ßn > 1, there exists a minimizer for the functional
Eßn among mappings which are homotopic to un.

Proof. Take an Eßn-minimizing sequence {vnt} in the homotopy class determined
by un. For any point x G S,

Area(Bs(x)Y
Bs{x) \JBs{x)

by Holder inequality. Therefore, Courant-Lebesque lemma (cf. [J1]) implies that
{vm} is equicontinuous. A subsequence of {vm} converge to a map vn, by Arzela-
Ascoli's theorem, and vn is Lipschitz continuous hence smooth. So vn is a Eßn-
minimizer which is homotopic to un. D
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Let T be a stratified Riemann surface associated to S Since mo g C°° (T, M),
it has finite energy Set

a mî{E(u)\[u] [u0]}

If a 0, a constant map is in the homotopy class [mo] which is clearly a
harmonic nodal map Assume a > 0 Take an energy minimizing sequence {vn} in
C°°(T,M) such that [vn] [m0] and

hm E(vn) a
n—>oo

We may assume without loss of any generality that T has only one principal
component, since we can always construct a inmimizer on each principal component
then take the union of them For the fixed domain metric g, we will improve
the minimizing sequence {vn} within the given homotopy class, so that the new

minimizing sequence {un} consists of critical points of the perturbed energy
functional To do so, we pick a sequence of numbers {/?„} satisfying (1) ßn > 1 and
(2) hirin^oo ßn 1 For each ßn, let un be an ü^-minimizer in the homotopy
class [vn] [mo] Moreover, as ßn tends to 1, there exists a sequence of positive
numbers {en} with lnrin^oo en 0 such that

Eßn(un)<a + en (3 4)

because {vn} is a minimizing sequence and the Eßn-energy approaches to the
Dinchlet energy as ßn goes to 1 So {«„} is indeed a minimizing sequence in the

given homotopy class
Note that both the e-regulanty theorem and the removable singularity theorem

remain true for E^-inmiinizers if ß > 1 Therefore, the blowing up process
discussed in Section 2 still works for the inmimizers un In particular, there are
finitely many points xn\, ,xnm in S, where m is independent of n and ßn, such
that for any x (Ë L)^

\Vun\2gdAg < Ce

and for any i 1, m

lim max |Vm„|(m) oo

Then we rescale the metric as in Section 2 and observe that this rescalmg process
stops after finitely many times Then by Courant-Lebesque lemma (cf [Jl]), a

subsequence of {un} converges to a harmonic map as n —> oo, ß —s- 1 from S union
with finitely many 2-spheres
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In the sequel, we will use u,ü and ß for un,un and ßn respectively when there
is no ambiguity. Along the annulus we have a map u into M satisfying (3.3). By
the conformai transformation (t,6) —> (— logt, 6), we have

Au e2t(utt+uee)

where | • | is the length in RN and the second derivatives are covariant differentiation.

After rescaling the metric

\\Vu\\co<C

for some ß > 1 and some small positive constant S. It follows that u satisfies the
following differential equation on the cylinder C [0,1?] x S In the sequel, "•"
stands for the inner product of two vectors.

Utt + Ugg

ut ~\~ U9U99 ' U9 ~\~ UgUt ¦ Ufg -\- UfUff ¦ Ufff

Ut2 + Ug
2

0. (3.7)

Let ù be the 6>-independent solution of (3.7). Then

„k 2(ß - l)vk E, Ù'A + 2(ß - l)ük\üt\2
0 (3.8)

for k 1,... dim M where ùu is the nonlinear Laplacian of ù.

Lemma 3.2. In the cylindrical coordinate (t,0), there is a unique solution ù of
(3.8) for te [0,R] over C for given initial data.

Proof. Set w üt. Then by (3.8)

(/? - i)wk J2y«^ + 2(/3 - i)wfcH2

Since ß is sufficiently close to 1, the right hand side of the above equation has the
form

3

where e\ and e^ depend on w but their C°-norms are close to 0. Then it is clear
that w exists for long time, which in turn implies by integration that ù has long
time existence. D
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Lemma 3.3. Let ù be a solution of (3.8). Then

(i) \ùf\ is decreasing mt;
(n) for any t < to,

„—2t ^ i~ /j-\|2 ^ i~ /j-_\|2o—'iß-i (*~*o) /o g")

2/3- 1 ~ ' Wl ~ '

Proof. We set

/(t) \üt(t)\2. (3.10)

Then multiplying m^ on (3.8) and summing over k yields

0. (3.11)j i, i "\i- j-/ _2t /¦
e tj

Rearrangement of (3.11) leads to

Now (i) follows immediately from (3.12). As for (ii), we first observe that

/^f^/ (3-13)

Integrate (3.13) from to to t and notice that t < to- So the first inequality in (3.9)
holds. On the other hand, to derive the second inequality, we let

Then by direct

Vt

It follows that

computation,

2
f i i/4 '

2/3-1'

4(/3-l)v2-
2/3-1

4(/3-l),. /

2/3-1
h ' I

o J 1

we have

2 vc-1

' 2

,2/3-1

-wt >

A „-2t
2/3 - r •

'*+ (2/3-1)2
e

8(/3-l)\
(2/3-i)2;

4(/3- 1)^

-4t
2

1 r1

2/3-1C

.-2t 4(/3-l
'

(2/3-1)

2t

e-4t

(3.14)

(3.15)

(3.16)
2/3-1
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Since t < to, (3.16) implies that

4(/3- 1)
logu(to) - logu(t) < —-——

2/3-1

Therefore due to (3.17) and (3.14),

1
>

2/3-1

Now the second inequality follows.

t-t0).

2/3-1

CMH

(3.17)

(3.18)

D

Lemma 3.4. Letù be a solution of (3.8). Then for ß sufficiently close to 1, there
is a uniform positive constant C such that

ütt\ <C(ß-l)\üt\. (3.19)

Proof, By (3.8) and the triangle inequality,

i ~ i2

7- 2(/3 - 2\ütt\ < 2(/3 - l)\üt
ut\z

Since ß - 1 is small, (3.19) follows from (3.20).

Now we derive the equation for

w u — ü.

(3.20)

D

(3.21)

In order to apply Corollary 2.4, we need to show that w satisfies a P.D.E of the
form (2.11) which satisfying (2.12) and (2.13). First, we notice that since ù is

^-independent,

\ue\2ukt U00Uk + us ¦ uteuk + ut ¦ ut0Uk 4,en2 R „, {,rA

where for some uniform constant C,

(3.23)

Secondly, we have

h ¦¦=—*>
,k „, 2

\ut\

Kl

u'l\ut
\üt

\ut\
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For the last term in (3.24),

ùkt

(e~2* + ut

ùt
2 _|_

2

ùt
ue

2

2)(e-2* + ùt 2) \ut\2 \ùt\2)

E,
Ut\2 + \ùt\2)(e-^ + \ut\2)f,(3.25)

Combining (3.24) and (3.25) together, we see that

h V -Vw (3.26)

where C is some uniform positive constant and V is a Rw-valued function which
satisfies

\\V\\c0<C. (3.27)

Finally, for the terms involving utt and ùtt, we have

h-=

e-2t _|_
2

we2

E,«t
s-2t4- ùt 2 '

ut2

uk

+ ue2

(3.28)

We denote the two terms in the middle of the right hand side of (3.28) by J.
Therefore

J=E^3 „M

E '̂•-V ,-1t(

-^<«f — ù'o

ul\ùt\2 -Ù3t\ut\2
(3.29)

According to (3.19) in Lemma 3.4, the first two terms in (3.29) consist of Vw
times a matrix with bounded entries. As for the last term in (3.29), we have

u\ü\ü\ - ü\u\u\ u\ü\{ü\ - u\) + {u{îi!t - ù{v!t)v!t

-u\ù\w\ + w\ùltu\ + ù\w\u\. (3.30)
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So again by (3.19), the last term in (3.29) is also in the form of Vw times a matrix
with bounded entries. Therefore we conclude that

h=Ewtt+FVw (3.31)

where the C°-norms of E and F are uniformly bounded. Putting (3.21), (3.26)
and (3.31) together, we obtain the following equation for u — ù:

wtt + wee + (ß- l)AD2w + (ß - l)BVw 0 (3.32)

where for some uniform constant C,

\\A\\c0 + \\B\\c0<C (3.33)

Since the image space M may not be fiat, the second derivatives in (3.33) involve
the Levi-Civita connection of M. The nonlinear terms are

rjk{u)uiukß-rjk{ü)üiükß (3.34)

where r*fc's are the Christofeil symbols on M. (3.34) can be written as

A\Vw + A2W (3.35)

where since M is compact, there is a uniform constant C such that

\AX\ <C(|Vm| + |Vm|)1 1! — v / ("3 3gN)

\A2\ <C(|Vm|2 + |Vû|2).
V ' '

But ß — 1 is sufficiently small, and therefore w satisfies a homogeneous equation
in the form of (2.11) with all the conditions in Corollary 2.4 hold.

Proposition 3.5. Let u and ù be solutions of (3.7) and (3.8) respectively along
C [0,1?] X S1. Let S be the positive number S\ in Corollary 2.4- Assume that on
C

|Vw|<e<-. (3.37)
8

If u and ù satisfy the normalization conditions (2.16) and (2.17), then

ut\<5 (3.38)

along C.

Proof. Since u — ù satisfies (2.11) and the normalization conditions (2.16), (2.17),
by Corollary 2.4, we can choose to *0^ such that

| (a) ||m - ù\\t < e~i \\u - m||»_i, (6) ||m - ù\\t < e~i \\u - ù\\t+i}- (3.39)
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On IlQ, by the initial condition we may assume that

\üA < 2e

229

(3 40)

Notice that for any t > to, (3 40) holds since \ùt\ is decreasing in t by Lemma 3 3

Now we go backward along the cylinder C from to If (3 38) were not true, we
would meet three points t\,t2,t% such that

\S at t\
\ut\= < ^5 att2 (3 41)

5 at £3,

and moreover \ùt\ didn't take these values before the corresponding points Clearly,

^3 ^ t"2 ^ tl ^ ^0 (3 42)

Notice that Corollary 2 4 is at least valid on [£3,!?] x S1 Therefore for any t G

|Vm-Vm| <C
This in turn implies that

ö
-<C< -Ö

8

(343)

(3 44)

So there is a uniform upper bound for ti — £3

0 < t\ — £3 < —2 log -— (3 45)

On the other hand, according to Lemma 3 3 (take t\ to be the to in Lemma 3 3),

^t(^2)| ^ ^t(^l)le 2'3~1 2 "*" (3 46)

By the way we choose ti,t2, we conclude

(2/3-1) log 2
-t2 (3 47)

But if ß is sufficiently close to 1, (3 47) implies that t\ — £3 > t\ — t<i approaches
to infinity This contradicts to the uniform upper bound (3 45) for £1 — £3

Therefore, we have shown that Corollary 2 4 can be applied on the entire
cylinder C So we have as in Proposition 2 6 that

|Vm- Vû| < C if

u — u \ if t >
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Next, we reparameterize the ^-independent solution ù by its arc length and
derive corresponding equation for ù in the new parameter. Set

(3.50)

In particular, s is increasing in t, hence its inverse function exists. We have

us utts

Ugs ~~ tbtt^s \ 'U't'-'ss ~~ tbtt^s \ ^'s
^s

ut ut
Us 1.

st \ut\

Therefore we can use the arc length s to rewrite (3.8) as follows

t-lùh;{(ùss -tsst-lüs) ¦t-3üs+t-2\üs\2)

Since üs ¦ üs 1, it follows by differentiation that

Ùs -Ùss
h h

0.

(3.52)

(3.53)

Thus, we can simplify the above equation for ù as

ft t"1 -t t~3«*-«*—- 2(3 - I)- 2f_s_
\ts e-^+tJ1

Multiplying uks then summing over k, we obtain

+ +-1 + +-3

0. (3.54)

=0.

Then (3.54) and (3.55) together implies that

Ukss 0

for every k. So we have shown

(3.55)

(3.56)

Proposition 3.6. For the 6-independent solution ù of (3.8), if the cylinder is
parameterized, by the arc length s, then u(s) is a geodesic.
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Therefore we have shown that u converges to a geodesic in C°-norm. Next, we

give an estimate for the energy density of ^-independent solution ù, which will be
useful to study the energy of u along the cylinder.

ut\-l

Proposition 3.7. Let ù be a d -independent solution. Then

ift < 4

-l\ift>
for some uniform positive constant C.

Proof. Let

F=\üt\2- \üt(U)\V^1^
Clearly,

It's straight forward to obtain

F(-R) 0.

2/3-1 2/3-1 e-2* +(2/3-
Therefore

p
2/3- 1

If t < -§, then

=-2s (2ß-l)\üt

e ¦'p

< C e
2/3-1

for some uniform positive constant C. If £ > -^, then

2/3-1

c~ 2/3-1
2(/3 - 1) 2(R-t)

- 2/3-1

(3.57)

(3.58)

(3.59)

(3.60)

¦^ds. (3.61)

(3.62)

(3.63)



232 J Chen and G Tian CMH

We finish the proof of Proposition 3 7 D

Now in order to complete the proof of Theorem 1 2, it suffices to show that
the geodesies arising from the blowing up are all of finite length Based on the
arguments of Proposition 2 7, we only need to show that replacing a long line
segment (/3-geodesic) by a suitable chosen geodesic does reduces total energy Since

|^ decays exponentially, we can reduce the general case to the special one that u
is ^-independent The argument is similar to that in the proof of Proposition 2 7,

so we only give a sketch By Lemma 3 3, Proposition 3 5 and Proposition 3 7, the
length L(un(C)) of the image of C under un and the energy E(un,C) of un over C

can be estimated as following
dÙ-r, 1 2(/3rl-l) Rn

Hun(C)) \^(-Rn)\e^^^^Rn + O{e~CR-) (3 64)

and

E(un,C) \^(1-Rn)\\^t^I¥Rn + O(e-^) (3 65)

where C is a uniform constant independent of n If L(un(C)) is tending to oo

asm oo, we replace the image un(C) by a geodesic which is chosen to be in a
suitable homotopy class, the total homotopy class of un remains the same, and
with much smaller length as in Case 1 and Case 2 in the proof of Proposition
2 7 Then we define a new map u'n on C such that it is harmonic, maps C to the
geodesic and parameterized with speed

The length of the geodesic is

and the energy of u'n on C is

"
5« (3 68)

where Sn is the length of C in the new parameterization and

\^(±R)\(Rn -Sn)> Co (3 69)

for some fixed constant Co > 0 We still use u'n to denote the new maps obtained
by replacing un along C by u'n Now it is easy to see that as ßn —s- l

EßSun) - Eßn(u'n) > \{E{un) - E(u'n))

-\^{\mco>Q (370)

This contradicts to un is i^-energy minimizing in the fixed given homotopy class
Therefore we conclude that the length of the geodesic arising from every connecting
cylinder is finite The proof of Theorem 1 2 is now complete
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4. Application to minimal surfaces theory

For any conformai structure c on the compact Riemann surface E, there exists
a minimizing harmonic nodal map uc into M in any given homotopy class a by
Theorem 1.2. We set

a inf E{uc)
c€Conf(E)

where Conf(Y,) is the set of all conformai structures on E. Then let uCn be a

sequence of minimizing harmonic nodal maps in the homotopy class a, such that

lim E{uCn) a

and
lim cn Coo

n—>oo

where Cqq is a conformai structure on E which may degenerate at finitely many
points. According to Theorem 1.1, a subsequence of uCn converges to a minimizing
harmonic nodal map uc<x. It is then well known and not hard to prove that uc<x is

conformai with respect to c^. Therefore, u^ parameterizes a generalized minimal
surface Eqq which is area minimizing in the homotopy class a.

On the other hand, we will show that the minimal surface Eqq is in fact admissible,

i.e., if Boo is the second fundamental form of Eqq then

||5oo||2<oo.

A point p G E is called a cusp is there is a conformai map F from the unit disk
D\ in C to a neighborhood U of p in E such that the induced metric on U is of
the form

F*ds2 \z\2a-2g, a > 1

where g is a regular Riemannian metric on D\ and z is a holomorphic coordinate
on D\.

We have the following result on the regularity of the minimal surfaces we just
constructed.

Proposition 4.1. The minimal surface Eqq is admissible.

Proof. First, the minimal surface Eoo is a union of finitely many irreducible compact

minimal surfaces. We only need to consider the cusp points. At such a

point p, take any 2-dimensional component E^, of Eqq which contains p. Since

/ : E^, —> M is conformai,
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where go is the regular metric on D\ Since / is also harmonic, we have near p
that

dzdjf o{\dzf\2)

Since / is smooth, we can write

dzf 2_j cpqzP^g + higher order terms
p+q=l

where at least one coefficient cPq =/= 0 and / > 1 It then follows from the harmonic

map equation

djdzf 2_, (lcvqzP~z'q + higher order terms
p+q=l

If there is a q bigger than 0, then djdzf is of order / — 1 But |<9/|2 is of order
at least 21 Comparing to the harmonic map equation, we find this is impossible
Thus, the leading term of dzf is holomorphic In other words,

dzf czl + higher order terms

for some non-zero constant c Near each singular point where the curvature blows

up, we construct a cut-off function as follows Fix any large number R > 0 Let </>

be a smooth function from [0, oo) to [0,1] such that

1 iît < R

0 if t > R + 1

and |</>'(£) | < 1 for all t > 0 We will use the cut-off function </>(log(— logr)) where

r \z\ The curvatures in different metrics go and g are related by

Kg Kgo-dzdj\og\dzf\2

Then integration by parts leads to

4>(log(-logr))djdzlog\dzf\'2dAg(z)\

2/ —1 2 \</>(log(— logr))r \dz\og\dzf\ \dzdz)
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,/e-eR+i V -rlogr
—R

*R (log(-loge-eR+1) - log(-loge-eR)

where the constants C\, ,C§ depend only on go by choosing R sufficiently large
such that the leading terms dominate the rest terms in the power series expansion
of dzf, dzd^f, and <9z<9jlog |<9Z/|2 Therefore we have

lim

Hence if pi, ,ps are the cusps on

KadAa\ hm / KadAa < oo

Since Sqo is minimal, it follows that

Kg < oo,

which implies that Sqq is admissible D

Therefore we complete the proof of Theorem 1 3 on existence of minimal
surfaces in a fixed homotopy class

5. Final remarks

We first point out that the compactness result holds for boundary value problems
as well Let us only state a simplified version, namely we assume the image space
is Euclidean Therefore there are no bubbles However, we need to take care of
the long cylinders coming from blowing-up a neighborhood of degenerated points
in Soo as before We shall state the result in a slightly different but equivalent
fashion comparing to Theorem 1 1

Given any compact Riemann surface S with smooth boundary <9S, we can
embed S into some Euclidean space ~RN The boundary <9S is the union 71U L)~/k

of a collection of disjoint smoothly embedded curves 7^'s in ~RN Let St be the
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set of diffeomorphisms from S1 onto 7^ Set S (S\, ,Sk) So S is the set of
parametenzations of {71, 7^} by k copies of S1

Theorem 5.1. Let S be a compact Riemann surface with smooth boundary <9S

71 U U 7fc Take a sequence of parameterization^ at (a}, ,a%) G S of <9S

which converge to a«, (a^, a^,) G S Let S^ be S equipped with the conformai
structure ct which is determined by at Suppose that {ft} is a sequence of harmonic
maps from (Sj,<9Sj) to RN satisfying (1) /»|73 =^oaj where </> <9S —> RN is
smooth, (2) /j's are in the same homotopy class relative to boundary Then there

is a subsequence o/{/4} converges to a harmonic map /qq from (SqojÔSqo) to RN
with /00I7J </> o ck^q Moreover, by adding finitely many geodesies l3 's of finite
length, /i(Soo) converges to /oo(Soo) Uj /j in the relative homotopy class

The phenomenon discussed in this paper can be generalized to higher dimensional

manifolds Instead of getting geodesies of finite length, the domain manifolds

may collapse along spaces of 1-dnnension less Also, we believe the minimality in
Theorem 1 1 can be weakened We leave the further investigations to the interested
readers
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