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Compactification of moduli space of harmonic mappings

Jingyi Chen and Gang Tian

Abstract. We introduce the notion of harmonic nodal maps from the stratified Riemann sur-
faces into any compact Riemannian manifolds and prove that the space of the energy minimizing
nodal maps is sequentially compact. We also give an existence result for the energy minimizing
nodal maps. As an application, we obtain a general existence theorem for minimal surfaces with
arbitrary genus in any compact Riemannian manifolds

Mathematics Subject Classification (1991). 53C42, 58E20.
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1. Introduction

In many cases, a sequence of harmonic maps contains a subsequence which con-
verges to a limit map. The limit map is a union of smooth harmonic maps.
However, it is often difficult to keep track of how topology changes during the
limiting process. On the other hand, we do have satisfactory compactness results
in certain cases, for example, Gromov’s compactness theorem for pseudoholomor-
phic curves and for perturbed Cauchy-Riemann equations ([Gr], [PW], [RT], [Ye]).
In this paper, we make a few new observations on compactness for 2-dimensional
harmonic maps and derive some consequences.

To motivate our discussion, let us mention a few well-known examples. First,
J. Eells and J.C. Wood ([EW]) show that there are no harmonic maps of degree
1 or -1 from the 2-torus T? to the 2-sphere S2. Second, A. Futaki ([A]) proves
that an energy minimizing map from S? into a Hirzebruch surface M in the class
a + 3, where o and 3 are two generators of mo(M) = Z @ Z, has to splits into
two spheres representing « and g respectively. Finally, if one starts from a long
cylinder in R? and deforms it continuously to minimize area of surfaces spanning
the two boundary circles, then one gets two flat discs joined by a line.

Let > be a stable curve of genus ¢ in the sense of Deligne-Mumford, possibly

The first author is supported by a NSF postdoctoral fellowship and the second author is
supported partially by NSF grants.
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with nodes as singularities. Recall ¥ is obtained by collapsing finitely many circles
on a smooth compact Riemann surface of genus g to points and requiring any
component which is homeomorphic to S2 touches at least three other components.
Let M be a smooth compact Riemannian manifold with a Riemannian metric h.
As usual, the moduli space of all such ¥ is denoted by ﬂg, which is compact. The
open subset of Mg consisting of all smooth curves is denoted by M. A stratified
Riemann surface T associated to Y. is defined to be a union of smooth compact
Riemann surfaces 31, ..., 3, and line segments /1, ..., 1, of unit length such that (i)
YiNY; =0 and [;Nl; = 0 for any ¢ # j; (il) each I; intersects U;?:lEj transversely
at two points and 7" is connected; (iii) if /;’s are removed and the end points of /; are
identified, we obtain a surface ¥’ possibly with nodes as singularities. Moreover,
= UleEi is the union of components in ¥ and some 2-spheres. FKach ¥; is called
a 2-dimensional component of T' while [; a 1-dimensional component of T'. Also,
if 33; is a component of 33, we call it a principal component of 1", otherwise, 3; is a
bubbling component of T'. Note that all bubbling components are 2-spheres, but
some principal components may be also 2-spheres. If there are at most two lines
connecting a 2-sphere with other components, we say the 2-sphere is an unstable
component of T. A conformal structure on T is given by assigning a conformal
structure on each 2-dimensional component. A smooth metric 1+ on T' consists
of smooth metrics u; on 3; and the standard metric ds; on ;. The regular part
Reg(T') is T\\W_, l;. Note that Reg(T') is the disjoint union of punctured Riemann
surfaces. Let x(Reg(T)) be the Euler characteristic class of Reg(7T'). The genus
g(T) of T is given by

o(T) =1~ Sx(Reg(T)).

For example, take two 2-spheres S1,S52. (a) if T'= (S1, S9; 1) with { joining S1, 53,
then g(T) = 0; (b) if T = (S51,59;11,ls) with each of I{,ls joining S, Sy, then
g(T) = 1. We are interested in maps f from T" to M satisfying: (1) f is smooth on
each 3; and each [;; (2) f is Lipschitz on T'. The set of all such maps is denoted by
C®(T,M). We call amap f € C(T, M) harmonic nodal map if (i) it is harmonic
on each surface (¥;, ;) and on each line [;; (ii) if f is constant on some bubbling
component ¥;, then ¥; intersects with at least three 1-dimensional components
of T'. The requirement on 1-dimensional components in (i) simply means that f
maps the interval [0, 1] into a geodesic in M. The energy E(f) of f € C°(T, M)
is defined to be

: 2
E(f) = ; /E Vs

Note that (ii) implies that the automorphism group of 7' is finite.
We have the following compactness theorem for harmonic nodal mappings.

Theorem 1.1. Let M be a compact Riemannian manifold without bouﬁary. Let
T, be a stratified Riemann surfaces associated to a stable curve ¥, € M of the



Vol. 74 (1999) Compactification of moduli space 203

same genus for n =1,...,00. Assume that Y, converges to some stable curve Y
in Mg. Suppose that {u,} is a sequence of energy minimizing harmonic nodal
maps from T, to M in the same homotopy class whose energies are uniformly
bounded above. Then a subsequence of {u,} converges to an energy minimizing
harmonic map from T to M, where To, is a stratified Riemann surface associated
to Yoo € ﬂg. Further, un (T,,) converges to uco(Teo) continuously in the Hausdorff
distance. The geodesics from the unstable components are trivial.

We point out that since the total energy of wu, is uniformly bounded above,
there are at most finitely many extra S%’s, i.e., the bubbles in Tho. If g, goo
are the metrics compatible with conformal structures on ¥.,,, X respectively (i.e.
Kahler metrics with respect to the conformal structures ¢, cs), then that ¥,
converges to Yoo, means that g, — go uniformly on every compact subset away
from the singular set of ¥, and we say the conformal structures c,, converge to the
conformal structure coo. In a special case that T,, = 3 is a fixed Riemann surface,
the result in Theorem 1.1 was already obtained by Parker in [P].

The existence of harmonic maps in given homotopy class has been a central
problem in geometric analysis. The important work of Sacks-Uhlenbeck [SU1]
asserts the existence of a non-constant harmonic map from S? into a compact
Riemannian manifold N with non-contractible universal cover. Sacks-Uhlenbeck
[SU2] and Schoen-Yau [SU] proved independently the following beautiful result
on incompressible minimal surfaces: if ¢ : 71(3) — w1 (M) is an injective homo-
morphism, then there exists a branched minimal immersion from > to M which
minimizes area among maps in the same conjugacy class of ¢. Note that this does
not say that each homotopy class of maps from . (even SQ) to N contains a har-
monic representative. If allowing degeneration of conformal structure on domain
surface >, one can obtain the general existence result (see Theorem 1.2).

In proving the existence theorem in [SU1], Sacks and Uhlenbeck used the min-
imizers of perturbed energy and then take their limit. The limit may not be
necessarily a single smooth harmonic map. It is often a union of several harmonic
maps, which may not be connected. One new result of this paper is to provide
a complete understanding of the behavior of the minimizing sequence along the
"necks” which connect those harmonic components. In particular, we provide de-
tailed analysis on convergence of critical points of Sacks-Uhlenbeck’s functional.
As a simple corollary, we deduce the existence of harmonic nodal map with given
genus in each homotopy class.

Theorem 1.2. Let M be a compact Riemannian manifold without boundary and
T a stratified Riemann surface associated to Y. in ﬂg. For any homotopy class
[ug] € [T, M] defined by a map ug € C°(T, M), there exists an energy minimizing
harmonic map u from T', a stratified Riemann surface associated to Y in Mg, to
M in the homotopy class [ug]. Moreover, u is non-constant on the bubbles and
maps the lines in T' to geodesics with finite length in M. In fact, (u,T') is the
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limit of a sequence of minimizers of the perturbed energies in [SU1J.
One consequence of Theorem 1.1 and Theorem 1.2 is:

Theorem 1.3. For any fized genus g and homotopy class a, there is a minimizing
harmonic nodal map into M, which is also conformal.

This harmonic nodal map actually parameterizes a generalized minimal surface
which minimizes the area among surfaces with genus g and homotopy class a in
M. In particular, any immersed surface 3 in M can be deformed to ¥, a finite
union of compact admissible (see Section 4) minimal surfaces and geodesics of
finite length, such that . and % have the same genus.

Other possible applications include developing the Morse theory on the space
of maps from a Riemann surface via the energy functional. Our theorems here
indicate that one can achieve certain compactness by partially compactifying the
moduli space of maps.

Large portion of this paper consists of asymptotic analysis near singularities
arising either from bubbling off of harmonic maps or from degeneration of confor-
mal structure on domain. Applications of asymptotic analysis to geometric prob-
lems were given by Almgren-Allard [AA], Cheeger-Tian [CT], Schoen-Uhlenbeck
[ScU], Simon [S1], [S2] and other people in various situations. The second author of
the present paper observed the possible collapsing of harmonic maps to geodesics
in a unpublished note. Also, there are related important works on singularities of
harmonic maps and maps with L2-bounded tension fields, notably by Jost, Qing,
Wang ([J1], [Q], [DT], [QT], [W]), etc.

We prove the compactness theorem for minimizing harmonic nodal mappings
in Section 2 and the existence of harmonic maps in any given homotopy class in
Section 3. Then in Section 4, we apply the techniques and results developed in the
previous two sections to study the existence of minimal surfaces in given homotopy
classes. The construction of minimal surfaces requires two minimizing processes.
In the given homotopy class, first find minimizing harmonic nodal maps for the
given conformal structures; then minimize the energy among conformal structures.
The existence of minimal surfaces has been extensively studied by many people
for a very long time and many important results have been obtained (see [Do,
[Gu], [Hi], [J2], [Mo], [MY], [MSY1,2], [Os], [SU1], [SU2], [SY], [TT] for example).

We would like to thank M. Struwe for his interests in this work and point out
some errors in the early version of this paper. We are grateful to the referee for
useful and detailed comments.
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2. Compactness of minimizing harmonic nodal maps

In this section, our main goal is to prove Theorem 1.1.

Let ¢,, be the conformal structure with respect to which the map w,, is harmonic.
By the compactness of 3, there exists a subsequence of {¢, }, which is still denoted
by {cn}, converges to a conformal structure co, (refer to the previous section for
definition). ¢, may have nodes as singularities. In each conformal class ¢,,, there
exists a metric g, on Y, satisfying the following properties: (1) the curvature
K(gy) is bounded by |K(g,)| < 1; (2) the injectivity radius of ¥, with respect
to gn is not less than 1; (3) g, converges uniformly to a complete metric g on
Yoo\{nodes} in C%-topology; (4) the limit metric g, is quasi-isometric to the
standard Euclidean metric on cylinder near each node of ¥, i.e. C -1 Geylinder <
9oo < Cgeylinder for some constant C' > 1. The existence of the metric g, is
well-known. Note that since the domain spaces are 2-dimensional, harmonicity
is invariant under conformal changes of domain, and hence u,, is harmonic with
respect to the metric g,,. In particular, the Dirichlet energy of u, is unchanged
under conformal transformations.

The following e-regularity theorem is due to Sacks-Uhlenbeck [SU1] and Schoen-
Uhlenbeck [ScU]. Note that we choose the geodesic ball of unit size for simplicity.

Lemma 2.1. There exist constants eg > 0 and C > 0 depending only on M,
the injectivity radius and the curvature bound for the metric g such that if w is
harmonic on Ba(zg,g) C M and

|Vu|2dv, < €
/Bl(z) e

then

sup |VfZ<C |Vu| 2dv,.
B%(zo,g) Bj (z0,9)

We will also need the Removable Singularity Theorem of Sacks-Uhlenbeck
[SU1]:

Lemma 2.2. Let f be any continuous harmonic map from a punctured disk D\{0}
in a Riemann surface into a manifold X with finite total energy. Then f extends

to a smooth harmonic map from D to X.

Note that the regularity of f improves from C? to C* is well known.
Set rp, = 27" where m € Z1t. Define

Bpn={ze 2|/ Vg |2 dvg, > o},
Bi (2,90
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where ¢ is given in Lemma 1. It is clear that E,,, , C Ey, » if mo > mq. The
following claim is proved in p. 281 in [RT]:

Claim. For n sufficiently large, each Fy, , can be covered by a collection of balls
By, (Zn1,9n), s Bsr,, (Tns, gn) where s is independent of n.

We may assume that the sequence {z,;} converges to a point z for k =1,...,s
without loss of generality. Also, we may assume that the injectivity radius in g,
is larger than 1. Within each ball B%(mm7gn) for ¢ = 1,...,s, there is a point y,;
so that

Eni — |Vun|3n (yni) = max |Vun|2n(y).
YEB1(%ni,gn)
Then we may assume that
lim e,; = co.

n—00
Define a new metric on B{(zn;,g,) by
g/m _ €niln
Gni(1 + 16ep:r2)
where r is the distance function from y,; of g, and ¢ is a cut-off function defined

by
eni Ut 2>24en
and
|6n: (0] < 1,1¢;(8)] < C for all

for some constant C independent of n. We change the metric g, on all balls
Bi(zni,gn) for i = 1,..., s to get a new metric g/, on 3. With respect to the new
metric g/,, we have

|Vl (yni) = 1,

Vunl2 (4) < i1+ 16en:r?).
Notice that g/, coincides with g, in the annulus Bl(xm,gn)\B% (Zni,gn) and

|Vun|3n is uniformly bounded over this annulus. Recall if A’ = e/h is a con-
formal change of metrics in 2-dimensional manifold, then the Ricci tensors are
related by

Ric(h') = Ric(h) + (%Ahf)h.

Therefore it is easy to see that the curvature K (g/,) is also bounded from above and
below on B (zyi,g.,) by noting that f = Ine,; — In ¢y,; for our choice of conformal
change. Since u,, is an energy minimizer, the standard elliptic estimates imply

/ Vun |2 dAy, > 5
B (%ni,gh) "
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where ¢ is a positive number independent of n. Next, if |Vun|3, is not uniformly
bounded on Bi(xy;, gn), then there is a point z,; € B% (Zniy gn ) \Ba(Yni, g5,), sSuch
that
|Vun|§n(zm‘) = sup |Vun|g;1 = 6411'
Bl(zni79n>

and

lim ¢, = co.

n—od
Then we change the metric g/, conformally in a small neighborhood of z,,; as we
just did for g,, to obtain a new metric g//. We have B1(yni, gl,) N B1(zni,gl) = 0

and
/ Vin |2, dAgy > 6.
B1(2ni,97)

Again, if |Vun|3g is not uniformly bounded, we repeat the above arguments and
obtain w,; and so on. Note that each time we use a positive amount of energy,
which is at least §. But the total energy is fixed under conformal transformations
on the domain surface. Therefore this process will stop after finitely many steps.
In this way, we find a metric and with respect to it the energy density of wu,, is
uniformly bounded. By Courant-Lebesque lemma (cf. [J1]), a subsequence of
{u,} will converge to a harmonic map as n — oo from Y. union with some
2-spheres each with a point (the blow up point of |Vun|gn) deleted. Then the
Removable Singularity Theorem implies the limit harmonic map extends to the
whole 2-spheres.

By the e-regularity theorem for harmonic maps and Arzela-Ascoli theorem, wu,,,
taking a subsequence if necessary, converges strongly to a harmonic map u., on
S\{z € X|dy, (z, Ep o) < 47} Where

Em,OO = ﬂ Emv" g nlirgo U BST"" (1'7;7 gn)
n i=1
We set
7 =12r,,.

On the other hand, for any given constant K,

g2ty
"= 14 16K27"
if the distance r from y,; in g, satisfying

r<e *K.

n

Now we decompose (3, gy, ) into three parts: the regular part

S\{z € X|d,, (z, Epmn) < 4rm},



208 J. Chen and G. Tian CMH
the bubbling part

Z

8
—1 Sns

B _; (yni7 gn)
K

K2

and the connecting part

1
Api(1,K) ={z € Bi(zni,gn) : em?K <z — Ynilg, <7}

Our main interests will be focused on the connecting part. Along a connecting
annulus, we consider the map

fi(t,0)— (—logt,0)

which maps A,; conformally with factor ¢~2 to a cylinder

T
Cpi(7,K) = [~ log T, — log(e,,? K)] x St
with coordinate (¢,0) and metric
ds? = dt? + do*.

A harmonic map u from the flat cylinder ¢ = [0, R] x S! into M, which is
isometrically embedded in some Euclidean space RY takes the form of

&y %y out Oud O’ auj> B

o+ pgr T Pul) (ww*mm @1)

where B is the second fundamental form of M in RN. In particular, if a harmonic

map from [0, R] x S! into M is f-independent, i.e., % = 0, then it satisfies the

equation for geodesics in M

% + ”(u)%% =0. (2:2)
If the length of C is R, then we divide C into m equal length pieces and set
L={0) -1l <t<il}

where R =ml and ¢ = 1,...,m. If wy and wy are two solutions of (2.1), we put

w = w) — w2 (23)

here we embed M into some Euclidean space isometrically RY and set

]2 :/I leo|2d do. (2.4)
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It is easy to check that w satisfies

Pw 9w

at2+a_02+A.vw+B.w:o (2.5)

where
|A| < C(|Vwi| + |Vws|) and |B| < Cmin{|Vwi|?, |[Vaws|?}

for some uniform constant C. We now prove a result regarding the asymptotic
behavior of solutions of equation (2.5).

Proposition 2.3. Suppose that m and | are fized and | is large (say | > 1n2). Let
v be a solution of (2.5). There is a constant do such that if and | Al 2 (o) +|B|p2(c) <
8o, then we have the following alternatives:
() if olls > e |ollira, then [[vlli-1 > % [|o]ls;
(ii) if vl > e2|[vlli-v, then [[v]i1 2 eZ[jolls;
(i#i) if

/ vt df — 0 (2.6)

I;

and

/ todt do — 0, (2.7)
I;

then either ||v]|; < e 2|[vllip1 or |vlli < e 2|l 1.

Proof. First, we consider the limit case when [A|;2¢) + |Bl2) < 6 — 0. For
each § > 0, we denote the solution of (2.5) with [A|p2(¢) + |Blp2(e) < 9 by vs.
Suppose that (i) does not hold. So we have

1
llvslli > e2||vsllit1

1
llwslli > €2 lvs i1

We normalize vs such that ||vs]|; = 1. Then by taking a subsequence of vs in
6§ — 0 and by the standard elliptic estimates, we may assume that vs converge to
a harmonic map vg from the cylinder into Euclidean space R

d? d?
0,20 (2.8)

72 a0

and

£
lvolli > €2 [lvolli+1

_ L
volli > e 2lvolli-1-
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Therefore we only need to prove the proposition for a solution vg of (2.8). By
separation of variables, the expansion of vg is

vy = ag + bot + Z(ak cos kO + by sin k@)eFt. (2.9)
k#0

It follows that
il 2
ool = [~ [ a0+ bovatas
(i—-1)1J0
0 il 27
+Z/ <e2kt(az+a%k)+e*2’“(bz+b%k)) dt/ cos? kOdo
k=1 (ifl)l 0
1
=on <a(2)l + aghol?(2i — 1) + §b3l3(3i2 —3i+ 1))
i = g 1201kl 2K _ 1y(42 2
+3 Z ( € (e Nai + aZy)
k=1
+ k71672(i71)kl(1 _ 672]6[)(1)% + b%k)) (210)
If (i) does not hold, then
1 _
llvoll? > 5(6l||vo||?+1 +eleollZ ).

Then applying the recursive formula (2.10) for i —1,4,i+ 1 to the above inequality,
we obtain

22 (k—leQ(i—l)kl(Ble _ 1)(a% n a%k) 4 k—le~2(i~1)kl(1 _ e—m)(b% T b%k))

k=il
B Z <k71(61+2kl + 67172141)62(@71)1«1 (62kl _ 1)((12 4 azk))
k=1
1 Z (kfl(elf%l T 67l+2kl)€72(i71)kl(1 _ 67%1)@% i b2—k)) .
k=1

It is impossible as e/t26  e=1=2k ~ 9 and el =2k 4 125~ 9 Similarly, one
can prove (ii). For (iii), we have ag = 0,bg = 0. Now

2 T o -1 _2(—1 2 2 2
ool :5’;(% DIk — 1)(af + a2))

i k*Ie*Q(FD’“‘(l _ 6*2’“‘)(6% + b%k))
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and
L 2 2
3¢ (lwolliyy + llvollizy)
o0
:264 Z (kfleQ(ifl)lierl (6%1 _ 1)((12 T agk)
k=1
i k71672(i71)kl+2kl(1 _ te)(bz 1 bzk))

By term by term comparison, it is easy to see that if [ > In2

1

2 — 2 2
lwolly < Se™" (llvollZrs + llvoll?-1)-

Therefore we have shown the proposition for harmonic functions. Now the general
case follows since vs converges to vy in W22 (see also the proof of Corollary 2.4
below). O
In fact, the same method yields the following more general result (cf. [QT]).
Corollary 2.4. Let v satisfy
Av+AD2o+ B-Vu+C v=f (2.11)

on the cylinder C = [0, ml] X S Then for a given p > 1, there exists a positive
number §1 such that if

1 Nzrey < d1( max 191312 (6 1y 51 e [vl?) (2.12)
and
1Al coey + 1Bl Loo ey + 1€ oo ey < 61, (2.13)

then for 2 <1 lS m — 1 the following alt?rnatives hold:
(i) if vl > 651||’U||z‘+1; then ||lvli-1 > €7l||v||z‘;
(it) if |[vlls > eZ||vlliz1, then [|vllit1 > eZ||v]li;

(iii) if
[ vt < (10lfyacy + sup o) (2.14)
I;
and
/ todt 8 < 31 ([ol1 ) + suplof?), (2.15)

i

then either ||v||; < e 2 ||vllip1 or |[v]ls < e % ||v]lit.
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Proof. If the corollary were not true, then there would be a sequence of §; — 0
and a sequence of solutions vy, of the equation (2.11) with

2 2
I1fllze < 5’“(122(n lokll32 -1y x51) +Ep ok ]”)
and
Allcoey + 1Bl Loe(cy + ICll oo () < - (2.13)

Let us assume (i) is not true for vy (the other case can be argued similarly).
Therefore for some 7,2 <7 < m — 2, we have

(@) llowlls = &2 |lowllit1,
(®) llowlls > e orlli-1.
Normalize vy over [(i —1)I, (i +2)I] x S! by dividing the norm of v, over the middle

interval I; 11
Uk

vl = .
||”k||W152(Ii+1) +supy, v

Now (a), (b) and the elliptic estimates assert that the norms of v}, over I;, I; o are
bounded above by that over I; 1 times a uniform constant (depends on e'). The
interior estimates (cf. [GT]) then imply that on every domain [(¢ —1){+¢, (1+2)] —
€] x 8 L for sufficiently small positive e there exists a subsequence of v}, converges
to a harmonic function. So by a diagonal process, a subsequence of v}, converges
to a harmonic function v on ((i — 1)I, (i + 2)I) x S! and v}, satisfies (a) and (b)
(”>” replaced by ”>”). But the norm of v, on I; 1 is 1 hence v, is nonzero. We
then obtain a contradiction to Proposition 2.3. O

Along the cylinder, there is a unique solution of (2.2),i.¢e., #-independent solu-
tion of (2.1), for any given initial data, and this solution is a geodesic in M. We
will show that if § in (2.3) is sufficiently small then any solution of (2.1) is very
close to a geodesic. Recall that harmonicity and the Dirichlet integral is invariant
under conformal transformations if the domain is 2-dimensional. For the harmon-
ic map w, the composition u,, o f_1 is harmonic on the corresponding cylinder
f(Ani(7, K)). For the sake of simplicity, we will still use u,, to denote the harmonic
maps on the cylinders. After rescaling the metric

||Vun||00(2,g;) <C
[Vunllgoey < e

for some positive constant € which is so small that Proposition 2.5 and Proposition
2.6 can be applied (refer to Proposition 2.5 and Proposition 2.6).

Proposition 2.5. There is a constant ¢ > 0 such that if |Vun|coey < €, then
on each I;, there exists a curve in M given by a solution @y, of (2.2) such that Uy,
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and satisfies the following normalization

/ (tn — i )dtdd = 0, (2.16)
I;
/ ot — i )l = O (2.17)
I;
and
Vel cof, 1)) < Ce (2.18)

where C is a positive constant depending only on M.
Proof. A 6-independent solution vy, of (2.8) is of the form

where p,, is a point in M and ¢, is a fixed vector in T}, M. In fact, p, and ¢,
can be viewed as vectors in RN where M is isometrically embedded. The two
constrains on @ can be interpreted as initial values as follows. Integrating over I,

1
o (lpn+112qn> :/ / (£, 0)dtdo
2 stJo

l
2 lz?pn+113qn :/ /tun(w)dtde.
2 3 sl jo

Since [ # 0, there exists a unique solution (p,,qn,) for the system. The first
derivative at v, of the functional 32 on C*°([il, (i + 1)I],RN) is

d

| ORon(t) +51(1) = s

s=0

for any f € C°°([il, (i + 1){|,RY). It is straightforward to check that the first
derivative of the functional is both surjective and injective on the subspace of
C>([il, (i + 1)I],RYN) whose elements satisfy (2.16) and (2.17). Then the Inverse
Function Theorem implies that there is some constant d2 > 0 such that if |h| < 02
for h € C>([il, (i + 1)I],RY) then the equation

Rf=h
has a unique solution in C*([il, (i + 1)I],RN) with (2.16), (2.17) satisfied. Next,
since |Vu| < ¢ on C by assumption, the image of I; under u is contained in a small

convex region. In fact, there is a point zg in M such that for any (¢,0) € I,

[t (¢,8) — zo] < 2l||Vuy||co < 2le.
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If @y, is a geodesic from [il, (i + 1)I] to the same small region in M, it has constant

speed, we have
diiy, 2le

—| < C— < 2Ce.
Therefore if we pick e sufficiently small in advance, we have
|Bij (i) 041t 0yl | < Ce < 32

where C depends only on the second fundamental form of A in RY, and the
Inverse Function Theorem then asserts the existence of a geodesic which satisfying
the two normalization conditions (2.16) and (2.17). This completes the proof of
Proposition 2.5. |

Proposition 2.6. Let up, iy be as before and || Vun | cocy < € < C191 where €,d1
are given in Proposition 2.5 and Corollary 2.4 respectively and C1 < 1 is some
positive constant independent of n. Then there exists iqg > 2 such that

[t (£, 0) = @in(£)] + |Vt (t,0) — Vi (1) < 51Ce 3E0 if e > 4gl, (2.19)
[tn (£, 0) — U ()] + |Vun (t,0) — Vi, ()| < <51C’e*%t7 if t <ipl (2.20)
where C is a universal constant.
Proof. By Proposition 2.5 and (iii) in Corollary 2.4, for any fixed ig > 2 either
et — dinllsy < €2 flwn = finliq 1

or i
”un = ﬁn”zo < €_§l|lun a an”iofl

Suppose the first case is true. Then by (ii) in Proposition 2.4,
~ 1 ~
ltn = tnlliy1 = €2 |lun — tnls

for any ¢ > ig. We claim

”Un _'E"n”m < (51 = ﬁ

If this were not the case, then there would be some ¢ > ig such that
”un - ﬂ/'n”l Z (51~
On the other hand,

||un - 77'n||i2+1 < ”un - 'Z‘n”l2 + ”V(un - ﬁ'n)”%’O -2ml
< ltom = G| 4 2711 + C2)e2.
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It follows

(¢ = 1)oF < (¢' = Dllun — @all?
~ 112 ~ 12
|y — Un||¢+1 — [lun — G|}

27l(1 + C%)e2,

IA A

This is impossible since € < C161 and we can require in advance that

27l(1 + C?)

2 %
1 el —1

(2.21)

Therefore by iteration, we have

-~ L 7 ~
ln = dinllzg < €™M0y, — din |

< 6167%<m7i0)l.
For the second case, we can argue similarly. Indeed, if

~ _1 ~
lwn — tinllio < € 2% un — @inllig—1s
we conclude first that

”un _an”() S 517

and then L
leen, — G ||sy < §re -zl

Choose ig to be the smallest one so that

- _1 2
e = tinllig < €72 |t — tinllig 1.

Note that after this ¢g, the above inequality remains to hold. Then the foregoing
discussions show the following. As m — oo or equivalently R = ml goes to infinity,
u decays exponentially over I;, to u, from left if i < ig and from right if ¢ > 9.

The difference of two harmonic maps, especially u,, — 4, satisfies differential
equation (2.5) where the coefficients A and B may depend on w but

[Allgo; [ Bllgo < Ce

for some constant C' depending only on M. Then by the LP-theory in the elliptic
partial differential equations ([GT]) for p = 2, ||uy, — @n|lw2.2 can be bounded
by the L2-norm of u, — @,. The Soboley embedding theorem implies that the
[|ttr, — @i || g0 is bounded by the L% norm. So for any p > 2, ||ty — @y || » is bounded
by ||wn — x| 1,2. Apply the LP-theory again, we see that ||wy, —tin ||1y2,» is bounded
by ||ts — @y e, hence by ||u, — @y || 2. Applying the Sobolev embedding theorem



216 J. Chen and G. Tian CMH

again, so the C'-norm of u — @ is bounded by ||ty — @n||z2. Then by Proposition
2.4 and Proposition 2.5, we conclude

lun (£, 0) — G ()| + [Vun(t, 0) — Viin(t)] < Core= 3B ift > 4ol
ln (£,0) — tin(8)] + [Vun(t, 0) — Vi (t)] < Co1e~ 2%, if t < igl.

Now Proposition 2.6 is proved. O

The rescaling procedure results in that R tends to infinity as n does. Within
any fixed distance, measured in ¢, from each of the two ends of the cylinders, the
standard elliptic estimates imply that u,,, a subsequence if necessary, converges to
a limit. On the middle portion of the cylinders, we have just proved that ||u—a|| 51
decays exponentially in ¢. Therefore we have shown that there is a harmonic map
ud from Y US?’s into M and u’ converges to geodesics in M along the connecting
cylinders.

Next, we need to show that these geodesics all have finite length. Note that
finiteness of the length of the geodesics does not follow simply from smallness
of energy on the necks. It requires arguments involving global properties of the
ambient manifold. However, if M is simply connected there is a direct proof of
the finiteness by constructing distance contracting maps on M (cf. [J1]).

In fact, since M is simply connected, there exists a map f: M — B,(0) C M,

such that
{ d(f(z), fly)) < d(z,y), forallz,ye M,
Fla) =y if z € B,(0).

Now if the length of a connecting geodesic « is very large, then there are two points
p,q € v satisfying (1) the length of the portion of v from p to ¢ is large; (2) the
distance between p and ¢ is small in M, say p,q € B,(0) (otherwise we move the
center of the ball). Take a connecting cylinder C such that u,(C) converges to 7.
So for sufficiently large n, there are points p,,, ¢, € u,(C) N B,(0), and the portion
of u, (C) from p,, to g, is very long. Without loss of generality, we may assume
that

(2.22)

r < % min{%,injectivity radius of 0}
where K is the upper bound of the length of the curvature on By,.(0). It is clear
IV(f oun)| < [Vun|
since f is distance contracting. Therefore
E(f ouy) < E(up).

In particular, strict inequality holds if u,(z) does not belong to B,.(0) for some
z € C. Recall that u, : C — M is energy minimizing among all maps from C
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to M which send 9C into B,(0) and homotopic to u,. Obviously, f o u, belongs
to this class of mappings. It then follows that u,(C) C B,(0). Therefore the
geodesic v from p to q lies inside B, (0). So the length of v cannot be large since
otherwise we can reduce the energy of u,,. We point out that the above arguments
for the simply connected case holds for maps which minimize the perturbed energy
functional also. Now let us consider the general case.

Proposition 2.7. The geodesics arising from the blowing up process all have finite
length.

Proof. Recall that we have a sequence of energy minimizer w, converges to a
minimizing harmonic map wus from Y U;.”Zl sz to M. We will derive estimates
on the Dirichlet energy and length on a long connecting cylinder C first. As
n — 00, u,(C) converges to a geodesic v pointwise exponentially. In the sequel,
we will also use C to denote positive uniform constants, and this should not cause
any confusions with the notion for cylinders. By Proposition 2.6,

dup,

%(tﬁ)l < C51e 3B if ¢ > 4ol (2.23)
iy, 1y . .

|%(t,9)| < Cde 3, ift <ipl. (2.24)

Suppose that the speed of the geodesic v is €, when it is parameterized by ¢ €
[0, R,]. We are interested in the case when there is a lower bound on the length
of v, namely for some C' > 0,

en R, > C.

Notice that in Proposition 2.6, the first estimate holds for large ¢, so if we let ¢
decrease to tg = igl from right, we still have the exponential decay estimate as in
the second estimate. In fact, if 79l < ET*Q we use the first inequality in Proposition
2.6 for t € [%i? S—fl%i] and if igl > %ﬁ we use the second inequality in Proposition
2.6 for t € [Z=, Za]. So we have

Oun,

o _c
|5 (t,6) — S| < Core % (2.25)

for ¢ belongs to the intervals described above. The Dirichlet energy of u, on
C= [%,S—Qﬁ] x St if 49l < % or on Cy = [%ﬁ,%] x St if 49l > %, then can be
estimated by

1
E(up,C) = Ze,%Rn + 0(5%672_5 + (516,167%)}%”. (2.26)

The length of the cylinder w,,(C), which is very close to the length of the geodesic
~ for n large, is

L(tn(C)) = FenBo + O(b16 %) R, (2.27)



218 J. Chen and G. Tian CMH

Recall that we have the following situation: there are finitely many long cylin-
ders connecting the regular parts and these cylinders converge to geodesics
Y1,.-.,7k These connecting cylinders arise either from the bubbling spheres or
at the singularities of the stable curve compactification. We consider the following
two cases.

Case 1. there is only one connecting geodesic ~, i.e., k = 1. Assume the
two end points of v are z and y. Then we pick two points p,q € ~ such that
the length of the portion of v from = to p and from y to ¢ is fixed. Denote the
portions of v from z to p and from y to ¢ by v(z,p) and v(y, q) respectively. Let
~'(p,q) be a distance minimizing geodesic in M from p to q. Now we have two
curves from z to y, namely v and vy(z,p) U~ (p, q) U~(y, q). We divide v(p, q) into
unit length pieces +(s;,s;41) where ¢ = 0,1,... and sp = p. Since M is compact,
there exists a subsequence {s;_ } of {s;} converges to a point zg in M. Since
M is path-connected, 71(M,rel(s;, s;)), the group of homotopy equivalent maps
from [0, 1] to M with the same initial point s; and then same terminal point s;,
is isomorphic to 1 (M, rel(p,q)) for i # j. Each curve y(s;,,s;_ ) represents a
non-trivial element in 7y (M, rel(s;, s;)). This is because otherwise the length of
could be reduced by i1 —in— 5 in the same homotopy class in 71 (M, rel(p, q)) as
long as d(s;_ . ,,84,) < % and then for sufficiently large n (2.26) and (2.27) would
imply that wu, were not energy minimizing in its homotopy class. A contradiction
to the assumption. The group (M, rel(p,q)) is isomorphic to Z X ... X Z, the
direct product of finite, say m, copies of Z. For any in; < ta, < fas, there are
integers a;,b;,c; for j = 1,...,m such that

[’Y(Sia17sio¢2 )] = (al> ~~>am) € 7T1(M,I‘el(p7q))
[’Y(SiaQ »Siag )] - (bl7 ) bm) € Wl(M7 rel(py Q))
[V(Sia,» Siay) UV (Siay s Siag )l = (€1, o em) € m1 (M, rel(p, q)).

If there is 7,1 < j < m, such that
la| + [b5] > le;]

then we can shorten ’Y(Sial ,8i..) in its homotopy class, and this in turn yields a
contradiction as before. Now we have ruled out possible cancelation of homotopy
along v(p,q). If we denote the homotopy class of v/(p,q) U Too\v(p,q) by 3],
then the homotopy class of the loop v(p, ¢) U+/(p, ¢) is equal to [ug] — [3]. Hence
[v(p,q) U~'(p,q)] is bounded, since [ug] is fixed and [3] is bounded. Therefore
[v(p,q)] is large since [y(p, ¢)] is large, here the homotopy is relative to the fixed
boundary {p, ¢}. If €, R,, — 00 as n goes to infinity, we would have the largest one
among the absolute values of the components of [y(p,q)] € Z X ... X Z tending to
infinity. This would imply that v/(p, q) is also arbitrarily long. But this contradicts
to the choice of v/(p, q). So we conclude that the length of the geodesic -y is finite
if v is the only connecting geodesic line.
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Case 2. there are more than one connecting geodesics. We have u,(C;) con-
verges toy; for¢ =1, ...,k where C;’s are the connecting cylinders. We parameterize
the cylinder C; by [0, R{] x S 1 Assume ~ is very long. As before, this means
6711R711 is very large. Since M is compact there must exist two points p}L and q,ll on
u,(C1) so that the length the shortest geodesic 4/(pl,ql) from pl and ¢! in M
is very small comparing to e,lerlt. By taking a subsequence if necessary, we can
assume lim,, oo pt = p1 and lim,_, ¢} = q1 where p1,q1 € v1. As in Case 1, we
conclude that the homotopy class of v1(p1,¢1) must be very large. Although the
total homotopy is fixed and equals to [ug], we cannot draw conclusion as in Case
1, since the cancelation of the large homotopy of v1(p1, ¢1) may comes from other
connecting geodesics. Assume 79, ..., v for some s < k are the geodesics such that

[o] = [v1(p1,q0)] + [y2(p2, @2)] + - + [Ys(ps-gs)] (2.28)

is bounded. Without loss of generality, we may assume that +;’s are all very long
for ¢ = 2,...,s. There exist shortest geodesics v/(p;,¢;) from p; to ¢; in M for
¢ =1,...s in the homotopy class —[o]. In particular,

> L(pir @) (2.29)
i=1

is bounded since [o] is bounded where L(v/(pi,¢;)) is the length of ~/(p;,q;).
Now for i = 1,...,s, we replace the cylinder u,(C;) from pi to 4%, denoted by
un(Ci(pt,,4q.)), by the geodesic v/(p;,q;) and identify the boundary components
aC;(pt,q) at pi, and ¢* to p! and ¢’ respectively. More precisely, we can define
comparison maps

o, = { i on X\Uizy G (2.30)
'Y/(Pw%) on Uf:lcl(p7h7q'7;),)7

and on U (C:)\(Ci(p,, %)), uy, is defined by shrinking u, (9C;(pl,, q.,)) to pi, @

respectively for each ¢ =, 1...,s. Note that for sufficiently large n, u,,(C;) converges

pointwise to the geodesic ;. Hence, in this replacement process, the change in

homotopy is zero, and !, is homotopic to w,. Further, if C; is parameterized by

1

[0, R"] x S' with speed of u/, close to that of u,, which is close to e

¢, we can
arrange u,, to satisfy
. ol ou! ) -<
e, — Cdore n < |a—tn| <€, +Coe (2.31)
and on the cylinder C;
8“5| <o ® (2.32)
59| < Cdte )

where the constant C' may be different from those in the estimates for u,. As
before we have the following estimates for the competing map u!, over C;

S
s

)R, (2.33)

3

+ (516%67 s

3

1, . i -
BE(up,,Ci) = 7(&)°R’, + O(5fe
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1, AR
L{u, (C) = Zd’R/" +O0(61€he w)R. (2.34)

But the way the surgery was done implies
L(un,(Ci)) < L{ua(Ci)) + Co (2.35)

for some fixed constant Cy > 0 and all n > ng for some fixed ng. It follows
immediately that there is n{, > 0 such that for all n > min{ng, ng}

BE(ul,,C) < E(uy,C). (2.36)

This contradicts to u,, is energy minimizing in the fixed homotopy class with given
conformal structure on domain. Therefore we conclude that the length of vq is
finite at the first place. We now complete the proof of Proposition 2.7. d

Note that the length of a connecting geodesic is bounded by Ce, R, and the
energy of u, is bounded by Cean for some uniform constant C, where R,, —
o and €, — 0 as n — oo. Therefore, the finiteness of the geodesics implies
immediately that there is no loss of energy on the connecting cylinders in the limit
process. This conclusion also holds for the minimizers of the perturbed energy
functional in the next section.

In fact, the geodesics arise only from the change of conformal structures, not
from the bubbles of harmonic maps. This was proved by Parker in [P] for a
sequence of harmonic maps and Qing-Tian in [QT] for maps with L2-bounded
tension fields. We only mention some keys points. Recall the Hopf quadratic
differential for a map « from a surface is given by

PB(u) = p(u)dz> (2.37)

where

$(u) = |ua|® — Juy|* — 2/ =Tug - uy,. (2.38)

It is well known that if » is harmonic, then ®(u) is holomorphic, namely,
Od(u) = 0. (2.39)

The bubbles arising from the convergence of the harmonic maps u,, form bubble
trees. By a bubble tree, we mean finitely many $%’s connected by thin cylinders of
finite length, and with a half cylinder connect one 2-sphere to a principal compo-
nent. Before reaching the final limit v, each bubble tree is topologically a disk.
The L'-norm of the Hopf differential is conformally invariant. It follows that

Glun) = |(un)e|* = [(un)ol® — 2V =T(un)¢ - (un)o (2.40)

has small L1(D,)-norm if 7 is small ([DT]). But |(uy)¢| decays exponentially in
eylindrical coordinates. Hence, the L!-norm of |(u, )| also decays exponentially
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in t. So after passing to limit, the length of geodesics connecting the bubbles is
Zero.

It remains to analyze the local structure near singularities at the nodes on
Yoo = (%, ¢oo). We need two steps for scaling of metrics: first we scale the metrics
gr, o1 3 near the points which will eventually develop cusps as n — oo to make the
geometry uniform; second we scale the new metrics near the points where energy
concentrates. The analysis involved in the second step is similar to that for the
necks which connect the bubbles.

As n approaching to infinity, ¥,, may develop some regions which eventually
converge to cusps of Yo, (see definition in Section 4). We normalize the metrics
grn, by conformal changes such that the curvature is everywhere bounded on 3 and
there is a uniform lower bound on the injectivity radius with respect to the new
metrics g, for all n. Notice that the Dirichlet energy and harmonicity of maps
are invariant under conformal transformations on ». Therefore, in metrics g, wy,
is energy minimizing in the given homotopy class, E(u,) is uniformly bounded
above and on (X, g,,) the injectivity radius is uniformly bounded below and the
curvature is uniformly bounded. As before, there are points x,1, ..., Z.m and such
that for any point z ¢ U™ | Ba(@n ),

/ |V |2 dAg, < Ce.
By (z)
Note that m is independent of n. The e-regularity theorem then asserts
lunllc2(s, (@) < CVe.
2

Now we turn our attention to the unit balls, measured in the metric g,,, centered
in U™ | Bo(@y;). These are the regions where the Dirichlet energy concentrated.
For simplicity, we assume that m = 1 and the general case can be handled in the
same way. Rescale the metric g, on the unit ball such that ||Vuy,| o < 1. After
rescaling, ||un||c2 < C+/€ everywhere. By a selection of subsequence from {u,,}
and we still use {uy} to denote it, {u,} converge to a harmonic map u, from
Yoo \{Zools ) Toom ; Union with m 2-spheres S? into M. Next, according to the
removable singularity theorem, u, extends to a harmonic map from ¥, U™ S?.
Note that harmonic maps from S? are conformal. Finally, since after rescaling,
the energy density of u,, is small pointwise. The image of long cylinders converges
to geodesics of finite length as before.

Finally, we maps the 1-dimensional component of the stratified Riemann sur-
faces into geodesics in M with finite length. Now the proof of Theorem 1.1 is
completed.
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3. Harmonic nodal maps as limit of critical points of Sacks-
Uhlenbeck’s functional

In order to study the existence problem, we will investigate a broader class of el-
liptic equations, namely the critical point of the perturbed energy functional. We
point out that in order to prove Theorem 1.1, we only need to consider harmonic
maps rather than the perturbed energy, on the other hand, to conclude the ex-
istence of harmonic maps, we only need to deal with the perturbed energy with
fixed domain metric.
We first recall the perturbed energy functional introduced in [SU1]. Let ¥ be
a compact Riemann surface with a metric g. For any n and a constant 5 > 1 and
amap u: > — M, define
1% 1 24 1
5(u) = 3 /2(1 T [Vuf?)?dA — 5 Area(s). (3.1)
Since § > 1, it is clear that
Bs(u) > B(u) (32)

where E(u) is the Dirichlet energy of v with respect to the metric g. The Euler-
Lagrange equation for the functional Eg is

(8= 1) Y5y Viut V[ Val?

A k
vt 1+ |Vul|?

(3.3)

for Kk =1,...,dim M where
Auf = gtauk — gSthj (u)Opu® Dyu’
and Ffj ’s are the Christoffel symbols of (M, h).

Lemma 3.1. For each uy, and 3, > 1, there erists a minimizer for the functional
Ejs, among mappings which are homotopic to uy,.

Proof. Take an Ejg, -minimizing sequence {vy;} in the homotopy class determined
by uy,. For any point z € 32,

i

=

Bn
/ (Vo 2dd, < ( / |vvm|2ﬁn> Area(Bs(x)) 5
B(;(z) B(;(a:)

28n—2
< C§ Pn

by Holder inequality. Therefore, Courant-Lebesque lemma (cf. [J1]) implies that
{vni} is equicontinuous. A subsequence of {v,;} converge to a map v,,, by Arzela-
Ascoli’s theorem, and v, is Lipschitz continuous hence smooth. So v, is a Fg, -
minimizer which is homotopic to wu,,. O
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Let T be a stratified Riemann surface associated to . Since ug € C(T, M),
it has finite energy. Set
a = inf{E(u)|[u] = [uo]}.

If & = 0, a constant map is in the homotopy class [ug] which is clearly a har-
monic nodal map. Assume « > 0. Take an energy minimizing sequence {v,} in
C>=(T, M) such that [v,] = [ug] and

lim E(v,) = a.

n—od

We may assume without loss of any generality that T' has only one principal com-
ponent, since we can always construct a minimizer on each principal component
then take the union of them. For the fixed domain metric g, we will improve
the minimizing sequence {v,} within the given homotopy class, so that the new
minimizing sequence {uy } consists of critical points of the perturbed energy func-
tional. To do so, we pick a sequence of numbers {3, } satisfying (1) 5, > 1 and
(2) limy 00 B, = 1. For each f,, let u, be an Eg_ -minimizer in the homotopy
class [v,] = [ug]. Moreover, as /3, tends to 1, there exists a sequence of positive
numbers {e,} with lim,,_,; €, = 0 such that

Es, (un) <a+te, (3.4)

because {v,} is a minimizing sequence and the Ejg_ -energy approaches to the
Dirichlet energy as f3,, goes to 1. So {u,} is indeed a minimizing sequence in the
given homotopy class.

Note that both the e-regularity theorem and the removable singularity theo-
rem remain true for Eg-minimizers if 3 > 1. Therefore, the blowing up process
discussed in Section 2 still works for the minimizers u,,. In particular, there are
finitely many points x,1, ..., Znm in 3, where m is independent of n and f3,, such
that for any o & U™ | Bo(2n),

/ |V [2dAg < Ce
By (z)

and forany i =1,...,m

lim  max |Vu,|(y) = .
00 ye B (@ns,g)

Then we rescale the metric as in Section 2 and observe that this rescaling process
stops after finitely many times. Then by Courant-Lebesque lemma (cf. [J1]), a
subsequence of {u,} converges to a harmonic map as n — oo, 3 — 1 from ¥ union
with finitely many 2-spheres.
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In the sequel, we will use w, % and g for u,,u, and 3, respectively when there
is no ambiguity. Along the annulus we have a map v into M satisfying (3.3). By
the conformal transformation (¢,0) — (—logt, 8), we have

{ Vul? = e (fur* + fup?)

3.5
Au = €2t(utt + ugp) (35)

where | -| is the length in R" and the second derivatives are covariant differentia-
tion. After rescaling the metric

{ [Vullco <€ (3.6)

||VU||CO(G) <9
for some 3 > 1 and some small positive constant §. It follows that u satisfies the

following differential equation on the cylinder C = [0, R] X S'. In the sequel, “.”
stands for the inner product of two vectors.

Uge 1 Uge
ut(|ut|2 + |u9|2) + Ul - Up + UgUgg - Uy + UgUy - Urg + Uty - Uty
+2(6-1) o 3 2
€% A fue]* + Jugl
=0. (3.7)
Let @ be the #-independent solution of (3.7). Then
208 — Dak S wdad, 4+ 2(8 — 1)ak|u,)?

at ( )tzj Ut ( ) || _0 (3.8)

672t + |’l]t|2
for K = 1,...dim M where 4;; is the nonlinear Laplacian of 4.

Lemma 3.2. In the cylindrical coordinate (t,0), there is a unique solution u of
(8.8) for t € [0, R] over C for given initial data.

Proof. Set w = ;. Then by (3.8)

p o (B=1Dwb S wiw] +2(8 — 1w |w]?
Wi =~ 2t | |w]? :

Since 3 is sufficiently close to 1, the right hand side of the above equation has the
form o
Z ejlwg + eqw
)
where €1 and e depend on w but their CO% norms are close to 0. Then it is clear

that w exists for long time, which in turn implies by integration that @ has long
time existence. O
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Lemma 3.3. Let @ be a solution of (3.8). Then
(i) || is decreasing in t;
(%) for any t < o,

- _4B-D 1 s s - _4B-D
o (to)| P~ 2T (70) — Fo1¢  SIa®I < lato) e 2T (1) (3.9)
Proof. We set
F() = L), (3.10)
Then multiplying @F on (3.8) and summing over k yields
St 2f?
2(8—1)=——— =0. 3.11
for 2= 1)L (3.11)
Rearrangement of (3.11) leads to
4(8—1)f?

Ce %+ (28-1)f
Now (i) follows immediately from (3.12). As for (ii), we first observe that

4B -1)
26— 1

Integrate (3.13) from tg to ¢ and notice that ¢ < tg. So the first inequality in (3.9)
holds. On the other hand, to derive the second inequality, we let

fe 2 I (3.13)

1
v = f + m@iQt. (314)

Then by direct computation, we have

—vy=—fi + me_%
R it o Gt o= T T
T 51 v ta5-1°
_4B-1) 2 8(B-1)\ 9 4B-1) _y4
26— 1 ”(26—1 (2/3—1)2)6 TR 54
It follows that
gy 1) (3.16)

> 2ﬁ—1v'
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Since t < g, (3.16) implies that

AB-1)

logv(tg) — logu(t) < 25 1

(t —to). (3.17)
Therefore due to (3.17) and (3.14),

e > (flto) + mo—e o) FFEO0) (315

£ + T

26— 1

Now the second inequality follows. O

Lemma 3.4. Let @ be a solution of (3.8). Then for 3 sufficiently close to 1, there
is a uniform positive constant C such that

|G| < C(B — 1)t (3.19)

Proof. By (3.8) and the triangle inequality,

. ja> .
—2B8-1)——— <2(6-1 . 3.20
|01+ (B )6*2‘ T a2 e < 2(8 e ( )
Since 5 — 1 is small, (3.19) follows from (3.20). O
Now we derive the equation for
w=u—"u. (3.21)

In order to apply Corollary 2.4, we need to show that w satisfies a P.D.E of the

form (2.11) which satisfying (2.12) and (2.13). First, we notice that since @ is

f-independent,

2wl + ug - uggul + ug - urgul + uy - gl
e 2+ Juel® + Juol?

|ug

—A®DZw+B-wy  (3.22)

where for some uniform constant C,
[Allco + [ Bllco < C. (3.23)
Secondly, we have

I = u?|ut|2 _ ﬁﬂﬁtp
: e*2t+|ut|2+|u9|2 672t+|ﬁt|2

_ a2 oyt [ 4w — gl
Il 4 TP\ T Tl TP ) ) 00
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For the last term in (3.24),
af | uo|? _ o[ [*wy
(€72 + fuel® + [ ) (€72 + [ l?) (72 + uel® + [te|2) (e + [ie[?)
n Zj ufu§|ﬁt|2wj .
F T T+ TP 7+ P (3 95,

Combining (3.24) and (3.25) together, we see that
L=V Vw (3.26)

where C' is some uniform positive constant and V is a R¥-valued function which
satisfies

IVllgo < €. (3.27)
Finally, for the terms involving u:; and %, we have
e %Zj ui’z;iguf - ;5 ﬁ%aifat’;
e Jul® + fug|® e+ |ad
Zj u{wgtu’: Ej ugﬂgtuf

e 2 Juel® +[ugl? €72 + fug|? + |uol?

. Zj ﬁg&gtuf Z i uttwt (3.28)
2 1 [a2 e 2t |a? ;

We denote the two terms in the middle of the right hand side of (3.28) by J.
Therefore

- y
J= Y -
Xj:“tt“t 2t | |ut|2 + |u0|2 e2t 4 |ﬁt|2
— Zuttuf o (] — ) =
(€ 2+ [ue2 + [up2) (e 2 + [ae?)
~F 1 1 s
Nk iz g (g — tg) -
zj: ittt (; (€72t 4 |ug|? + |ug|?) (=2t 4 ||?)
Iz, 12 2
.t g ot |? — @] 3.29
+;u“ut <<ezt T2+ TuoP) (e 2 1 fael®) ) 2

According to (3.19) in Lemma 3.4, the first two terms in (3.29) consist of Vw
times a matrix with bounded entries. As for the last term in (3.29), we have

Gel~l =G 11 Gl l el =GN L
ity lly — Ujugty = upty (g — uy) + (wity — Gluy)uy

= —ujutwt + wt utut + utwiult (3.30)
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So again by (3.19), the last term in (3.29) is also in the form of Vw times a matrix
with bounded entries. Therefore we conclude that

Iy = Bwy + FVw (3.31)

where the CY-norms of E and F are uniformly bounded. Putting (3.21), (3.26)
and (3.31) together, we obtain the following equation for v — :

wy + wge + (8 — 1)AD*w + (8 — 1)BVw = 0 (3.32)
where for some uniform constant C,
[Allco + |1 Bllco < C (3.33)

Since the image space M may not be flat, the second derivatives in (3.33) involve
the Levi-Civita connection of M. The nonlinear terms are

%y (wyudufy — Ty (@)ad i (3.34)
where Fék’s are the Christofell symbols on M. (3.34) can be written as
A1 Vw + Ayw (3.35)
where since M is compact, there is a uniform constant C' such that

{ |A1] < C(IVul +[Va])

3.36
[As] < C(Vul? + | Vaf2). (3.56)

But 8 — 1 is sufficiently small, and therefore w satisfies a homogeneous equation
in the form of (2.11) with all the conditions in Corollary 2.4 hold.

Proposition 3.5. Let u and @ be solutions of (8.7) and (3.8) respectively along
C =10,R] x SL. Let & be the positive number 61 in Corollary 2.4. Assume that on
C

|[Vu| < e< g (3.37)
If u and U satisfy the normalization conditions (2.16) and (2.17), then
|G| <& (3.38)
along C.

Proof. Since u — 4 satisfies (2.11) and the normalization conditions (2.16), (2.17),
by Corollary 2.4, we can choose tg = il such that

. Ny . L . . 4 -
io = min{e| (a) [lu —all; < e 2 [lu—alli1,(0) [lu —all; < e 2|lu—alli1}. (3.39)
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On I;,, by the initial condition we may assume that

0
|| < 2e. (3.40)

Notice that for any ¢ > tg, (3.40) holds since |t;| is decreasing in ¢ by Lemma 3.3.
Now we go backward along the cylinder C from ¢g. If (3.38) were not true, we
would meet three points ¢1,¢2,¢3 such that

16 at 4y
lae] = 4 16 at ¢ (3.41)
§ at ts,

and moreover |i| didn’t take these values before the corresponding points. Clearly,
3 <it9 <t <. (3.42)

Notice that Corollary 2.4 is at least valid on [t3, R] x S1. Therefore for any t €
[t3, to],

|Vu — Vii| < Coe3018), (3.43)
This in turn implies that
g — 3 (t1—t3) —%(t1—t3) L
ch(sez 1788 L e < Cde™ 2N\ 3+§6. (3.44)

So there is a uniform upper bound for ¢ — ¢3:
1
0<t] —t3 < —2log—. 3.45
Sti—t3 < —2log o= (3.45)

On the other hand, according to Lemma 3.3 (take ¢1 to be the ¢y in Lemma 3.3),

jie(t2)] < [in(tr)]e 77 . (3.46)

By the way we choose t1,t9, we conclude

(26 —1)log2

t1 —tg > 3.47

G- it
But if 3 is sufficiently close to 1, (3.47) implies that t1 — t3 > 1 — t9 approaches
to infinity. This contradicts to the uniform upper bound (3.45) for ¢; — ts. (|

Therefore, we have shown that Corollary 2.4 can be applied on the entire
cylinder C. So we have as in Proposition 2.6 that

lu—@i| + |Vu — Vi| < Coe™ 3, ift <tg
lu—@i| + |Vu — Vi| < Coe 3B if ¢ > 1.
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Next, we reparameterize the #-independent solution @ by its arc length and
derive corresponding equation for % in the new parameter. Set

t
" :/ . (3.50)
to

In particular, s is increasing in ¢, hence its inverse function exists. We have

Us = Usls
~ ~ 4,92 ~ ~ 9 tss ~
Uss = uttts + Uglss = uttts + t_us (3 51)
- Ut Uy
| S| St | | |ut| |
Therefore we can use the arc length s to rewrite (3.8) as follows
5 (it~ eat) ool e Gl B0 L b B
t? 58 by e—2t t;2|ﬁs|2
(3.52)
Since s - s = 1, it follows by differentiation that
B B = Y _ 050, =0, (3.53)
k
Thus, we can simplify the above equation for @ as
t ol —¢ t3)
~k ~k S8 s s57s
Ueg —U; | — —2(8—1)=———— ] =0. 3.54
(- 20—ty (3.54)
Multiplying [L’; then summing over k, we obtain
-1 -3
t fs ™ —lgsl:
= 21— =0, 8.55
2 (s - Ay (3.5%)
Then (3.54) and (3.55) together implies that
k=0 (3.56)

for every k. So we have shown

Proposition 3.6. For the 0-independent solution @ of (3.8), if the cylinder is
parameterized by the arc length s, then u(s) is a geodesic.
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Therefore we have shown that u converges to a geodesic in CY-norm. Next, we
give an estimate for the energy density of 8-independent solution %, which will be

useful to study the energy of v along the cylinder.

Proposition 3.7. Let @ be a 0-independent solution. Then

AB=1)
T R < 0Ot ift < £,

- 1 _
| [e]? — |ut(§R)|2€

- 1 _AB-1)
| [5e]* — |ut(§R)|2€ 281

for some uniform positive constant C.

(t—R/2) |§ Ce’C(R’t)7 ift > %

Proof. Let
~ 5 B 1 4(8—1)
F= |ut|2 — |Ut(—2R)|26 26-1 (t R/Q).

Clearly,
~ 1
F(=R)=0.
(5)

It’s straight forward to obtain

B MB-Dp 4B-Y) e Ml

261 26—1 e 2+ (28 —1)]a?
Therefore
L —2s1~ |12
ja 4(B — 1)67%5—:})@4/2) /7 oD (s r/2) e |y s,
261 ¢ e 2 + (28 — 1)|ay|?

Ift < &, then

R
~ — 2 A1)
|F| < 4(ﬁ 1) / C%Zﬂ_l—(sft)ef% ds
t

28 -1
1B=1) o
<0551

for some uniform positive constant C. If ¢ > TR, then

28 —1 8
26-1) g
- 28-1

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)

(3.63)
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We finish the proof of Proposition 3.7. O

Now in order to complete the proof of Theorem 1.2, it suffices to show that
the geodesics arising from the blowing up are all of finite length. Based on the
arguments of Proposition 2.7, we only need to show that replacing a long line
segment (3-geodesic) by a suitable chosen geodesic does reduces total energy. Since
% decays exponentially, we can reduce the general case to the special one that «
is #-independent. The argument is similar to that in the proof of Proposition 2.7,
so we only give a sketch. By Lemma 3.3, Proposition 3.5 and Proposition 3.7, the
length L(u,(C)) of the image of C under u,, and the energy E(u,,C) of u,, over C

can be estimated as following

u 2(Bn—1) Rpn
L (€)) = |20 (R, )| S R + O(e=0Fn) (3.64)
and O, , 1 4(Bn—1)
Bn—1) Ry,
B(un,C) = | 52(5 Ra) 2e 0T T Ry + O(e™OFn) (3.65)

where C is a uniform constant independent of n. If L(u,(C)) is tending to oo
as n — 00, we replace the image u,,(C) by a geodesic which is chosen to be in a
suitable homotopy class, the total homotopy class of u,, remains the same, and
with much smaller length as in Case 1 and Case 2 in the proof of Proposition
2.7. Then we define a new map u/, on C such that it is harmonic, maps C to the
geodesic and parameterized with speed

ou! Oty 1
| = | =2 (=R,)|. 3.66
S| = |2 () (3.66)
The length of the geodesic is
Oy, , 1
/ o m oL
L(w} (€)) = |52 (5 Ra)IS (3.67)
and the energy of u/, on C is
Oty 1
E(u!,C) = | =2(5Rn) %Sy 3.68
(4,€) = |52 (5 ) (3.68)
where S,, is the length of C in the new parameterization and
Oy, 1
— (=R)|(Ry, — Sy, C 3.69
L (SR)|(Ra = Sh) > C (3.69)

for some fixed constant Cp > 0. We still use u/, to denote the new maps obtained
by replacing u,, along C by u,. Now it is easy to see that as 3, — 1

B (un) — B, () > 5(B(un)  B(as))

1,00, 1

> —|—(=R)|Cy > 0. 3.70
> SIS (SR (3.70)
This contradicts to u,, is Fg, -energy minimizing in the fixed given homotopy class.
Therefore we conclude that the length of the geodesic arising from every connecting

cylinder is finite. The proof of Theorem 1.2 is now complete.
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4. Application to minimal surfaces theory

For any conformal structure ¢ on the compact Riemann surface Y., there exists
a minimizing harmonic nodal map u, into M in any given homotopy class a by
Theorem 1.2. We set
a= inf  FEu.)
ceConf(X)
where Conf(Y) is the set of all conformal structures on . Then let u., be a
sequence of minimizing harmonic nodal maps in the homotopy class a, such that

lim E(u.,) =«
n—oo
and
lim ¢, = ¢
n—oo
where ¢, is a conformal structure on > which may degenerate at finitely many
points. According to Theorem 1.1, a subsequence of u,,, converges to a minimizing
harmonic nodal map u._ . It is then well known and not hard to prove that w,__ is
conformal with respect to co,. Therefore, u, parameterizes a generalized minimal
surface Yo, which is area minimizing in the homotopy class a.
On the other hand, we will show that the minimal surface ¥, is in fact admis-
sible, 1.e., if By is the second fundamental form of ¥, then

/ 1Bao]|? < 0.
Yiss

A point p € X is called a cusp is there is a conformal map F' from the unit disk
D1 in C to a neighborhood U of p in ¥ such that the induced metric on U is of
the form

Frds? = |z>* 7%, a>1

where ¢ is a regular Riemannian metric on D1 and z is a holomorphic coordinate
on Dj.

We have the following result on the regularity of the minimal surfaces we just
constructed.

Proposition 4.1. The minimal surface Yo is admissible.
Proof. First, the minimal surface >, is a union of finitely many irreducible com-
pact minimal surfaces. We only need to consider the cusp points. At such a

point p, take any 2-dimensional component %L of ¥, which contains p. Since
f: Eio — M is conformal,

of
9=Vl = 4I—8 290
z
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where gg is the regular metric on Dq. Since f is also harmonic, we have near p
that
0:05f = (|01 1%).

Since f is smooth, we can write

0.f = > 723 + higher order terms
ptq=l

where at least one coefficient ¢,5 # 0 and [ > 1. It then follows from the harmonic
map equation

9z0.f = Z qcpz;zpzq*1 + higher order terms.
ptq=l

If there is a ¢ bigger than 0, then 950, f is of order [ — 1. But |6f|2 is of order
at least 2/. Comparing to the harmonic map equation, we find this is impossible.
Thus, the leading term of 0, f is holomorphic. In other words,

8, f = ¢z’ + higher order terms
for some non-zero constant c. Near each singular point where the curvature blows

up, we construct a cut-off function as follows. Fix any large number R > 0. Let ¢
be a smooth function from [0,00) to [0, 1] such that

o(t) =

{1 ift<R
0 ift>R+1

and |¢'(t)| <1 for all ¢ > 0. We will use the cut-off function ¢(log(—logr)) where
r = |z|. The curvatures in different metrics gg and g are related by

K, = K, — d.0510g |, f]?.

Then integration by parts leads to

| | #(log(—logr))358, log |8, f|2dA, ()]

Dy
<Ci| | ¢llog(—logr))d. 0= log|d. f|*r? dzdz|
Dy
/(log(— logr
SCQ</ <|¢( g(l g ))|>r21|8210g|8zf|2|
Dy —rlogr

+ ¢llog(~ log )10, 1og |0 f?|dzd=)
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—e

e
|32 1Og|32f|2| 2A+1 92, 9
< Sl ' = Pl - MR
<o [, (BB 20 g o gt

_R
© 1
SC’4/ <—r21 +r2l*1> dr
e—eftl \ —rlogr
<COge 2" (log(— log 676R+1) — log(—log 675R) + 1)
—205e 2"
where the constants C1, ..., Cx depend only on gg by choosing R sufficiently large

such that the leading terms dominate the rest terms in the power series expansion

of 8,f,0,0sf, and 8,85 log |d, f|?. Therefore we have

Rlim ¢(log(—logr))0, 0z log |8Zf|2dAg =0.
— 00 Dl

Hence if p1, ..., ps are the cusps on Y
|/ KydA,| = | lim K dAgy| < .
Too =05 \us_, Do (ps)

Since Yoo is minimal, it follows that

ouBirad, = - [ K, <oo,
Y Yoo

which implies that ¥, is admissible. O

Therefore we complete the proof of Theorem 1.3 on existence of minimal sur-
faces in a fixed homotopy class.

5. Final remarks

We first point out that the compactness result holds for boundary value problems
as well. Let us only state a simplified version, namely we assume the image space
is Euclidean. Therefore there are no bubbles. However, we need to take care of
the long cylinders coming from blowing-up a neighborhood of degenerated points
in ¥, as before. We shall state the result in a slightly different but equivalent
fashion comparing to Theorem 1.1.

Given any compact Riemann surface Y with smooth boundary 9%, we can
embed Y into some Euclidean space RY. The boundary 9% is the union v U... U~
of a collection of disjoint smoothly embedded curves ;’s in RY. Let S; be the
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set of diffeomorphisms from S! onto ;. Set § = (Sy,...,Sk). So S is the set of
parameterizations of {v{, ..., vz} by k copies of S!.

Theorem 5.1. Let ¥ be a compact Riemann surface with smooth boundary 0% =
Y1 U ... U~. Take a sequence of parameterizations o; = (al 7Ozf) e S of 0%

e
which converge to cioe = (a}m ok yeS. Let % be S equipped with the conformal
structure ¢; which is determined by c;. Suppose that { f;} is a sequence of harmonic
maps from (8;,0%;) to RN satisfying: (1) fil, = ¢ o al where ¢ : 0¥ — RN is
smooth; (2) fi’s are in the same homotopy class relative to boundary. Then there
is a subsequence of { i} converges to a harmonic map foo from (Yoo, 0%00) to RN
with fo|y, = ¢ 0 ad,. Moreover, by adding finitely many geodesics l;’s of finite
length, fi(Yoc) converges to foo(Yoo) Uj Uy in the relative homotopy class.

The phenomenon discussed in this paper can be generalized to higher dimen-
sional manifolds. Instead of getting geodesics of finite length, the domain manifolds
may collapse along spaces of 1-dimension less. Also, we believe the minimality in
Theorem 1.1 can be weakened. We leave the further investigations to the interested
readers.
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