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The conjugacy problem for Dehn twist automorphisms of
free groups

Marshall M. Cohen! and Martin Lustig

Abstract. A Dehn twist automorphism of a group G is an automorphism which can be given
(as specified below) in terms of a graph-of-groups decomposition of G with infinite cyclic edge
groups. The classic example is that of an automorphism of the fundamental group of a surface
which is induced by a Dehn twist homeomorphism of the surface. For G = F,, a non-abelian
free group of finite rank n, a normal form for Dehn twist is developed, and it is shown that this
can be used to solve the conjugacy problem for Dehn twist automorphisms of F,.

Mathematics Subject Classification (1991). 20E, 57M, 57N.

Keywords. Free group, Dehn twist automorphism, normal form, algorithm, conjugacy problem,
graph of groups decomposition, centralizer, index, fixed subgroup.

1. Introduction

If 1 and ¢o are automorphisms of groups G1 and G9 respectively, then we say
that ¢1 and ¢9 are conjugate if there is an isomorphism a : G{ — G9 such
that ¢o = agia—t. They are conjugate up to inner automorphism if there is an
isomorphism « : Gi — G9 and an element z € G5 such that ¢g = adyadra!.
(Here ad,, denotes the inner automorphism of G given by ad,(g) = zgz~! for all
g € Ga.) If G1 = G9 = G, then ¢ and ¢9 are conjugate up to inner automorphism
precisely when they represent conjugate elements (ZI ’ @ of the outer automorphism
group Out(G).

This paper is concerned with the determination of whether two given Dehn
twist automorphisms (defined below) of the free group F,, are conjugate or con-
jugate up to inner automorphism. The results here will be extended in the forth-
coming paper [KLV] to roots of Dehn twist automorphisms (and hence to all au-

1 The first author was supported by a travel grant from the Deutsche Forschungsgemeinschaft
(DFG). The second author was supported by a Heisenberg Stipendium from the DFG and did
part of this work as a member of the Institute for Advanced Study in Princeton, N. J. during
Spring 1995.
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tomorphisms of F,, of linear growth) and will be a key part of the second author’s
complete solution of the conjugacy problem for Out(F,,) as announced in [L1].

A Dehn twist D = D(G, (ze)eeE(g)) consists of a graph of groups G and, for
every edge e of G, a specified twistor z, in the center of the edge group G.. (See 5.)
Every Dehn twist determines a Dehn twist automorphism D, of the fundamental
group 71(G,v) for each vertex v of G and hence an automorphism of the abstract
group 71 (G) which is well defined up to inner automorphism. Thus D determines
an outer automorphism D € Out(71(G)).

A Dehn twist automorphism of F, is an automorphism which is conjugate
to such a Dehn twist automorphism D, of m1(G,v) for some graph of groups G.
Dehn twists on I}, are the natural analogues of geometric Dehn twists (i.e. multiple
Dehn twists along sets of disjoint simple closed curves on surfaces); indeed, the
automorphisms induced by the geometric Dehn twists on surfaces with boundary
are special cases of Dehn twist automorphisms of F,. On the other hand, an
example of a Dehn twist automorphism of F(a,b,¢) which is not geometric is
given by the automorphism a — a, b — b, ¢ — wew 1, if w € F(a,b) is not a
power of z, zyz—ly~1, or 22y? for any basis z,y of F(a,b).

Dehn twists can be given in clearly inefficient ways. We define efficient Dehn
twists in 6. The main result of this paper is the following classification of automor-
phisms determined by efficient Dehn twists. (For background on graph of groups
isomorphisms and the induced isomorphisms of their fundamental groups, see 4.)

1.1. Theorem. Suppose that Gi and Gy are graphs of groups with w1 (G1) =
m1(Ge) = F,, and that v and w are vertices of G1 and Go respectively. Let
Dy = D(G1, (2¢)ecr(g,)) and Dy = D(G2, (2c)cer(g,)) be efficient Dehn twists
inducing automorphisms D, and D, of m1(G1,v) and 71(Go,w) respectively. Let
h:7m1(G1,v) — 71(G2,w) be an isomorphism.

(a) l/)\g = hD1h=1 € Out(n1(G2)) if and only if there is a graph of groups isomor-
phism H : G1 — Go which induces the isomorphism h up to inner automorphism
(i.e., H = h) and which takes twistors to twistors (i.e., He(ze) = 2p () for all e €
E(G1)).

(b) Dy = hD,h~ ' € Aut(m(Go,w)) if and only if there is a graph of groups
isomorphism H : G — Go which takes v to w, with induced isomorphism Hy, =
h:7m1(G1,v) — 71(G2,w), and which takes twistors to twistors.

The material developed to prove Theorem 1.1 allows us to determine along the
way the centralizer, fized subgroup, index and infinite attracting fized words (there
aren’t any) of a Dehn twist automorphism of a free group. These results are given
in7.

In 8. we give an algorithm for transforming an arbitrary Dehn twist D of a
graph of groups G to an efficient Dehn twist D’ of a graph of groups G’ in such a
way that the induced isomorphisms of 71 (G) and 71 (G’) are conjugate up to inner
automorphism. We further point out that one can use the Whitehead algorithm to
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decide whether two graphs of groups are isomorphic in such a way as to preserve
the data in part (a) or (b) of Theorem 1.1. This leads to our solution of the
conjugacy problem for Dehn twist outer automorphisms:

1.2. Theorem. There exists an algorithm which, given two Dehn twists D1 and
Dy based on graphs of groups G1 and Go with 71(G1) = 7m1(Ge) = F,, decides
in finitely many steps whether the induced outer automorphisms 5\1 and 5\2 are
congugate. If D1 and Do are efficient and if v and w are vertices of the graph of G1
and the graph of Go respectively, this algorithm also decides whether the induced

automorphisms D, and D, of m1(G1,v) and 71(Ga,w) are conjugate.

Remarks: (1) This paper is written totally within the genre of graphs of groups
and their associated actions on R-trees. If an automorphism ¢ € Aut(F,) is given
in terms of the image of some basis of I, it is possible [L.2] to decide whether ¢
is a Dehn twist automorphism — whether it is conjugate to some automorphism
D, of m(G,v) given by a Dehn twist D of a graph of groups G — and, if so, to
derive from the data for ¢ the data for D and for G, namely D = D(G, (%e)ec p(g))-
However, in this paper — and in particular in Theorem 1.2 — we always assume
that a Dehn twist automorphism is given in terms of the graph of groups data (see
8.1).

(2) The algorithm in Theorem 1.2 is purely combinatorial and operates entirely
in terms of the graph of groups data of D1 and Dy. It is noteworthy (see 6.7)
that the underlying justification of this combinatorial algorithm comes from the
study of the dynamics of Dehn twist automorphisms acting on the closure of Culler-
Vogtmann’s “Outer Space”; we use a result of our previous paper [CL2] concerning
these dynamics to prove Theorem 1.1, which in turn implies Theorem 1.2.

2. Outer homomorphisms of groups

Much of this paper concerns outer automorphisms rather than ordinary automor-
phisms. In this context, the following notion turns out to be natural and useful:

2.1. Definition. Let f : G — H be a group homomorphism. Then we denote by
f: G — H the outer homomorphism induced by f. This is the equivalence class

f={adyf :G— H|he H}

of homomorphisms from G to H.

Notice that for any homomorphisms f1 : G1 — G2 and fo : G9 — (3 one has
ﬁ?l = fngl Furthermore, for any automorphism f : G — G the set f =Inn(G)- f
is precisely the induced outer automorphism in the usual sense. The notion of outer
homomorphism, though it does not seem to be standard, is the natural morphism
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induced on the level of fundamental groups by continuous maps between path-
connected topological spaces without specified base point.

Ifa:G— Ci’\and B : H — H' are fixed isomorphisms, then every f : G — H
induces f’ = ffa~l: @ — H', and ]?’ does not depend on « and 3 but only on
their induced outer isomorphisms. This observation can be applied as follows to
malnormal subgroups. (Recall that U C G is a malnormal subgroup if g € G and
g & U implies that gUg ' NU = {1}).

2.2. Lemma. Let U; C G and V; C H (i = 1,2) be malnormal subgroups of G
and H with Uy conjugate to Uy and Vi conjugate to Vo; say U = gUlgf1 and
Vo = hVih 1 for some g € G and h € H.

(a) BEvery outer homomorphism f1 : Uy — Vi with representative f1 determines
an outer homomorphism 1/71 : Uy — Vi with representative Iy = adp o f1 o adgfl.
This outer homomorphism is independent of the choice of representative fi and
of the conjugators g and h. In particular, if Uy and Uy are conjugate malnormal
subgroups of a group G then there is a canonical identification between Oul(Uy)
and Out(Us).

(b) Let f : G — H be a homomorphism with f(Uy) C Vi and f(Us) C Vo. Let
fi 1 Ui — Vi (i = 1,2) be the maps induced by restricting f. Then ]/”\2 = 1/71 where
Iy =adpofio adgfl, as in (a).

Proof. (a) We first note that, if z € ¥} then the outer homomorphism class of
adhflad;1 equals that of adhadzfladgl. This is because hah~1 Vo and

adpad, frad,! = ad,,, 1(ads frad, 1) .

Now suppose that ¢’ € G, b’ € H are elements such that Uy = g/Ulg’f1 and
Vo = h'Vq K~'. Then the outer homomorphism class of adhfladgl equals that of
adp/ flad;I because malnormality implies that ¢~ 1¢’ € Uy and h~1h/ € V§ and
because

ady f1-ady' = adyadg,-1,,) frad, -1 ad,1 = ady ad(-15) 1, (g-14) f18dg-1

Since (11"} f1 (g7 1g') € V} the first paragraph of the proof applies.

The preceding two paragraphs prove (a).
(b) We have f = adg(g) f ad,-1 and since Uy = gUi1g~1 we can write this as
fa = adggy frady-1|Us. If f(Ur) = {1} the result claimed is trivial. In case

f(Up) # {1}, the given element h with h~1Vah = V; satisfies

flg)h! <hf(U1) },1) hflg) " = f(U2)

and hence
flo)h Vah flg) ™t nVa # {1},
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Thus malnormality implies that z = f(g) h~1 € V4 so that f2 = adgady, f1ad,1
= ad, I with z € V5 . Thus fAQ = ﬁ as claimed. O

3. Graphs of groups

For the convenience of the reader we recall in this and the following section some
standard definitions and facts concerning graphs of groups. For general back-
ground see [S], [B], [C] or[D-D]. We mainly follow the notation of [CL2]. We
include some basic results which we will need which do not seem to have appeared
before. (See (3.9) for normal forms for representatives of conjugacy classes and
(3.10) for the fact that vertex groups are malnormal in path groups.)

3.1. A graph of groups is given by

G = (1(9), {Gu}vev(g): {Getecr(g): {fe 1 Ge = Gr(o) }ecr(c))

where we use the following notation:
—I'(G) is a finite connected graph,
— V(@) is the set of vertices of I'(G),
— E(G) is the set of oriented edges of T'(G).
For any v € V(G) and e € E(G) we denote:
— € is the edge oppositely oriented to e,
— 7(e) is the terminal vertex of e (so that 7(&) is the initial vertex of e),
— G, is the vertex group at v,
— G, = G5 is the edge group at e,
— fe 1 Ge — GT(E) is an injective homomorphism.

3.2. We denote by II(G) the path group of G (called the Bass group £(G) in
[CL2]), which is generated by the stable letters t. (e € E(G)) and the elements
re Gy, (veV(G)), subject to the relations in the G, , and to

i) tz =t;1 and

(i) tefela)ts! = fa(a) € Gz forallae G, e € B(G).

3.3. Every element of I1(G) is given by a word
W =rotir1 .. . tgrg

where ¢; = t., and each r; is an element of the free product *{G,|v € V(G)}.
We say that W is connected, with initial vertex 7(e1) and terminal vertex 7(ey), if
Ty € GT(EQ) rq € G‘r(eq) and T(ei) = T(éi+1) with r; € G‘r(ei) foralle=1,... ,¢—1.
Note that connected words are transformed to connected words when they are
shortened by the operations of 3.2, but that a trivial word fs(a)~!t, f.(a)tz can

be inserted into a connected word so as to make it non-connected. Finally, W is
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a closed, connected word based at v if it is connected and v = 7(€1) = 7(eq). This
includes all W € G,,.

3.4. We denote by 71(G,v) C II(G) the fundamental group of G based at the vertex
v. It consists precisely of those elements of I1I(G) which are represented by a closed
connected word based at v. For distinct vertices vy,v9 € V(G) the subgroups
m1(G,v1) and 71(G,vq) are conjugate in T1(G). Notice that TI(G) is canonically
isomorphic to m1(G,vy) = 11(G.) where G, is the graph of groups obtained from
G by identifying all vertices v € V(G) to a unique vertex v, and defining its vertex
group to be the free product of all G, (and replacing each f. by [inclusion o f]).

3.5. A word W € II(G) as in 3.3 is reduced if ¢ = 0 or if ¢; = t;rll implies
that r; & fe,(Ge;) (¢ =1,...,¢—1). A non-trivial reduced word need not be
connected, but can be identified with a (necessarily connected) reduced word in
II{G,). So classical results of Bass and Serre on connected words in a path group
apply to arbitrary words in I1{G). By applying the relations 3.2 above sufficiently
often any word W € I1(G) can be transformed into a reduced word. Also, reduced
words have the following uniqueness property:

3.6. Proposition. If V = rotir1...tqrq and W = sot/lsl - .tg,sq/ are reduced
words representing the same element g € 11(G) then:

(@) ti=t, forall i=1,...,q In particular, q=q' ( = length(g)).

(b) Foralli=1,...,q there exist elements h; € G, such that

50 — rofél(hfl)7
e fei(hi)rifgiJrl(hi—Jrll) for i=1,...,q—1, and
sq = Jfe, (hq)rq.

(c) V is connected if and only if W is connected.

Proof. (a) and (b) follow from [S, p. 50] or [B, 1.10], while (¢) follows from (a)
and (b). O

3.7. (a) A product VW of two reduced words in II(G) is called reduced if the
concatenation of the two words is reduced. This is equivalent to “ length (VW) =
length(V) + length(W)”, and in this case we write V « W for VW. For example,
if length (V) =0, then VW =V « W for any W. One must be careful concerning
connectivity. A reduced connected word V' may be factored as the reduced product
of reduced non-connected words: V = A« B = (Axr) % (r—1 x B), where r € G,
for some vertex v far away from the path carrying V= A x B. However, we do
have:

(b) If V.= Ax B« C with V and B connected, then A and C are also connected
and the terminal vertex of A equals the initial vertex of B and the terminal vertex
of B equals the intial vertex of C.
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3.8. A word W € T1(G) is cyclically reduced if it is reduced and if, furthermore,
T(eq) = 7(€1) and t; = t;l imply 7470 & fe,(Ge,). Through cyclic permutations
(which can be effected by conjugation in TI(G)) and the relations of 3.2 one can
transform any word W into a cyclically reduced word.

3.9. Proposition. Closed, connected, cyclically reduced words V and W represent
conjugate elements of 11(G) if and only if there is a cyclic permutation Wo x Wy
of W =Wy « Wy and an element r € G, (where V is based at v € V(G)) such
that V.=r* Wy « Wy * r— L.

Proof. 1If there exists such a cyclic permutation then clearly the elements are
conjugate. Now suppose that V' and W represent conjugate elements.

Let U € TI(G) be a reduced word with V = UWU~1. As W is cyclically
reduced, one has either UW = U « W or WU 1 = W x« U~1. We assume the first
case (the second works similarly) and obtain

length(V) = length(UWU 1) > length(UW) — length(U 1) =
length(U) + length(W) — length(U 1) = length(W).

By symmetry between V and W we get length (V) = length (W). We can assume
w.l.g. that U is not a reduced product U = U’ WF for any k > 1. Thus U1 will
have all stable letters cancelled against W when reducing the product UWU —1
It follows that W is a reduced product of connected subwords W = Wy x Wy with
length (WolU=1) = 0. Since Wi and V = U % Wy % (WoU 1) are connected, it
follows by 3.7(b) that WoU~! is connected. Then WolU~! = r € G, where v is
the terminal vertex of Wy and the initial vertex of Wo. Hence V = Uwu-t =
(UW{l) x Wo x Wy (UVVQI)*1 — 7« Wy « Wy * r—1, as claimed. O

3.10. Lemma. The subgroup m1(G,v) is malnormal in 11(G).

Proof. Let V, W € m1(G,v) and U € TI(G) be reduced words with V. =UW U1,
Since malnormality of subgroups is invariant with respect to conjugation, we can
assume that W is cyclically reduced. Following the proof of 3.9 we may write
W=Wi«Woand V = U+« Wy * (WQU*I) where W7y is connected. It follows from
3.7(b) that U is a connected word which begins and ends at v. Thus U € 71(G,v).
O

3.11. The malnormality given by 3.10, combined with Lemma 2.2, tells us that for
any graphs of groups Gq, Gy and vertices v, v' € V(G1) and w, w' € V(Ga) there
is a canonical identification between the outer homomorphisms from 71(Gy,v) to
71(G2,w) and those from m(Gy1,v’) to m1(Gy,w'). To be precise, 71(G1,7") =
adw (71(G1,v)) if and only if W € I1(G1) is a connected word with initial vertex
v’ and terminal vertex v, and a similar statement holds for V' € T1(G3). With such
W and V, the outer homomorphism with representative f : 71 (G1,v) — m1(G2,w)
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is identified with the outer homomorphism with representative ady o f o acl;V1 :
71(G1,v") — m1(G2,w').

For any representative homomorphism f : m1(G1,v) — m(Go,w), we thus
suppress basepoints and denote the corresponding outer homomorphism simply
by f:mGi — mGo. If G =G = Gy, v=w and v = w' in the discussion above,
the groups Out(m1(G,v)) and Out(m1(G,v")) are thus canonically identified, and
we denote this group by Out(m1G).

4. Isomorphisms of graphs of groups

4.1. Definition. A graph of groups isomorphism H : G — Gy is a quadruple of
the form

H = (Hr, (Hv)yev(g,), (He)ecr(01), (6(€))ecr(ay))

where Hp : I'(G1) — I'(G2) is a graph isomorphism, and each H, : Gy — Gy ()
and He = Hz : Ge — Gy (o) Is a group isomorphism. (In order to avoid double
indices we will often write H(e) and H(v) instead of Hp(e) or Hp(v).) Moreover,
5(e) € Gr(h(e)) and (with ad, as defined in §1),

Ho (o fe = ads(ey fr(eHe - (*)

Note. This definition agrees with the restriction to 1-dimensional complexes of
the definition by Haefliger [H] for isomorphisms of complexes of groups. It is a
special case of the more general definition of morphism of graph of groups in Bass

B].

4.2. A graph of groups isomorphism H : G; — G induces isomorphisms H, :
I1(G1) — 1(G2) and Hy, : 71(G1,v) — 7m1(G2, Hr(v)), defined on generators by

H.(r) = Hy(r) for weV(G), reG,, and
H,(te) = 0(€) ty()o(e) " .

We denote by H: 71G1 — m1Ga the outer isomorphism induced by H,,, where H
does not depend on the choice of v € V(G1), see 3.11 .

4.3. The composition of two graph of groups isomorphisms H' : G1 — G2 and
PAI” : Gy — G3 is a graph of groups isomorphism H : Gy — Gg which satisfies
H = H"H'" and H, = H]/H,. To be precise, H is given by Hp = H{ Hp,

ez 1" ! — 1" / - 1" 1, 1 / S
H,=H f(v)HW H. = HH{,(e)HE and d(e) = HT(H,(6>)(6 (e))d"(Hp(e)) if v €
V(G1), e € E(G1).

In particular, for any H : G| — Go there is an inverse isomorphism Hl:Gy—
Gi which satisfies H—! = H—1 and H 1= (H1),. Moreover (Hﬁl)H(U) =H;!
and H  (ty ) = H;é) s(e) 1 tEH;(;(a(e)) for all v € V(G1), e € E(Gy).
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4.4. Every graph of groups G gives rise to a tree 7g on which m1(G,v) acts (see
[B,1.16], [CL2, §5]).

Bass-Serre theory is built so that the notions of “equivariantly isomorphic tree
actions” and “isomorphic graphs of groups” are essentially equivalent. This is
stated precisely in the following Lemmas 4.5, 4.6. (See Bass [B], Corollary 4.5 and
Proposition 2.4 for detailed proofs.)

4.5. Lemma. Let G1 and Gy be two graphs of groups with an isomorphism h :
71(G1,v1) — 71(G2,v2) and a simplicial homeomorphism H : Tg, — Tg, which is
h-equivariant (i.e. H(g-z) = h(g) - H(z) for all g € 71(Gy,v1) and all = € 7, )-
Then there is a graph of groups isomorphism H : G — Go with H=h: TG —
mG2.

4.6. Lemma. If H : G| — Gy is a graph of groups isomorphism, with induced iso-
morphism h = H, : m1(G1,v) — 71(Ga, Hp(v)), then there exists an h-equivariant

simplicial homeomorphism H :1Tg, — Tg,.

5. Dehn twists

5.1. Definition. [CL2, §6] A Dehn twist D = D(G, (2e)ecp(g)) consists of a
graph of groups G and a family of elements (ZE)seE(g) with z. € Center(G.) and

2z = 2. 1. (“Dis based on G with twistors z.”). This determines an automorphism
D, : TI(G) — TI(G) given on the generators as follows:

Dile, =id,  Di(te) =tefe(ze) (veVI(G), e€ E(G)).

The automorphism D, restricts to an automorphism D, : 71(G,v) — m1(G,v) for
every v € V(G) and hence defines (see 3.11) an outer automorphism D € Out(mG).

5.2. For any Dehn twist D = D(G, (2¢).cp(g)) and any connected word W € I1(G)
with initial vertex v’ and terminal vertex v Definition 5.1 gives

Dy adw = adp, (wy Dy 2 71(G,v) — (G, ') .

5.3. Lemma. Let D1 = D(Gy, (ZE)BEE(Ql)) and Dy = D(Ga, (ZE)EEE(QQ)) be
Dehn twists and H : Gi — Go a graph of groups isomorphism which preserves
twistors in that

He(ze) = 2p() for all e € E(G1).
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Then: (a) H. Dy, H; ! = Do, : 11(Gy) — 11(Go).
(b) Dy = HD{H~! € Out(7Ga).

Proof. The claim (a) follows from straightforward calculation on the generators of
[1{G2) using the formulas of 4.2 and 4.3. Then (b) follows from (3.11). O

5.4. Proposition. Let G be a graph of groups with the property that
(*) for every edge e there is an element r. € G, () with

fe(Ge) ﬂrefe(Ge)T’;l ={1}.

Then two Dehn twists D' = D(G,(20)ecp(g)), D" = D(G,(2)ecr(g)) based on

G determine the same outer automorphisms D =D"e Out(m1G) if and only if
2l =2 for all e € E(G).

Proof. Suppose D' = D”". For every edge e € E(G) we consider the element
we = tereters € T1(G,v), where v = 7(€). We compute

D;(we) = tefe(zé)refe(zé)iltéré and
D:«/(we) = tefe(zg)refe(zg)_ltéra

Since D’ = 1/37/, these words represent conjugate elements in 71 (G,v). From 3.9 it
follows that there is an element s € G, such that D/ (w,) = sD/(w.)s'. Then
3.6 implies that there exist elements hy, ho € G, with

(@) felh) =5,
(b) fE(hl)fE(Zé)TEfE(Zé)ilfe(hQ)71 — fE(Zg)TEfE(Zé/)il , and
(c) falho)re =resL.

From (a) and (c), rgfg(hl)rgl = fa(ha). So (*) implies that hy = hg = 1. Then
(b) and (*) imply that z;lzé’ = 1.

The converse implication is obvious. |

5.5. An alternative viewpoint, which we will not adopt in this paper, is to consider
a Dehn twist D = D(G, (2¢)ccp(g)) as a graph of groups automorphism D : G —
G, with identity map for the graph automorphism Dr and identity maps for all
the group automorphisms D, and D.. Furthermore the elements §(e) are chosen
to satisfy 8(&)t.d(e)~ ! = tofo(z.) for all e € E(G). (This can be achieved, for
example, if one chooses a representative e from each set {e, €} and defines d(et) =
for(z+) 1 and 6(et) = 1). It follows directly from the definitions in 4.2 and 5.1
that this graph of groups automorphism induces the same automorphisms as D
on I1(G) and on 71(G,v), for any v € V(G).
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6. Efficient Dehn twists

6.1. General assumption. For the rest of the paper we always assume that for
any graph of groups G the fundamental group 71 G is a free group of finite rank
n > 2. We remind the reader that the graph I'(G) is always finite and connected.

6.2. Definition. A Dehn twist D = D(G, (2c)cep(g)) is called efficient (called

proper with all twistors non-trivial in [CL2, §13]) if the following conditions hold:

(i) G is minimal: There is no vertex v of valence 1 with v = 7(e) and surjective
edge map f.: G. — G,.

(ii) There is no invisible verter: There is no vertex v of valence 2 with v =
T(e1) = 7(e2) (e1 # ea) such that both edge maps f., : Ge, — Gy, i =1,2,
are surjective.

(iii) There are no unused edges: For every edge e the twistor is non-trivial:
1 # 2. € center(Ge). In particular one has G, = Z for all edges e € E(G).

(iv) There are no proper powers: If r? € f.(G.) and p # 0 then r € f.(G.).

(v) If v = 7(e1) = 7(eg) then the edges e; and ey are not positively bonded:
There are no positive powers m,n such that fe, (2I7) is conjugate to fe, (27,)
in Gy.

6.3. Remark. Conditions (iii) and (v) imply that:
(vi) There are no conjugate triples: There is no vertex v = 7(e1) = 7(ea) =
7(es), where eq,e9,e3 are distinct edges, such that there exist non-trivial
Yi € Ge, (1 =1,2,3) with fe, (y1), fe, (y2) and fe,(y3) all conjugate in G,

Conditions (iil), (iv) and (vi) assert that G is a very small graph of groups, as
defined in [CL2].

6.4. Lemma. Let D = D(G, (2¢)ccp(g)) be an efficient Dehn twist. Then every
vertex group Gy of G has rank at least 2. In particular G satisfies the condition
(*) in Proposition 5.4.

Proof. From 6.2 (iii) and the assumption in 3.1 that I'(G) is connected it follows
that every vertex group has rank at least 1. If for some vertex v of I'(G) one has
Gy = Z, then it follows from 6.2 (iv) that f. is surjective for all edges e with
7(e) = v. Hence, by 6.2 (i) and (ii), there are at least 3 distinct such edges. By
6.2 (iii) each has non-trivial twistor. But then at least 2 of them are positively
bonded, in contradiction to 6.2 (v). Hence every G, has rank at least 2.

By 6.1 and 6.2 (iii), (iv) the group f.(G.) is a maximal cyclic subgroup in
G.()- But then we can pick any r. € G_(.) — fe(G.) to satisfy the condition (*)
in Proposition 5.4., since maximal cyclic subgroups of free groups are malnormal.
This follows easily from considering the standard free action of the free group on
a simplicial tree and the minimal subtree (a line !) fixed by the maximal cyclic
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subgroup. O

6.5. Lemma. Let D = D(G,(%e)ocp(g)) be an efficient Dehn twist. Let W =
roliry ... tgrg € I(G) be a reduced word of length q. Then D (W) = W if and
only if g = 0.

Proof. By definition, words of length 0 are fixed by D,. To see that words
of greater length are not fixed, start by choosing as generator of the cyclic group
G, for each edge e, the element a, such that aZ(e) = z. with n(e) > 0. Since
2z = 21 this choice dictates that n(e) = n(é) and az = a. ! In the word W let
each t; = te;, and set n(e;) = n; and a; = ae; . Let 5 = fe,(2¢;) = fe; ()

We claim that: W = D, (W) with ¢ > 0 would imply

1 = rqflfeq(agﬁnﬁ'“%q)rq

This is impossible since in an efficient graph of groups there are no unused
edges, so that a, # 1 and each n; > 0.

When ¢ =1, W'lD*(W) = (rotlrl)_l(rotlxlrl), and the claim is immediate.
When ¢ > 1, note that D,(W) is reduced, since W is reduced. So in the following
equation with non-reduced right-hand side,

1= WﬁlD*(W) = r;lt(zl .. .rgl(tglrflxlrltg)xgrg : & syl

we must have 1 lzyr; = rflfel(agll)rl € f5,(Gs,) and 7(e1) = 7(82), r1 €

Cor(en
to fz,(Gs,). Thus it is a is a power of fz,(az,). But since rflfel (Gey)r1 also
contains no proper powers, a symmetric argument gives

)- Since there are no proper powers by 6.2 (iv), rflfel (@e, )1 itself belongs

+1
1 fon (a1 = (faz(aea))

By 6.2 (v), the edges e; and ey are not positively bonded, so the exponent sign
above is negative. Since az, = ae‘g1 we conclude (using 3.2) that

. 1, 1
1=W D (W)= #y 1tq 2 .y fep(agh)mara .. . tqzgry
-1 1
=1yt .7y fey (aZQNL"Z)rQ S tqzgrg

Continuing in this fashion, the claim is proved. O

6.6. Lemma. Let D = D(G, (2c).cp(g)) be an efficient Dehn twist, and consider
vertices v,v’ € V(G). Suppose that W € TI(G) is a connected word with initial
vertex v and terminal verter v such that

Dy = adw Dy adyy—1 : m1(G,v") — 71(G, V) .
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Then v =v" and W € G,.

Proof. Straightforward calculation using 5.2 gives for any U € 71(G,v’):
Dy (U) = adw (ady—1p,w) Dv) ady-1(U) .

Thus our hypothesis implies that ady,—1p )y = 1 € Aut(m1(G,v)). Since the
Dehn twist is efficient, 71(G,v) is a free group of rank at least 2, by 6.3. Since
w1 D, (W) lies in the center of this free group, and hence is trivial, this lemma
follows from 6.5. |

Key Observation

The key observation of this paper, stated in Theorem 6.9 below (roughly the con-
verse of Lemma 5.3), is that if two efficient Dehn twists determine conjugate outer
automorphisms, then their graph of groups data are necessarily equal. Thus in
an algorithm for conjugacy it is sufficient to check the graph of groups data. The
main ingredient in justifying this observation is the Parabolic Orbits Theorem
[CL2, 13.2]. For the convenience of the reader, we now describe its content, in a
weakened form and with the terminology adapted to the conventions in this paper.

6.7. Consider the Culler—Vogtmann space CV,, (also called “outer space”) of free
actions of F}, on metric simplicial R-trees (i.e. on trees 7¢ as in 4.4 with 71 (G’ v) =
F, and all edge groups and vertex groups trivial, provided with a m1(G’,v)-
equivariant length on the edges). An efficient Dehn twist D = D(G, (2¢)ecp(g))
defines [CL2, §9] (after having chosen a “marking”, i.e. an identification 71 (G,v) =
E,) a simplex ¢(G) on the boundary of CV;,, given by all possible lengths on the
edges of I'(G). The Parabolic Orbits Theorem then states that under both for-
ward or backward iteration of the induced action of D every point [7g:] of CV,
converges to a point in o(G) (which can be precisely determined in terms of the
translation lengths on 7g, of the twistors of D). As o(G) determines 7g (up to
m1(G, v)-equivariant isomorphisms), one derives as a consequence:

6.8. Corollary. ([CL2, 13.4], adapted version). Let D1 = D(G1,(2¢)ecp(g,))
Dy = D(G2, (2¢)ec B(g,)) be efficient Dehn twists and let b : 71(G1,v) — m1(G2,w)

be an isomorphism with l/)\g = ﬁl/)\lﬁ’l € Out(m1Ga). Then there exists an h-
equivariant simplicial homeomorphism H : Tg, — 1g,.

We have now assembled all ingredients necessary to prove Theorem 1.1 of the
Introduction:

6.9. Theorem. Let Dy = D(G1,(2¢)ecp(g,)) and Do = D(G2, (2¢)ccp(g,)) be ef
ficient Dehn twists inducing automorphisms D, and D, of 71(G1,v) and 71(Go,w)
respectively. Let h : m1(G1,v) — m1(G2,w) be an isomorphism.
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(a) If DQ = thh le Out(wlgg) then there exists a graph of groups isomorphism
H: G| — Gy with H=h and H, (2e) = zp(e) for all e € E(Gy).

(b)If Dy, = h Dyh=! € Aut(r((Go,w) then there exists a graph of groups iso-
morphism H : Gi — Gy with Hp(v) = w, Hy = h and He(2e) = 2y for all
eec E(G).

Proof. (a) From Corollary 6.8 and Lemma 4.5 it follows that there is a graph of
groups isomorphism H : Gi — Go with H = h. We consider the Dehn twist D' =
D(Ga, (Hc( ))H< )€E<g2)) By Lemma 5.3 we have D= HD1H L e Out(m1Ga).

Hence, since H= h, the hypothesis DQ — thh L implies D= DQ € Out(m Ga).
Thus Lemma 6.4 and Proposition 5.4 prove H.(z.) = Zp(e) for all e € E(Gy).

(b) Consider the outer automorphisms Dy e Out(71(G1)) and Dy € Out(m1(G2))
which are determined by D, and D,,. By Part (a) there exists a graph of groups

isomorphism H : G| — Go with H = h and He(ze) = zp(e) for alle € E(G1). B
definition 4.2, H= f{*\v where H,, : m1(G1,v) — 7T1(927H1-\(v)). Thus ﬁ; = h,
and by 3.11 there is a connected word W' € II(G2) with initial vertex Hp,) and
terminal vertex w such that

Hy = adwh.
Again, let D' = D(Ga, (He(ze))H(e)EE(QQ)). By 5.3 we then have

D), = H.D.H; " : TI(Gy) — TI(Go)
and hence
} - -1
D HF(’U) = H*U D’U H*'u
= (Hwh™) Dy, (hHL)
= adw Dy ady,1: 71 (G2, Hp(v)) — 71 (G2, Hp(v))
Thus by Lemma 6.6, Hp(v) = w and W € G,. Since Hyy = adw h : m1(G1,v) —
71(G2,w) we may now define a new graph of groups isomorphism K : G1 — G2

with the desired properties by letting K be identical with H, except that, for edges
e € E(Gy) with 7(€) = v, we have dx(e) = ady,—1 g (e). O

7. Centralizer, fixed subgroup and index of an efficient Dehn
twist

In this section we derive some properties of efficient Dehn twists which follow easily
from the material presented in the previous sections. Notice that the subsequent
68 can be read independently from this section.
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7.1. Proposition. (a) Let D = D(G, (2¢)ecp(g)) be an efficient Dehn twist with

induced outer automorphism D € Out(r1(G)). Then the centralizer C(D) of D in
Out(m1(G)) is given by

C(D)={H | H:G—G, Hez)=2q(y foralee B(G)}.

(b) If v € V(G) the centralizer of the automorphism D, in Aut(m1(G,v)) is given
by

C(Dy) ={Hw | H: gig, H.(ze) = ZH(e) for all e € E(G), Hp(v) =v}.

Proof. In both (a) and (b) it follows from the special case D1 = Dy in Lemma
5.3 that the right hand side is contained in the left hand side. The opposite
inclusions follow similarily from Theorem 6.9 (with v = w in case (b)). O

7.2. Proposition. If D = D(G,(2c)ccp(g)) i an efficient Dehn twist and v is a
vertez of G, then Fiz(D,) =G, .

Proof. This is an immediate corollary of 6.5 . |

7.83. For any graph of groups G , with finitely generated fundamental group
isomorphic to a free group F,, and finitely generated vertex and edge groups, an
elementary Mayer-Vietoris argument in group homology (pointed out to us by M.
Bridson) gives the formula

rh(ri(G) = Y th(Gy) — Y. th(Ge) + rh(mi(T(G))

veV(G) ecET(G)

where E1(G) consists of one “positively oriented” edge from each pair of oppositely
oriented edges in E(G) — so that #E1(G) is the number of geometric edges in
the graph. But note that rk(m1(I(G)) = 1 — x(T(G)) = 1 + #ET(G) — #V(G).
Thus, if every group G, is isomorphic to Z, we obtain:

rk(m(G) —1 = Y rk(Gy) — #EY(G) + (1+ #EHG -#V(9)) -1

veV(G)

- Z (rk(Gv) - 1)

veV(G)

7.4. In [GJLL] the indez of a free group automorphism ® is defined by

nd(®) = rk(Fix(®)) + a(®)/2 — 1
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where a(®P) denotes the number of equivalence classes of attracting infinite
fixed words of ® , see [GJLL] or [CL1]. The main theorem of [GJLL] asserts that
if 1, P9, - P, are automorphisms of a free group F), of rank n which determine
the same outer automorphism class ¢ and are pairwise non-similar (i.e., ®; #
ady, ®; ad,,—1 for any u € F, if ¢ # j), then one has

Z nd(®;)) < n — 1.

i=1,...q

The index ind(¢) of the outer automorphism ¢ is defined to be the maximum of the
left hand side, taken over all possible sets of pairwise non-similar automorphisms

{P1, Lo, ..., D4}

7.5. Consider vertices v,w € V(G) and a connected word W € I1(G) with initial
vertex w and terminal vertex v. Then 5.2 gives

adw Dy ady,—1 = ady p, (w-1)Dw: 71(G,w) — 71(G,w) ,

and, as WD*(W*I) € 71(G,w), this automorphism also represents the outer au-
tomorphism D. Furthermore, by 7.2, one has

Fix (adw Dyady—1) = adw (Fix (Dy)) = adw (Gy) ,
and hence, by Lemma 6.4 , rk(Fix (adw Dyady,—1) > 2 .

7.6. Lemma. Let W,W’' € II(G) be connected words with initial vertex w and
terminal vertices v and v respectively. Then the automorphism adw Dyady,—1
and adw Dy ady, -1 of m1(G,w) are similar if and only if v="1".

Proof. Tfv =/ then W'W~! € 71(G,w) and ady 1y -1 (adw Dy adyy—1) adyyyr-1

= adw D ady,,—1. Hence the two automorphisms are similar.
On the other hand, for any W” € m1(G,w) the equation

adW/r(adWDvadWA )adW/,A = adW/Du/adW,q

is equivalent to

adW/—lw//WDuadw—lwl/—lw/ — D’U’ )

Thus Lemma 6.6 implies v = v'. O
As a direct consequence of 7.2 - 7.6 we obtain:

7.7. Corollary. Let D = D(G,(2e)ecp(g)) be an efficient Dehn twist and let
w € V(G) be any vertex. We have:
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(a) ind(D) = rk(m1(G)) — 1. X

(b) Every representative € Aut(m1(G,w)) of D with ind(®) > 0 is similar to
adw Dyady,—1 for some vertex v € V(G) and any connected word W with
initial verter w and terminal verter v.

(c) None of the D, has attracting infinite fized words: a(Dy,) =0 for allv € V(G).
O

Notice also that a particular interesting case arises if I'(G) has only one vertex v,
as then rank Fix(D,) = n. Automorphisms & € Aut(F,) with rank(Fix(®)) = n
have been investigated in [CT]; it follows from [L2] or [CT] that they are in fact
all Dehn twists with a single vertex. Hence our solution to the conjugacy problem
applies also to this class of automorphisms.

We conclude this section by restating our structural result in Theorem 6.9 in
a language which comes close to a "normal form” for Dehn twists:

7.8. Assume we are given a finite connected graph I' and two finite families of
integers (r(v))yey (ry and (n(€))ecp(r) , all of which elements satisfy r(v) > 2,
n(e) 2 1 and n(e) = n(e) . Furthermore let (ce).cpry be a family of elements
Qe € F,(T(E», where F,, denotes the (standard copy of a) free group of rank n € N.

We consider the graph of groups G given by I'(G) = T' | v,: G, iﬂ,@ ,

Ye: Ge —.7Z and folae) = v, 1 (), with a. defined through a, = 2 1(1) (for all
veV(I'), ee E(I')). We assume that vz = —v. .

Let D be the Dehn twist based on G with twistors aZ(e). If D is efficient, then
we call the data set

A= (F7 (r(v))vEV(F)7 (n(e))eEE(F)’ (ae)eEE(F))

efficient and write D = D(A), G = G(A). Obviously we can associate to every
efficient Dehn twist D an efficient data set A with D(A) = D.

7.9. Corollary. (a) Two Dehn twists D = D(A) and D' = D(A'), defined

by efficient data sets A = (I(r(v))yev ), (n(€))ecn(r), (Ce)een()) and A" =

(I (r(W))wev ) (7€) ecp(r), (Ce)ecp(r) » determine conjugate outer automor-

phisms if and only if there is a graph isomorphism H: T' — I' and automorphisms

Py F () = Fr) for each v € V(I'), which satisfy

(i) r(v) =r(H(@)) for allv e V(I'),

(ii) n(e) = n(H(e)) for all e € E(I'), and

(iii) [ ()] = Py(e)lve] for all e € E(I') (where brackets denote the conjugacy
class).

(b) For vertices w € V(I'),w’ € V(I') the automorphisms Dy, and D), determined

by D and D' as in (a) are conjugate if and only if there are H and ®, as above,

which satisfy the conditions (i) - (iii), and furthermore
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(iv)H(w) = w'.

Proof. This is a direct consequence of Theorem 6.9. O

8. The algorithm

In this section we describe a complete algorithm which decides whether or not
two given Dehn twists define conjugate outer automorphisms. The algorithm
consists of two parts: The first part (Algorithm I) is an algorithm which, given an
arbitrary Dehn twist D, constructs an efficient Dehn twist D’ with induced outer
automorphism D conjugate to D. The second part (Algorithm IT) checks whether
two given efficient Dehn twists D1, Do define conjugate outer automorphisms.

8.1. Throughout this section we assume that the data for D = D(g, (zg)eeE(g))
are given combinatorially as follows: For every vertex group G, and edge group
G one has specified some basis and has given the injections f. in terms of these
bases. If the twistor z. # 1 then G, is infinite cyclic, since it has non-trivial center,
and we choose the generator a. so that z. = aen(e) with n(e) > 0. We call the
exponent n(e) € Z the twist exponent. If z. = 1 we set n(e) = 0. This convention
implies that n(e) = n(é) and az = aZ'!, since 25 = 27

8.2. The Moves. We describe 5 operations by which a given Dehn twist D =
D(g, (aZ(e))eeE(g)) may be changed to a Dehn twist D' = D(G’, (aZ(e))eeE@))

with induced automorphism D conjugate to D:

(1) Transition to a proper subgraph: 1f I'(G) contains a vertex v of valence 1 and
if the adjacent edge e has f. : G. — G, an isomorphism, then G’ is obtained
from G by deleting both v and e, with all other data unchanged.

(2) Delete an invisible verter with negatively bonded edges: 1f a vertex v of I'(G) is
adjacent to precisely 2 edges €’ and e” (both oriented towards v), and if both
edge injections fer, fo are isomorphisms such that fo (ae) = fer(a_; ) then
G’ is derived from G by replacing e’, ¢ and v by asingle edge e which runs from
7(¢') to 7(€"). Define Go = Gy, fo = fonfol, fo = for oy ae = fur(aw) and
n(e) = n(e') +n(e").

(8) Fold positively bonded edges: Consider two edges e, e’ with twist exponents
0 < n(e) < n(e') and common end point 7(e) = 7(e’) = v, such that fe(a.) =
7 for(ae )71 for some r € G, . Replace ¢ by a new edge ¢’ which joins (&)
to 7(€) and define G = G, aer = aer, for = for, fer(aer) = fe(ae) and
n(e”) = n(e) — n(e).

(4) Contract unused edges: If e is an edge with a2<5) = 1, then replace e togeth-
er with its endpoints 7(e), 7(€) by a single vertex v with vertex group an
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amalgamated product
Gy =Grg) & Grey I 7(e) #7(e)
or an HNN-extension
Gy = (Gr(e), 0 | 07" fa(Ge) 0 = fo(Ge)) i 7(e) =7(e) .

For any edge ¢’ pointing towards 7(e) or 7(€) replace fo by the composition
of fer with the canonical injection of G_ () or G_ ) into Gy.

(5) Get rid of proper powers: If the generator a. of an edge group G, is mapped by
fe to a proper power gf € GT(8>, then we change G as follows: We replace e by
anew edge e’ with same endpoints as e and Gor = (g), ae = g, n(e’) = pn(e).
We replace the vertex group GT(E) by a new group

Gy =Gz * (9

and define f., as well as f& to be the canonical injections. For any edge ¢”
pointing towards 7(&) replace f.~ by the composition of f.» with the canonical
injection of GT(é) into GT(E,).

8.3. Lemma. For any of the operations (1) — (5) in Definition 8.2 and prop-
er choices of vertices w € V(G), w' € V(G') there is an isomorphism between

fundamental groups p: m(G,w) — 71 (G’,w') which satisfies l/)\’ﬁ = ﬁﬁ

Proof. For operation (1) we choose w # v and define w’ to be the corresponding
vertex of I'(G") . The isomorphism p is given through replacing every letter in a
reduced word of 71 (G,w) by the corresponding letter of w1(G’,w’) . For the other
operations we proceed similarily: For (2) we choose w # v and define p through
deleting in every word any occurence of ¢ or t;l , and through replacing any t.»
by t;l (and t;,l by t. ) as well as any r € G, by fz(r), while leaving all other
symbols unchanged. For (3) choose w arbitrary and define p through replacing
any tos by the product tort.r (and any tz by r—ltztz). For (4) let w # 7(€), 7(e)
(and thus w’ # v), and in the amalgamated product case simply delete any ¢. ,
whereas in the HNN case replace t. by € (and similarily with the inverses). For
operation (5) we chose w arbitrary and replace t. by to (and ¢z by tz ) .

The equation D\/ﬁ = f)ﬁ can be verified directly from these definitions for p and
from the Definition 5.1. O

8.4. Proposition. For any Dehn twist one can iteratively apply the operations
(1) = (5) from 8.2 only a finite number of times.

Proof. Notice that the following facts are true for each of the operations (1) — (5):
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(a) The number of edges does not increase when passing from G to G’.

(b) In the free group 71(G’,v’) the set of conjugacy classes of edge group gener-
ators {[fe(ae)] | e € E(G')} differs from the set {p[fe(a.)] | e € E(G)} (for
p as in 8.3) only in that some classes of the latter may have been deleted or
replaced by proper roots.

Hence (1), (2), (4) and (5) can be applied only a finite number of times: The
operations (1), (2) and (4) strictly decrease the number of edges in G, whereas (5)
replaces some of the p[f.(ac)] by a proper root. But every conjugacy class in a
free group has only finitely many proper roots.

Operation (3) strictly decreases the total number of twist exponents and hence
can be applied only finitely many times before, after or between the operations of

type (1), (2), (4) or (5). L

8.5. Proposition. If none of the operations (1) — (5) can be performed on a given
Dehn twist D, then D is efficient.

Proof. This follows directly from the definitions. O

8.6. Algorithm I. Given any Dehn twist D, check whether any of the operations

(1) — (5) in 8.2 can be performed. (As D is given as in 8.1 this can be done in

finitely many steps.) If so, do the operation; in case more than one is possible,

chose any one at random. Then rename the obtained Dehn twist D’ to D and

repeat the procedure. If none of the operations can be performed, stop.
Summarizing 8.3 — 8.6 we obtain:

8.7. Corollary. Algorithm I transforms any Dehn twist in finitely many steps
into an efficient Dehn twist without changing the conjugacy class of the induced
outer automorphism. O

Next we present the algorithm for deciding the conjugacy problem for efficient
Dehn twists:

8.8. Algorithm II. Given two efficient Dehn twists D1 = D(Gy, (a2<5))66E<g1))

and Dy = D(Ga, (a’;(@))eeE(gz)), proceed as follows:

(1) Check whether there is a graph isomorphism Hp : I'(G1) — TI'(Ga) with
rank(G,) = rank(G (,)) and n(e) = n(Hr(e)) for allv € V(G1), e € E(G1).
If so, list all (finitely many) such graph isomorphisms.

(2) For each Hr listed in (1) and every v € V(G1) check whether there is an iso-
morphism Hy : Gy, — G, such that Hy(fe(ae)) is conjugate to fr .y (ag(e))
for all e € E(G1) with 7(e) = v. This can be done by applying the Whitehead
algorithm to the two families of conjugacy classes,

([felae)l | e € E(G1), 7(e) = v)
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in G, , and

(Fu)ylame)l | e € E(G1), (e) =)
in G(y) , see for example [H] .

8.9. Proposition. Algorithm II decides whether, given two efficient Dehn twists
D1 = D(Gy, (afZ(E))EEE(gl)) and Dy = D(Gs, (aZ(E))GEE(%)) , there erists a graph
of groups isomorphism H : G| — Go with He(ag(e)) = a?g)(e)) for all e € E(Gy).

Proof. If the algorithm finds in step (1) a graph isomorphism Hp and in step
(2) isomorphisms H, for all v € V(G1) with the desired properties, then we can
complete these data to a graph of groups isomorphism H : Gi — Go as follows: We
define He by He(ae) = ap.) and define the elements d(e) to be the elements in
G (r(e)) Which conjugate H_(.y(fe(ac)) to fr(e)(ag(e)), which exist by step (2).
The equation (*) in 4.1 follows then directly from these definitions. Thus H is a
graph of groups isomorphism and from n(e) = n(Hp(e)) as given through step (1)
we obtain He(a?(ﬁ)) = a?{(é{)(e)) for all e € E(G1).

Conversely, if a graph of groups isomorphism H : G; — Gg with He(a2<5)) =
a?{((lz )(5)) for all e € F(Gy) exists, then it explicitly gives a graph isomorphism Hp
as in (1) and vertex group isomorphisms H, as in (2). O

8.10. Corollary. Algorithm I and Algorithm II together give a solution to the
conjugacy problem for outer automorphisms of free groups defined by Dehn twists.

Proof. Let D1 and D be two (not necessarily efficient) Dehn twists, and let D
and D) be the efficient Dehn twists based on, say, G{ and G5, which are obtained

from D1 and Dgy by Algoritb\m I. BX\ Lemma 8.3 the automorphisms D\l and f)\g

are conjugate if and only D’1 and D’2 are. Algorithm II decides whether there
exists a graph of groups isomorphism H : G — G5 which preserves twistors. If so,

1/)\1 and l/)\g and hence l/)\’l and 13\’2 are conjugate, and otherwise they are not: This
is precisely the content of Theorem 6.9 (a) . O

8.11. Notice that Algorithm II also solves the conjugacy problem for (non-outer)
automorphisms of free groups which are given by efficient Dehn twists: By Theo-
rem 6.9 (b) two such automorphisms D,, and D!, are conjugate if and only if there
exists a corresponding graph of groups isomorphism H which preserves twistors
and maps v to ©’. But the existence of such an H is detected precisely by Algo-
rithm IT.
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