Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 74 (1999)

Artikel: Platonic surfaces

Autor: Brooks, Robert

DOl: https://doi.org/10.5169/seals-55780

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 03.12.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-55780
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

© 1999 Birkh&user Verlag, Basel
Comment. Math. Helv. 74 (1999) 156-170

0010-2571/99/010156-15 $ 1.50+0.20/0 Commentarii Mathematici Helvetici

Platonic surfaces

Robert Brooks*

Abstract. If Sp is a Riemann surface with a complete metric of finite area and constant cur-
vature —1, let S¢ denote the conformal compactification of Spo. We show that, under the
assumption that the cusps of S are large, there is a close relationship between the hyperbolic
metrics on Sp and Sc. We use this relationship to show that liminfy oo A1(Px) > 5/36, where
the Platonic surface Py is the conformal compactification of the modular surface Sy.

Mathematics Subject Classification (1991). 58G99.

Keywords. Eigenvalue, Riemann surface, Ahlfors-Schwarz Lemma.

Let T' = PSL(2,7Z) be the group of linear fractional transformations

az+ b
cz+d

2 —>

with integer coefficients with determinant 1, and let I'(k) denote the kth congru-
ence subgroup

({2 22 )= Ymn}

I'(k) then acts on the upper half plane H 2 with quotient a hyperbolic surface
Sy of finite area. According to a theorem of Selberg, we have:

Theorem 0.1. ([Se]) The first eigenvalue \1(Sy) of the Laplacian acting on Sy
satisfies:

A1(Sk) > 3/16.

In this paper, we will consider a family of compact surfaces Py, which we
call the Platonic surfaces. They may be described conformally as being obtained

*Partially supported by a Guastella fellowship, the Fund for the Promotion of Research at
the Technion, and the M. and M.L. Bank Mathematics Research Fund.
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from Sy by “filling in” the punctures of Si. For & = 3,4, and 5, the surfaces Py
correspond to the Riemann sphere with a tesselation by regular spherical k-gons.
For k > 6, the surfaces Py carry a similar hyperbolic tesselation, and are thus
natural generalizations to hyperbolic geometry of the classical Platonic solids. See
[BFK] and [SGCC] for some alternate descriptions of these surfaces in terms of
graph theory.

In this paper, we will show:

Theorem 0.2. The first eigenvalue of the Laplacian A1 (Py) satisfies:
lim inf A\ (Py) > 5/36.
k—o0

The number 5/36 arises already in the work of Huxley [Hu] and Sarnak-Xue
[SX] in their geometric approach to the Selberg 3/16 Theorem, see also [TFSG].
Indeed, we will prove Theorem 0.2 by showing that the surfaces Py are sufficiently
similar to the surfaces S} for the Huxley-Sarnak-Xue argument to apply to them
as well.

More generally, we will consider the following situation: Let Sp be a Riemann
surface with a complete finite-area metric of constant curvature —1. Then there
is a unique compact Riemann surface So and finitely many points {p1,... ,px},
such that So is conformally equivalent to S¢ — {p1,... ,pi}

A natural question is to relate the hyperbolic geometry of So with the hyper-
bolic geometry of S, This would seem at first glance to be problematic, since
Sc need not in general carry a hyperbolic metric. Even if it does carry such a
metric, So and S¢ will still have some striking differences — for instance, Sp will
be non-compact while So will be compact.

Nonetheless, our main technical result in §2 below will show that, in the case
where all the cusps of Sp are large in a sense to be defined in §2 below, there
is a close relationship between the hyperbolic metrics on So and S¢ (and, in
particular, S carries such a metric). Namely, there are neighborhoods {B;,(C;)}
of the cusps C; of So and {B(r;,p;)} of the points p; which depend only on the
size of the cusps, such that outside these neighborhoods the metrics are close.

The main idea in establishing that these metrics are close outside of these
neighborhoods is to use a variant of the Ahlfors-Schwarz Lemma [A] due to Wolpert
[W], which we will describe in §2 below.

We will give two applications of this result.

The first one, in §3 below, shows that, under the assumption of large cusps,
the lengths of short geodesics on S are bounded by the lengths of short geodesics
on Sp. This is the crucial step in applying the Huxley-Sarnak-Xue machinery to
the surfaces Py.

The second application in §4 below shows that, under the assumption of large
cusps, the Cheeger constants h(So) and h(S¢) are bounded in terms of one another

1

mh(so) < h(Sc) S C(D)A(So)
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by a constant C(I) which tends to 1 as the size of the cusps tends to infinity.
It follows from the inequalities of Cheeger [Ch] and Buser [Bu] that the first
eigenvalues of Sp and S¢ are bounded in terms of one another.

In [BBD], a different method was employed to compactify the surfaces S, to
obtain compact surfaces with A1 bounded from below. The present method con-
trasts with the method of [BBD] in a number of ways. First of all, the surfaces
S obtained here can in general have large injectivity radius, as we show to be the
case with the surfaces Py, so the compact surfaces So which can arise from this
construction can reach parts of the moduli space of surfaces not accessible by the
methods of [BBD]. This point of view is developed at length in the paper [TS].

Secondly, the method of [BBD] and the present paper can be used together
to construct families of surfaces of varying large genus whose Cheeger constants,
and hence first eigenvalues, are bounded uniformly from below, by applying the
present method to some of the cusps and the method of [BBD] to the remaining
cusps. We will pursue this line of thought in detail elsewhere.

1. Some curvature calculations
We begin by considering two metrics dsQD and ds% on the punctured hyperbolic

plane H? — pt. The metric dsQD is the standard hyperbolic metric on H2. If we
write the punctured hyperbolic plane as the punctured unit disk

D*={ze C:0< |z <1},

then the metric ds%, may be written as

ey = | |2[da? + dy?),

1—7r2
where we have set r = |z|.

The metric ds% may be described as the unique metric in the standard confor-
mal class which is complete on H2 — pt and has constant curvature —1. It may be
realized by taking the quotient C' of the standard hyperbolic metric on the upper
half-plane H?2 given by

1
ds? = ?[de + dy?]

by the isometry A : 2 — z+ 1, and by identifying the quotient HQ/A with D* by
the map

By 627”2.

From this, it is easy to write out the explicit expression for ds% given by

ds% = [———P[de” + dy?].

rlog(r)



Vol. 74 (1999) R. Brooks 159
The main goal of this section is the following:

Lemma 1.1. For every e, there exists an R and a metric ds%% on D* with the
following properties:
(i) ds% is conformally equivalent to ds, (and hence also ds%) on D*.
(#) Outside a ball of radius R about 0 in the metric ds%, cls?;é agrees with the
metric ds,.

i) The curvature of the metric ds2 is everywhere between — LY and — 1+¢).
R T+=

(iv) ds?, extends across z =0 to give a smooth metric on D = {z : || < 1}.

We begin the proof by considering radially symmetric metrics on D* of the
form
ds? = f2(r)[da® + dy?] = f2(r)[dr® + r2d6?).

The curvature K of the metric ds% is given by the formula

o 4]
= f2 .
Setting Ky = —1, we have the solutions
2
hir) = 1—1r2
corresponding to dsQD and

-1 1

fQ(r) = —

rlog(r)  rlog(l/r)

corresponding to ds%.
We will need some simple facts about f1 and fa:

Lemma 1.2. f{ and fy satisfy the following:
(a) lim, 1 % =1,

(b) f2 > f1.

Proof. We first observe that as » — 1, both fi and fo blow up. Hence, by
L’Hospital’s rule,

1
hml% = hm1 (1‘11)
r— 1 r— (72_)
i —L=7)
r—1 —2(rlog(r))

- lim ———=
o1 —2(log(r) + 1)
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This establishes (a).
(b) amounts to the assertion that

1—72 > —2rlog(r).
At 1, both sides are equal to 0, so this inequality will follow from the inequality
—2r < =2(log(r) + 1),

or
r > 14 log(r).

Again, we get equality at r = 1, so the assertion will follow from
1<1/r,
which holds when r < 1. O

We now transform the problem of constructing the metrics cls%;é from a confor-
mal problem on the unit disk to a problem of metrics of the form

dsg = g?(r)|dr® + sinhQ(r)dGQ]‘
The curvature of this metric is given by

—[(£) + 1+ Z coth(r)]

By, =
g
92

When g = 1, we obtain the standard hyperbolic metric dsQD. It follows from
our calculations above that the metric ds% is given by the function

_h
f1

where R(r) = tanh(r/2) is the Euclidean distance from 0 of a point whose hyper-
bolic distance from 0 is . We thus have

h(r) (R(r)),

1
) = sinh(r) log(coth(r/2))”

It follows from Lemma 1.2 that h(r) — 1 as r — oo, and that h(r) > 1. We
will need some more properties of h:

Lemma 1.3. h(r) has the following additional properties:
(a) K (r) is negative and tends to 0 as r — oo.
(b) K'(r) is positive and tends to 0 as r — oo.



Vol. 74 (1999) R. Brooks 161

Proof. 1t is easily seen that A’ is negative if and only if the same is true of its
logarithmic derivative.
We may then compute

,  cosh(r) (coth(r/2))
log(h(r)" =~ coth(r/2) Tog(coth(r/2)]
B _[cosh(r) B 1 |
~ 'sinh(r)  sinh(r)log(coth(r/2))

1
B ~ sinh(r) log(coth(r/2)) [cosh(r) log(coth(r/2)) —1].

From the fact that the curvature ;, is equal to —1, or by a direct calculation,
we see that

(log(R))" = (h* = 1) — (log(h))’ coth(r).

We now claim that assertions (a) and (b) both follow from the assertion that
cosh(r) log(coth(r/2)) — 1 is positive, and tends to 0 as r — oo. This is evident in
part (a), while for part (b) we use the equation

" R (h/)Q
(log()" = 7=~ 4o
to establish that if (log(h))” is positive and tends to 0 as » — oo, then the same
is true of h.
The fact that cosh(r)log(coth(r/2)) — 1 is positive and tends to 0 as r — o
follows readily from L’Hospital’s Rule, as above.
This proves Lemma 1.3. O

We will now prove Lemma 1.1 according to the following scheme: it is evident
from the formula for curvature that, for any e, there exists a § with the following
property: let h. be any function which satisfies the following conditions:

1<h.<1+6
|hL coth(r)| < §
and

|hZ| <6,

then the metric
ds?_ = h2[dr? + sinh?(r)d6?]

will have curvature between —(-1%) and —(1 +¢). We must demand as well that
h: — 1 as r — 0, in order to obtain a smooth metric at » = 0.
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Given &, we will then construct h. as follows: let k(r) be a smooth function
which approximates the discontinuous function kg(r) defined by

ko(r) =0 for0<r<Rg-—3
= for Rp —3<r<Ryp—2
=—c1 for Rg—2<r<Rp-—-1
=9 for Ro—1<r <Ry
= h"(r) for r > Ry,

where we will choose Ry, ¢1, and ¢y later.
In order to have the anitderivative ki(r) of kg with k1(0) = agree with h/(r)
for r > KRp, we must have
o = h/(Ro).

We then let ko(r) be the antiderivative of kq(r) with k2(0) = 1. In order for this
to equal h(r) for r > Ry, we must have
c h(Ry
o1 = (h(Bo) 1) — 2 = (h(Bo) 1) - 70
One may then choose k to be a smooth function approximating kg, agreeing with
kg for R > Rg, and satisfying the same conditions at Ry as kg. Our desired
function h. will then be the function which satisfies

R =k, RL(0)=0, ha(0)=1.

We may then choose Ry sufficiently large such that coth(Rgp) and h(Rg) are
close to 1, and R/(Rp), "'(Rp) are close to 0.
This then completes the proof of Lemma 1.1. O

2. A comparison theorem

Let So be a Riemann surface with a complete metric ds%o of finite area and
constant curvature —1. Then each cusp C; has a neighborhood which is isometric
to a neighborhood of infinity in C' = H2/(z ~ 2 + 1).

For z in such a neighborhood, let {(z) denote the length of the shortest closed
horocycle through z. In terms of the coordinate C, we have that

1
l(z) = —.
® =35
We may compactify So to obtain a compact Riemann surface S in the fol-
lowing way: for each cusp C;, let

Bi(Cy) ={2€C;:1(z) <1}
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Then B;(C;) is conformally equivalent to a punctured disk, with the equivalence
given by the map z — 27,

We may then replace each neighborhood B;(C;) with a solid disk to obtain S¢.
This construction defines a unique conformal structure on S¢, and exhibits Sp
conformally as

So =Sc —{p1,... ,px}-

Under the map €' — D given by z — 2™ the distance r from 2™ to 0 in
the hyperbolic metric on D is related to I(z) by

21

 log(gthy’

I(2)

For each p; € S¢, let ds%c denote the hyperbolic metric on S, assuming that
S¢ carries such a metric, and let B(r, p;) denote the ball of radius r

Definition 2.1. The surface So has cusps of length > if, for each i, there is a
stmple closed horocycle h; about the cusp C;, such that each h; has length > 1, and
such that all the h;’s are disjoint,

In this section, we will prove:

Theorem 2.1. For every e, there is an | and r such that, if So has cusps of
length > 1, then outside of U; Bi(C;) and U; B(r,p;), we have

1
(1—+€)d5%0 <dsy, <(1+e)dst,.

Proof. Given &, choose Ry as in Lemma 1.1, and assume that the cusps of S have
length at least
27
lo= —1 I
og( ER;IO ) )

We may then replace the hyperbolic metric on each cusp by the conformally equiv-
alent metric given by Lemma 1.1. The resulting metric then extends across the
cusps to give a new metric dsg, Ro O Sc with the following properties:

(i) dngo agrees with the hyperbolic metric on S outside of U; B, (C;).

(ii) dsgy Ro 18 conformally equivalent to the hyperbolic metrics on So and Sc.

2

(iii) The curvatures of dsZ p  are everywhere between —(-1%) and —(1 +¢&).

We now wish to compare the metric ds; Ro With the hyperbolic metric on Sc.
This will be carried out using the following lemma of Wolpert [W], which is a
generalization of the Ahlfors-Schwarz Lemma [A]:
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Lemma 2.1. ([W]) Let S be a compact surfacce of genus at least 2. Let ds?
and do? determine the same conformal structures. Provided the Gauss curvatures
satisfy

r(ds?) < k(do?) <0,

then ds? < do?2.

To prove Theorem 2.1, we apply Lemma 2.1 to the metrics (1 +£)ds§7Ro (resp.

(-Iﬁ)dsgﬁo) and ds%c. Since (1 + g)dsg’Ro has curvature satisfying
R((1+)ds2 g,) = —1 = r(ds2,)
and similarly

1
1+e¢

)ds2 p,) < w(ds?,),

r((

we conclude that

1 2 2 2

(1_—H‘)ng’RO S dSSc S (1 +€)dSE,Ro'

Since dsgyRO agrees with ds%o outside the cusp neighborhoods By, (C;), we

have the same inequality with the metric dsg R Teplaced by ds% , outside these

neighborhoods. Furthermore, the image of the neighborhood By, (C;) is contained

in the ball B(R1,p;) computed in the metric dsgyRo, where Ry = (1 + £)Rg. But

this ball is contained in the ball of radius (1 + £)!/2R; computed in the metric
ds% » by the above inequality.

We may now take r = (1 + 5)1/2R1 to complete the proof of Theorem 2.1. [

We remark that this argument shows as well that the image of By, (C;) contains

B(mg%szomi) — Pi-

3. Counting short geodesics

In this section, we will relate the lengths of short geodesics on S with the lengths
of short geodesics on Sp. We then use this to give a proof of Theorem 0.2.

We first observe that if v is a closed geodesic on Sp, then its image in S¢ is
shorter, by the standard Schwarz Lemma, and hence the geodesic representing it
will be still shorter. It may indeed be a great deal shorter, and even nullhomotopic.

We will, however, give a bound for lengths of geodesics on Sg in terms of
lengths of geodesics on S of the following form:

Lemma 3.1. For | sufficiently large, there is a constant §(1) with the following
property: Let So have cusps of length > l. Then, for every geodesic v in Sc, there
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is a geodesic ¥' in So, such that the #mage of +' in Sg is homotopic to ~y, and
length() < length(v') < (1 + 6(1))length(~y).

Furthermore, 6(1) — 0 as | — oo.

The idea of the proof may be paraphrased as follows: we will choose an r9 larger
than the r of Theorem 2.1, such that any geodesic which enters B(ro,p;) can be
“pushed out of the way” to avoid B(r,p;). The increase in length of the curve
will then be small compared to the legth involved in going from the boundary of
B(ra,p;) to the boundary of B(r,p;). The image of this “pushed away geodesic”
in So will then give the homotopy class for «'.

We will need the following elementary:

Lemma 3.2. Given §1 and ry, there is an ro with the following property: let ~
be any curve in the ball B(ra,xq) of radius ro in the hyperbolic plane H?, whose
endpoints lie in the boundary of B(ro,xzq) Then there is a curve 4 homotopic to
with a homotopy fizing the endpoints, such that % does not meet the ball B(ry, zg),
and

length(7) < (1 + 61)length(~y).

Proof. Indeed, we may choose 4 to agree with + up to the first time ~ enters
B(ry,z0) and after the last timey exits B(ry,zg), and to travel around the perime-
ter of B(ry,zg) from the entry point to the exit point. Choosing r1 such that the
length (r1) of the perimeter of B(rq,zg) satisfies

I(r1)
2(rg —r1)
certainly gives r9 with the desired properties.
We now can complete the proof of Lemma 3.1 as follows: Given 4, let us write

1+0=(/1+e)(1+d)

for some £ and 1. We then choose r{ as in Lemma 2.1 and r9 as in Lemma 3.1.
Then, if the cusps of So have length > [, where [ is sufficiently large so that the
images of the B;(C;)’s all lie within the corresponding B(r2,p;)’s, then we may
modify the curve v to a curve 4 which does not meet any B(r1,p;), increasing its
length by a factor of at most 1 + §;. When we now measure the curve % in the
metric ds?_, its length increases by a factor of at most /T +&1. If we denote by
~' the geodesic in the homotopy class of 7 in Sp, then we clearly have that

< o1

length(y") < (1 + &)length(vy).

The inequality length(~) < length(v’) then follows from the Ahlfors-Schwarz
Lemma, as mentioned above.



166 Platonic surfaces CMH
This concludes the proof of Lemma 3.1. O

We will now prove Theorem 0.2. As indicated in the introduction, it will follow
from the Theorem of Huxley [Hu] and Sarnak-Xue [SX], see also [TFSG] for a
discussion.

Suppose that Ry is a family of Riemann surfaces, such that PSL(2,Z/k) acts
on Rj;. We then have:

Theorem 3.1. ([Hu], [Sx]) Suppose that there are constants c1,co, and c3, and

for all e > 0 a constant c4(g) such that:

(a) c1k3 < vol(Ry,) < e3kd.

(b) If fi is an eigenfunction of the Laplacian on Ry, invariant under the action of
PSL(2,Z/k) with eigenvalue A, then A > 5/36.

(c) For all e, the number of geodesics of length < (6 — ) log(k) on Ry is at most
cq(e)kOte.
Then

liminf A1 (Ry) > 5/36.
k—o0

It is argued in detail in [Hu| that the surfaces S, = HZ2/T'(k) satisfy these
conditions. The only non-trivial part is to verify (c¢). This is done with an explicit
calculation with traces of matrices satisfying the congruence condition.

We now turn our attention to showing that (a)-(c) obtain for the surfaces Py
as well.

Observing that the quotient of P, by PSL(2,Z/k) is the hyperbolic triangle
T}, with angles 7/3,7/3, and 27/k, while the quotient of Sy, by PSL(2,Z/k) is the
hyperbolic triangle with angles 7/3,7/3, and one ideal vertex, we see that

vol(Py) = (1 — 6/k)vol(Sk),

from which (a) follows immediately.

Furthermore, if fj is an eigenfunction with eigenvalue A on P} invariant under
PSL(2,Z/k), then f;, descends to a function on T} whose Rayleigh quotient is A.
The lower bound A > 1/4 will then follow from Cheeger’s inequality and the fact
that the Cheeger constant h™¥(1}) with Neumann boundary conditions is > 1.

But the fact that A" (T) > 1 for any hyperbolic triangle is quite standard, see
[Bu2], establishing (b).

To establish (¢), we observe that the surfaces Sy have cusps of length > k.
Lemma 3.1 then allows us to deduce (c) for the surfaces Pj from the analogous
statement for the surfaces Sy.

This completes the proof of Theorem 0.2. O
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4. The Cheeger constant

We first recall the Cheeger constant h(S) of a surface. It is given by

. length(C)
h(S) = inf
(5) e min(vol(A), vol(B))’
where C' runs over all curves dividing S into two pieces A and B.
According to the inequalities of Cheeger [Ch] and Buser [Bu], we have that

(1/4)h% < M(S) < eth + eah?,

where ¢; and co depend on a lower bound for the curvature of S. In particular, it
follows that, in the presence of a lower bound for the curvature, a bound for below
for Ay is equivalent to a lower bound for h.

Of course, as is discussed in [SGCC], the loss of strength in passing from an
estimate for the Cheeger constant to an estimate for A is significant, so that one
does not expect the constants that one obtains in Theorem 0.2 from this approach.
Indeed, it is shown in [SGCC] that the Cheeger constant h(S}) is too small to give
Selberg’s 3/16 bound for A1(Sk). On the other hand, passing through the Cheeger
constant allows us to obtain spectral estimates in more general situations than are
allowed for by the approach of §3.

We will show:

Theorem 4.1. Forl sufficiently large, there is a constant C(l) with the following
property: if So is a Riemann surface with cusps of length > 1, then the Cheeger
constants h(So) and h(Sc) satisfy

1
(m

Furthermore, C(l) — 0 as | — oo.

)R(So) < h(Sc) < C(HR(So).

Proof. Let ~ be a curve in S dividing S¢ into two pieces A and B, such that the

ratio
length(v)

min(vol(4), vol(B))

realizes the Cheeger constant. We may assume that vol(A) < vol(B).

As in Lemma 3.1, if [ is sufficiently large, we may choose r1 and ro such that
~ may be pushed away from the neighborhoods B(ry,p;) to obtain a new curve ¥
whose length is at most (1 + 6(/)length(v).

In fact, we have a choice of how to push ~. For each ¢, we may consider the
neighborhoods B(ro, p;) and the sets

Ai:AmB(r27p7l)7 Bl:BmB(r27pz)
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If v does not meet, B(r1,p;), then we do not change v in B(ra,p;). Otherwise,
we may push v so that, for each 4, if vol(A;) < vol(B;), then 5 divides B(rg,p;)
into two pieces A%, B! with

Al = A, UB(r,p;), Bi=B;—B(ri,p:).
Similarly, if vol(B;) < vol(A4;), then we choose 4 so that
B! = B;UB(r1,p;), A= A4A;—B(r,p:).
We now claim that 4 divides S¢ into two pieces A’ and B’ with
vol(A") > (1 —&")vol(A4), vol(B') > (1 —&")vol(B),
with

L ol(B(r,p1))
VOI(B(TQ )pl))
This is clear, since the only times a piece is taken from A; (resp. B; ) is when
vol(4;) is larger than (1/2)vol(B(ry,p;).
We now regard ¥ as a curve in Sp, and compute
length(7)
min(vol(A’), vol(B’))

in the metric ds%o‘

But in passing from the metric ds%c to the metric ds?.;w the length of 4 is
multiplied by a factor of at most /1 + ¢, while the volumes of the parts of A’ and
B’ not meeting B(rq,p;) are divided by at most 1 +¢. Also, the balls B(ry,p;)
have larger volume in the metric ds% . than in the metric ds? » as follows from
the Schwarz inequality, or can be seen directly.

We thus have that

length(%) (1+€)32(1 +9)

min(vol(A’), vol(B')) s 1 _ & h(Sc).

h(So) is less than the left-hand side, so we thus have
h(So) < (C1(1))h(S0),

with
(1+€)%2(1+6)
(1-¢)
To obtain an inequality in the opposite direction, we proceed in the identical
manner, switching the roles of Sy and S. We must make the following changes in

Gi(l) =



Vol. 74 (1999) R. Brooks 169

the argument: first of all, we must reprove Lemma 3.2 in the case of a punctured
disk rather than a disk. The proof is identical, except we no longer demand that
the resulting curve % is homotopic to . This allows us to retain the option of
pushing ~ in either direction around the puncture.

Secondly, we need an estimate of the form

vol(By, ) gs2 = (const(ly))(vol(By, )2 )-
Sc So

But the volume of B, in the metric ds%o is precisely /1, while the metric of a
ball of radius r1 in the hyperbolic plane is 2r(cosh(r1) — 1). Choosing 71 so that

2

e"141 )

Iy —
log(=r

and using L’Hospital’s rule, we see that

vol(By, )
VOI(B(’I"l 7pl))

—lasly — o0.

Passing from the metric ds% ., to the metric dsg’ Ro and then to the metric ds%C
introduces some factors of 1+« into this calculation to give us the desired estimate.
Putting these together, we find a constant Cy(l) such that

h(Sc) < Co(l)h(So),

with Ca(l) — 1 as | — oo.
This then concludes the proof of Theorem 4.1. O

Acknowledgments
The work on this paper was begun while the author was a Fulbright scholar visiting
Hebrew University in the 1993-94 academic year, and was completed under a
Guastella fellowship at the Technion. We would like to thank these departments
for their hospitality.

We greatly benefitted from conversations with a number of people, including
Ron Donagi, Sasha Reznikov, and Paul Schmutz. We would like to extend our
gratitude to them.

We also thank the referee for his comments on an earlier version of this paper,
and for the opportunity to rewrite it.



170

Platonic surfaces CMH

References

[A]
Elelele]

[TFSG]

[TS]
[BFK]

[BBD]

[Bu]
[Bu2]
[Ch]

[Hu]

[SX]
(Se]

W]

L. Ahlfors, An extension of Schwarz’s lemma, Trans. AMS 43, 359-364.

R. Brooks, Spectral geometry and the Cheeger constant. In: J. Friedman (ed.), Expand-
ing Graphs, Proc. DIMACS Workshop, AMS (1993), pp. 5-19.

R. Brooks, Trace-formula methods in spectral geometry, J. Fourier Anal. App. (1995),
87-95.

R. Brooks, Twist surfaces, to appear Proc. Cortona Conf.

R. Brooks, H. Farkas, and I. Kra, Number theory, theta identities, and modular curves.
In: Quine and Sarnak (eds), Extremal Surfaces, Contemp. Math. 201 (1997), 125-154.
P. Buser, M. Burger, and J. Dodziuk, Riemann surfaces of large genus and large Aj.
In: T. Sunada (ed), Geometry and analysis on Manifolds, Lecture Notes in Math 1339
(1988), pp. 54-63.

P. Buser, A note on the isoperimetric constant, Ann. Sci. Ec. Norm. Sup. 15 (1982),
213-230.

P. Buser, On Cheeger’s inequality A1 > h2/4‘ In: Osserman and Weinstein (eds), Geom-
etry of the Laplace Operator, Proc. Symp. Pure Math XXXVI (1980), pp. 29-77.

J. Cheeger, A lower bound for the smallest eigenvalue. In: Gunning (ed), Problems in
Analysis, Princeton University Press 1970, pp. 195-199.

M. N. Huxley, Exceptional eigenvalues and congruennce subgroups. In: Hejhal, Sarnak,
and Terras (eds), The Selberg Trace Formula and Related Topics, Contemp. Math 53
(1986), 341-349.

P. Sarnak and X. Xue, Bounds for multiplicities of automorphic representations, Duke
Math J. 64 (1991), 207-227.

A. Selberg, On the estimation of Fourier coefficients of modular forms. In: A. L. White-
man (ed.), Theory of Numbers, Proc. Symp. Pure Math 8 (1965), 1-15.

S. Wolpert, A generalization of the Ahlfors-Schwarz lemma, Proc. AMS 84 (1982),
377-378.

Robert Brooks

Department of Mathematics

The Technion — Israel Institute of Technology
Haifa, Israel

e-mail:

rbrooks@tx.technion.ac.il

(Received: November, 1996; revised: February, 1998)



	Platonic surfaces

