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Approximating £2~Betti numbers of an amenable covering
by ordinary Betti numbers

Beno Eckmann

Abstract. It is shown that the ^2-Betti numbers of an amenable covering of a finite cell-complex
can be approximated by ordinary Betti numbers of the finite F0lner subcomplexes This is a new
proof, using simple homological arguments, of a recent result of Dodziuk and Mathai
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0. Introduction

Let Y be an infinite amenable covering of a finite cell-complex X with covering
transformation group G Then the ^-Betti numbers ßp(Y) can be approximated

by the average ordinary Betti numbers of the finite subcomplexes
Yj of a F0lner exhaustion of Y This has been proved by Dodziuk and Mathai
[D-M] The purpose of the present paper is to give a simple "homological" proof
of that result It consists in examining the ^2-h°m°l°gy map Hp(Yj)—>Hp(Y)
induced by the inclusion Yo —>Y

1. F0lner sequence

1.1. We consider a discrete infinite amenable group G and a free cocompact
G-space Y By this we mean a cell complex Y on which G operates freely by
permutation of the cells, with finite orbit complex X Y/G Then 7 is a

covering of X with covering transformation group G Since G is a factor group of
the fundamental group of X, and X is a finite complex, G is necessarily finitely
generated In short Y is called an infinite amenable covering of X

1.2. It is known (Cheeger-Gromov [C-G], see also [E] or [D-M]) that in such a
situation there exists in y a F0lner sequence (or F0lner exhaustion) Y3, j 1,2,3,
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Here is its description in the form we will need later.
For each closed p-cell ap in X we choose an arbitrary lift &p in the corresponding

G-orbit. The union of all àp, p > 0, together with its topological closure
i.e. adding if necessary boundary cells of the âp) is a closed fundamental

domain D for the G-action in Y. The Y3 form an increasing sequence of finite
subcomplexes of Y with union Y; each Y3 is a union of N3 distinct translates

xuD, v 1,2,..., N3, xv G G, of D. Let further Yj be the topological boundary of
Y3 and N3 the number of translates of D which meet Y3. From the combinatorial
F0lner criterion [F] for amenability it follows easily that the sequence Y3 can be

chosen such that N3/N3—>0 for j—>oo.

2. ^-chains, restricted trace

2.1. The cellular p-chains of Y with R—coefficients constitute a free RG—module
CP(Y); as basis we can take the lifts (see 1.2) &p of the p-cells ap of X, i
1,2, ...,ap, where ap is the number of p-cells of X. Each p-cell of Y can be

uniquely written as xapl x G G,i 1, ...,ap, and in each orbit the G-action is by
left translation.

2.2. As Y is an infinité complex, one considers besides the ordinary p-chains
also ^2-cnams, i-e- square-summable real linear combinations of the cells of Y.

They constitute a Hilbert space Cp ' (Y) where all the cells xap as above form an

orthonormal basis. We sometimes omit Y and simply write Cp The induced
(2)action of G on Cp is isometric.

(2)2.3. For any Hilbert subspace H of Cp not necessarily G-invariant, there is the
orthogonal projection

with image H. We consider the following "restricted trace" of $ referring to a
finite subcomplex Y3 of Y consisting of N3 translates of the fundamental domain
D. Here amenability is not required; it is in 3.4 only that Y3 will refer to a F0lner
sequence in Y.

Let n^ be the projection Cp —>CP with image Cp (Y3 Since Y3 is a finite
(2)

complex, we have Cp (Y3) Cp(Y3); thus n^ is projection on a finite dimensional

R-subspace of Cp whose basis consists of all cells xvijp with v < N3. One can
form the R-trace

d3{H) trace« n.,<I>

It will be examined for some special subspaces H. Note that it can be expressed
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(2)
by scalar products in Cp as

1 1 V=l Tp

where the tp are cells in Y3 not of the form xvop.

2.4. Properties of d3 :

1) Since $ is idempotent and self-adjoint, the scalar products above are equal
to < $(xj,<Tp),$(xj,ap) > and < $(tp),$(tp) > respectively and thus > 0: The
restricted trace d3 (H) is non-negative.

2) Note that one always has

do{H) <

since

If in particular H is a subspace of Cp(Yj) then d3 is the same as the trace of the
projection of Cp(Yj) to H. Since these are finite-dimensional vector spaces, the
trace is dim^i?.

3) If ff decomposes orthogonally into H1 + H2 then d3{H) do{H\) + do{H<2).
Just note that then $ 4>\ + </>2 where 4>t is the projection onto Ht, i 1, 2 and
replace $ in the scalar products above.

4) In case H is (^-invariant the projection $ is G-equivariant and < ^{xvàp),
xuâp > is equal to < ${àlp),âp >. But E^ < ${àlp),àp > is just the von
Neumann dimension dimoH (see e.g. [L] or [E2]). Thus in that case

d3(H) N3

plus an "error term" T3 coming from the boundary cells tp which is < Am^Cp{Y3).

3. Mapping HP{Y3) into HP{Y)

3.1. In the following, homology Hp is to be understood as "reduced" ^2-h°m°l°gy
(cycles modulo the closure of boundaries). It can be represented by the orthogonal
complement of the space of boundaries in thep-cycle space, i.e. by harmonic chains
(boundary 9 0 and coboundary 5 0). In this sense we will consider HP{Y) as

(2)
a Hilbert subspace of Cp (Y) and Hp(Y3) as a subspace of Cp(Y3).

(2)
3.2. Since the boundary operator d in Cp commutes with the G-action, the

homology group HP(Y) considered as a subspace of Cp ' is G-invariant. According
to 2.4, 4) we have

d3(Hp(Y)) N3 dimGHp(Y) + T3=N3 ßJYiel.G) + T3,
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where ßp denotes the ^2-Betti number and T3 is the error term from 2.4,4).
As for HP(Y3), we have by 2.4, 2)

dAHpiYj)) dimRffp(yj) ßp(Y3),

the ordinary p-th Betti number of Y3.

3.3. The inclusion of Y3 in Y induces a bounded linear map </> : Hp(Yj)—>Hp(Y).
Let Äp be the kernel of </>, and K^ its orthogonal complement in Hp(Yj); and /p
the image of </>, and i"^ its orthogonal complement in HP(Y).

(2)
We will look closer at these harmonic subspaces of Cp{Y0) and Cp (Y) respectively

in order to get estimates for the values of d3. We recall that d commutes
with the inclusion of Yo in Y but in general not with the the restriction of Y to Yo,
and that for S things are the other way around. In particular a harmonic chain in
Yj need not be harmonic in Y, but can be made harmonic by adding a well-defined
element of the closure of boundaries.

3.4. We decompose the p-chains c G Cp as c c + d where all p-cells of c
intersect the topological boundary Y3 and d does not contain any such cell. This

yields an orthogonal decomposition of Cp ' into Cp and C'p. We now use the
amenability of the covering and assume that Yo is a term of the F0lner sequence.
Then dim^Cp < Noap.

1) If c G Kp, with dc 6c 0 in Y3, then c G dC^iY). If we assume 6 0,p, with dc 6c 0 in Y3,

c d G Cp, then ô commutes with the inclusion, i.e. (5c 0 in Y. But since

cocycles are orthogonal to the closure of the space of boundaries, it follows that
c 0. Thus Kp nCp 0, and Kp is isomorphic to a subspace of Cp. Therefore

< diniRC'p < N3ap

2) As for dj(Ip) it does not exceed dimniîj, where Rp Tes3Ip and res^ is

the restriction from Y to Y3. The chains c G Ip fulfill dc Sc 0. Moreover
(2)

< c,z >= 0 for allp-cycles z in Y3 since 4>{z) z + b, with b G 8C ^. For r £ Rp
the same holds except possibly for dr 0. But if r c + c' as above, and if we
assume c 0 then dr 0. From < r, z >= 0 for all p-cycles z in Yo it follows that
r is a coboundary in Yj, r Ss. Thus < r, r >=< r, (5s >=< 9r, s >= 0, whence

r 0 and Rpr)Cp 0. As before this implies dimniîj, < Noap and we get

<Noap

3.5. Kp is isomorphic as a (finite-dimensional) vector space to Ip. Their d0 need
not be equal, but we show that their difference fulfills an inequality similar to
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those above The isomorphism is given by adding to each c G Kp a well defined
(2)element b(c) G dC ^(Y), in order to get a harmonic chain in Y If, in particular,

c G K' n C then (5c 0 in Y, whence c £ Ip Thus K' l~l C£ is a subspace of /p
which remains unchanged under IL, This implies that do{Ip) > do{K'p n C'p)

p n Cp and

< dimKKp/Kp n C^

But ä^/ä£ n C^, is isomorphic to (K'p + C'p)/C'p which is contained in C^/C'p
lsomorphic to Cp Thus its dimension is < Noap whence

d3{K'p)-d3{Ip)<N3ap

3.6. Finally we have

ßp(Y3) - N^iYiel G) d3{Hp{Y3)) - d3(Hp(Y)) + T3

d3(Kp) - d3(I'p) + (d3(K'p) - d3(Ip))+T3

where T3 is the error term in 2.4 By 3.4 and 3.5 and since T3 < N3ap this yields

which goes to 0 with j —> oo Thus

hmo^oo—ßp(Yj) ßp(Yie\ G)
N3

This is the approximation statement mentioned in the introduction
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