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Approximating /o-Betti numbers of an amenable covering
by ordinary Betti numbers

Beno Eckmann

Abstract. It is shown that the £5-Betti numbers of an amenable covering of a finite cell-complex
can be approximated by ordinary Betti numbers of the finite Fglner subcomplexes. This is a new
proof, using simple homological arguments, of a recent result of Dodziuk and Mathai.
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0. Introduction

Let Y be an infinite amenable covering of a finite cell-complex X with covering
transformation group GG. Then the ¢9-Betti numbers ﬁ_p(Y) can be approxi-
mated by the average ordinary Betti numbers of the finite subcomplexes
Y; of a Fglner exhaustion of Y. This has been proved by Dodziuk and Mathai
[D-M]. The purpose of the present paper is to give a simple “homological” proof
of that result. It consists in examining the ¢5-homology map H,(Y;)— H,(Y)
induced by the inclusion Y;—Y.

1. Fglner sequence

1.1. We consider a discrete infinite amenable group G and a free cocompact
G-space Y. By this we mean a cell complex Y on which G operates freely by
permutation of the cells, with finite orbit complex X = Y/G. Then Y is a cov-
ering of X with covering transformation group G. Since G is a factor group of
the fundamental group of X, and X is a finite complex, G is necessarily finitely
generated. In short Y is called an infinite amenable covering of X.

1.2. Tt is known (Cheeger-Gromov [C-G], see also [E] or [D-M]) that in such a situ-
ation there exists in Y a Folner sequence (or Fglner exhaustion) Y;, j =1,2,3,....
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Here is its description in the form we will need later.

For each closed p-cell o, in X we choose an arbitrary lift &, in the correspond-
ing G-orbit. The union of all 6,, p > 0, together with its topological closure
(i.e. adding if necessary boundary cells of the 6,) is a closed fundamental do-
main D for the G-action in Y. The Y; form an increasing sequence of finite
subcomplexes of ¥ with union Y; each Y} is a union of N; distinct translates
z,D,v=1,2,..,N;, z, € G, of D. Let further YJ be the topological boundary of
Y; and Nj the number of translates of D which meet Yj From the combinatorial
Fglner criterion [F] for amenability it follows easily that the sequence Y; can be
chosen such that N;/N;—0 for j—o0.

2. ¢y-chains, restricted trace

2.1. The cellular p-chains of ¥ with R—coefficients constitute a free RG—module
Cp(Y); as basis we can take the lifts (see 1.2) & of the p-cells o], of X, i =
1,2,...,ap, where o) is the number of p-cells of X. Each p-cell of Y can be
uniquely written as x&fw z € G,i=1,..,ap, and in each orbit the G-action is by
left translation.

2.2. As Y is an infinite complex, one considers besides the ordinary p-chains
also ¢o9-chains, i.e. square-summable real linear combinations of the cells of Y.

They constitute a Hilbert space CISQ)(Y) where all the cells x&é as above form an

orthonormal basis. We sometimes omit Y and simply write CI()Q). The induced

action of GG on C’;@ is isometric.

2.3. For any Hilbert subspace H of C’,<,2) , not necessarily G-invariant, there is the
orthogonal projection

3. P —c?

with image H. We consider the following "restricted trace” of ® referring to a
finite subcomplex Y; of ¥ consisting of INV; translates of the fundamental domain
D. Here amenability is not required; it is in 3.4 only that Y; will refer to a Fglner
sequence in Y.

Let II; be the projection C’ISQ)—>C,(,2) with image C,(,Q) (Y;) . Since Yj is a finite
complex, we have C’I(,Q) (Y;) = Cp(Y;); thus 11, is projection on a finite dimensional

R-subspace of CI(,Q) whose basis consists of all cells :El,é'; with v < Nj;. One can
form the R-trace

d;(H) = tracepIl;®

It will be examined for some special subspaces H. Note that it can be expressed
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by scalar products in C}(,Q) as

ap Nj
di(H) =3 < ®(@,6)),2,6, >+ <B(r),7p >
i=1 v=1 Tp
where the 7, are cells in Y; not of the form z, 57
2.4. Properties of d;:

1) Since @ is idempotent and self-adjoint, the scalar products above are equal
to < ®(x,6}), ®(x,6}) > and < ®(7,), ®(7,) > respectively and thus > 0: The
restricted trace d;(H) is non-negative.

2) Note that one always has

d;(H) < dimgl1;(H)

since

If in particular H is a subspace of C,(Y;) then d; is the same as the trace of the
projection of C,(Y;) to H. Since these are finite-dimensional vector spaces, the
trace is = dimp H.

3) If H decomposes orthogonally into Hy + Hg then d;(H) = d;(H1) + d;(Ha).
Just note that then & = ¢y + ¢ where ¢; is the projection onto H;, ¢ = 1,2 and
replace ® in the scalar products above.

4) In case H is G-invariant the projection ® is G-equivariant and < ®(z,6},),
z,6% > is equal to < ®(6%),6% >. But X7 < ®(53),6% > is just the von
Neumann dimension dimgH (see e.g. [L] or [E2]). Thus in that case

dj(H) = Nj dlmgH

plus an "error term” T} coming from the boundary cells 7, which is < dimRC’p(Yj).

3. Mapping H,(Y;) into H,(Y)

3.1. In the following, homology H,, is to be understood as "reduced” ¢o-homology
(cycles modulo the closure of boundaries). It can be represented by the orthogonal
complement of the space of boundaries in the p-cycle space, i.e. by harmonic chains
(boundary @ = 0 and coboundary § = 0). In this sense we will consider H,(Y) as

a Hilbert subspace of C’;(;Q) (Y) and Hp(Y;) as a subspace of Cp(Yj).

3.2. Since the boundary operator 0 in C’I@ commutes with the G-action, the

homology group H,(Y) considered as a subspace of C;,Q) is G-invariant. According
to 2.4, 4) we have

dj(Hy(Y)) = N; dimgHy(Y) + T; = Ny B,(Yrel.G) + T,
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where Ep denotes the f9-Betti number and 7T} is the error term from 2.4,4).
As for H,(Y;), we have by 2.4, 2)

d;j(Hp(Y;)) = dimp Hp (Y;) = Bp(Yj),
the ordinary p-th Betti number of Y;.

3.3. The inclusion of ¥} in ¥ induces a bounded linear map ¢ : H,(Y;)—Hp(Y).
Let K, be the kernel of ¢, and Kz/) its orthogonal complement in H,(Y;); and 1,
the image of ¢, and I, its orthogonal complement in H,(Y).

We will look closer at these harmonic subspaces of C,,(Y}) and 01(72> (Y') respec-
tively in order to get estimates for the values of d;. We recall that 0 commutes
with the inclusion of Y; in ¥ but in general not with the the restriction of ¥ to Y},
and that for ¢ things are the other way around. In particular a harmonic chain in
Y} need not be harmonic in Y, but can be made harmonic by adding a well-defined
element of the closure of boundaries.

3.4. We decompose the p-chains ¢ € C}(,Q) as ¢ = ¢+ ¢ where all p-cells of ¢
intersect the topological boundary Y; and ¢ does not contain any such cell. This

yields an orthogonal decomposition of C,(,2> into C’p and Cj,. We now use the
amenability of the covering and assume that Y} is a term of the Fglner sequence.
Then dimRC’p £ Njap.

1) If ¢ € K, with dc = 6¢ =0 in Y}, then c € 80}5?1(3/). If we assume ¢ = 0,
c=c € Czlw then § commutes with the inclusion, i.e. dc = 0 in Y. But since
cocycles are orthogonal to the closure of the space of boundaries, it follows that
¢=0. Thus K, N C, =0, and K, is isomorphic to a subspace of Cyp. Therefore

d;(K,) = dimgK, < dimgC, < Njay, .

2) As for d;(1,) it does not exceed dimgR, where R, = res;[, and res; is
the restriction from Y to Y;. The chains ¢ € II’, fulfill 9¢ = d¢ = 0. Moreover

< ¢,z >=0 for all p-cycles z in Y} since ¢(z) = z+b, with b € 86’1@1. Forr € R,
the same holds except possibly for 9r = 0. But if » = ¢+ ¢’ as above, and if we
assume ¢ = 0 then dr = 0. From < r,z >= 0 for all p-cycles z in Y} it follows that
r is a coboundary in Y;, r = ds. Thus < r,r >=<r,ds >=< dr,s >= 0, whence

r=0and R,N 01/7 = 0. As before this implies dimp R, < Njozp and we get

d;(1) < dimp R, < Njay, .

3.5. K, is isomorphic as a (finite-dimensional) vector space to I,. Their d; need
not be equal, but we show that their difference fulfills an inequality similar to
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those above. The isomorphism is given by adding to each ¢ € KZ’D a well defined

element b(c) € 8(]1(321(}/), in order to get a harmonic chain in Y. If, in particular,
c € K,NC}, then c = 0in Y, whence ¢ € I,. Thus K, N C,, is a subspace of I,
which remains unchanged under I1;. This implies that d;(l,) > d;(K, N C,) =
dimRKI’j N Cz/) and

dimg K, — d; (1) < dimp K}, /K, 0 C) .

But K,/K; N C’}’o is isomorphic to (K, + C’I/?)/C’I’g which is contained in C’ZSQ)/CZ’O
isomorphic to Cp,. Thus its dimension is < Nja,, whence

d;(K;}) — d;(Ip) < Njay .

3.6. Finally we have
Bp(Y5) = N;Bp(Y1el.G) = d;(Hy(Y;)) — dy (Hp(Y) + T;

= d;(Kyp) — d;(I,) + (d;(K}) — d;(Ip)) + T}

where T} is the error term in 2.4. By 3.4 and 3.5 and since T} < Njap this yields

1 _ N,
Iﬁjﬁp(Yj) — Bp(Yrel.G)| < 46“??;
which goes to 0 with j — oco. Thus
. 1 —
im0 Bp(Yy) = Fp(Yrel.G).
J

This is the approximation statement mentioned in the introduction.
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