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On the dilatation of extremal quasiconformal mappings of
polygons

Kurt Strebel

Abstract. A polygon Pj\r is the unit disk D with n distinguished boundary points, 4 < n < N
An extremal quasiconformal mapping /o Dz —> DTO maps each polygon Pj\r inscribed in Dz
onto a polygon P'N inscribed in DTO Let /j\r be the extremal quasiconformal mapping of Pj\r
onto P'N Let äjv be its dilatation and let Ko be the maximal dilatation of /o Then, evidently
sup Kjh < Ko The problem is, when equality holds This is completely answered, if /o does

not have any essential boundary points For quadrilaterals Q and Q' fo{Q) the problem is

sup(M'/M) Ko, with M and M' the moduli of Q and Q' respectively

Mathematics Subject Classification (1991). Primary 30C75, Secondary 30C62
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Introduction

1. Let h be a quasisymmetric mapping of the boundary of the unit disk Dz onto
the boundary of D„, and let / be a quasiconformal extension of h into the disk
It is called extremal and denoted by /o if its maximal dilatation Kq is smallest
possible We always assume Kq > 1 The disk Dz becomes a quadrilateral Q
if we mark four different points z0, j 1, ,4, m the positive direction on its
boundary dV)z The mapping /o takes the vertices z3 into points w3 fo(zj) on
dV)w and thus the quadrilateral Q into a quadrilateral Q' fo(Q) inscribed in D„,
It follows from the definition of quasiconformahty that the conformai moduli M
and M' of Q and Q' respectively satisfy (for general properties of quasiconformal
mappings, see [3])

—M < M' < K0M (1)
Ä

It has been a question for some time, if the bound Kq is best possible in
the inequality (1), in other words, if the maximal dilatation Kq of the extremal
quasiconformal extension /o of h can be determined by the ratio of the moduli of
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inscribed quadrilaterals,
M'

SUP -jf K0 (2)

The question has recently been answered in the negative by Anderson and Hmkka-
nen [1] by laborious computations of a counterexample (horizontal stretching of a

parallelogram) and by Reich [4] who reduced it to an approximation problem for
holomorphic functions More counterexamples are given in [9]

2. It is easy to find examples where (2) holds, the above solutions consist therefore
in the construction of examples where it does not hold A type of the first kind
is a vertical half strip S and its horizontal stretching by Kq Let z x + ly,
S {z, 0 < x < a, 0 < y}, w u + iv, S' {w, 0 < u < Kqci, 0 < v} We make
S to a quadrilateral by marking the vertices (0,a, a + ib,ib) for arbitrary b > 0,
and similarly S' by marking the image points (0, K^a, Kqo, + ib,ib) Making use

of the extremal length definition of the modulus of a quadrilateral ([3], p 21) as
the extremal distance of the vertical sides we easily find the estimates

M < a/b, M' > K0a/(b + Koa) (3)

and thus

which gives
M'

km -tt=Ko (5)
b^oo M

3. The problem with the moduli of quadrilaterals has a different interpretation
We look at the extremal quasiconformal mapping / of Q onto Q' This is a mapping
of Dz onto D„, which takes the vertices of Q into those of Q' Its dilatation is

K M'/M, and the question is now what happens with K if we vary the vertices
of Q in all possible ways7 Of course we always have K < Kq, but will we have

sup if Ko7 In this formulation the problem has a natural generalization to
polygons, l e disks with an arbitrary finite number n > 4 of vertices The basic
extremal qc mapping /o assigns a polygon P'n inscribed in D„, to each polygon Pn
inscribed in Dz The extremal qc mapping /„ of Pn onto P'n (l e of course of Dz
onto D„,, but with the only requirement that the vertices of Pn go into the vertices
of P^) is a Teichmuller mapping with a complex dilatation xn kn(7p^/\<pn\),
kn (Kn — l)/(Kn + 1) The quadratic differential tpn is rational, with at most
first order poles at the vertices of Pn Moreover, ipn(z) dz^ is real along the sides

of Pn Since /o also maps the vertices of Pn onto those of P'n and fn is extremal
with this property, we have Kn < Kq The question arises if, by varying the
polygon Pn in all possible ways, we have

sup Kn Ko (6)
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4. It follows from general principles of qc mappings (we refer to [3] for the general
theory) that this is in fact true if we allow the number n of vertices to become

arbitrarily large (for a proof see [5], p. 385, bottom). But how is it, if this number
is bounded, n < N say? With a certain natural restriction we will characterize
the extremal mappings /o for which this happens. The proof is an application of
the "polygon inequality" ([5], p. 384) and a theorem of R. Fehlmann ([2], p. 567).

The polygon inequality

5. Let /o be an extremal qc mapping of Dz onto D„, with /o | dV)z h. Let

hq with 11>tro11oo &0 be its complex dilatation and Kq (1 + ko)/(I — ko) its
maximal dilatation. Mark n points z3, j 1,... n, on <9DZ, 4 < n < N. The disk
Dz with the marked boundary points z3 is called a polygon Pn. The image of Pn
by /o is the polygon P^, inscribed in I3W, with vertices w^ fo(zo). Let /„ be the
extremal qc mapping of Pn onto Pn, fn{zo) wj, an(i let Vm ll^nll 1) denote
the associated quadratic differential. The complex dilatation of/„ is kn(7p^/\(fn\).
Then, the Polygon Inequality holds:

ff X0(z)<Pn(z) kn ff \XO(Z)\ 7 7 fry,Re// 1 _ (\\2 dxdy ~ 1 _ h ~ \fn{z)\ _,
'

|2 rfxrfy. (7)

For the proof I refer to ([5], p. 384). In that paper, the inequality was used

to prove that the "polygon differentials" tpn form a Hamilton sequence for hq if
the number of vertices tends to infinity and the sides of the polygons Pn become

arbitrarily short. This led to a proof of the necessity of the Hamilton-Krushkal
condition for extremality. Now, on the contrary, we restrict the number of vertices
by a fixed number N, and we denote a polygon with n < N vertices generically
by Pw.

6.

Theorem 1. Let /o : Dz —> DM with complex dilatation xq, ||xo||oo ^0? be

extremal for its boundary values h. Assume that for a fixed number N the polygon
mappings /jy : Pn —>¦ P'n /o(-P/v) with complex dilatation Jzn (^n~/1 fN \ satisfy

sup kN ko- (8)

(This is of course equivalent to sup ifat Kq.) Then, there is a sequence of
polygon 'mappings f$ the quadratic differentials ip^f of which, \\f^\\ I, form a

Hamilton sequence for hq, i.e.

Re ffxo(z)ip^(z) dxdy -+ k0, i -+ oo. (9)
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Proof. Assume first that /o has constant dilatation |>?o(<z)| feo a-e- Then, the
polygon inequality yields

(10)
1 - - few

for all polygons P/v • Let P^' be a sequence of polygons the extremal mappings

f$ of which satisfy k§ -> fe0. Then

lim Re j j xo(z)ipN (z) dxdy > - —(1 — feg) — feg feo. (11)

On the other hand

Re // >co{z)^\z)dxdy< < feo- (12)^/ (z) dx dy

This gives the result (9) in the case where |>?o(<z)| feo a-e- If Ixd(^)| is n°t
constant a.e. we proceed as in ([5], p. 386 and p. 382). However, in our present
work we only need the case of constant |>?o(<z)|- O

Since the number of vertices of the polygons P^ is smaller or equal to N, we
can assume, by passing to a further subsequence, that they converge to a finite
number < N of points on <9DZ. We write P^ —> P/v •

The vertical half strip in the introduction is an example where the given
quadrilaterals give rise to a Hamilton sequence for the horizontal stretching (which is

uniquely extremal).

Extremal mappings without essential boundary point

7. Let /o with complex dilatation hq, ||>?o||oo feo, be extremal for its boundary
values h. A boundary point z of Dz is called essential, if the following is true: For

every neighborhood U of z and every qc mapping g of U l~l Dz which is equal to h

on UDdIS)z the maximal dilatation of g is at least equal to Kq (l + feo)/(l — feo).

A theorem of R. Fehlmann ([2]), p. 567) says: If the complex dilatation hq has

a degenerating Hamilton sequence (i.e. which tends to zero locally uniformly in
the domain), then /o has an essential boundary point.

Combining this result with the considerations in ([7], p. 466) we can say: If
/o does not have an essential boundary point, then, every Hamilton sequence for
xq converges in norm to a holomorphic quadratic differential (po, \\<po\\ 1, and

pq\) is the complex dilatation of /q.
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8. Let us apply this to our case. Every polygon differential Lpy can be continued
across the boundary <9DZ by reflection to a rational differential in the whole plane,
of norm two. Therefore the limit y>o can be reflected. Since its norm is finite, it
has at most first order poles at the n < N limits of the vertices of the P^ and
<po(z) dz1 is real along the subintervals of <9DZ between these limits. Our main
result is

Theorem 2. Let /o : Dz —> V)w be a qc mapping which is extremal for its boundary
values, and assume that it does not have an essential boundary point. For fixed
N > 4 denote the polygons with 4 < n < N vertices inscribed in Dz genencally
by P/v- To every Pn the mapping /o determines a polygon P'N inscribed in H>w,

simply by mapping the vertices of Pn onto those of P'N. Assume that the extremal

mappings /jy : Pn —? P'N sa't%sfy SUP ^n ko- Then, there is a convergent sequence

In °.f P°iyg°n mappings with <f^ —> <fo in norm, where xq ko(jpQ/\<po\) is the

complex dilatation of fo- fo itself is the extremal qc mapping of a polygon with

n < N vertices, and every maximizing sequence fN, kj^- —> ko, tends to /o

uniformly, <fN —> tpo in norm.

9. In order to see that the theorem is not empty, let / : Dz —> D^ be an extremal
polygon mapping and let tp be the associated rational quadratic differential, h
k(7p/\<p\) the complex dilatation. The vertices z3 are either first order poles or
regular points (i.e. <p(zj) ^ 0) or zeroes of tp of any order. Along the sides we
have ip(z) dz^ real, and thus the sides are composed of trajectories and orthogonal
trajectories.

The first order poles and the zeroes are clearly the only candidates for an
essential boundary point of /. In order to find the local maximal dilatation Hz
at such a point z we first apply the mapping $ J ^/ip and then the horizontal
stretching by K. The integral $ maps an interior half neighborhood of z onto an
angle with a horizontal and a vertical side. It is a right angle in the case of a first
order pole and an angle which is a multiple of ^tt in the case of a zero, possibly
many sheeted. In the image D„, we have the same situation, with a quadratic
differential ip and an integral ty f ^tp. The horizontal side of the angle is

stretched by K while the vertical side is mapped identically. It is known (and
easy to see, using logarithms on both sides, see [6], p. 323) that the local extremal
mapping with the given boundary values has dilatation < K. Since / itself is

extremal with dilatation K, it does not have any essential boundary point, thus
satisfying our requirement.

10. Let now /o : Pn —? P'm with complex dilatation xq ko(TpQ/\(po\) be an
extremal polygon mapping. We can clearly take fpj /o itself and get sup kpj
ko. Actually we only need to consider the substantial boundary points of /o
poles of (fio), since the extremal mapping of the restricted polygon Pn onto P'N is
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the same^as /o.
Let TV be the number of substantial Jaoundary points of /o. If, however, we

only admit polygons with at most N' < N — 1 vertices, we find sup kjy/ < k^. For,
if sup kjy/ ko we would again arrive, by the same considerations as before, at
an extremal polygon mapping /jy' with a quadratic differential y>jv' with at most
N' first order poles, whereas y>o has N first order poles. Therefore y>jv' ^ tpo, a
contradiction.

11. We started with the following question. Let /o with complex dilatation xq,
\\xq\\ ko, be a qc mapping of Dz onto D„, which is extremal for its boundary
values and which does not have an essential boundary point. Inscribe quadrilaterals

Q into Dz and denote their images by /o in D„, by Q'. The image Q' has, as

its vertices, the images by /o of the vertices of Q. Let M and M' be the moduli
of Q and Q' respectively. The question is, if (2) can hold.

Let / with dilatation K be the extremal mapping of Q onto Q'. The equation
(2) is equivalent with

K0 (13)

where the sup is taken over all quadrilaterals Q. This is the special case of (8) for
N 4. We find

Theorem 3. The extremal mapping /o satisfies (13) for the inscribed quadrilaterals

Q if and only if it is the extremal mapping of a quadrilateral itself.

This means that in all other cases we have inequality in (13). The example
of Anderson and Hinkkanen is the horizontal stretching of a parallelogram. This
mapping /o has no essential boundary point and is, in their situation, not the
mapping of quadrilaterals. Therefore sup(M'/M) < Kq.

The example of Reich has analytic boundary values. Therefore we have again
sup(M'/M) < Ko.

Clearly, in both examples, we still have inequality in (13) even if we allow any
inscribed polygons with an arbitrary fixed bound N for the number of vertices.

Added in Proof. After the completion of this paper I have become aware of two
papers with related results: Shanshuang Yang, On dilatations and substantial
boundary points of homeomorphisms of Jordan curves, Results Math. 31 (1979),
180-188, and Qi Yi, A problem in extremal quasiconformal extensions, Sei. China
Ser. A 41:11 (1998), 1135-1141.
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