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The behaviour at infinity of the Bruhat decomposition

Michel Brion

Abstract. For a connected reductive group G and a Borel subgroup B, we study the closures of
double classes BgB in a (G X G)-equivanant "regular" compactification of G We show that these
closures BgB intersect properly all (G X G)-orbits, with multiplicity one, and we describe the
intersections Moreover, we show that almost all BgB are singular in codimension two exactly
We deduce this from more general results on B-orbits in a spherical homogeneous space G/H,
they lead to formulas for homology classes of iî-orbit closures in G/B, in terms of Schubert
cycles
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0. Introduction

Let G be a connected complex reductive group, B C G a Borel subgroup and
H C G a spherical subgroup, that is, the homogeneous space G/H contains a
dense _B-orbit Then any equivanant embedding X of G/H contains only finitely
many _B-orbits (see [Kn] for a simple proof of this result)

A natural question is to describe the _B-orbit closures in a smooth complete
embedding X of G/H, and their classes in the Chow group A*(X), recall that
A*(X) is then lsomorphic to the integral homology of X, and is generated as a

group by classes of _B-orbit closures Another, closely related question is to describe
the iî-orbit closures in the flag variety G/B, and their classes in A*(G/B)

A classical example is the case where G/H is complete, that is, H is a parabolic
subgroup of G Then the _B-orbit closures in G/H are the Schubert varieties, and
their classes (the Schubert cycles) form a basis of the group A*(G/H)

In the present article, we obtain partial answers to our questions in the general
setting of a spherical homogeneous space, and more precise results when the space
is G and the group is G x G acting on G by left and right multiplication In
this case, the first question asks for the behaviour "at infinity" of the closures of
_B-double cosets in G

To any _B-orbit closure y in a spherical homogeneous space G/H, we associate
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a subset VF (y) of the Weyl group of G, and a function d(Y, on VF (y) with
values m integral powers of 2 (see 1 1) Given a smooth complete embedding X
of G/H which is regular in the sense of [BDP], and a closed G-orbit Z C X, we
show that the closure of Y in X has proper intersection with Z Moreover, the
components of Y n Z are the Schubert varieties in Z parametrized by W(Y), and
the corresponding intersection multiplicities are the values of the function d(Y,
(up to twists, see 1 4)

On the other hand, any iï-orbit closure V C G/B defines obviously a _B-orbit
closure Y C G/H, the decomposition of the class of V in A*(G/B) on the basis
of Schubert cycles turns out to be determined by VF(y) and d(Y, (see 1 5)

In the case of the homogeneous space G under G x G, the function d(Y, has

constant value 1 (see 2 1) It follows that all closures of (B x _B)-orbits in any
regular completion X of G are smooth in codnnension one (as shown by Barbasch
and Evens, closures of _B-orbits in spherical varieties can be singular in codnnension

one, see [BE])
Actually, any closure in X of a _B-double class in G is singular in codimension

two, apart from trivial exceptions (see 2 2) This uniform result contrasts with the
situation for Schubert varieties, where the characterization of smoothness is quite
delicate (see eg [C], [K] and [L])

The behaviour "at infinity" of (B x _B)-orbit closures is described m 2 1, and the
case of parabolic subgroups of G is treated in more detail m 2 3 As an application,
we construct a degeneration of the diagonal of a flag variety to a sum of Schubert
cycles

These results are then applied to the study of the Chow ring A*(X) where X
is a regular completion of G For this, we use Edidin and Graham's equivanant
intersection theory (see [EG] and also [Br]), it could be replaced by equivanant
cohomology but we prefer a purely algebraic approach In 3 1, we describe the
equivanant Chow ring of X in terms of the closed (G x G)-orbits, generalizing
results of Littelmann and Procesi (see [LP] Then we give closed formulae for the
equivanant classes of (B x _B)-orbit closures (see 3 2)

In the case where X is the canonical regular completion of a semisiinple adjoint
group, we construct a basis of the Chow group of X (see 3 3) and we determine
the intersection numbers of any two (B x _B)-orbit closures of complementary
dimensions (see 3 4) Our picture of the Chow ring confirms the idea that the
geometry of regular completions of G is governed by the closed (G x G)-orbits and

by the closure of a maximal torus, as shown by De Concini and Procesi (see [DPI]
and [DP2])

Using the general methods of Part 1, several results of the present work can be
extended to other spherical homogenenous spaces, e g to split symmetric spaces,
this will be developed elsewhere

The structure results for regular group completions which are used in our article

are gathered in an appendix These results are due to DeConcmi and Procesi

in the case of a semisiinple adjoint group and, more generally, of an adjoint sym-
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metric space (see [DPI]) For a connected reductive group, they can be deduced
from embedding theory of spherical homogeneous spaces Here we follow a direct,
characteristic-free approach based on one-parameter subgroups As a consequence,
all results of the present work which concern regular completions of G are valid in
arbitrary characteristics, provided that each (G x G)-orbit map is separable

1. Orbit closures of Borel subgroups in spherical varieties

1.1. Preliminaries

We begin by fixing notation, defining the set VF(y) and the function d(Y, and
studying their first properties Throughout the paper, we will use freely classical
notions and results on the Bruhat decomposition in reductive groups and on the
combinatorics of Weyl groups, for this, we refer to [H] and [Sp]

Let G be a connected complex reductive group, B C G a Borel subgroup, and
T C B a maximal torus of dimension r Denote by W the Weyl group and by
$ the root system of (G,T) We have the subset $+ of positive roots and its
subset A of simple roots For a G A we denote by sa G W the corresponding
reflection and by Pa B U BsaB the corresponding minimal parabolic subgroup
The length of w G W is denoted by l(w), and the longest element of W is denoted
by wo

Let P D B be a parabolic subgroup with Levi subgroup L D T Denote by Wl
the Weyl group and by $l the set of roots of (L, T) Set

WL {w G W | l(wv) l{w) + l(v) Vv G WL} {w G W | w($+) C $+}
Then WL is a system of representatives of the quotient W/Wl, moreover, the

unique element of maximal length in WL is wqwq l where wo l denotes the longest
element of Wl The space G/P is the disjoint union of the BwP/P (w G WL)
Moreover, the dimension of BwP/P is the length of w Denoting by B~ the Borel
subgroup of G such that B~ D B T and by Q D B~ the parabolic subgroup
opposed to P, we have P D Q L The length of w G WL is the codimension of
lJj in G/Q

Consider now a variety X with a G-action (by variety we mean a reduced and
irreducible algebraic complex scheme, and by subvanety, a closed subscheme which
is a variety) Following [Kn], the set of S-invariant subvaneties of X is denoted
by B(X) For Y G B(X) and w eW, the set BwY is in B(X) (this set is denoted
by w * Y in [Kn], where the resulting operation on B(X) is studied) The map

BwB x Y -> BwY
(g,y) ^ gy

is invariant under the _B-action defined by b(g,y) (gb~^,by) Denoting by
BwB XßY the quotient, we obtain a map
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Because BwB/B is complete, ny^w is proper and hence surjective.

Definitions. Let d(Y,w) be the degree of tty,w if this map is generically finite;
otherwise, set d(Y,w) 0.

Let VF(y) be the set of all w G W such that tty,w is generically finite and that
BwY is G-invariant.

Lemma. Let Y £ B(X).
(i) For any t and w mW such that 1(tw) 1(t) + l(w), we have

d(Y,Tw) =d(Y,w)d(BwY,T).

(n) For any w G W such that BwY contains only finitely many B-orbits, the

integer d(Y, w) is 0 or a power of 2.

(in) For any w £W such that d(Y, w) ^ 0, we have

W(BwY) {t G W I 1{tw) 1{t) + l{w) and tw g W(Y)}.

(w) The set W{Y) is not empty.
(v) If X G/P where P D B is a parabolic subgroup with Levi subgroup L D T
and Y BwP/P with t G WL, then W(Y) {wqwqlw~^}. Moreover, we have

1

Proof, (i) By the Bruhat decomposition, the canonical map

BtB xb BwB -> BtwB

is birational. It follows that the degree of tty,tw is equal to the degree of the map

BtB xb BwB xb Y -> BtwY

But the latter factors as

BtB xb BwB xb Y -> BtB xb BwY

of degree d(Y, w), followed by

BtB xb BwY -> BtwY

of degree d(BwY, t).
(ii) Write w T.sa where t g W, a G A and l(w) 1{t) + 1. Then BsoY C

BwY and, by (i):
d{Y,w) d{Y,sa)d{BsaY,T).

By [RS] §4 or [Kn] 3.2 (see also [Br] 6.2), we have d(Y,sa) < 2. We conclude by
induction over l(w).
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(m) If t G W(BwY) then

/(t) + l(w) dim(BTBwY) - dim(T) < dim(BTBwB/B)

which implies that /(t) + l{w) 1{tw) and that BtBwB BtwB Therefore,
tw G W(Y) The converse is similar

(iv) We argue by induction over the codimension of Y in GY If Y GY then
VF(y) {1} Otherwise we can find a minimal parabolic subgroup Pa D B such
that POY ^ Y Then W(POY) is not empty, and we conclude by (m)

(v) Because w eWL,we have BwP Bww0 LB Let t g W{BwP/P) Then
the map

BtB Xb Bwwq lB —s- G

is genencally finite and surjective By the Bruhat decomposition, this map is
birational and t wqwq l«^1

Remark. If X G/Q with Q D B~ and Y BwQ/Q with w G WL, then
W{Y) {w-1} and d{Y,w-x) 1

1.2. Cancellative and induced actions

This section contains technical results which will play a key role in our study of
regular group completions

Definition. The action of G on a variety X is cancdlative if for any distinct Y\,
y2 in B(X) and for any a G A such that PaY\ ^ Y\ and PaY2 + ^2 we have

PaYl + PaY2

Equivalently, for any distinct Y\, Y<i G B{X) such that GY\ GY<2, the sets

VF(Yi) and W(Y<2) are disjoint In particular, any Y G B{X) is uniquely
determined by GY and W(Y)

For example, the G-action on G/P is cancellative for any parabolic subgroup
P of G (this follows e g from Lemma 1 1) The (G x G)-action on G by left and

right multiplication is cancellative, too But the diagonal action of G PGL2 on
P1 x P1 is not cancellative Indeed, let B be the standard Borel subgroup of G
and let oo be the S-fixed point in P1 Then Y\ P1 x {oo} and Y2 {oo} x P1

are _B-mvanant subvaneties with Y\ ^ GY\

Definition. Let P D B be a parabolic subgroup with Levi subgroup L D T
and let X' be a L-vanety The induced variety X is the quotient of G x X'
by the diagonal P-action where P acts on G by right multiplication, and on X'
through its quotient group L We denote X by G x p X' and we identify X' to
the P-invariant subvanety P x p X' C X, the fiber at P/P of the canonical map
p GxpX' -^G/P
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Lemma. Notation being as above, any Y £ B(X) can be written uniquely as

BwY1 where w £ W and Y' C X' is a (B C\ L)-mvariant subvanety. Then

W(Y) {t £ W | tw £ WQWQ^LWL{Y') and 1(t) codimGy(T)}

and for any w £ W(Y), we have

d{Y,w)

Furthermore, the G-action on X is cancellative if and only if the L-action on X'
is.

Proof. Let Y £ B(X). Then there exists a unique w £ WL such that BwP/P
is dense in p(Y). Moreover, Y l~l p~^(wP/P) is invariant under B n wPw~^.
This group contains w(B n L)w~^ because w is in WL. Therefore, we have Y l~l

p~^(wP/P) wY' for a unique (L> n L)-invariant subvariety Y' C X'. It follows
that BwY' YC\p~1{BwP/P) is dense in Y.

For the second statement, consider first the case where w 1; then Y Y'.
Let t G VF(y'). Write r tltl where tl £ WL and tl g Wl. Because

BtY' GY', we must have tl wowo L and tl £ WL(Y'). Therefore, W(Y')
w0w0tLWL(Y'). Moreover, d{Y,r) dL{Y',TL).

In the general case, it follows from Lemma 1.1 that t g W(Y) if and only if
1(t) co(YmvGY{y) and tw £ W(Y'). The latter amounts to: tw wqwq^u for
some u £ Wl(Y'). Because w £ WL we have d(Y',w) 1. Therefore, we have by
Lemma 1.1: d{Y,r) d(Y',tw) dL(Y>».

If the G-action on X is cancellative, then it is easy to see that the L-action on
X' is, too. For the converse, let Y\, Y<i be distinct L>-invariant subvarieties of X
and let a G A such that Y\ ^ POY\ PaXi 7^ ^2- For i 1,2, write Yt BwtYt'
as above. Then PoYt Bsow,Yt' because PaYt =/= Yt. We distinguish between
three cases.

(i) saw\ <£ WL and sow2 £ WL. Then saw\(ß\) <£ ^^ for some simple root
ßl of (L,T). It follows that w\(ß\) a and that saw\ wisß^. So Sß-^Y-l =/= Y-[[
(because POY\ ^ Y\) and POY\ BwiSß-^Y^. Similarly, saw2 W2-Sß2 for some
simple root ß% of (L,T). Therefore, w\ w% and Pß±Y{ Pß^YJ^. Because the
L-action on X' is assumed to be cancellative, this implies Y-[ Y^.

(ii) saw\ £ WL and saw2 £ WL. Then saw\ saw2 whence w\ w%, and

(iii) saw\ <£ WL and saw2 £ WL. Write saw\ w\Sß1 as in case (i). Then

BwiSß^Y^ BsawiY^ whence w\ sow2- Therefore, saw\ w<i £ WL, a
contradiction.

Remark. Let Q D B~ be the parabolic subgroup opposite to P. Consider the
induced variety G Xq X'. Then, for w £ WL and Y' £ B(X'), we have

W(BwY') {t £ W | tw £ WL(Y') and /(t) codimGY>(BwY1)}
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and d(BwY',T) di,{Y',tw) whenever t g W(BwY'). Thus, the formulation of
the Lemma above is much simpler; note however that Y' (viewed as a subvariety
of G Xq X') is not _B-invariant

1.3. Intersection multiplicities of invariant subvarieties

In this section, we give a geometric interpretation of W(Y) and d(Y,w).
Let X be a complete, non-singular G-variety, let Y C X be a _B-invariant

subvariety such that GY X, and let Z C X be a G-invariant subvariety. We
denote by C(YC\Z) the set of irreducible components of the intersection of Y and Z.
Recall that each C G C(YnZ) satisfies dim(C) > dim(T) + dim(Z) -dim(X). By
définition, Y and Z meet properly along C if equality holds above, or equivalently
if codiiriz(C) codiirixfX). In this case, we denote by i(C,Y ¦ Z) the intersection
multiplicity of Y and Z along C, see [F] Chap. 7.

Lemma, (i) If Y meets Z properly, then

W{Y) c (J W{C).
ceC(Ynz)

If moreover Y meets properly any G-invariant subvariety ofZ, then equality holds

above, and GC Z for any C G C(Y n Z).
(n) Assume that Y meets properly any G-invanant subvariety of Z, and that the
G-action on Z is cancellatwe. Then C{Y C\ Z) is the set of all G G ß(Z) such
that W{C) meets W(Y). Moreover, W(Y) is the disjoint union of the W{C) for
C eC{YC\Z). Finally, we have for any C eC{YC\ Z):

d{C,w)i{C,Y -Z) =d{Y,w).

Proof, (i) Assume that Y meets Z properly. Let w G W(Y). The generically finite,
surjective morphism

¦ky,w : BwB xB Y —s- X
restricts to a surjective morphism BwB x b (Y C\ Z) —s- Z. Thus, there exists
C G C(Y n Z) such that the morphism

ttc,w ¦ BwB xB C —> Z

is surjective. But

dim(BwB xBC) l(w) + dim(C) codimx(T) + dim(C) dim(Z)

and therefore, tvc,w is generically finite: w G W(C).
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Assume now that Y meets properly any G-mvariant subvanety of Z Let
C G C(Y n Z) We prove that W(C) C W(Y) and GC Z by induction on
codimx(T) If codimx(T) 0 then Y X whence C Z and VF(C) W{Y)
{1} If codimx(T) > 0 then C ^ Z It follows that GC Z indeed, because

CeC(7n GC) and Y meets properly GC, we have

which implies that dim(GC) dim(Z) In particular, GC ^ C Let w G W(C),
then to^l Write w rsa where a G A and l(w) 1{t) + 1 Then PaC ^ C,
whence PaY ^ Y, otherwise, we would have PaC d Y C\ Z and dim(PaC)
dim(C) + 1 which is impossible because Y meets Z properly It follows that PaY
meets Z properly and that

C(PaY C\Z) {PaC | C G C(Y n Z) and PaC + C}

Similarly, POY meets properly any G-mvanant subvanety of Z By induction, we
have W(PaY) D W{PaC) Now the latter contains t, whence w G W(Y)

(u) Let C G C(Y n Z), then VF(C) C W(Y) by (l) If moreover C" G C(Y n
Z) \ {C} then Z GC GC Because the G-action on Z is cancellative, the
sets W{C) and W(C') are disjoint

Consider now D G B(Z) such that VK(L>) meets W{Y) We prove that D G

C(Y n Z) by induction on codim^(-D) If codnnz(-D) 0 then D Z whence
1 G W{Y) and Y X If cod\mz{D) > 0, choose w G W{D) n VF(y) and write
w Tsa where« G Aand/(w) /(t) + 1 Then PaL> ^ L> and Pay ^ Y Because

t G VF(Pai)) n W(PaY) and Pay meets properly any G-mvanant subvanety of
Z, we have PaD G C(PaY n Z) by the induction assumption Thus, there exists
C G C(y n Z) such that PaD PaC ^ C Because the G-action on Z is

cancellative, we have D C
We consider the map

7T PaXBX -> X
(g,x)B h^ gx,

a proper, flat morphism (indeed, tt identifies with projection Pa/B x X —> X
under the isomorphism Pa Xjl~ Pa/B x X) We have in the Chow group of
X

7r,[paxBy'] <y',SQ)[pay']
for any Y' e B(X) Moreover,

TT*[Z} [PaXBZ]

because Z is Pa-mvanant It follows that

d{Y,sa)[PaY][Z] v*{[Pa Xb Y]tt*[Z}) 7r»([Pa xB Y][Pa xB Z])

J2 <C,Y Z)ir4PaxBC}= J2 d(C,sa)i(C,Y Z)[PaC]
ceC(Ynz) ceC(Ynz)
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in the Chow group of PaYC\Z. Indeed, for C G C{YC\Z), the varieties PaxBY and

PaXßZ intersect properly along PoXbC with multiplicity i (C, Y ¦ Z). Recall that
the top-dimensional Chow group of POY n Z is freely generated by the classes of
the elements of C(PaY C\Z). Considering the coefficient of [PaC] in the equalities
above, we obtain

d{Y,sa)i{PaC,PaY ¦ Z) d{C,sa)i{C,Y ¦ Z).

It follows that d(C,w)i(C,Y ¦ Z) d(Y,w) for any w G W{C) and for any C G

C(YnZ).

Corollary. Assume that Z is a closed G-orbit with isotropy group Q D B~ and
that Y meets Z properly. Then the irreducible components ofYDZ are the BtQ/Q
where t G WL and t^1 G W(Y). Moreover, the intersection multiplicity of Y and
Z along BtQ/Q is d{Y,T-x).

1.4. S-invariant subvarieties in regular G-varieties

We begin by recalling the notion of a regular variety, due to Bifet, De Concini and
Procesi (see [BDP]).

Definition. A G-variety is regular if it satisfies the following conditions:
(i) X is smooth and contains a dense G-orbit Xq whose complement is a union of
irreducible smooth divisors with normal crossings (the boundary divisors).
(ii) Any G-orbit closure in X is the transversal intersection of the boundary divisors
which contain it.
(iii) For any x G X, the normal space TxX/Tx(Gx) contains a dense orbit of the
isotropy group Gx.

Any complete regular variety X is spherical, that is, X contains a dense _B-orbit

Xg. Conversely, any spherical homogeneous space admits a regular completion
X. Moreover, all closed G-orbits in X are isomorphic to G/Q where Q D B~ is

opposite to the parabolic subgroup P D B consisting of all g G G which leave
invariant XB (see e.g. [BB] 2.2).

Theorem. Let X be a complete regular G-vanety and let Y C X be a B-mvariant
subvariety.
(i) For any w G W{Y), we have w^1 G WL where L is the Levi subgroup of Q
which contains T.
(n) For any G-invanant subvariety Z C GY, the intersection ofY and Z is proper
in GY, and we have GC Z for any irreducible component G ofYC\Z.
(in) If moreover Z is cancellative, then Y C\ Z is the union of all G G ß(Z) such
that W{C) is contained in W{Y). Moreover, the intersection multiplicity of Y and
Z along C is d(Y,w)d(C,w)~ for any w G W(C). In particular, this multiplicity
is a power of 2.
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Proof. Replacing X by the regular G-variety GY, we may assume that Y meets

AG.
We first prove (ii). Write Z X\ n • • • l~l Xc where X\,... ,XC are boundary

divisors and c codinix(-Z')- Let i be the greatest index such that the intersection

ynXifl-'-nl, is proper. If i^ c then there exists C G C{YC\X\ n- • -C\X%) such
that G C Xj_|_i. Observe that G is _B-invariant and that dim(C) dim(Y) — i.
Choose w G W(C). Because GC C X\ n • • • n Xl+\, we have /(w) + dim(C) <
dim(X) — i — 1 and therefore:

dim BwY < l{w) + dim(Y) l{w) + dim(C) + i < dim(X) - 1.

So BwY is contained in X \ X^. The latter has pure codimension 1, because X^
is affine. Thus, there exists an irreducible _B-invariant divisor D C X containing
BwY] then D is not G-invariant because GY X. In particular, D contains
BwC GC and meets Xq. But this is impossible in a regular G-variety, see e.g.
[BB] Proposition 2.2.1. Thus, i c, that is, Y meets Z properly. We conclude by
Lemma 1.3.

Now we prove (i). Let w G W(Y) and let Z C X be a closed G-orbit; let z G Z
such that Gz Q. By Lemma 1.3, there exists C G C{YC\Z) such that w G VF(C).
Then C Btz for some t g M/L, and w t^1.

(iii) follows from (i), (ii) and Lemmas 1.1, 1.3.

We apply this result to a study of the intersection numbers Jx [Y] [Y1] where

Y, Y' are _B-invariant subvarieties of X of complementary dimensions. In the case
where X G/B, the abelian group A*(X) is freely generated by the Schubert
cycles Q(w) := \BwB/B] (weW). Furthermore, JG/B Q(w)Q(w/) ^ 0 if and only

if w' wqw. In this case, the intersection of BwB/B and wqBw'B/B consists of
the point wB/B with multiplicity one. This can be generalized as follows.

Corollary. Let X be a complete regular G-variety and let Y, Y' be B-invariant
subvarieties such that dim(Y) + dim(Y') dim(X) and that GY X. Then

fx[¥][¥'] ¥" 0 if and only if Y meets wqY1. In this case, Y C\ wqY1 is a unique
point fixed by T.

Proof We have /x[^][^'] /x[Y][wo^1- If this number is non-zero, then Y
meets wqY1 For the converse, let Ö C X be a G-orbit which meets YDwqY'. By
Kleiman's transversality theorem (see [Kl]), there exists an open dense subset U of
G such that for all g G U, the intersection Y n gY' n Ö is non-empty of dimension

dim(Y n O) + dim(Y' n O) - dim(O) := n.

Then U meets BwqB. Because Y and Y' are _B-invariant, it follows that U contains
wo- On the other hand, we have by the theorem above:

dim(Y n O) dim(O) - dim(X) + dim(Y)
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and
dimfT' n O) dim(O) - dim(GT') + dim(Y')

It follows that
n dim(O) - dim(G'y/)

Because O C GY1 and n > 0, this forces n 0 and Ö GY' Therefore, Yr\w0Y'
is a finite subset of Ö Because this set is invariant under B n wqBwq T, it
consists of T-fixed points

Let YB° be the open 5-orbit in Y', then O GYB° Set Y" {Y1 C\O)\ YB°

Then Y" C O is 5-invariant and dim(Y") < dim(Y') By Kleiman's transversality
theorem again, Y l~l wqY" is empty It follows that Y l~l wqY' C wqY'bq But the
_B-orbit YB contains at most one T-fixed point This completes the proof

Remarks, (l) For Y and Y' as above, the intersection Y l~l wqY' may be non
transversal Consider for example G PGL(2) acting on the space V of quadratic
forms in x, y by linear change of variables Let X be the projectivization of V and
let Y (resp Y') be the image in X of forms divisible by x (resp of degenerate
forms) Then GY X and Y meets wqY' at the image of x2, with multiplicity 2

(u) If GY is not equal to X, then it is contained in some boundary divisor
X' C X Using the projection formula (see [F] p 140), it follows that

I [Y][Y'}= [
x Jx>

Thus, to compute inductively the left-hand side, it is enough to express [X'][Y']
in terms of classes of S-invariant subvaneties, for any boundary divisor X' and
for any S-invariant subvanety Y' In the case where X is a regular completion of
G, this will be done m 3 4 below

1.5. Orbit closures of spherical subgroups in flag varieties

Let H C G be a spherical subgroup and let P D B be a parabolic subgroup of G,
then G/P contains only finitely many iï-orbits We express the classes of iï-orbit
closures in the Chow group A* (G/P) endowed with its basis of Schubert cycles

(weWL)
First we associate to each iî-invariant subvanety V C G/P a P-invariant

subvanety V C G/H, as follows Denote by qP G —s- G/P and qH G —s- G/H
the quotient maps, and by t G —s- G the map g ^ g Set

V =qHiqpHV)

Then V C G/H is a P-invariant subvanety (which implies that VF(y) C WL) and

V qP,qH1(V)
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If moreover H is connected, then any P-invariant subvariety of G/H is obtained
in this way.

Theorem. Let H be a spherical subgroup of G, let B be a Borel subgroup of G
such that BH is open in G, and let P D B be a parabolic subgroup with Levi
subgroup L D T. Finally, let V C G/P be an H-invariant subvariety.
(i) For any w G WL such that l(w) codimCj/p(\/)7 the Schubert variety BwP/P
meets V in d(V,w) points of multiplicity one, and these points are contained in
BwP/P.
(n) We have mA*(G/P):

[V}= Y^ d{V ,w)[Bw0wP/P}.

wEW(V)

In particular, the coefficient of any H-invariant subvariety on any Schubert cycle
is zero or a power of 2.

Proof, (i) By [Kl], there exists a non-negative integer d and an open dense subset
U C G such that for all g G U, the intersection (gV) (~]BwP/P consists of d points
of multiplicity one, contained in BwP/P. Because U meets BH and V (resp.

BwP/P) is invariant under H (resp. B), it follows that V D BwP/P consists of
d points of multiplicity one.

To show that d d(V,w), we first reduce to the case where P B, as

follows. Let p : G/B —> G/P be the canonical map. Then p~^(V) is an H-
invariant subvariety of G/B; on the other hand, restriction of p to BwB/B is an
isomorphism onto BwP/P because w G WL. Therefore, we have by the projection
formula:

d= I [V]p4B^P/P}= f
Jg/p Jgfg/p Jg/b

Write w rsa with a G A, t g W and l(w) 1(t) + 1. Let q : G/B -> G/Pa
be the canonical map. Then q is a P -flbration and

q*q*\BTB/B] [q-lq(BTB/B)\ [B^B/B].

Moreover, we have q~^q(V) PaV. We claim that

q*q*[V] d(V,Sa)[q-1q(V)].

Indeed, for y G V generic, d(V, sa) is the number of classes gB such that g G Pa
and g~^y G V. Therefore, d(V, sa) is the degree of the restriction q\v '¦ V —> q{V).
Thus, q*[V] d(V, sa)[q(V)] which implies our claim.

By the projection formula, we have

d= I [V]q*q4BrB/B}
JG/B JG/Pa

{q*q*[V])[BTB/B]=d{V,Sa) / [q-'q(V)][BTB].
G/B JG/B
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By induction over l(w), this implies d d(V,w).
(ii) follows from the fact that the [B~wP/P] (w G WL) are a basis of A*(G/P)

and that the dual basis for the intersection pairing

f(x,y) i-s- / xy
Jg/p

consists of the [BwqwP/P] [w G W

1.6. Degenerations of orbit closures to S-invariant cycles

The results of 1.4 and 1.5 are related by the following construction. Let X be a

regular completion of the spherical homogeneous space G/H. Let P D B be a

parabolic subgroup and let V C G/P be an iï-invariant subvariety with
corresponding P-invariant subvariety V C G/H. Denote by^Cl the closure of V.
Consider the maps

¦k : G xPY —> X
(g,y)P ^ gy

and
p: GxpY -> G/P

{g,y)P » gP
Because tt factors as

GxpY -> (G/P)xX -> X
(g, y)P ^ {gP, gy) ^ gy

the fibers of it identify to closed subschemes of G/P via p*
Denote by x G X the base point of G/H. Choose a closed G-orbit Z <Z X and

denote by z G Z the fixed point of B~. Then, for a suitable choice of T, there
exists a T-invariant affine subvariety A C X which is transversal to Z at z (see

e.g. [BB] 2.3). It follows that A is T-equivariantly isomorphic to a T-module with
linearly independent weights. So we can choose a smooth curve 7 C X isomorphic
to affine line, transversal to Z at z and containing x (for example, the closure in
A of a generic one-parameter subgroup of T will do).

Proposition. Notation being as above, ir is equidvmensional, and tt~ (7) is
irreducible. Moreover, we have inA*{G/P):

P*[k-\x)] [V] p*
w£W(Y)

Proof. Observe that

^(z) {(g,y)P \yeY, gy x} {{g,g~lx)P \ g^x G Y}
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(as sets) so that
P(ir-\x))={gP\g-1xeY} V

Because 7r~1(x) is a general fiber, it is reduced, because p\w-1(x) ~k~^(x) —s- V is

bijective, we have p*[7r~1(x)] [V]
Similarly, we obtain

-1zeYnZ}= \J Q^P/P \J W
w£W(Y) w£W(Y)

by using Theorem 1 4 (m) It follows that tt is equidimensional
Set 7 7 \ {z} and F tt"1^) Then F is irreducible so that restriction

¦k F —s- 7 is flat and that

in A„(G/P) Therefore,

w£W(Y)

by Theorem 1 5 Because the irreducible components of p(jr~^(z) n F) are
irreducible components of p(jr~^(z)), this forces p(jr~^(z) n F) p(jr~^(z)), that is,
the set it {z) is contained in F Thus, tt (7) F is irreducible and

2^ d{V,w)[B-wP/P]
w£W(Y)

Question. Is it flat 7 Because it is equidimensional and X is smooth, the answer
would be positive if Y were Cohen-Macaulay Is the latter true 7

2. Orbit closures in regular group completions

2.1. Regular group completions

Consider the connected reductive group G as a homogeneous space under G x G
for the action given by left and right multiplication (<?i, #2)7 91192 Then the
isotropy group of the identity is the diagonal diag G By the Bruhat decomposition,
G is the disjoint union of the (B x _B~)-orbits BwB~ (w G W) In particular, G
is spherical with open (B x _B~)-orbit BB~

Let X be a (G x G)-equivanant completion of G which is regular in the sense
of 1 4 We describe the (G x G)-invariant subvaneties Z of X By Proposition Al
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below, there is a unique z G Z such that z is the limit of a one-parameter subgroup
of T, and that the orbit (B x B~)z is open in Z] we refer to z as the base point
of Z. Moreover, there exists a unique parabolic subgroup P := P(Z) D B with
opposite parabolic subgroup Q D B~ and Levi subgroup L := L(Z) PC\Q such
that the isotropy group (G x G)z is the semi-direct product of RU{Q) x RU(P)
with diag L x (C x {1})Z where C denotes the connected center of L. Finally,

Z=(GxG)x{QxP)Z'

where Z' (L x L)z is a regular completion of a quotient of L by a central torus.
In particular, all closed (G x G)-orbits in X are isomorphic to G/B~ x G/B.

Now we describe the (B x S~)-invariant subvarieties Y in X. Let y be the
base point of the (G x G)-invariant subvariety (G x G)Y and let P{Y) be the
corresponding parabolic subgroup with Levi subgroup L(Y) D T. Then, by 1.2,
we have

Y {B xB-)(a,T)Y'
for ct,t G WL(y) and a(Bfl L(Y)) x (5" n L(T))-invariant subvariety Y' in Z'.
Moreover, because y is fixed by diagL(Y), we have

y' {B n L(Y)) x {B- n L(Y))(p, l)y

for p G WL(F). Observing that Ba(B n L(Y)) -Bcr and that B~t(B n
_B^t because <r, t G M/L(-r->, we conclude that

Y ={B xB~)(w,T)y

where w ap G W and t g M/L(-r-> are uniquely determined. If moreover Y meets

G, then y 1, r 1 and Y BwB~.
Having these descriptions at hand, we can state the following

Theorem. Let X be a regular completion ofG, let Y C X be a (BxB~)-invariant
subvariety, and let Z C (G X G)Y be a (G X G)-mvariant subvariety.
(i) Y meets Z properly in (G X G)Y, and all intersection multiplicities are equal
to one.

(n) If moreover Y (B X B~)(w,r)y as above and Z has base point z and
associated, parabolic subgroup P(Z), then

YnZ {J (B xB-)(wv,tv)z

(decomposition into irreducible components) where the union is over allv G W
such that TV G WL(Z> and l(w) l(wv) + l{v). In particular,

BwB- n Z IJ (B x B~)(wv, v)
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union over all v G WL^Z> such that l(w) l(wv) -\- l(y).

Proof. We apply the results of 1.2 and 1.4 to the group GxG with Borel subgroup
B x B~, maximal torus T xT and Weyl group W xW. Recall that Z is induced
from a regular completion of a central quotient of a Levi subgroup. Using 1.2 and
induction over the semisimple rank of G, it follows that the (G x G)-action on Z
is cancellative.

In the case where Y (B x B~){w,r)y, set L := L(Y) and decompose w as

apeWLWL.

Moreover, set
Y' := {BC\L)x (B- n L)(p, l)y.

Let {w\,w<2) G W x W such that l{w\) + I{w2) codim/GxGw(Y) l{w) + /(t).
Then we have by 1.2:

G (Wl x WL)(Y')
and p {w\<j)~ w^t <^> W2T G Wl and w w^

Moreover, d(Y, (w\,W2)) 1 for all such (w\,W2). Therefore, by Theorem 1.4, Y
meets Z properly in (G x G)Y with all multiplicities equal to one. Moreover, a

(B x _B~)-subvariety C C Z is an irreducible component oî Y D Z iî and only if
(WxW)(C) meets (WxW)(Y); then (WxW)(C) is contained in (WxW)(Y). We

can write C (B x B-){u\,u<2)z where u\ e W and «2 G WL(-Z\ By 1.2 again,
(W x W)(C) contains (m^1,«^1). It follows that m^V g Wl, wt^1 u\v^1 and

/(«l) + /(«2) ^(w) + KT)- Thus, we have («i,«2) {wv,tv) where v G Wl and
/(wn) + 1(tv) l{w) + /(t). Because t g M/L, we have 1(tv) /(t) + /(u) and
therefore /(wn) + l(v) l{w). The converse is obtained by reversing the previous
arguments.

Corollary. Notation being as above, any (B X B~)-mvariant subvanety of X is
smooth in codimension one. Moreover, (B X B~)(w,r)y is smooth at all points of
(B x B~){wv,tv)z.

Proof. Let Y G B(X) and let Z C X be a boundary divisor of (G x G)Y. Because

Y meets Z properly with multiplicity one, the non-singular locus of Y meets all
components of Y C\Z by [F] 7.2. Therefore, it is enough to show that Y C\{Gx G)y
is non-singular in codimension one, where y is the base point of (G x G)Y.

We use the notation of the proof of the theorem, and we set for simplicity
P(Y) := P and L(Y) := L. Then the map

BaQ x B-tP x Y



Vol 73 (1998) The behaviour at infinity of the Bruhat decomposition 153

is surjective It follows that any irreducible (B x _B~)-mvanant divisor inFn(Gx
G)y can be written as (B x B~)y' where
(l) y' (ap',r)y with p' G WL such that {BC\L)x (B~ C\L){p', l)y is a divisor in
Y' n {L x L)y, or
(u) y' (a'p,r)y with a' G WL such that Ba'Q is a divisor in BaQ, or
(m) y' (ap,r')y with t' G WL such that B~r'P is a divisor in 5~tP

In case (l), the point (p',l)y is non-smgular in Y' by normality of Schubert
varieties in L, see e g [MS] Moreover, the map

(BanaRu(P))x(B-TDTRu(Q))xY' -> Y
(91,92,x) ^ (gi,92)x

is an open immersion, and its image contains y' (a, r)(p', l)y This implies our
claim

In case (u), the point a' is non-singular in BaQ by normality of Schubert
varieties in G Therefore, the set

G{a,a') {g e RU(P) \ a'g e BaQUBa'Q}

is a locally closed, smooth subvanety of G containing 1 Moreover, the map

G(a,a') -+ BaQ/Q
g » cr'gQ/Q

is an open immersion It follows that the induced map

G(a,a') x (B-tDtRu(Q)) x (B D L) x (B~ D L)(p, l)y -> Y'

is an open immersion as well, which implies our claim
Finally, case (m) is similar to case (u)
The second assertion follows from the fact that (B x B~)(wv,tv)z is an open

orbit of B x B~ in (B x B~)(w,r)y D Z and from the criterion for multiplicity
one (see [F] 7 2)

Question. Is it true that all (B x _B~)-mvanant subvaneties of regular group
completions are normal 7 By the Corollary above, this would hold if they were
Cohen-Macaulay

2.2. Tangent spaces to closures of double classes

The group PGL(2) has a unique regular completion X the projectivization of the

space of 2 x 2 matrices where GL(2) x GL(2) acts by left and right multiplication
Moreover, the closure in X of the standard Borel subgroup B C PGL(2) is the
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projectivization of the subspace of upper triangular matrices. So B is non-singular;
but this case is exceptional, as we will see. To state our result, we need the following

Definition. A simple root a is isolated, (in the Dynkin diagram of G) if a is

orthogonal to all other simple roots.

Observe that G has no isolated simple root if and only if the adjoint group of
G does not contain PGL(2) as a direct factor.

Theorem. Let X he a regular completion of G, let w £ W and let x G X be a

fixed, point of B x B~.
(i) If w(a) G $^ whenever a is an isolated simple root, then the tangent space of
BwB~ at x is equal to the tangent space of X at x.
(n) If w is not a product of reflections associated to isolated simple roots, then
BwB~ is singular at x.

Proof (i) Set Z := [G x G)x. Observe that the tangent space TxBwB contains
Tx(BwB~ n Z) and that x (wq,wq)z where z is the base point of Z. Applying
Theorem 2.1, we obtain

BwB- DZD (B xB-)(w,l)zL)(B x B-){l,w-l)z D (1 x G)xU(Gx l)x.

It follows that TxBwB~ contains TXZ.
Now we show that the quotient space TxBwB~/TXZ is equal to the normal

space TXX/TXZ. By Proposition Al below, the point x has an open affine (T x T)-
invariant neighborhood Xx in X, which is (T x T)-equivariantly isomorphic to the

space of a representation of T x T. Let X\,... ,Xr be the boundary divisors of
X which contain Z. Then, for 1 < i < r, the divisor Xt n Xx has an equation
ft G C[XX] (the algebra of regular functions over Xx) which is unique up to scalar
multiplication. In particular, each ft is an eigenvector of T x T; let \% be the
opposite of its weight. Because X is regular, the characters xi, • • • ,Xr are linearly
independent, and

TXX T,Z®
i=\

where each Lt is a (T x T)-invariant line with weight \%- Moreover, the weights
of T x T in TXZ are the (-/?, 0) and (0, ß) for /?€$+.

Let Mx,x be the ideal of x in C[Xj;]. Because TXX is the dual of Mx,x/M% x,
we can choose (T x T)-eigenvectors fßfl, /o,-/3 m -Mx,x (for ß G $+) which lift
a basis of the dual of TXZ. By the graded Nakayama lemma, the ideal M.x,x is

generated by the fßß, fQj_ß (ß G $+) and by /i,... ,fr.
For 1 < i < r, we denote by res(ft) the restriction of ft to BwB~ D Xx.

Because BwB~ meets all orbits of G x G in X, each res{fl) is a non-zero element
of -MBwB_ x

(the ideal of x in C[BwB~ nlj). Using the linear independence



Vol. 73 (1998) The behaviour at infinity of the Bruhat decomposition 155

°f XIt ¦ ¦ ,Xr, it is enough to show that no res(f%) is contained in A4-

Otherwise, we can write

where the n0 are non-negative integers and where ß, 7 are sums of positive roots.
By Proposition A2 below, the span of xij • • • ,Xr intersects the span of $ x $
along the span of the {—a, a) (a G A). It follows that 7 ß. By Proposition A2
again, {—ß,ß) is in the convex cone generated by xi, • • • ,Xr- Writing {—ß,ß)
5Zl=i rnjXj with non-negative mi,... ,mr, we obtain

Xt

By linear independence of xi, • • • ,Xr, it follows that n3 m3 0 for j ^ i and
that Xi {—ßiß)- By Proposition A2, we must have ß a G A. In other words,
we have

for some a G A. Then this decomposition is unique; therefore, we have up to a

multiplicative constant:

res(fl) res(/0,io)res(/oi_a).

But (res(ft) 0) Xt n Xx n BwB~ where Xt is (G x G)-invariant. It follows
that the divisor (res(/ao) 0) is (B x B~)-invariant. Therefore, the same holds
for (res(faß) 0) n Z and in particular for (res(faß) 0) n (G x l)x.

We claim that a is isolated. To check this, choose root vectors Xß (ß G $) in
the Lie algebra of G. Denote by T the tangent space to (res(/ao) 0) n (G x l)x
at x. Then a basis of T consists in the (x-ß,0)x where ß G §+ and ß ^ a; by
the previous discussion, T is invariant under the Lie algebra of B. If a is not
isolated, then there exists a' G A such that a + a! is a root. Then [xai ,x-a-ai\ is

a non-zero multiple of x_a. Therefore,

xa>{x-a-a>,Q)x ([xa>,x-a-a>],0)x

is a non-zero multiple of (x_a,0)x. But (x_a_a/,0)x G T and (x_a,0)x ^ T, a
contradiction.

Finally, we claim that w(a) ^ $+. Let Za C X be the (G x G)-invariant
subvariety such that Za contains Z as a divisor and that the normal space to
Z in Za at x has weight x» (—a,a) (in other words, Za nJ7ijX,). Then
P{Za) Pa. Let za be the base point of Za. By Theorem 2.1, we have

BwB- D (B x



156 M. Brion CMH

If w(o) G $+, then w~^(a) G $+ (because a is isolated) and therefore

(B x B-)(w, l)za D (w, 1){B n La) x {B- n La)za (w, \){La x La)za

where La is the Levi subgroup of Pa which contains T. It follows that the tangent
space to BwB~ in X at any point of Z contains the normal direction to Z in Za,
which contradicts the assumption that res(ft) G A4- —

BwB :x
(ii) Let / be the set of isolated simple roots a such that w(a) <£ $+. Then we

have by the proof of (i):

A\mTxBwB- > dim(Z) +r - \I\ 2

On the other hand, we can write

w
aei

where w' is a product of simple reflections associated to non-isolated simple roots.
Then l(w) \I\ + l(w') and therefore:

dimBwB- dim(G) - l{w) 2|$+| +r-\I\- l{w').

Thus, if BwB is smooth at x, then w' 1 and w Ylaei s«-

Corolleiry. Let Y C X be a (B x B~)-mvariant subvanety. Write Y
{B X B-){pa,r)y with p,T G WL(Y^ and a G WL/Yy
(i) If a (a) G <&+ whenever a is an isolated simple root in the Dynkm diagram of
L(Y), then for any x G Y, the composite map

TXY ^Tx(Gx G)Y ^Tx(Gx G)Y/TX{G x G)x

is surjectwe.
(n) If a is not a product of reflections associated to isolated simple roots in the

Dynkm diagram of L(Y), then Y is singular in codimension two.

Proof. Because (G x G)Y is induced from a regular completion of a quotient of
L(Y) by a central torus, we easily reduce to the case where (G x G)Y X. Then
Y BwB~ for some w G W.

(i) For 1 < i < r, let %x% be the ideal sheaf of Xt in X. Then the set

Et:={xeY\ lx%iX c 1Y,X + M%x}

is closed and (B x B~)-invariant. By the theorem above, Et does not contain any
fixed point of B x B~. Therefore, Et is empty: the image of Txz,x in Oy,x is never
contained in A4Yx- So the map

TXY -+ TxX/TxXt
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is surjective whenever içYnl,.
(ii) We show that there exists a boundary divisor Z of X such that Y C\ Z

contains two irreducible components C\ and C% which meet along a divisor in C\
and C*2, and that TXY is not contained in TXZ for some x G C\ n C%- Then the
tangent space TXY contains TX(C\ UC2) and surjects to TXX/TXZ. Therefore, we
have

dim(TxY) > dimT^Ci U C2) + 1 > dim(Ci) + 1 dim(Y)

and Y is singular along C\ n C*2.

By assumption, there exists a non-isolated simple root a such that w(a) <£ $+.
Then we can write w tso where l(w) l(r) + 1. Let P D B be the maximal
parabolic subgroup such that —a is not a root of P; then sa G WL. Let Z <Z X
be a boundary divisor such that P(Z) P, and let z be the basis point of Z. By
Theorem 2.1, FriZ contains (B x B~)(w, \)z and (_B x B~)(t, sa)z as irreducible
components. Moreover, both components contain (B x B~){w, sa)z as a common
divisor. Indeed, let Ua C B be the one-parameter unipotent subgroup associated
to a. Then 1 x Ua fixes z, because Ua C RU{P). Therefore,

{B x 5-)(w, l)z D (1 x U-aTUa){w, \)z

contains (w, sa)z, as U-aTUa contains sa. Similarly, as t(o) g 1?+, we have

{B x B-)(i-,sa)z D (t/T(a)T x l)(r,sa)z {T,sa){UaTU-a x l)z

and the latter contains (tso, sa)z (w, sa)z. Finally, as a is not isolated, TXY is

not contained in TXZ, by the proof of the theorem above.

Remark. The results of this section do not extend to regular completions of
arbitrary spherical homogeneous spaces. For example, let G SO(n) act on Cn by
its standard representation and let X P""1 be the projectivization of Cn. Then
X is a regular completion of the spherical homogeneous space SO(n)/O(n — 1) by
a homogeneous divisor Z, the quadric in P""1. Choose a Borel subgroup B C G
and a _B-flxed point x G Z. Let Y C P""1 be the tangent hyperplane of Z at x.
Clearly, Y is non-singular, _B-invariant and not contained in Z\ but TXY is equal
to TXZ.

2.3. Closures of parabolic subgroups

We describe how the closure of a parabolic subgroup meets a closed orbit in a

regular completion of G. As an application, we construct a degeneration of the
diagonal of a flag variety to a sum of Schubert cycles.

Proposition. Let X he a regular completion of G, let P D B be a parabolic
subgroup of G with Levi subgroup L DT and let Z C X be a closed (G X G)-orbit
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with {B~ X B)-fixed, point z. Then

P~C\Z IJ {B x B)(w,wç,}Lw)z IJ (P xP){w,w)z
wew,w-1ewL wew,w-1ewL

(decomposition into irreducible components). If moreover no isolated simple root
of G is a root of L, then

P~TegnZ= y (PxP){w,w)z
wew,w-1ewL

where P denotes the non-singular locus of P.

Proof. Observe that
P BwqlB BwqjLwqB wo-

Applying Theorem 2.1, we obtain

~PC\Z y (B xB)(u,wqv)z

union over all (u,v) <E W x W such that wq^wq uv~^ and that
l{u) + l(v). This amounts to wqv wq^u and /(wo,l) + Ku) KwO,lu), that is,
m^1 G WL. This proves the first assertion.

For the second assertion, let x G P C\Z. Then, because P is (PxP)-invariant,
(P x P)x is contained in P C\Z. Moving x in its (P x P)-orbit, we may assume
that x {u,v)z with u, v in W and m^1, w^1 in WL. The irreducible components
of PC\Z which contain x are exactly the {B x B){w,wqijw)z, suchthat w^1 G WL,
w < u (for the Bruhat order) and w < wq^w. By [De] Lemma 3.5, this amounts to:
w^1 G WL and w < w < u. If moreover u ^ v then we may take either w u or
w v. In other words, x belongs to at least two irreducible components of P n Z.
Using Corollary 2.2 (ii), we then obtain dimTX(P C\ Z) > dimP, a contradiction.
So u v and x (m, m)z.

Remark. Identifying Z with G/S x G/S instead of G/B~ x G/S, we obtain

P~C\Z= y PwwqB/B x
wew,w-1ewL

Using the construction in 1.6, this leads to a geometric interpretation of a well-
known formula for the class of the diagonal in A*(G/P x G/P):

[diagG/P}= ^ [BwP/P x BwqwP/P]
wewL
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(see [G] for more on the class of the diagonal) Indeed, consider the canonical map

¦k (Gx G) X(PxP) P -> G X

Then, as in 1 6, tt is equidimensional and its fibers identify with closed subschemes
of G/P x G/P via the projection

p (GxG)x{PxP)P^G/PxG/P

Moreover, the fiber of it at the identity of G is the diagonal diagG/P, and the
class of the fiber over the (B x _B)-fixed point in Z is

\BwP/P x BwqwP/P]
wewL

Therefore, the fibers of it realize a degeneration of the diagonal to the cycle above

3. Intersection theory in regular group completions

3.1. Equivariant Chow rings of regular group completions

Let X be a smooth, projective variety with an action of a torus T To describe
the Chow ring A*(X), it is useful to introduce the equivariant Chow ring A^(X)
(see [EG]) Indeed, Aj,(X) is a graded algebra over the symmetric algebra S of
the character group X*(T) Moreover, A*(X) is the quotient of Aj,{X) by its
homogeneous ideal generated by all characters of T (see [Br] Corollary 2 3 1)

In turn, the equivariant Chow ring A^,(X) can be described via the localization
theorem the inclusion of the fixed point set i XT —> X induces a ^-algebra
homomorphism i* Aj,{X) —> A^r(XT) which is mjective over Q and whose image
is determined by the fixed point sets of codnnension one subtori of T (see [Br]
Theorem 3 3) In the case where X is a regular embedding of G, we consider
the action of T x T with corresponding symmetric algebra S x S Then, by
Proposition Al, the set XTxT is contained in the union Xc of the closed (G x G)-
orbits in X, moreover, all such orbits are lsomorphic to G/B~ x G/B Therefore,
A?pxT(X) embeds into A^,xT(Xc) and the latter is a product of copies of the ring
A^xT(G/B- x G/B) (see [KK1], [KK2] and [Br] §6 for descriptions of this ring)

To analyse further XTxT and Xc, we consider the torus embedding T where
T acts by left multiplication Let T be the associated fan in X*(T) <g> R and let
F{I) be the set of maximal cones of T Because T is invariant under diagW,
the fan T is invariant under W, too Using Proposition A2 below, it follows
that T WT^ where T+ is the set of cones of T which are contained in the
positive Weyl chamber Then T+ is a subdivision of this chamber Moreover,
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•?"+(/) parametrizes the closed (G x G)-orbits in X, by Proposition Al. So XTxT
is parametrized by J7+(/) xWx VF.

For a G -^+(0) we denote by Za ~ G/B~ x G/_B the corresponding closed
orbit with base point z<j, and by

ia : A^xT(X) - A^xT(Za) A*TxT(G/B- x G/5)

the restriction map. Moreover, for / G A^rxT{Za) and m,v G VF, we denote by
/„^ the restriction of / to the point (u,v)za. Then fUjV is in S <S) S (the (T x T)-
equivariant Chow ring of the point).

Theorem. For any protective regular embedding X of G, the map

t*a : A*TxT(X) ^ H A*TxT(G/B-xG/B)

is mjective and its image consists in all families (fa) (& € J~-\-(l)) in S <S> S, such
that
(1) fa,usa,vsa fa,u,v (mod (u(ol), v(ol)) whenever a G A and the cone a G J~-\-(l)
has a facet orthogonal to a, and that
(11) fa,u,v fa',u,v (mod \) whenever \ & X*(T) and the cones a, a' G -7~+(0 have

a common facet orthogonal to \-

Proof. We begin by describing all (T x T)-invariant irreducible curves in X. Let
7 be such a curve. Then there exists a unique (G x G)-orbit Ö in X such that
7 n Ö is open in 7. Let z be the base point of Ö and let P be the associated

parabolic subgroup. Then (G x G)z contains a conjugate of the isotropy subgroup
of a general point of 7; thus, the rank of (G x G)z is at least 21 — 1. By Proposition
Al, it follows that one of the following three cases occurs.
(1) P B and z is fixed by T x {1}.
(2) P Pa for some a G A, and (T x {1})Z C x {1} (recall that C denotes the
connected center of L).
(3) P B and (T x {1})Z has codimension one in T x {1}.

In case (1), the orbit Ö is closed in X. It follows that 7 is conjugate in VF x VF

to a curve joigning z to (sa, \)z or to (1, sa)z (see e.g. [Br] 6.5).
In case (2), (L x L)z := X' is an equivariant completion of the group L/C

and the latter is isomorphic to (P)SL(2). Moreover, (G x G)7 (G x G)z is

isomorphic to (G x G) X/qxP\ X'. Thus, a has a facet orthogonal to a, and 7 is

conjugate in VF x VF to a (T x T)-invariant curve 7' C X' which is not contained
in the closed (G x G)-orbit Oa C Ö and which contains the base point za of Oa.
So 7' joins z<j to (sg,sa)zff.

In case (3), (T x T)z := 7' is a projective line joigning the base points of two
closed orbits (GxG)-orbits Oa, Oa>. Thus, the cones a, a' G -7~+(0 have a common
facet. Moreover, 7 is conjugate to 7' in VF x VF.
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In particular, the set of irreducible (T x T)-invariant curves in X is finite. Thus,
we can apply [Br] Theorem 3.4 to describe the image of

„•* .A* j V\ .A* /yTxT\ ¦

it is defined by linear congruences fx fy (mod x) whenever x,y G xTxT are
connected by an invariant curve where T x T acts through the character \- In
our case, the congruences associated to curves of type (1) define the image of
n<re.F (i) C) whereas curves of type (2) and (3) lead to congruences (i) and (ii).

To obtain a simpler description of A*{X), we consider the (G x G)-equivariant
Chow ring A*GxG(X). The latter is isomorphic over the rationals to the ring of
(W x VF)-invariants in A^,xT(X) (see [EG]). Moreover, the rational Chow ring
A*(X)q is isomorphic to the quotient of AGxG(X)q by its ideal generated by all
homogeneous elements of Sq <g> Sq (see [Br] Corollary 6.7).

Corollary 1. The ring A*GxG{X)q consists in all families [fa) (a G !F^-{1)) of
elements of Sq <g Sq such thai:
(1) (sa,sa)(fa) fa (mod (a,a)) whenever a G T has a facet orthogonal to

a G A, and
(2) fa fa' (mod x) whenever a, a' G J~-\-(l) have a common facet orthogonal to

xeX*(T).

Proof. By [Br] 6.6, the ring AGxG(G/B x G/B~) is isomorphic to S (g S via
restriction to za. Moreover, restriction of / G S<S)Sto (u,v)za is equal to (u,v)fa
where fa denotes restriction of / to za. So relations (i) and (ii) of the Theorem
reduce to (1) and (2).

In the case where G is a torus, both statements above reduce to the known
description of the equivariant Chow ring of a smooth, complete torus embedding,
as the ring of continuous, piecewise polynomial functions on the corresponding fan
(see e.g. [Br] 5.4). Back to arbitrary G, we have the following relation between

AGxG(X) and A^,xT{T), due to Littelmann and Procesi for semisimple adjoint
groups and equivariant cohomology (see [LP] Theorem 2.3).

Corollary 2. There is an isomorphism of Sq <g SQ-algebras

Proof. Let N be the normalizer of T in G and let N be its closure in X. Observe
that N is the disjoint union of the (w, 1)T for w G W. In particular, N contains
all fixed points of T x T. It follows that restriction

A*TxT(X) ^ A*TxT(N)
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is mjective Furthermore, by the proof of the Theorem above, N contains all
(T x T)-invariant curves which are not in a closed (G x G)-orbit (that is, which
contribute to relations (1) and (11)) Thus, restriction to N induces isomorphisms

A*TxT(X)WxW ~ A*TxT(N)WxW ~ A*TxT(T)w ~ (S (g. A*T(T))W

3.2. Equivariant classes of (B x 5 )-invariant subvarieties

Let X be a projective regular embedding of G Recall that the S (g) A-module
A^xT(X) is generated by equivanant classes of (B x B~)-invariant subvaneties
Y C X (see [Br] 6 1) By the previous section, the description of these classes

reduces to calculating their restriction i*a [Y] to any closed (G x G)-orbit Z Za
For this, we write Y (B x B~){w,r)y as m 2 1 and we denote by ay G T+

the cone associated to (G x G)Y Then we may assume that ay is contained in a,
otherwise Z is not contained in (G x G)Y and therefore i*a\Y] 0 We denote by
oy(1) C <t(1) the sets of edges (or extremal rays) of these cones Each e G <r(l)
determines a character \e of T the unique primitive character which vanishes at
all edges of az except at e where it takes non-negative values

We identify Z to G/B~ x G/B For w,t eW, we denote by Q(w, t) the equivanant

class oiBwB-jB- x B~TB/B in A^xT(G/B- x G/S) These "Schubert
classes" are a basis of the S & S*-module A^,xT(G/B^ x G/B) Finally, we denote
by

ctxt x*(TxT)^A^xT(G/B xG/B)
the characteristic homomorphism (see e g [Br] 6 5)

Proposition. Notation being as above, we have

(sum over all v G WLrY) such that l(w) l(wv) + l(v))

Proof Recall that (G x G)Y is the transversal intersection of the boundary divisors
of X which contain it, and that these divisors are indexed by the set ay(l), we
denote by Xe the boundary divisor corresponding to the edge e Thus, by the
self-intersection formula, we have in A^,xT((G x G)Y)

Moreover, we have

ci yx^)\GxG)YziY\ - { 11 ci
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where the latter equation holds because Y meets Z properly in (G x G)Y Finally,

\YC\Z] =S^Q(wv,Tv)
L J ^__, \ /

by Theorem 2 1, and each cJxT(Xe) restricts to A^xT(Z) as cTxT(xe, ~Xe) by
Proposition Al below

Using the equivanant Chevalley formula (see [KK1] or [Br] 6 6), one can obtain
an explicit but complicated expansion of i%\Y\ in the basis of Schubert classes

We now describe the image of i*a in terms of the ring D of operators of divided
differences Recall that D is the ring of endomorphisms of the abehan group
S generated by multiplications by elements of S, and by the operators Da
a~^(l — sa) for a G A The left A-module D has a canonical basis (Dw) (w G W)
where Dw is composition of the Da associated to a reduced expression of w

For any scheme X with an action of G, the ring D acts naturally on the
equivanant Chow group Ä^{X), and we have

Dw[Y]=d(Y,w)[BwY]

for any Y G B(X) (see [Br] 6 3) It follows that D <g> D acts on A^xT(X) for any
regular completion X of G For brevity, the Dw <g> DT will be called the operators
of divided differences

Let Z C X be a closed (G x G)-orbit Define a class 5G G A^xT(Z) by setting

wEW

Identifying Z with G/B x G/B, we see that 5a is the equivanant class of the
reduced subscheme

IJ BwqwB-/B~ x B-wB/B
wew

By 2 3, 5a is closely related to the class of the diagonal in G/B x G/B
More generally, for any parabolic subgroup P D B, define öp G A^xT(Z) by

6P ^ i}(wow,wowo Lw)
wewL

so that öp is the equivanant class of the reduced subscheme

IJ B~wB-/B~ x Bw0 LwB/B c Q/B~ x P/B
w£WL
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This interprets Sp as the class S associated to a Levi subgroup of P.

Corollary. Notation being as above, the images under i*a of the equwariant classes

of (B X B~)-mvariant subvarieties in X are obtained by applying the operators of
divided differences to the classes

n
eea(l)

where ip is a face of the cone a, and where -P(y) D B is the parabolic subgroup
associated to the set of simple roots which are orthogonal to ip.

Proof. Let Y be a (B x _B~)-invariant subvariety of X and let P D B be the
corresponding parabolic subgroup. Observe that P P(ay)'- indeed, it follows
from Proposition Al that a Levi subgroup of P is the centralizer of a general
element of aY n X* (T).

Let y be the base point of Y as in 2.1. Observe that (G x G)y contains a unique
closed (B x 5~)-orbit, that is,

O := (B x B-)(wo,wowotL)y.

Moreover, it follows from Theorem 2.1 that

Finally, we have

Y (B x B~)(wwo,twoijwo)(D

and dim(Y) 1(wwq) + /(two,lwo) + dim(O). Thus, we have

in A^xT(X). We conclude by recalling that the action of D <g> D commutes with
i*a (see [Br] 6.3).

3.3. The case of the canonical completion of an adjoint semisimple
group

In this section, we consider a connected semisimple adjoint group G and its minimal

regular completion X constructed by De Concini and Procesi (see [DPI]).
As an application of the Bialynicki-Birula decomposition (see [Bi]), we construct a
basis of the abelian group A*(X) consisting of classes of certain (_Bx_B~)-invariant
subvarieties; then, by [Br] Corollary 3.2.1, the (T x T)-equivariant classes of these
varieties are a basis of the S (g) A-module Ä^xT(X).
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Recall that X contains a unique closed (G x G)-orbit Z, lsomorphic to G/B~ x
G/B, and that the fan T associated to T consists in all Weyl chambers and their
faces In particular, the cone a asociated to Z is the positive Weyl chamber, and
the characters \e associated to edges of a are the simple roots So the faces of a
are indexed by the subsets of A For such a subset /, we denote by zi the base

point of the corresponding (G x G)-orbit and by P(I) D B the associated parabolic
subgroup, then / is the set of simple roots of the Levi subgroup L(I) of P(I) We

set Wi WL(/) and W1 WLW

Theorem. Notation being as above, the abelian group A*(X) is freely generated
by the classes

[(B x B-)(w,t)Zi]
where w,t E W and I {a G A | r(a) G $^1 (in particular, t G W1

Proof Let p be the one-parameter subgroup of T such that (p, a) 1 for all a G A
Then wo (p) —p Define a one-parameter subgroup A of T x T by

where n is a large integer Then (wq,wq)(X) —A

We check that the fixed point set of A in X is XTxT and that the closures of
the corresponding "cells"

X(x,X) ={peX\ hm X(t)p x}

(where x G XTxT) are the (B x B~){w,t)zi as above Then our statement will
follow from the Bialymcki-Birula decomposition

Given p G X, we determine lim^o X(t)p We can write p (b,b~)(w,r)zi
with obvious notation Then X(t)p X(t)(b, b~)X(t~^-)X(t)(w,T)zi and

converges as t —> 0 to a point oîTxT Therefore, we may assume that p (w,t)zj
Now we consider zj as a point of the Grassmaman Grass(Q © Q) of subspaces of
the Lie algebra of G x G, see [DPI] or the Appendix below Choose root vectors

Xß (ß G $) in Q Then it follows from Proposition Al below that the linear space
(w,t)zi has a basis consisting of the (x_wfß\,0) and (0,xT^) (ß G $+\(I>/), the

[xwtß\,xTtß\) (ß G $/) and a basis of diagT where T denotes the Lie algebra of
T For ß G $/ and n large enough, observe that the limit of the line generated by

AV-)\xw(ß)iXT(ß)) — V- xw(ß)il xr(ß))

is the line 0 x QT(ß\ if r{ß) G $+ (that is, if ß G $+, because r G W1), and the
line Gw(ß\ x 0 otherwise It follows that the linear space hm^o X(t)(w,r)zi has a
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basis consisting of: the [x_wiß\,Q) and [Q,xTiß\) (ß G $+) and a basis of diagT.
In other words, we have

lim X(t)p (w,t)z.

Thus, the cell X{X,{w,t)z) consists of the orbits (B x B~){w,t)zi such that

Remark. Notation being as in 3.2, restriction to G/B xG/Boî(BxB )(w,t)zj
is equal to

(DW(E)DT) Y[ cTxT(a,-a) ^ \B~wB~ IB~ x BwOjwB/B}.
aeA\i t»effj

3.4. Intersection numbers of (B x B )-invariant subvarieties

We maintain the notation and assumptions of 3.3; we determine the intersection
numbers /x[^][^'] for all (B xB~)-invariant subvarieties Y, Y' of complementary
dimensions in X. More generally, fix a subset A' C A and set X' := (G x G)z/±>.
For Y,Y' C X', we compute Jx,[Y][Y']; we begin with the case where (G x G)Y
and (G x G)Y' meet properly in X'. This condition translates combinatorially as
follows.

Theorem. Let I, I' be subsets of A such that I U /' A' and let

Y {B x B-)(w,t)Zi, Y' {B x B-)(w',t')zp

be (B X B~)-invariant subvarieties of X1 of complementary dimensions. Then

i

I 0 otherwise.

Proof. By assumption, we have codimx'(^) +codimx'(^') dim(X'), that is,

l{w) + 1{t) + |A' \ I\ + l(w') + Z(t') + |A' \ /'| 2l(w0) + |A'|. (*)

If/x,[y][y'] ^0, then y n (w0, wo)y' is not empty and thus it contains (T x
Infixed points. But all such points are in Z, and the (T x T)-flxed points mYCiZ
are the {w\,w<i)z where w\ > wv and w<i > tv for some v G Wj such that l{wv) +
1(tv) l{w) + 1(t) (see Theorem 2.1). If moreover {w\, w<i)z G {wq,wq)Y' C\ Z,
then

wv <w\< wqw'v' and tv < w^ < wqt'v'
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for some v as above and v' G Wp such that l{w'v') + 1(t'v') l{w') + Z(t') So we
obtain

1{w2)
I **)

< l(w0w'v') + 1(w0t'v') 2l(w0) - l(w') - Z(t')
V '

Together with (*), this implies |/| + |/'| < |A'| and therefore / n /' 0 Then
equality holds in (**) this forces wv w\ wqw'v' and tv w<i wqt'v'
Thus,

~ WQw' T~ WQT1 VV ~

But v G Wi and v' G Wp where / and /' are disjoint Therefore, v and v'
are uniquely determined Y l~l (wq,wq)Y' contains a unique (T x T)-fixed point
[wv,tv)z x It follows that y n (wo,wo)y' consists of this point Moreover,

by Corollary 2 1, (B x B~)x is a component of multiplicity one olYC\Z,
and (B x B^){wq,wq)x is a component of multiplicity one olY'C\Z Finally,
(B x B~)x and (wq,wq){B x B^){wq,wq)x meet transversally at x in Z It
follows that /x,[y][V'] 1

The assumptions of the theorem are satisfied if / A, then we obtain easily
the following

Corollary. For any w G W and for any (B X B~)-invanant subvariety Y C X,
we have

if Y {B x B~)(wow,wo)z
I otherwise

In particular, for the basis of A*(X) constructed in 3 3, the coordinate
function on [BwB~] is the scalar product (for the intersection pairing) with
[(B x B~)(wqw,wq)z], another element of the basis But we will see below that
the whole basis is not self-dual up to reordering

Now, to compute /x[y][y'] for arbitrary (B x S~)-invariant Y and Y1, it is

enough to determine [X'][y] for any boundary divisor X' C X (see the remark in
1 4) This can be done as follows There exists a unique simple root a such that

' (Gx G)zAX{a} Xe

Write Y (B x B )(w,t)zi as above If a G / then Y is not contained in Xe
and Theorem 2 1 implies that

[XaW\ Y)LB x B-)(wv,Tv)zA{a}]

(sum over all oeW; such that tv g VFAM ancl that l{wv) + l{v) l{w))
If a <£ I then there exist unique rational numbers xaß (ß G A) such that

a
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where the lu7 are the fundamental weights of $ (that is, ^Zae/ xaßß is the orthogonal

projection of a on the linear space generated by /). Setting

D1 :=BSlB

for 7 G A, we then have in the Picard group of X:

ßei 1f_i

(as can be seen by restricting to Z). Moreover, each [X^][Y] is determined as
above. To compute [_D7][Y], let

p : xa - G/QAX{a} x G/PAX{a}

be the projection. Any pair of characters A, \i of LA\{ay defines a homogeneous
line bundle on the image ofp and we denote by c{X,jj) its Chern class. Then

D1 =p*c(u;_7,u;7)

and we obtain [D7] [Y] as a special case of the following

Lemma. Let P D B be a parabolic subgroup of G with Levi subgroup L D T.
Let X' be a L-variety, let X G X p X' be the induced, variety with projection
p : X —s- G/P, and let Y BwY' C X where w G WL and Y' C X' is a

B-invanant subvariety. Then, for any character \ °f L, we have in A*(X):

P*c{x) n [Y] ^(x,ß)d(Y',w8ß)[Bw8ßY']
ß

(sum over the ß G $^ such that l(wsß) l(w) — 1).

Proof. In the equivariant Chow group Ä^(X), we have [Y] DW[Y']. Moreover,
c(x) lifts to an equivariant Chern class cT(x) which commutes with the action of
D (see [Br] §6). Thus,

P*cT(X)n[Y}=Dw(p*cT(X)n[Y'}).

Moreover, because p(Y') is the base point of G/P, we have p*cT{x) l~l [Y1] xP^I-
Now we conclude by the identity

w(x)Dw(u) + ^2(x, ß)DWSß(u)
ß

for any u G Ä^(X) (see the proof of Proposition 6.6 in [Br]).
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Example. Let G PGL(3) and let X be the canonical completion of G Let

a, ß be the simple roots, then the boundary divisors of X are Xa and X13 which
meet transversally along the closed (G x G)-orbit Z Consider

Y {B x B-){sp, sa)zp, Y' =(Bx B-){sßsa, sasß)zß

Then Y and Y' are contained in Xa and their classes in A*(X) belong to the basis
constructed m 3 3 We check that

JjY][Y'] -
Recall that /X[11[F'] JXo,([Xa][Y})[Y'} Because a -\ß+§ua, we have in
the Picard group of X

Moreover,

[Xf] [Y] [YHZ} l(BxB-)(Sß,sa)z} + [(BxB-)(l,sßsa)z]

By the theorem above, we have

[{B x B-)(Sß,sa)z}[Y'} [(Bx B-)(l,sßSa)z}[Y'} 1

xa Jxa

On the other hand, by the lemma above, [_Da][Y] is a linear combination of classes

of (B x _B~)-mvanant subvaneties which are not contained in Z Again by the
theorem above, we then have /Xa([-Da]p/"])P/"/] 0 because Y' is not contained in
Z This implies our assertion

Appendix: the structure of regular group completions

We denote by X*(T) the group of one-parameter subgroups of T An element
A G X*(T) is called dominant if the scalar product of A with any positive coroot is

non-negative The group W acts on X*(T) and the set of dominant one-parameter
subgroups is a fundamental domain for this action, as it is the intersection of X*(T)
with the positive Weyl chamber

To any A G X*(T) we associate the subset G(X) C G of all g such that
X(t)gX(t)~^ has a limit in G when t —> 0 Then G{X) is a parabolic subgroup
of G with umpotent radical RUG{X) {g G G \ lim^o A(t)grA(t)"1 1} Moreover,

a Levi subgroup of G{X) is the centrahzer L(X) of the image of A, and the
parabolic subgroups G(A), G(—A) are opposite Finally, G(X) contains B if and
only if A is dominant (see e g [MFK] 2 2)

Proposition Al. Let X be a regular completion of G and let Ö C X be a (GxG)-
orbit
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(i) The closure T is smooth and meets O transversally into a union of (T X T)-
orbits permuted, transitively by diagW.
(n) There exists a unique z G O such thai (B X B~)z is open in O and that
z \imt^o \(t) for some A G X*(T). The isotropy group (G X G)z is the semi-
direct product of RuG{—\) X RUG{\) with diag L{\) X (C(A) X l)z, where C{\)
denotes the connected, center of L(X). In particular, G(X) depends only on O.
(in) The {G x G)-equwanant map O -> (G x G)/(G(-A) x G(A)) (defined by
inclusion of (G X G)z into G(—A) X G{X)) extends to the closure O and makes O
the induced variety of L{X)z, a regular completion of the group L{X)/C{X)Z.
(w) The orbit O is closed in X if and, only z is fixed, by T X T. Then

Xz := {x G X | lim \{t)x z)

is an open affine (B X B~)-mvariant subset of X. Moreover, Tz := T D Xz
is isomorphic to affine l-space where T X T acts linearly through I independent
weights, and the map

f. UxU- xTz -> Xz

is an isomorphism, where U (resp. U~) denotes the unipotent radical of B (resp.

B-).

Proof. Observe that T is the fixed point set of diag T in G. It follows that T is a

component of the fixed point set xd%agT. Therefore, T is smooth.
Denote by k[[i\] the ring of formal power series in t, and by k((t)) its field of

fractions. By [MFK] 2.1, any point of Gkut\\ can be written as g\{t)\{t)g<2{t) for

some g\{t), g2(t) in Gfcrrtii and A G X*(T). It follows that there exists A G X*(T)
such that limt^o ^(t) '¦= z exists and belongs to O. Replacing A by w(X) for some
w G W, we may assume that A is dominant.

Let g G RuG(X). Then

Taking limits at 0, we obtain z (l,g)z, that is, 1 x RUG(X) fixes z. Similarly,
RUG(—X) x 1 fixes z. Moreover, for g G L(X), we have X(t) (g,g)X(t) and
therefore z (g,g)z. So (G x G)z contains RUG{-X) x RUG{X), diagL(X) and
of course (G(A) x l)z (which in turn contains X(k*) x 1). Because the product
(BxB-){RUG{-X) x RuG{X))diag L{X) is open in GxG, it follows that (BxB~)z
is open in Ö (G x G)z.

To show that (G x G)z is the semidirect product of the groups above, we first
consider the case where Ö has codimension one in X. Then dim(G x G)z
dim(G) + 1 and therefore the connected component (G x G)2 is the product of
the groups above. It follows that the unipotent radical of (G x G)z is RUG(—X) x
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RUG(X). Thus, (G x G)z is contained in G(—A) x G(A) (the normalizer in G x G
of its unipotent radical). So (G x G)z is the product of RuG{—\) x RUG{\) with
(L(A) x L(A))Z. Moreover, the latter group contains (diagL(A))(G(A) x l)z as a

component, and hence it normalizes the diagonal of the derived subgroup of L(X).
It follows that (L(A) x L(\))z is equal to diagL{\) x (G(A) x l)z.

In the case where the codimension of O is arbitrary, we replace X by the
blow-up X of O in X; then 1 is a regular completion of G. Let Ô be the open
(G x G)-orbit in the exceptional divisor of X and let z G Ô be a point as above.
Then (G x G)j is the kernel of the action of (G x G)z in the normal space at Ö at
z. So (G x G)z is the intersection of kernels of independent characters of (G x G)z.
In other words, (G x G)z is a normal subgroup of (G x G)j and the quotient is

a torus; in particular, both groups have the same unipotent radical. Arguing as

above, we obtain that (G x G)z is the product of RUG(—X) x RUG(X), diagL(X)
and (G(A) x l)z. This implies that (T x T)z is a component of OdlagT and hence

of its subset T DO. Moreover, we have

codimx(O) dim(G) - dim(G x G) + dim(G x G)z dim(G(A) x l)z
codiniy(T x T) ¦ z.

Therefore, (TxT)z is a proper component of the intersection of T with Ö. Because
T is contained in Xd%agT, we have for tangent spaces:

TZO n TZT c (TzO)d'iagT TZ(T x T)z,

that is, the intersection is transversal at z. This proves assertions (i) and (ii).
(iii) is a consequence of (ii) together with the following result.

Lemma. Let X be a regular G-variety, let x € Xq, let P C G be a parabolic
subgroup containing the isotropy group Gx and let p : G ¦ x —> G/P be the map
g ¦ x i—> gP. Then p extends to a G-equivanant morphism X —> G/P.

Proof of Lemma. Embed G/P into the projective space P(M) where M is a simple
G-module. Let ô C G/P be the intersection of G/P with the _B-invariant hyper-
plane in M, and let D C X be the closure of the pull-back of ô to G • x. Then D
contains no G-orbit (see e.g. [BB] Proposition 2.2.1). Moreover, the corresponding
sheaf Ox{D) is G-linearizable, and the G-submodule of T(X,Ox{D)) generated
by the canonical section of Ox(D) identifies to M*. Therefore, this space of
sections is base-point-free and the corresponding morphism X —> P(M) maps G • x
to G/P, hence X to G/P.

Now we prove (iv). If Ö is closed, then (G x G)z is parabolic in G x G, that
is, G(A) B and z is fixed by T x T. Conversely, if z is fixed by T x T, then
we must have G(A) T, i.e. L(A) T and (G x G)z B~ x B. Thus, O is
closed in X. Moreover, Tz is an affine (T x T)-invariant neighborhood of z in the
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smooth torus embedding T. Thus, T z is isomorphic to affine space of dimension
/, where T x T acts linearly through / independent weights. Moreover, Xz is

(B x _B~)-invariant and contains the identity of G. Thus, Xz is the open cell of
the Bialynicki-Birula decomposition defined by A. In particular, Xz is isomorphic
to affine space. Moreover, the map tp restricts to an isomorphism over U x U~ x T,
and ip~^{z) is a single point. Because z is the unique closed (T x T)-orbit in Xz,
it follows that tp is finite. So tp is an isomorphism by Zariski's main theorem.

Let C be the center of G and let Gad := G/C be the corresponding adjoint
group. Then Gad has a canonical regular completion Gad which can be constructed
as follows: for the adjoint action of Gad x Gad in its Lie algebra Gad © Gad, the
isotropy group of the diagonal diag Gad is equal to Gad- Then Gad is the closure of
the (Gad x Gad)-orbit of diag Gad in the corresponding Grassmanian Grass(Gad ©
Gad)- Moreover, each regular completion X of Gad dominates Gad, that is, there
exists a morphism of X to Gad which induces the identity on Gad (then such a

morphism is (Gad x Ga(f)-equivariant). These results are proved in [DPI] and [St];
they can be slightly generalized as follows.

Proposition A2. For a non-singular (G X G)-equivanant completion X of G,
the following assertions are equivalent:
(i) X is regular.
(n) X dominates Gad-

If (i) holds, let z G X he a fixed point of B~ X B and let \\,. ,\r he the weights
ofT xT in the normal space to (G X G)z at z. Then the convex cone generated by

XI, ••• ,Xr contains the (a, —a) (a G A). Moreover, the intersection of the span
°f XI i • • • iXr with the span of $ X $ is the span of the (a, —a) (a G A).

Proof. (i)=>(ii) For any x G X, denote by (G x G)^ the kernel of the action of the

isotropy group (G x G)x in the normal space to the orbit (G x G)x at x. Because

X is regular, the dimension of (G x G)^ is independent of x. We claim that

(G x G){x) n (G° x G°) diagC0

(where C° denotes the connected center of C). To check this, it is enough to
consider the case where x z is the base point of its (G x G)-orbit. Then, by
Proposition Al, the normal space TZX/TZ(G x G)z identifies to TZT/TZ(T x T)z,
and we have

(GxG)(z)n(G°xG°)c(TxT)(z).
Moreover, it is easy to see that (T x T)iz\ diagT which proves our claim.

From this, it follows that the dimension of (Q © G)tx) + (C ®C) is independent
of x. Therefore, identifying Grass(Gad © Gad) with the Grassmanian of subspaces
of G ffi G which contain C © C, we obtain a (G x G)-equivariant map

7T : X -> Grass(Gad © Gad)
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Moreover, tt(1) is identified with the diagonal in Gad © Gad Using Proposition Al,
it is easy to see that tt is a morphism Thus, tt maps X onto Gad

(u)=>(i) By assumption, we have an equivanant morphism it X —> Gad Let
Z C X be a closed (G x G)-orbit Then tt(Z) is the closed (G x G)-orbit in G^
which implies that Z is isomorphic to G/B~ x G/_B Let z be the {B~ x _B)-fixed
point in Z Then, as in the beginning of the proof of Proposition Al, we obtain
that z is contained in T and that T is smooth Moreover, the canonical map
(p U x U~ x Tz is mjective, because the induced map U x U~ x {Tad)viz-\ —? Gad

is mjective It follows that (p is an open immersion, thus, T is transversal to Z at
z This implies at once that X is regular

Denote by A (resp Aad) the algebra of regular functions over the affine space
Tz (resp {Tad)viz)) Observe that the semigroup of weights of T x T m A (resp
Aad) is freely generated by —xi, — Xr (resp by the (—a, a), a G A) Becausevr

maps Tz to (Tad)^) j the convex cone generated by the (—a, a) must be contained
in the convex cone generated by —xi, — Xr Moreover, because restriction of it
to T {T x T)/diagT is the quotient by G x G, the fraction field of Aad consists
in the (G x G)-mvanants in the fraction field of A This means that the span
of the {—a,a) is the intersection of the span of xi, ,Xr with the span of the
character group of (T x T)/{C x G), that is, with the span of $ x $
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