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Degenerations for representations of extended Dynkin
quivers

Grzegorz Zwara

Abstract. Let A be the path algebra of a quiver of extended Dynkin type An, ]f)n, Eg, E7 or Es.
We show that a finite dimensional A-module M degenerates to another A-module N if and only
if there are short exact sequences 0 — U; — M; — V; — 0 of A-modules such that M = M,
M;1=U;@V; for 1 <i<sand N =My are true for some natural number s.

Mathematics Subject Classification (1991). 14L30, 16G10, 16G70.

Keywords. Modules, degenerations, extended Dynkin diagrams.

1. Introduction and main results

Let A be a finite dimensional associative K-algebra with an identity over an alge-
braically closed field K of arbitrary characteristic. If a1 = 1,... ,a, is a basis of
A over K, we have the constant structures a;;; defined by a;a; = > aijpar. The
affine variety mod 4(d) of d-dimensional unital left A-modules consists of n-tuples
m = (mi1,... ,my,) of d X d-matrices with coefficients in K such that mq is the
identity matrix and m;m; = 3 a;;pmy holds for all indices ¢ and j. The general
linear group Glg(K) acts on mod 4(d) by conjugation, and the orbits correspond
to the isomorphism classes of d-dimensional modules (see [11]). We shall agree to
identify a d-dimensional A-module M with the point of mod 4(d) corresponding to
it. We denote by O(M) the Gly(K)-orbit of a module M in mod 4(d). Then one
says that a module N in mod 4(d) is a degeneration of a module M in mod 4(d)
if N belongs to the Zariski closure O(M) of O(M) in mod 4(d), and we denote
this fact by M <geg N. Thus <gee is a partial order on the set of isomorphism
classes of A-modules of a given dimension. It is not clear how to characterize <qeq
in terms of representation theory.

There has been a work by S. Abeasis and A. del Fra [1], K. Bongartz [7],
[10], [9], Ch. Riedtmann [13], and A. Skowronski and the author [15], [16], [17]
connecting <gee With other partial orders <ext and < on the isomorphism classes
in mod 4(d). They are defined in terms of representation theory as follows:
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¢ M <.t N: & there are modules M;, U;, V; and short exact sequences
0—U;, — M, -V, — 0 in modA such that M = My, M1 =U; & V;,
1 <4< s, and N = M,y for some natural number s.

o M <N: & [X,M]<[X,N] holds for all modules X.

Here and later on we abbreviate dimgHom 4 (X,Y") by [X, Y], and furthermore
dim g Exty (X, Y) by [X,Y]". Then for modules M and N in mod 4(d) the following
implications hold:

MEeXtN:>M§degN:>MSN

(see [10], [13]). Unfortunately the reverse implications are not true in general, and
it would be interesting to find out when they are. K. Bongartz proved in [10] (see
also [8]) that it is the case for all representations of Dynkin quivers and the double
arrow. Recently, the author proved in [17] that < and <y are also equivalent for
all modules over representation-finite blocks of group algebras. Moreover, in [9]
K. Bongartz proved that <gey and < coincide for all representations of extended
Dynkin quivers, and conjectured that possibly <ext, and <gq4 also coincide. The
main aim of this paper is to prove the following theorem.

Theorem. The partial orders < and <ex coincide for modules over all tame
concealed algebras.

In particular we get the positive answer to the above question.

Corollary. The partial orders <, <gey and <ext are equivalent for all represen-
tations of extended Dynkin quivers.

We mention that K. Bongartz described in [8, Theorem 4] the set-theoretic
structure of minimal degenerations of modules provided the partial orders <ex
and < coincide. In a forthcoming paper we shall describe the minimal singularities
for representations of extended Dynkin quivers.

The paper is organized as follows. In Section 2 we fix the notation, recall
the relevant definitions and facts, and prove some preliminary results on modules
which we apply in our investigations. In Section 3 we recall several known facts
on tame concealed algebras. In particular we describe some properties of the
additive categories of standard stable tubes. Section 4 is devoted to the proof of
the Theorem.

For basic background on the topics considered here we refer to [5], [10], [9],
[11] and [14]. The results presented in this paper form a part of the author’s
doctoral dissertation written under supervision of professor A. Skowronski. The
author gratefully acknowledges support from the Polish Scientific Grant KBN No.
2 PO3A 020 08.
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2. Preliminary results

2.1. Throughout the paper A denotes a fixed finite dimensional associative K-
algebra with an identity over an algebraically closed field K. We denote by mod A
the category of finite dimensional left A-modules, by ind A the full subcategory
of mod A formed by indecomposable modules, and by rad(mod A) the Jacobson
radical of mod A. By an A-module is meant an object from mod A. Further, we
denote by I'4 the Auslander-Reiten quiver of A and by 7 = 74 and 7= = 7
the Auslander-Reiten translations DTt and Tr D, respectively. We shall agree to
identify the vertices of I' 4 with the corresponding indecomposable modules. For
a module M we denote by [M] the image of M in the Grothendieck group Ko(A)
of A. Thus [M] = [N] if and only if M and N have the same simple composition
factors including the multiplicities. Finally, for a family F of A-modules, we
denote by add(F) the additive category given by F, that is, the full subcategory
of mod A formed by all modules isomorphic to the direct summands of direct sums
of modules from F.

2.2. Following [13], for M, N from mod A, we set M < N if and only if
[X,M] < [X,N] for all A-modules X. The fact that < is a partial order on
the isomorphism classes of A-modules follows from a result by M. Auslander [3]
(see also [7]). Observe that, if M and N have the same dimension and M < N,
then [M] = [N]. Moreover, M. Auslander and I. Reiten have shown in [4] that, if
M and N are A-modules with [M] = [N], then for all nonprojective indecompos-
able A-modules X and all noninjective indecomposable modules Y the following
formulas hold (see [12]):

[XvM]_[M7TX]:[X>N]_[N7TX]
[M,Y] = [r"Y,M] = [N,Y] - [r"Y,N]
Hence, if [M] = [N], then M < N if and only if [M, X| < [N, X] for all A-modu-

les X.
2.3. Let M and N be A-modules with [M] = [N] and

Y: 0—-D—-FE—=F—=0

an exact sequence in mod A. Following [13] we define the additive functions das w,
6347 ~ and dy; on A-modules X as follows

ou,n(X) = [N, X] - [M, X]
61,\/!,N(X) - [X7N] - [X7M]
05(X) =90 per(X)=[De& F, X]-[E,X].
From the Auslander-Reiten formulas (2.2) we get the following very useful equal-
ities
I N(X) =0y n(TX),  Iun(TX) =04y n(X)
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for all A-modules X. Observe also that da; n (1) = 0 for any injective A-module
I, and (55\47N(P) = 0 for any projective A-module P. In particular, the following
conditions are equivalent:

(1) M <N,
(2) dpu,n(X)>0forall X €'y,
(3) oy n(X) >0 forall X € I'4.

2.4. For an A-module M and an indecomposable A-module Z, we denote by
w(M, Z) the multiplicity of Z as a direct summand of M. For a nonprojective
indecomposable A-module U, we denote by %(U) an Auslander-Reiten sequence

YU): 07U - EU)—U —0,
and, for an injective indecomposable A-module I, we set E(I) = I/soc(I), 771 =
0.

We shall need the following lemma.

Lemma 2.5. Let M, N be A-modules with [M] = [N] and U an indecomposable
A-module. Then

u(N,U) = p(M,U) = 6m,n(U) = Saa, v (E(U) + Spa,n (V).
Proof. If U is nonprojective, then the Auslander-Reiten sequence Y (U) induces an
exact sequence
0 — Homa (M, 7U) — Homa (M, E(U)) — rad(M,U) — 0,
and hence we get
M,7U @ U] — [M,E(U)] = [M,U] — dimgrad(M,U) = p(M,U).

Similarly, we have
[N, 7U & U] - [N, B(U)] = (N, U).

Then we obtain the equalities

(N U) — (M, U) = ([N,7U & U] = [M,7U & U]) — (N, [E(U)] - [M, E(U)])
= S n(TU) + 6 N (U) — Sprn (B(U)).

Assume now that U is projective. Then Homy(M,radU) ~ rad(M, U), and so

[M, U] — [M,rad U] = u(M,U).
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Similarly, we have

[N,U] — [N, rad U] = (N, U).

Therefore, we get

M(N7 U) - /“L(M7 U) = ([N7 U] - [M7 U]) - ([N,radU] - [M,radU])
= (5M,N(U) — 5M7N(rad U)
= (5M,N(U) — (5M7N(E(U)) + (SMJV(TU).

2.6. A component I of I'4, without oriented cycles and such that any 7-orbit
contains a projective module is called preprojective. Also any module X € add(T")
is called preprojective. There is a partial order < on the set of vertices of a
preprojective component I' with U < V' if there exists a path in I' leading from U
to V. Preinjective components and preinjective modules are defined dually.

2.7. Let M and N be A-modules with M < N. A short nonsplittable exact
sequence

0L —-M —-Ly—0

is said to be admissible for (M,N) if M = M’ & V for some A-module V' and
[L1® Ly & V,X] < [N,X] for any A-module X (equivalently, dn < dpn or
By < By ).

We shall need the following fact.

Proposition. Let M and N be A-modules with [M] = [N], and assume that
M is preprojective and M < N holds. Then there exists an admissible sequence
0— Ly —M— Ly—0 for (M,N).

Proof. We can repeat the proof of Theorem 4.1 in [10], since Bongartz has used
the fact that N is preprojective only to prove that M is preprojective.

3. Some properties of modules over tame concealed algebras

Here and later on A denotes a fixed tame concealed algebra [14].

3.1. We recall those aspects of the representation theory of tame concealed alge-
bras that we will need later (see [14], [10]). We have a decomposition of I'4 into
the preprojective part P, the preinjective part 7 and the regular one R, where R
is a sum of stable tubes 7, of ranks r, > 1, for p € P1(K) = K U{co}. For any
A-module X we can write X = Xp ® Xg® X, where Xp € add(P), X1 € add(7)
and X = ®H€[P1(K> X, with X, € add(7,). All connected components of I' 4 are
standard (see [14] for definition). A tube of rank 1 is called homogeneous and 7, is
not homogeneous for at most three y € PLK). For any X,V € T'4, if [X,Y] >0
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and X and Y do not belong to the same connected component of I"4, then X
is preprojective or Y is preinjective. The abelian category add(7,) is serial and
closed under extensions, so we may speak about simple regular modules, composi-
tion series in add(7,), and so on. A tube 7, has r, simple regular modules, which
are conjugate under 7. If a tube 7, is homogeneous (r, = 1), then we denote a
unique simple regular module in 7, by E,,. For any simple regular module £ in
7,, we denote by
oo OF - @?E — oF - "E=E

a unique infinite sectional path in 7, of epimorphisms and by
E =y E — ¢F — *E — ¢3E — - ..

a unique infinite sectional path in 7,, of monomorphisms. Then every indecompos-
able module in 7, is of the form ¢/ E and 47 E’ for some j > 0 and simple regular
modules F, £/ in 7,,. In an obvious way we define functions

o*, 9 T, — T, U{0}

for any integer k, such that for any simple regular module £ in 7, and { > 0 we
have:

o O (P'E)="MEif k41> 0, and p*(p'E) = 0 otherwise;
o VF(YE) = TEif k41> 0, and ¢*(¢'E) = 0 otherwise.

Observe that for any integer & and X € 7, we have 71X = "X, 77X = ¢ ¢ X
and " X = " X where r = Ty
There is a positive, sincere vector h in Kg(A), such that

[p* 1 E] = [p*« ' E] = k- b

for any simple regular module £ in 7, and kK > 1.

3.2 The global dimension of A is at most 2. All preprojective and regular mod-
ules have projective dimension at most 1, and dually all preinjective and regular
modules have injective dimension at most 1. The bilinear form on Kg(A) = Z"
which extends the equality

< [M],[N] >= [M, N] — [M,N]' + [M,NJ?
and the associated quadratic form x : Ko(A) — Z, x(y) =< y,y >, will play an
important role. If M has no non-zero preinjective direct summand or N has no

non-zero preprojective direct summand, then

< [M],[N] >= [M,N] — [M,N]'.
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The quadratic form x is positive semidefinite and controls the category mod A (see
[14]). This means that the following conditions are satisfied:

(1) For any X € I'4, x([X]) € {0,1}.

(2) For any connected, positive vector y with x(y) = 1, there is precisely one
X €T's with [X] = y. a -

(3) For any connected, positive vector y with x(y) = 0, there is an infinite
family of pairwise nonisomorphic modules X € I'4 with [X]=v.

Moreover, x(h) = 0 and < h,y >= — < y,h > for any y € Ko(A). Finally, we
define a linear function 9 : Ko(A) — Z, called the defect, as follows
Oy=<h,y>=—<yh>.

The main property of 9 is that the value 9[X] is negative for any X € P, positive
for any X € 7, and zero for any X € R.

Lemma 3.3. If M < N, then 8[Mp| — d[Np| = O[N] — 8[M;] > 0.

Proof. Since [M] = [N], then
O[Mp| + O[Mg] + 9[M;] = O[Np] + O[Ng] + O[Ny].

The equalities d[Mg| = O[Ng] = 0 imply 0[Mp| — d[Np| = O[N] — 9[M]]. Take
a homogeneous tube 7, with (M @ N), = 0. Then
0 S[N, Eu] - [MvE/—L] = [NPaEu] — [MP7E;L]
= <[Npl,[Eu] > = < [Mp],[Bu] >=<[Npl.h > — < [Mp].h >
=0[Mp| — O[Np].

3.4. Fix a tube 7, u € P}(K), and a module X € add(7,). Let H(X) > 0 be
the minimal number such that for any indecomposable direct summand 7 E of
X, where E is a simple regular module in 7,,, we have j < H(X) (so H(X) is the
maximal quasi-length of an indecomposable direct summand of X ). For any simple
regular module £ in 7,, we denote by ¢ (X) the multiplicity of £ as a composition
factor of a composition series of X in the category add(7,). If Ey,... ,E, (r=r1,)
denote all simple regular modules in 7, then

[X] = €5, (X)) + €5, (X)[Ba] + -+ £, (X) (B

Moreover, the following lemma holds (see Lemma 5.1 in [15]).

Lemma 3.5. Let X be a module in add(7,,) and E be any simple regular module
in T,. Then for any k > H(X) — 1 we have

(X, 4" E] = {5(X) = [¢"E, X].
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As a consequence of the above lemma we obtain

Lemma 3.6. Let i, be integers with 7 > 0 and F be any simple reqular module
in T,. Then

(i) [ VB E] =1 for all s > 0,0 <t <7, and [X,¢" LE] = 0 for the
remaining indecomposable modules X € 7,,.
(it) [PV E, " YIE] — [p* !B, ¢~ @IE) = 1 for all s > j, 0 <t < r, and
(X, 0" YWIE] — [X, ¢ @I E] = 0 for the remaining indecomposable modules
X el,.
(iti) If 5 >, then [WWE,YIE] > 1.
(iv) [E,v7E] =1 and [E',47E] = 0 for all simple reqgular modules E' # E in
7.
Applying Lemmas 4.3 and 4.6 in [15], we obtain the following result (see also
Corollary 2.2 in [2]).

Lemma 3.7. Let X € 7,, s,t > 0 be integers, and M, N be A-modules with
[M] = [N]. Then

(i) There erists a nonsplittable exact sequence
Y:0— X oW X e X - o ytTIX 0.

Moreover, if s < r ort < 7, then dx(p'IX) = 1 for all 0 < i < s,
0<j<t, and 6x(Y) =0 for the remaining indecomposable A-modules.

(i)
>0 D MV WX) - u(M, T X)

0<i<s 0<j<t
=N e TIX) — Sy N (0T X) — SN (P TIEX) + Sar v (W0 X).

Lemma 3.8. Let M, N be A-modules with M < N and d[Mp] = d[Np|. Then

(i) [Mp] = [Np].
(ii) For any indecomposable simple regular module E in a tube 7T, we have

éE(Mu) < KE(NH)'
(#1) For any tube T, [M,] < [N,] holds.

Proof. (i) Let I be any indecomposable injective A-module. We shall show that
[Mp, 1] > [Np,I]. For all but finitely many & > 0, the vector k - b — [I] is positive
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and connected. Moreover,
x(k-h—[I])=<k-h—[I],k h—[I] >=<[I],[I] >=x([I]) = 1.

Thus for all but finitely many & > 0 there is an indecomposable A-module X},
with [X%] = k- b — [I]. Of course

Xkl =< h,k-h—[I] >=— < h,[I] >=-9[I] <0,

which implies that X is preprojective. Take & > 0 such that there exists a
preprojective A-module X with [X}] = kkh — [I] and [Mp @& Np, X;|' = 0. Then

[MP7I] =i [1\4'13]7 [I] >= —ka[Mp]— < [MP], [Xk] o = —ka[Mp] - [Mp7Xk]
> —ka[Np] — [Np7Xk] = —k&[Np]— L4 []\fp]7 [Xk] >=< [Np],[[] >
- [NP7I]

Hence, [Mp] > [Np].
(ii) Let r = r, and s be a natural number such that sr > H(M, & N,). Then

0 S[N’q/}sr—lE] _ [M, 1/}sr—lE] _ [NP7(¢JST—1E:| _ [Mpﬂ/)sr_lE] + [Nl“wsr—lE]
- [Mﬂ,q/;ST*lE] =< [Np],s -h>— <[Mp],s-h> +£E(NM) —KE(MM)
= —s(0[Np| — 0[Mp]) + Lg(N,) —ts(M,) = Lg(N,) — t(M,),

by Lemma 3.5.
(iii) follows from (ii), since for any X € add(7,) we have

[X] = €a, (X)[E1] + ... + B, (X)[Er],
where v = 7, and F,... , F, denote all simple regular modules in 7,,.

Lemma 3.9. Let IV be a disjoint union of some tubes in I'y and T = T4 \ I".
Then for any X € add(I'") and R1, Ry € add(I") with [Ry] = [Ra| we have

(X, R1] = [X, Ra] and [R1, X] = [Ro, X].
Proof. By duality, it is enough to prove the first equality. We may assume that

X is indecomposable and preprojective, because [X, R1] = [X, Ro] = 0 for any
regular or preinjective A-module X € add(T'”). Hence, we get

(X, Ri] — [X, R1)' =< [X], [R1] >=< [X], [Re] >= [X, Ro] — [ X, Ro]".

Since [X, Rq]' = [X, Ra]' = 0 for any preprojective A-module X, we obtain the
required equality [X, R1] = [X, Ro].
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4. Proof of the Theorem

We shall divide our proof of the Theorem into several steps. We use the nota-
tions introduced in Sections 2 and 3.

Proposition 4.1. Let M and N = Ng & N1 be A-modules without any common
indecomposable direct summands. Assume that M < N and Ny is a preprojec-
tive indecomposable A-module with [Ng, N| = [No, M|. If there is no admissible
sequence of the form 0 — Nog — M — C — 0 for (M,N), then there exist a
homogeneous tube 7, in I" 4, for which (M & N), = 0, and a nonsplittable eract
sequence

0—-L—-M-—E, —0,
such that [L & E,, X] < [N, X] for any indecomposable A-module X & T,.

Proof. By Theorem 2.4 in [10] Ny embeds into M and the closure O of the quotients
of M by Ny contains Ny. Let ¢t = dimgM + 1 and IV U7, U---UT,, be the
disjoin union of all homogeneous tubes which do not contain any indecomposable
direct summand of M & N. We set I = T'y \ IV. Then I is the disjoint
union of finitely many connected components of I' 4, and for any natural number
d, there is only a finite number of isomorphism classes of d-dimensional modules
from add(I"”). We decompose the set Q into a finite union of pairwise disjoint
subsets Dy, Do, ..., D, such that two modules Uy & Uy and V| @ V5 from Q with
U1, Vq € add(T), Us, V5 € add(T”), belong to the same D;, 1 <1 < r, if and only
if U1 ~ V]. Since @ =Dy UDyU---UD,, the module N belongs to D; for some
1<i<r. Takeany V@ R e D; with V € add(I'"”) and R € add(I""). Then any
module from D; is, up to isomorphism, of the form V & R’ for some R’ € add(I")
with [R’] = [R]. Consequently, for any indecomposable module X € add(T”)
we have [R’, X] = [R, X], by Lemma 3.9. Applying upper semicontinuity of the
function (Z — dimgHom4(Z, X)), we conclude that the set

Sx={2€D;; [Z,X]>[VeR,X|=[VeR,X]}

is closed (see [11],[13]), for any X € add(I"). Since D; is a subset of Sx, we obtain
that [N1,X] > [V @ R, X] for any X € add(I"’). Take a tube 7, C I'”, for some
1 < ¢ <t, such that any direct summand of V @ N1 does not belong to 7, . It is
possible, because dimg V' < ¢.

Assume that R = 0. Then by Lemma 3.9, for any 7, C IV and j > 0, we have

N1, Ex] = [N1, @By ] > [V, By ] = [V, ¢’ E].

This leads to a contradiction, since the sequence 0 — Ng — M — V — 0 is
admissible for (M, N). So, there is a tube 7, C [’ such that V@& R = I & ¢/ E,, for
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some A-module I and j > 0. Then, for an epimorphism p : ¢/ E, — E,, we obtain
the following commutative diagram with exact rows and columns

0
0 Ioe1E,
! L
0— No — M — I¢pE, —0
! [ 1 ©.p)
00— L — M — E, — 0
! !
I® o lE, 0
1
0

Hence, for any 7, C (IV\ 7,)) and k > 0, applying Lemma 3.9, we get
[N,¢"Ex] = [N,¢"E.] > [No® V @ R,¢"E,, ]
= [No@I®¢E,,¢"E,.]
—[Meley 'E,eE, ¢E,]
>[L® E,,¢"E.) = [L® E,,o"E).

This leads to [L® E,, X] < [N,X] for any X e I'a\ 7,.

Proposition 4.2. Let M and N be A-modules without any common indecompos-
able direct summand and such that M < N and Mp @ Np is nonzero. Letr =1,
and I be any simple regular module in T, for some p € ]Pl(K). If there is no
admissible sequence for (M, N), then

(i) O[Mp] = DN,
(i) Oy n(P°P'E) =0 holds for some s >0 and 0 <t < 7.
(iii) For any j > 1 such that v~/ E is a direct summand of M, the equality
5M7N(<psth) =0 holds for some s > 7 and 0 <t <.
(i) There are infinitely many modules X in Ty, with 5y (X)) = 0.
(v) There are infinitely many modules X in T, with dy n(X) = 0.

Proof. (i) If 6a7,n(X) = 0 for all indecomposable preprojective A-modules, then,
by Lemma 2.5, u(Mp, X) = u(Np, X) for any indecomposable preprojective A-
module, and consequently Mp = Np = 0, which gives a contradiction. Let Ny
be a minimal, with respect to =<, indecomposable preprojective A-module with
dn,n(No) > 0. Then by Lemma 2.5 we get

(N, No) — u(M, Ng) = dar,n(No) > 0,
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because X < Ny for any indecomposable direct summand X of E(Ng) ® 7Ny.
This implies that N = Ny & Ny for some A-module Ny. Of course, &), n(No) =
dn,n(TNg) = 0 and consequently [Ng, N| = [No, M|. By Proposition 4.1, there is
a nonsplittable exact sequence

0O—-L—-M-—FE,—0

such that 7, is a homogeneous tube for which (M @& N), =0 and [L & E,, X]
[N, X] for any indecomposable A-module X ¢ 7,. Observe that Lgr & Lj
Mg @ My. Then we get a nonsplittable exact sequence

[l IA

Y 0—=Lp—Mp—FE, —0

such that 6x;(X) < da,n(X) for any indecomposable A-module X & 7,. Thus
there is ¢ > 0 such that dxn(¢'E,) > dm n (0" Ey), because ¥ is not admissible for
(M,N). Weset I'=F,,. Since 7~ ¢'F = ¢'F, we get

n(p'F) = 05(¢'F) = [¢'F,Lp & F| - [¢'F, Mp] = [¢'F, F] = 1
and
SuN(¢'F) =[N, @' F] — [M,¢'F| = [Np,¢'F| — [Mp,¢'F] =< [Np], [¢'F] >
— < [Mp],[¢'F] >=< [Np|,(t +1) - b >~ < [Mp],(t +1)-h >
—(t+ 1)(OMz] - A[Ns]).
This leads to d[Mp] — [Np] < 1 and, by Lemma 3.3, we have 0[Mp] = 9[Np].
(ii) Since Mp <ext Lp®F,, then Mp < Lp®F,. Let X be any indecomposable
A-module. If X ¢ PUT,, then [X,Mp]=[X,Lp&® YIE =0 If X € 7,, then
0=[X,Mp] <[X,Lp®¢"1E]. Since [E,] = h = [¢" ' E], applying Lemma 3.9
for any preprojective module X, we obtain
0<[X,Lp®¢ " E| - [X,Mp| = [X,Lp ® E,| — [X, Mp]
:[X7L@El/] - [X7M] S [X7N] - [X7M]

Thus Mp < Lp ® ¢ LE and
[X,Lp @4 1E] - [X, Mp] < [X,N] - [X, M]

for any indecomposable A-module X ¢ 7,,. By Proposition 2.7, there is an admis-
sible sequence
0:0—L1 —Mp—Log—0

for (Mp,Lp & 4" 'E). Hence, [X,L1 @ Lo] < [X,Lp & ¢ 1E] = 0 for any
indecomposable module X ¢ P U7,. This implies that L1 & Lo € add(P U7T,).
Since the sequence Yy is not admissible for (M, N), we get

(X, 4" B] = [X,Lp @ ¢" ' E] - [X,Mp] > [X,N] - [X, M]
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for some indecomposable module X € 7,,. By Lemma 3.6(1), [¢*¢'E, YrlE) =1
for all s > 0,0 <t <7 and [X,¢" 'E] = 0 for the remaining modules X € s
Hence, &y, n(X) = [X, N]—[X, M] =0 for some X = p*¢'F, s >0and 0 <t <r.
(iii) Assume that ¢~ @’ F is a direct summand of M for some 5 > 1. Take the
admissible sequence
:0—=L1 —Mp—Ly—0

for (Mp,Lp ® ¢ 1E), considered in (ii). We can write Ly = Ly &Y such that
L& L} is preprojective and Y € add(7,). If Y = 0, then [X, L1® Lo|—[X, Mp] =0
for any X € 7, and moreover Y is an admissible sequence for (M, N). Hence
Y # 0, and consequently

(X, Y] =[X,li@ LyeY] - [X,Mp| < [X,Lpe " 'E] - [X, Mp] = [X,y" ' E]

for any X in 7,. Applying Lemma 3.6(iv) we get [E,Y] < [E, ¢ 1E] = 1 and
[E",Y] < [E',¢" 'E] = 0, for all simple regular modules £’ # F in 7, and
consequently Y is indecomposable and Y = ¢*E for some k > 0. Since [Y,Y] <
[Y,¢" 1E] < 1, we obtain k < r, by Lemma 3.6. Let

e LYo Y E - Lhad y*E =Ly

be a natural epimorphism. Then the pull back of > under e is a sequence of the
form

10— Li— Mp@ v @B — Ly & g4 E — 0,

because ker e is isomorphic to ¢~ ¢/ E and Ext!(Mp, ¢~ ¢/ E) = 0. Observe that
Mp @ ¢~ ¢JE is a direct summand of M and o5, < 5&0. This implies that
5%3]' (X) < 0y n(X) for any indecomposable A-module X ¢ 7,,. Since the sequence
Y; is not admissible for (M, N), we get 5/2j (X) > 0%y n(X) for some X € 7,,. Then

85, (X) = [X, 'Y E] - [X, ¢~ ¢ B] < [X, ¢y E] - [X, ¢~ ¢ E|,

because /)" E may be treated as a submodule of ¢7¢""1E. Applying Lemma
3.6(ii) we get that [ ' E, 7" 1 E|—[p*¢'E, ¢~ ¢/ E] = 1foralls > ,0 <t < r,
and [Y, /" LE] — [Y,¢ ¢/ E] = 0 for the remaining indecomposable modules
Y € 7,. Thus, X = ¢*¢'E and 7, 5 (X) =0 for some s > j and 0 <¢ < 7.

(iv) Suppose that the required claim is not true. Take a maximal s > 0 and
a simple regular module £ in 7, such that 0y, y(¢°E’') = 0. Applying (ii) for
the simple regular module 7~ E’, we infer that there are numbers s’ > 0 and
0 <t <7 with &)y y(p¥ " 77 E) = &)y y(¢* "1 TIE) = 0. Take a pair
(s',#') with maximal number s’. Since (534’N(<p5/1/1t/7'_E’) = o (7—t'=1E,
then s’ < s’ +t < s, by maximality of s. Thus, 5M’N(¢kwlT’E/) > 0 for all
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k>s"and 0 <1 <r. Applying Lemma 3.7(ii), we get

o> wN.GWE) - (M, G E) = du (e TR
5/ <i<s 0<j<t’
— Sn,n (" B) = Sun (0TI ) 4 S (07 0 B
<y NP E') — 55\4,N(€03+1¢t/T4 E') + 53\/[,N(4PS,‘1?/JH+1E/)
== Sy n(e Tyt T B) <0,

because s +1 > s/ and 0 < ¢/ < r. Thus ¢'¢/E is a direct summand of M for
some s’ <i<sand0<j<r. Let E=7 9" E' Then ¢ ¢t E is a direct
summand of M, and applying (iii), we get numbers p > i+j+1and 0 < g < r
with &7, n(¢FP¢?E) = 0. Observe that pP¢?E = pP It~ E and 0 < g+ <
2r. If g+ < r, then &y n(¢P 799977 E') = 0, because p —j > i +1 > 5.
This leads to ¢ + j > 7, and QP I¢atir—F' = oP~3tryati—7r—FE'. But then
Shy N (P IHTpaTI=" = B) = 0, because p—j +7r > s’ and 0 < g+ 5 —r < 7,
which is a contradiction.
(v) follows from (iv) and the formula dx7 n(X) = 0}y p (77 X).

Proposition 4.3. Let M and N be A-modules with M < N. Assume that there
is a tube T, in U4 such that Sy n(YE) = 0 and (5M,N(1/1j*1E) > 0 for some
simple regular module E in T, and j > H(M, ® N,) +r, where r = r,. Then
there exists an admissible sequence for (M, N).

Proof. Applying Lemma 3.5 we get

Sun (9 E) =[N,/ E] — [M,/ E] = [Np & Ny, 9 E] — [Mp & M, 4’ )
= <[Np|, [/ B] > — < [Mp], ) B] > +L5(N,) — p(M,),

and similarly

Sy (7 B) = < [Npl, [ E] > — < [Mp], [/ " E] >
+€g(Ny) — Le(My).

This leads to

SN’ "E) = < [Np|, [ "E] - ["E] > — < [Mp],[¢' "E] - [/ E] >
=< [Np],—h > — < [Mp],—h >= 9[Np] — 0[Mp] = 0.

Take a maximal number k such that 7 —r < k < 5 — 2 and (5M7N(T/JkE) = 0.
Then we have Sy n(¥'E) > 0 for any k < t < j. If Sy n(p¢%E) > 0 for all
—k—1<c¢<0and k<d<j,then weset Y =0,p=—-k—2and g=Fk+ 1.
Assume now that this is not the case. Take a maximal number ¢ and a number d
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such that —k —1 < ¢ <0,k < d < j and oy n(¢p°?E) = 0. Of course, ¢ < 0.
Applying Lemma 3.7(ii), we get

>0 > wN, e E) — w(M, o E) = Sp,n (W E) + 6u,n (¢°4°E)

c<p<0 k<q<d
— SN (W E) — Sy N (p° P E) < 6y N(¥PE) <0,

because k < d < j. Hence, Y = ¢PyYIF is a direct summand of M for some
c<p<O0and k< qg<d
We set V = 9F and W = Py E. Applying Lemma 3.7(i) for X = Pt ¢9E,

s=—p—1,t=7—q—1, we get a short exact sequence
<Z>
f , (f1.2)
QO0—-V —— P EepY — W — 0,

where 2 : V — 9/ FE is a monomorphism. Further, 6q(X) = 1 for any X € Y =
{"YYE; p<v<0,g <w< j}and dq(X) = 0 for the remaining indecomposable
A-modules X, because t < r. Thus, 0q < dy v, andso MOVEW < NoYoyE.
Moreover,

0<[NeYo¢'E,E| - [MeVeW,¢/E)| < [N,¢E| - [M,y’E| =0

and M @V @& W <gee N @Y & 7 E, by Proposition 3 in [9]. Observe that the set
of isomorphism classes of kernels of epimorphisms M @ (V & W) — 7 E is finite.
Therefore, there is a nonsplittable short exact sequence

O 0-L—-MaVeW-LWE—-0

such that L <gqeg N @Y, by Theorem 2.4 in [10]. Of course, M = M’ &Y for
some A-module M’. We may consider the module V' as a submodule of ¥/ E.

We claim that for any ¢’ € Homa (Y @V @ W, 47 E) we have im g’ C V. Indeed,
since

EcyEc - .cV=yIEC. ..-CyFE

is the unique composition series of ¢/ F in add(7,,), we get img' = z/Jj/E for some
0 < j' < j. On the other hand, the equality im g’ = 17 F implies that there is an
indecomposable direct summand go"“’q/Jj/E of Y@V @ W), for some k > 0. This
leads to 3’ < ¢, which proves our claim.

Then the epimorphism g is of the form

g=1(g91,092) M &Y eVaeW)—E,

forsome g1 : M' — ¢/ Eand g2 Y VW = V.
Consider the pull back of the sequence
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g1 w2 O
0 0 1y

0—-L-MaolYoVeW)aY VEQ®Y —0

under the monomorphism :V - ¢IE®Y. Then we obtain the following

/)

commutative diagram with exact rows and columns

L (f1,02)
= w

i)

0

Hence we get an exact sequence

(f191,f1292,f2)

O—>Z—>M’69(Y@V@W)@Y W — 0.

We may consider the module Z as a submodule of M'® (Y &V & W)@ Y. Since
f1292 = —fafga, we obtain a submodule Z’' = {(0,m, fga(m)); meY @V & W}
of Z. It is easy to see that Z/ ~Y @ VoW, Z = Z' ® Z; for some A-module 77,
and there exists an exact sequence of the form

V:0—-2Z1—MeaY=M-—-W —0.

Observe that, for any A-module X, we have

su(X) =21 @ W,X] - [M,X] = [Zio Wa Yo V,X|- [MaYaV,X]
Z,X]-[MeYaeV,X|<[LoV,X]-[MaYeaV,X]

[L,X]-[MeY,X]|<[NeY,X]-[MeY,X]=dun(X),

because Z <ext L®V and L <gey N @Y. Thus the sequence ¥ is admissible for
(M, N), and this finishes the proof.

4.4. Proof of Theorem. Let M and N be two A-modules such that M < N. We
shall show that M <ext N. By Lemma 1.2 in [10], we may assume that the relation
M < N is minimal.

We claim that there is an admissible exact sequence for (M, N). Suppose that
this is not the case. We may assume that M and N have no common indecompos-
able direct summand. If Mp = Np = M; = Ny =0, then by Theorem 1 in [15], or
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Section 3 in [9], M = Mg <ext Ngr = N. Then by definition of the relation <ext,
there is an admissible sequence for (M, N), and we get a contradiction. Hence, up
to duality, we may assume that Mp @ Np is nonzero. Then by Proposition 4.2(i),
O[Mp] = O[Np] and applying Lemma 3.8(i) and its dual we obtain

[Mp] > [Np]  and  [Mj] > [Ng].

Assume that [Mp] = [Np] and let V' be any indecomposable A-module. If V' is
preprojective, then

(5MP7NP(V) = [NP7V] - [MP7V] = [N7V] - [M7V] > 07
otherwise
e, Ne(V) = Ohgp np(T"V) = [TV, Np] = [r"V,Mp] =0-0=0.

This implies that Mp < Np and by Corollary 4.2 in [10], Mp <ext Np. Then, by
definition of the relation <eyt, there is an admissible sequence for (Mp, Np). Since
Onp,Np < O, this sequence is admissible for (M, N), again a contradiction.

Hence, [Mp] > [Np], and consequently > [M,] < > [N,], where the summation
runs through all x € P1(K). Applying Lemma 3.8(iii), we conclude that there is
w € PYK) such that [M,] < [N,]. We set r = r, and let Ey,..., E, be all simple
regular modules in 7,,. Then by Lemma 3.8(ii) there is a simple regular module
FE in 7, with £5(M,) < £g(N,), because [ X]| = g, (X)[E1]+ -+ L, (X)[E,] for
any X € add(7,). Applying Lemma 3.5, we get

5M,N(1/JST71E) :[N, q/}srflEt] _ [M, ,l/}srflE] _ [NP7Q/JST71E]
— [Mp,*" " E] + [Ny, " E] — [My, ¢~ E]
= < [Np], [0 E] > — < [Mp], [¢*" T E] > +£p(N,,) — £p(M,)
> < [Npl,s-h>— < [Mp],s -h>= —s0[Np| + sd[Mp] =0,

for any integer s satisfying sr > H (M, & N,). Hence ép; 5 (X) > 0 for infinitely
many X in 7.

Applying Proposition 4.2(v), we infer that there are a simple regular module
F in 7, and a number j > H(M, ® N,) + r such that da n(F) = 0 and
either dp n (7~ 1F) > 0 or Sy n(p 7 F) > 0. Let F' = 79-1F. Then either
SuN(PF) =0 < w7 1F) or 8y n(@TF') = 0 < &4y N(9? 1 F’). Then by
Proposition 4.3 or its dual there exists an admissible exact’ sequence for (M, N).
This proves our claim.

Take an admissible sequence 0 — Ly — M’ — Lo — 0 for (M, N). This implies
that M = M’ @V for some A-module V and we obtain M <ext L1 ® Lo®V < N.
Since the relation M < N is minimal, then N = L1 & L9 & V. This leads to
M <ext N, and completes the proof.
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