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Higher generation subgroup sets and the Y-invariants of
graph groups

John Meier, Holger Meinert and Leonard VanWyk

Abstract. We present a general condition, based on the idea of n-generating subgroup sets,
which implies that a given character x € Hom(G, ) represents a point in the homotopical or
homological Y-invariants of the group G. Let G be a finite simplicial graph, 5 the flag complex
induced by G, and GG the graph group, or ‘right angled Artin group’, defined by G. We use our
result on n-generating subgroup sets to describe the/bomotopical and homological -invariants
of GG in terms of the topology of subcomplexes of G. In particular, this work determines the
finiteness properties of kernels of maps from graph groups to abelian groups. This is the first
complete computation of the Y-invariants for a family of groups whose higher invariants are not
determined — either implicitly or explicitly — by 3.

Mathematics Subject Classification (1991). 57MO07, 20F36.
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1. Introduction

For almost two decades there have been two competing notions of finiteness for
infinite groups. C.T.C. Wall introduced a geometric measure of ‘finiteness’ by
defining a group G to be F,, if and only if there is a K(G,1) with finite m-
skeleton. Wall’s properties F1 and Fy are topological reformulations of the two
most common finiteness conditions, finite generation and finite presentation. On
the other hand, Bieri introduced the FP,, property, where a group G is FP,, if
Z, thought of as a trivial ZG-module, admits a projective resolution with finitely
generated m-skeleton. More generally, for any commutative ring R, with 0 # 1, G
is FP,,(R) if R thought of as a trivial RG-module admits a projective resolution
with finitely generated m-skeleton. (See Chapter VIII of [8] for background on
finiteness properties of infinite groups.)

Examples of groups exhibiting one kind of finiteness, but not another, are
known. Let G,, be the direct product of m copies of a finitely generated non-
abelian free group I'. Let x : G, — Z be the map where each generator is carried
to 1 € Z. Then Stallings (m = 3) and Bieri (m > 3) have shown that the kernel
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of x is Fp—1 but not F,, (or FP,,). (See [25] and [4].)

Using covering spaces it is easy to show that F,,, = FP,,; Hurewicz’s Theorem
shows that if a group G is Fo and FP,,, then G is F,,; however, for any m > 2
Bestvina and Brady have shown that FP,, # F,, [2]. Their work is a natural
outgrowth of the work of Stallings and Bieri in that they discovered their groups
by examining kernels of maps from ‘graph groups’ onto Z.

Given a finite simplicial graph G the corresponding graph group, or ‘right-
angled Artin group’, has generators corresponding to the vertices of G, where two
generators commute if and only if they are adjacent in G. The class of graph groups
includes all finite direct products of finitely generated free groups. The graph G is
the defining graph and the corresponding graph group is denoted GG. For example,
if the defining graph G is the 1-skeleton of an octahedron, then the graph group GG
is the direct product of three copies of . In an abuse of terminology, we use v;
to denote both a vertex of the defining graph and a generator of the corresponding
graph group. If Y is a subset of the vertex set of G and all v;,v; € Y are adjacent
in G, then Y is called a (commuting) clique.

Our main result is a complete description of the »-invariants of graph groups.
These Y-invariants are subsets of the real vector space Hom(G,R) and were in-
troduced by Bieri, Neumann, Strebel, and Renz. Among other things, the -
invariants of a group G determine the FP and F properties of normal subgroups
above the commutator of G. Necessary background on these invariants will be
outlined in the next section.

Partial computations of the Y-invariants of graph groups have already ap-
peared. Let xy map a graph group GG to the reals. A vertex v is living if x(v) #0
and otherwise it is dead. In [17] it was shown that the full subgraph generated by
the living vertices, denoted L, , encodes whether or not a character is in EI(GQ):
A character y represents a point in El(GQ ) if and only if £, is a connected and
dominating subgraph of G. Recall that a subgraph £ C G is dominating if each
vertex v € G — L is adjacent to some vertex in £. This result was extended by the
second author to graph products of groups [20].

The second homotopy invariant %2(GG) was computed in [18]. Explicit pre-
sentations of kernels of maps GG — Z (in certain special cases) were given in [13].
Also, the structure of all the Y-invariants was known in the case when GG is a
direct product of finitely generated free groups [19]. The work in [18] leads natu-
rally to the statement of our Main Theorem, and the arguments there have been
directly extended by the first and third authors to establish this characterization
using the ‘¥ ™-criterion’. (See Appendix B of [7] or §4 of [6] for criteria establishing
that a map represents a point in ¥."(G) or ¥"(G,Z).) Here we present a shorter
proof using the concept of ‘n-generating subgroup sets’ introduced in [1].

The flag complex G induced by a simple grelph G is the simplicial complex
formed bX filling in each complete subgraph of G by a simplex; its n—skeletonA is
denoted G(™). The flag subcomplex induced by the living graph £, is denoted L, .
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The topology of LA’X C G determines whether or not [x] € X"(GG), ¥ (GG, Z), or
Y"(GG, R).

Note: We will usually work over an arbitrary commutative ring R with 1 #£ 0; the
reader primarily interested in the FP properties of a group may freely substitute
Z for R throughout this paper. Because we are working over R, it would be more
accurate to refer to a complex as being “n-acylic over R” and a subcomplex as being
“n-acyclic-dominating over R” in the definitions below. However, this terminology
becomes quite awkward. Hence in this paper the term acyclic will always implicitly
mean “acyclic over R,” where R is the commutative ring in which the reader is
interested. For the cases in which we need to work with integral homology, we
emphasize this by writing Z-acyclic.

Similar to being n-connected, a complex is n-acyclic if its reduced homology
groups (over R), up to and including dimension n, are trivial.

Definition. A subcomplez L of a simplicial complex K is (—1)-acyclic-dominating
if it is non-empty, or equivalently, (—1)-acyclic. For n > 0, L is an n-acyclic-
dominating subcompler of K, if for any verter v € K — L, the ‘restricted link’
ky(v) =lk(v)NL is (n —1)-acyclic and an (n—1)-acyclic-dominating subcomplex
of the ‘entire link’ k(v) of v in K.

When L = Ex C G =K is the living subcompler induced by a map x : GG — R,
lky,(v) is refered to as the ‘living link’ of v, written as k. (v).

Main Theorem. Let G be a simplicial graph, let é be the induced flag complex
based on G, and let x : GG — R be a non-zero chachter. szcn:
i) [x] € ¥"(GG) if and only if the subcomplex L of G is (n — 1)-connected
and (n — 1)-Z-acyclic-dominating.
ii) [x] € X"(GG, R) if and only if the subcomplex Ex of(j is (n—1)-acyclic and
(n — 1)-acyclic-dominating.

By Theorem 2.1, we immediately have the following result.

Corollary A. Let G be a simplicial graph, let G be the induced flag complex based
on G, and let x : GG — Z be a rational character of the graph group GG. Then
the kernel of x is R N
i) Fn if and only if L, C G is (n — 1)-connected and (n — 1)-Z-acyclic-
dominating;
it) FP,(R) if and only if EX C G is (n — D-acyclic and (n — 1)-acyclic-

dominating.

Our Main Theorem was announced in [16], which contains additional examples
beyond those presented here.

Throughout this paper, V(K) will denote the set of vertices of the simplicial
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complex K, and, if V C V(K), then K —V is the subcomplex of K formed by
removing the vertices in V as well as the open stars of these vertices.

Recall that graph theorists call a graph G ‘m-connected’ if G — {vy,..., v} is
connected for any collection of k& < m vertices. We will be using a more general
(and slightly altered) notion of connectivity in the context of simplicial complexes.
A simplicial complex K is m-n-connected if for any k vertices {vy,...,v;} with
0 <k <mand k < |V(K)|, the complex K — {v1,...,v} is n-connected. For
example, the graph theorists’ notion of being ‘m-connected’ is equivalent to our
‘(m —1)-0-connected’ property. The m-n-acyclic property for simplicial complexes
is defined in an analogous fashion. Because we allow the possibility that & = 0,
m-n-connected [resp. m-n-acyclic] for any m implies n-connected [resp. n-acyclic].

Corollary B’. A graph group gg has an abelian quotient of integral rank m with
i) Fn kernel if and only if G is (m — 1)-(n — 1)-connected;
it) FP,(R) kernel if and only if G is (m — 1)-(n — 1)-acyclic.

The proof of this Corollary is exactly like the proof of Theorem 6.3 in [17]; we
do not include the details here, since the result will follow from Corollary B below.

Let £™(G) denote the space of all normal subgroups N in G with G/N free
abelian of integral rank m. Let *(G) be the subspace of {™(G) where N is
additionally required to be F,,; similarly £ (G, R) is the subspace of {™(G) where
N is additionally required to be FP,,(R).

Corollary B. For any graph G, and for any choice of m and n:
i) The space &' (GG) is dense in €™ (GQ) if G is (m — 1)-(n — 1)-connected,
and is empty otherwise;
i) The space €™(GG, R) is dense in €™(GG) if G is (m — 1)-(n — 1)-acyclic,

and is empty otherwise.

We thank Ken Brown and Joshua Levy for their helpful comments and advice
during the development of this work.

2. (@) and ¥*(G, R)

The reader is directed to [5], [6] and [7] for background on the Y-invariants; in
this section we merely establish terminology and quote results relevant to our
discussion.

The set of all characters of a group G is the complement of the zero map in
the real vector space Hom(G,R). For any character x let [x] = {rx | 0 < r € R}
be a ray in Hom(G,R) — {0}; the set of all such rays is denoted S(G) and should
be thought of as a ‘sphere’ inside the real vector space Hom(G,R). Since any

character of a graph group GG must factor through the abelianization of GG,
S(GG) ~ SIV@)I-1,
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Any character x whose corresponding ray [x] intersects an integral point of
Hom(G,R) is a rational character. It is easy to check that the image of a rational
character is an infinite cyclic group and that the set of rational characters [x] is
dense in S(G).

Given a group G, there are two sequences of Bieri-Neumann-Strebel-Renz in-
variants: The homotopical invariants

S(@) =@ 23 e) 2¥}@) 2,

and the homological invariants

The first invariants in these sequences, $1(G@) and ©1(G, R), are the same, and
were introduced in a paper by Bieri, Neumann, and Strebel [5]. The higher invari-
ants were introduced by Bieri and Renz [6] who noted that, just as any F,, group
is FP,,, ¥X"(G) C ¥"(G,Z) for any n and G. However, the third Corollary to our
Main Theorem indicates that X" (GG) can be empty while X"(GG,Z) is dense in
S(GG).

These >-invariants have fairly geometric descriptions which are quite concrete
in the case of graph groups. Let KG denote the finite K(GG,1) constructed in
[17], and denote its universal cover by KG. Since the complex KG contains a
single vertex, there is a one-to-one correspondence between vertices in Ir(\é and
elements in GG. Thus corresponding to any character x : GG — R one can
define a map x¥ : KG — R; the map X is defined on the vertices of KG by
xX(v) = x(g) if v = b- g for some fixed base vertex b, and is extended linearly

and GG-equivariantly from the vertices to the entire universal cover. Let I/(Vgg? W65

denote the maximal subcomplex in ﬁﬂ)}fl [a,00). For any non-negative constant

d, the inclusion [A(ég?’oo) — I/(E'de’oo) induces a map between reduced homology

groups ?Ii(lf(vgg?""’) ,R) — f[i(f(vgkd""’), R) and a map between homotopy groups
Wi(lf(\a?’oo)) — wi(ﬁkd’w)). A character x represents a point in ¥"(GG, R)
[resp. 3™ (GG)] if and only if there exists a non-negative constant d such that the
induced map on the reduced homology groups [resp. homotopy groups| is trivial
for ¢ < n. We remark that in the case of graph groups one can establish that a
map is in X"(GG) or X"(GG, R) with d = 0. Since the details using this approach
are daunting, we do not establish this condition directly.

The general definition of the homotopical invariant ¥."(G) is similar so we
restrict ourselves to a sketch. As ¥"(G) is defined only for F,, groups, we let K
denote a K (G, 1)-complex with finite n-skeleton. We think of a character x : G —
R as an action of G on the real line, and consider a G-equivariant map  : K—R
on the universal cover (such a map always exists). Let K Lf ) be the maximal
subcomplex in K Ny~ ([a,00)). Then [y] € ¥*(@) if and only if there is a d > 0
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such that the inclusion-induced maps m(ﬂ?’w)) — m(f(bd’oo)) are trivial for
1< n.

If G is F,,, the homological invariant (G, R) can be defined as above, re-
placing homotopy by reduced homology. However, the definition can be given in
a more general context, in the sense that one can associate to each RG-module
M purely algebraic invariants ¥%(G, M). Given a character x : G — R, the sub-
monoid x ([0, 00)) will be denoted Gy,. Then Y%(G, M) consists of all [x] € S(G)
such that M is FP,, over the monoid ring RG,, i.e. admits a projective resolution
over RG,, with finitely generated n-skeleton.

When G is F,, and R is regarded as a trivial RG-module, then the algebraical-
ly defined invariant >%(G, R) coincides with the homological invariant X" (G, R)
defined above. Therefore we always denote X% (G, R) by X" (G, R).

Given any normal subgroup N, with A = G/N abelian, one can look at the
subsphere

S(@,N) ={[xo ¢l | x € Hom(A,R)} = {[x] € S(&) | x(N) = 0}

corresponding to IV, in S(G). One particularly convincing reason to study the Y-
invariants of a group is the following result due to Bieri and Renz, building from
work of Bieri, Neumann and Strebel.

Theorem 2.1. Let N be a normal subgroup of a group G with finitely generated
abelian quotient. Then:
i) N is Fp, if and only if S(G,N) C "(
it) N is FP,(R) if and only if S(G, N)

G);
"G, R).

The following is immediate by comments in [17] and the theorem above; we
note that such a result is relatively rare for arbitrary groups, and it follows in this
case because graph groups have very symmetric presentations.

Corollary 2.1. Let GG be a graph group and let x : GG — Z. Then [x] € X" (GG)
[resp. MGG, R)] if and only if the kernel of x is F, [resp. FP,(R)].

We will also need the following results:

Theorem 2.2. ([5], [6]) For any group G and any natural number n, ¥."(G), and
¥"(G, R) are open subsets of S(G).

Theorem 2.3. ([23]) Let G be a group of type F,.
i) If n=1 then 2YQ) = ¥1(G,Z2) = B1(G, R).
i) If n > 2 then ¥"(G) = Y2(G) N 2" (G, 7).

The reader who is puzzled or curious about Y-invariants should see [7] for a
complete introduction; for more widely accessible sources, see [5] and [6].
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3. Y-invariants and generation by subgroups

In this section we prove a sufficient condition for a character of a group G to belong
to MX"(G) if G admits a ‘nice’ generating set of subgroups in the sense of Abels
and Holz [1]. Recall that a set H of subgroups of a group G is n-generating (for
G) if the nerve N(H) of the covering of G by all (left) cosets in (Jy .y, G/H is
(n—1)-connected. If N(H) is n-connected for all n, then H is infinitely generating.

Definition 3.1. Given a set H of subgroups of a group G, let C(H) be the sim-
plicial complex with k-simplices the finite, non-empty flags Hy C Hy C --- C Hy,
of non-trivial subgroups H; € 'H.

Example. Let G be a simplicial graph. Then the collection A of all free abelian
subgroups of GG based on cliques in G, together with the trivial subgroup G@ =
{1}, forms an infinitely generating set of subgroups. (An analogous statement is
true in the more general context of graph products of groups [12].)

Moreover, there is a natural action of GG on a cubical complex where the
stabilizers of faces of the fundamental domain correspond to the subgroups in
A. We quickly outline this construction; for details, see [14]. Let D(A) be the
simplicial complex with k-simplices the non-empty flags GAg C GA1 C -+ C GAg
where the A; are cliques in G and Ag can be empty. Notice that the complex D(.A)
is the cone over C(A), and that C(A) is the barycentric subdivision of G. If A is
a non-empty clique in G, then the barycentric subdivision of A naturally embeds
in C(A). Corresponding to the subgroup GA there is a ‘panel’ PA C C(A)
consisting of the simplices in C(A) whose vertices contain the barycenter of A and
barycenters of simplices A’ > A. (If A = 0 then PA = D(A).) On the other
hand, if p is a point in C(.A), then there is a corresponding group G, = GA where
p € PA, and GA is maximal with respect to this property. (If p € D(A) — C(A)
then Gp = {1}.)

Let XG be the cubical complex formed by D(A) x GG where (p,g) ~ (g, h) if
and only if p = g and gh ™! € G,. There is a natural action of GG on X¢G given
by g - (p,h) = (p,gh). This complex can be given a piecewise Euclidean cubical
metric structure making it a CAT(0) space. Since simply connected CAT(0) spaces
are contractible, it follows that A is an infinitely generating subgroup set for GG.
Notice that the isotropy groups of cells in XG under the action of GG are the
conjugates of the GA C A, and the fundamental domain for the GG-action is
D(A) x {1}.

Theorem 3.1. Assume that H is a non-empty, finite, intersection-closed, and
n-generating set of subgroups of a group G, and that x : G — R is a non-zero

homomorphism with x|g # 0 for each non-trivial subgroup H € 'H.
1) If either the trivial group does not belong to H or the simplicial complex
C(H) is (n—1)-connected, and if [x|g] € X"(H) for all non-trivial H € H,
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then [x] € ¥"(G).

ii) If either the trivial group does not belong to H or the simplicial complex
C(H) is (n—1)-acyclic, and if |x|a] € £*(H, R) for all non-triviel H € H,
then [x] € ¥"(G, R).

This general result is our key technical tool for establishing that a given charac-
ter is contained in a given »-invariant of a graph group GG. Further applications
(for example, to graph products of groups, or to Artin groups) seem possible, and
we hope to come back to them later.

The proof of Theorem 3.1 is based upon the following result. The homological
version of this Theorem was originally obtained by Schmitt [24]. Proofs can be
found in [21] for the homological case, and [22] in the homotopical case.

Theorem 3.2. Suppose a group G acts on a CW-compler X by cell-permuting
homeomorphisms such that the n-skeleton of X is finite modulo the action of G.
Let x : G — R be a character whose restriction to the stabilizer G, of any p-cell
o C X with p < n is non-zero.
i) If X is (n — 1)-connected and if [x|a,] € X" P(Gs) for each p-cell o with
p < n then [x] € ¥*(G).
i) If X is (n — 1)-acyclic, and if [x|c,] € X" P(Gy, R) for each p-cell o with
p < n then [x] € ¥"(G, R).

Proof. (Theorem 3.1.) Let F' = F(H) be the flag complex associated with the
covering of G by all cosets determined by H. In other words, the k-simplices of
I’ are the finite, non-empty flags gHo C gH1 C --- C gHjy with H; € ‘H and
g € G. As 'H is intersection-closed and n-generating, it follows from [1] that F is
(n — 1)-connected.

By acting on the cosets, the group G also acts on F'. The stabilizer of a simplex
gHo C gHy C --- C gHy, is gHpg ! which fixes this simplex pointwise. Moreover,
the subcomplex D = D(H) consisting of all flags of the form Hy C Hy C --- C Hy,
is a strong fundamental domain for the action, in the sense that each simplex in
F' is equivalent modulo G to a unique simplex in D.

If ‘H does not contain the trivial subgroup, then the stabilizers of the cells of I
are conjugates of the non-trivial groups H € H. By hypothesis, [x|g] € X"(H) C
Y P(H) [resp. [x|n] € ¥"(H,R) C ¥" P(H, R)] hence the result follows from
Theorem 3.2.

If {1} € H, then any cell of the form {1} C gHy C --- C gHy in F has
a trivial isotropy group, hence it might be difficult to apply Theorem 3.2. We
circumvent this difficulty by having G act on the subcomplex composed of cells
with non-trivial stabilizers. In what follows we identify the vertex g{1} € F with
the group element g € G. We denote the full subcomplex of I whose simplices
have non-trivial stabilizer by £ = E(H). Clearly, G acts on F with C = C(H) as
a strong fundamental domain. As in the example above, D is the cone of C, with
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cone point the vertex 1 € D. More generally, if ¢ € G then the link lk(g) of the
vertex g € I is gC and the closed star st(g) is the cone on gC with cone point g.

For a finite subset S of G, let E(S) = E(H,S) be the full subcomplex of F'
generated by F together with the vertices in S. We claim that

(a) if C is 1-connected then 71 (E) = m(F(S)), and

(b) if Cis (n — 1)-acyclic then H;(F, R) = H;(E(S), R) for ¢ < n.
To see this, let g € S and put S' = S\ {g}. Then

E(S) = E(S8")Ust(g) and  E(S)Nst(g) = lk(g) = ¢C.
To establish (a) simply note that
T (E(S)) 2 mi(B(S)) #r, (gc) T1(st(9))

by Van Kampen’s Theorem. However, m1(gC) = {1} = m1(st(g)); hence 71 (E(S))
= 1 (F(S")) which by the induction hypothesis is isomorphic to w1(F). A similar
argument using the Mayer-Vietoris sequence establishes (b).

The complex F' is the union of the subcomplexes FE(S) as S ranges over the
finite subsets of G. Using the fact that F'is (n — 1)-connected together with the
claims above, we see that F is (n—1)-connected in situation (i) and (n—1)-acyclic
in situation (ii). Using the action of G on F, Theorem 3.2 now gives the desired
result even when {1} € H. O

4. A special case of the Main Theorem

Here we generalize the Bestvina-Brady result [2] from rational characters to all
characters; that is, we prove:

Theorem 4.1. Let G be a simplicial graph with induced flag complex G\, and let
x : GG — R be a character such that x(v) # 0 for all vertices v € G. Then:

i) [x] € S™(GG) if and only if G is (n — 1)-connected.

i) [x] € ¥™(GG,R) if and only if G is (n — 1)-acyclic.

Bestvina and Brady established finiteness properties of kernels of maps x :
GG — Z where each generator is taken to 1 € Z [2]. Essentially the same proof
works when 0 # x(v) € Z for each generator v. That is, Bestvina and Brady’s
result holds for any rational character x with £, = G. In particular:

Theorem 4.2. ([2]) Assume, in addition to the assumptions above, that the char-
acter x 1is rational. N
i) If the kernel of x is F, then G is (n — 1)-connected.
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ii) If the kernel of x is FP,(R) then G is (n — 1)-acyclic.

Proof. (Theorem 4.1) First let G be (n — 1)-connected [resp. (n — 1)-acyclic]. Let
A be the set of subgroups of GG consisting of all GA, where A is a simplex in @,
and the trivial group. As was mentioned in the previous section, A is infinitely
generating for GG [12].

As GA is a finitely generated free abelian group, we have

[Xleal € ¥*(GA) = X"(GA, R) = S(GA)

for any n (see Theorem 2.1). Further, the simplicial complex C(.A) is isomorphic
to the barycentric subdivision of é . It follows from Theorem 3.1 that [x] € ¥"(GG)
fresp. [x] € >(GG, R)].

To prove the converse, note that the set of rational characters with x(v) # 0
fgr all vertices v € G is dense in the set of all characters of GG. Assuming that
G is not (n — 1)-connected [resp. not (n — 1)-acyclic], the Bestvina-Brady result
implies that the kernels of all such characters are not F, [resp. FP,(R)], and
hence by Corollary 2.1, all such characters are not in X" (GG) [resp. ¥."(GG, R)].
Theorem 2.2 implies that the complement of any given Y.-invariant is closed. The
comments above indicate ¥"(GG)¢ [resp. X" (GG, R)¢] contains a set of characters
which is dense in S(GG); hence ¥"(GG)® = S(GG) [resp. X" (GG, R)® = S(GG)]
which implies X"(GG) = 0 [resp. X" (GG, R) = 0]. O

We highlight the fact established at the end of the proof:

Corollary 4.1. If G is not (n — 1)-connected, then ¥"(GG) = 0; if G is (n — 1)-
connected, then Y."(GG) is dense in S(GG). Similarly, if G is not (n — 1)-acyclic,
then X" (GG, R) = 0; if G is (n — 1)-acyclic, then X" (GG, R) is dense in S(GG).

This is a theme we will return to in §8.

5. The invariants of graph groups

Throughout this section we will discuss the links of vertices. If v is a vertex of a
simplicial graph G, we let G¥ denote the 1-skeleton of the entire link lk(v) in G.
Thus GY is a graph, and @ =~ lk(v) C § As a first step in establishing our Main
Theorem we prove:

Theorem 5.1. Let G be a simplicial graph, let x : GG — R be a character, and
let L = L, be the living subgraph. If n > 1, then [x] € ¥"(GG) if and only if:

i) IXlec] € ¥M(GL); and

ii) for each v e G — L, x|lagr # 0 and [x|ag-] € X" HGGY, 7).
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Similarly, [x] € X" (GG, R) if and only if:
i) [xlec] € XM (GL, R); and
ii) for eachv € G — L, xlag» #0 and [x|ag-] € X" H(GG", R).

In the proof we’ll need the following two theorems, the first of which follows
from Theorem 3.2 and Theorem 9.1 using the action of an HNN-extension on its
Bass-Serre tree. Its homological parts (ii) and (iii) are due to Schmitt [24].

Theorem 5.2. Let G = (B,t | t~1Ct = D) be an HNN-extension with base group
B, stable letter t, and associated subgroups C =2 D. Suppose that x : G — R is a
character such that x|c # 0, and that n > 1.
) If [x|5] € 2"(B) and if [x|o] € 57 1(C) then [x] € 5M(G).
i) If [x|g] € ©"(B, R) and if [x|c] € ¥ 1(C, R) then [x] € (G, R).
ii) If [x] € (G, R) and if [x|B] € X" (B, R) then [x|c] € 2"~ 1(C, R).

Theorem 5.3. (Meinert [21], [22]) Assume that G = N x H is a semi-direct
product, and that x : G — R is a character of G such that x(N) = {0}. Then:

i) [x] € XM(G) implies [x|u] € X" (H), and

i) [x] € X"(G, R) wmplies [x|u] € X"(H, R).

Proof. (Theorem 5.1) (<) We induct on the number of vertices in G — £. The
base case, when G = £, was established in Theorem 4.1. For the inductive step,
choose a vertex w € G — L, and let G,, be the full subgraph on all vertices of G
except w. For all vertices v € G,, — £, the vertex sets of GV and G, are either equal
or differ by w. As w & L, the character x vanishes on the kernel of the natural
split projection GGY — GGY, sending w to the identity (if w € G¥). By (ii),
[X|age] € 2" 1(GGY,Z) [or ¥ 1(GGY, R)]. Applying Theorem 5.3 we find that
IXlag: | € X" HGGY,Z) [or X7~ 1(GGY, R)] for all vertices v € G, — L. Because
L=Ly =Ly, S Guw CG, the induction hypothesis yields [x|g,] € ¥"(GGy)
[or X"(GG,, R)].

To complete the induction step, notice that GG = (GGy,w | w 1GG¥w =
GG"™) is an HNN-extension with base GG,,, stable element w, and associated sub-
groups GG¥ = GG¥. When working with the homological invariants ¥" (GG, R)
the result follows from Theorem 5.2 (ii). To establish the result for the homo-
topical invariant %2(GG) note that ¥ (GG) = X1(GG,Z), hence the result fol-
lows from Theorem 5.2 (i). Because ¥"(GG) = Y2(GG) N ¥"(GG,Z) by The-
orem 2.3, in order for [y] to be in X."*(GG), it suffices that [x|cc]| belongs to
Y2(GL)NEM(GL,Z) = X*(GL) and that for each v € G — L,

[xleg] € £1(GG*) N =" HGG°, Z) = 2" HGG", Z).
(=) Notice that x factors through the natural split projection GG — GL, where

all vertices in G — L are sent to the identity. If [x] € %" (GG) then by Theorem 5.3,
[x|cc] € E*(GL). Tt therefore suffices to show that [x] € ¥"(GG) implies [x|cg»] €
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»n-1(GQGY Z) for all vertices v € G — £. Similarly, if [x] € ¥*(GG,R) then
[xlcc] € Z"(GL, R), so to establish the homological case it suffices to show that
[x] € ¥*(GG, R) implies [x|ag»] € X" 1(GGY, R) for all vertices v e G — L.

It follows from [17] or [20] that x|gg» # O for all vertices v € G — L. So let
v € G — L, and let G, be the full subgraph on all vertices of G except v. We
first establish the homological case. From Theorem 5.3 we infer that [x|acg,] €
¥(GG,, R). Again, GG = (GG,,v | v GGy = GGY) is an HNN-extension with
base GG,, stable element v, and associated subgroups GG* = GG". Theorem 5.2
(iii) gives the desired result: [x|ag»] € X" 1(GG?, R). On the other hand, assume
[x] € ¥2(GG). In this case, since ¥2(GG) C ¥2(GG,Z), we see that Theorem 5.2
(i) implies [x|cgv] € R1(GGY,Z). Intersecting this description of X2(GG) with
the description of ¥™(GG,Z) above completes the proof. O

We restate our Main Theorem in a form that more closely follows our line of
proof.

Main Theorem. Let G be a simplicial graph, let QA be the induced flag complex
based on G, and let x : GG — R be a character. If n > 1 then [x] € X" (GG) if and
only if:

i) The subcomplex /fX is (n — 1)-connected; and

i) the subcomplex Ex is an (n — 1)-Z-acyclic-dominating subcomplex of G.
Similarly, [x] € X" (GG, R) if and only if:

i) The subcomplex Ex is (n — 1)-acyclic; and

ii) the subcomplex Ex is an (n — 1)-acyclic-dominating subcompler of g.

Proof. We first give the proof in the homological case. Let £ denote £, . Appealing
to Theorem 4.1 and Theorem 5.1, we see that the assertion [x] € ¥X"(GG, R) is
equivalent to

i) the subcompler L is (n — 1)-aceyclic, and
(ii’) xlage #0, and [x|agr] € X" HGGY, R) for all vertices v € G — L.
It suffices therefore to show that condition (ii’) is equivalent to L being an (n—1)-
acyclic-dominating subcomplex of é . We proceed by induction on n. If n = 1 then
(ii’) is equivalent to the condition that x|gg» # 0 for all vertices v € G — L, which
is the definition of £ being a 0-acyclic-dominating subgraph of G.

Assume our characterization of ¥*(—, R) for graph groups holds through di-
mension n — 1 (where n > 1): for any character x of any graph group GG,
[x] € ¥ (GG, R) if and only if (i) and (ii) hold. In particular, when work-
ing with ¥"(—, R), the induction hypothesis implies that condition (ii’) holds if
and only if for each vertex v € G — L, G nL= ke (v) is (n — 2)-acyclic and is
(n — 2)-acyclic-dominating as a subcomplex of 62 . But this is the definition of
2 being an (n — 1)-acyclic-dominating subcomplex of (j . Thus the proof in the
homological setting is complete.
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In order to establish the homotopical portion of the Main Theorem we make
use of Theorem 5.1 and Theorem 4.1 once again. It follows that [x] € X"(GG)
if and only if £ is (n — 1)-connected and for all vertices v € G — L, x|ag» # 0
and [x|age] € 2" (GG, Z). But the equivalence of this second condition with
condition (ii) of the theorem was already established in the homological case. [

6. Some examples

In this section we use our Main Theorem to construct counterexamples to one
conjecture, and to establish another. First we construct the counterexamples. If
G1 and Go are both of type F,, then the following formula was conjectured in
[19]:
MG x Go) = ) (@¥P(G1)° + m3RU(Ga))
ptg=n

This means that a map xy € Hom(G1 x G2,R) is not in ¥"(G1 X G9) if and only
if the restriction of x to G is not in ¥.?(G1) and the restriction of x to Gg is not
in $9(Gq) for some p and g with p+ ¢ = n. The conjecture has been proven when
n=1or 2 (see [7] and [11]) but it is false for n > 2.

Let G be the 1-skeleton of an acyclic flag complex K, which has non-trivial
fundamental group. It follows from the Main Theorem, or Corollary 4.1, that
Y2(GG) = 0. Let G’ be the 1-skeleton of the suspension of K'; hence GG’ = GGx Fy.
Since Y1(Fy) = 0, if the above conjecture were true, ¥3(GG’) would be empty.
However, since K is acyclic, its suspension is contractible, and therefore ¥."(GG")
is dense in S(GG’) for all n.

We see no immediate counterexamples to the homological version of this con-
jecture, and we hope to pursue this question further.

On the other hand, our Main Theorem implies a conjecture stated in [17], which
was previously proven by the second author in a private communication. In [10]
Droms showed that chordal graph groups are coherent; this corollary is another
example of the ‘stability’ of subgroups of chordal graph groups. Recall that a
graph is chordal if every circuit of length greater than three has a chord (an edge
connecting 2 nonadjacent vertices in the cycle).

Corollary 6.1. IfG is a chordal graph, then ¥1(GG) = ¥F(GG) = ¥¥(GG, R) for
all k > 1.

Proof. We claim that if £ is any connected and dominating full subgraph of a
chordal graph G then, for each vertex v € G — £, LY = G N L is a connected and
dominating subgraph of G¥. Suppose to the contrary that £V is not connected.
Since L is connected, any two vertices of LY which are not connected within £Y can
be joined by a path in £. Among all those pairs we choose one, say wi,wy € LY,
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where the joining path, say p, is of minimal length (which is at least 2). This
implies that, except for its end points, p runs entirely in £ — £Y. Hence the circuit
of length > 4, composed of the edge {v,w;}, the path p, and the edge {ws, v}, has
no chord — a contradiction. Suppose now that £V is not dominating in G¥. Since
L is dominating, any vertex w € G¥ — LY which is not adjacent to a vertex in £”
must be adjacent to some vertex z € £ — LY. This latter vertex can be joined by
a path p in £ with some vertex w € LY. Among all possible choices of w, z, and p
we choose one where the path p is of minimal length. As above we can construct
a circuit of length greater then three which has no chord: it is the composition of
the edge {v,w}, the edge {w, z}, the path p, and the edge {w,v}.
__ A quick induction argument shows that if G is a connected chordal graph then
G is contractible. The base case, where G has one vertex, is trivial. For the
induction step, choose a vertex v € G such that the dominating subgraph G — {v}
is connected. The claim above implies that GV is connected. Since GV is a full
subgraph of G, it is also chordal. Thus the induction hypothesis yields that the
link, lk(v) = G¥, of v € G is contractible. By Van Kampen’s Theorem and the
Mayer-Vietoris Theorem, 6 is contractible. N

From the claims above one then concludes that the flag complex £ associated
with a connected and dominating full subgraph £ of a chordal graph G is con-
tractible and k-Z-acyclic-dominating for all k. (The proof is left to the reader.)
Finally, because [x] € »1(@G) if and only if LAX C G is connected and dominating,
the discussion above shows that when [y] € %}(GG), then EX is a contractible

and k-Z-acyclic-dominating subcomplex of § for all k. By our Main Theorem,
[x] € XF(GG) CXF(GG, R) for all k > 1. O

The converse of Corollary 6.1 is not true. Consider the following graph G:

wo

v
wy w3
U4 v3

U1 v2
w1 w2

Let G’ be the full subgraph generated by the vertices vg,... ,v4. Then [x] €
El(Gg) if and only if G’ C £,,.. In this situation £, is contractible, and the link of

any dead vertex w; is the corresponding living vertex v;. By our Main Theorem
YH(GG) = ¥F(GG) = ¥F(GG, R) for all k > 2, but the graph G is not chordal.
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7. The simplicial structure

It follows from our Main Theorem that ¥"(GG)¢ and ¥"(GG, R)¢ are rational
polyhedral for any n. As a matter of fact, these complements are simplicial com-
plexes contained in the ‘natural’ simplicial decomposition of S(GG). The n-sphere
can be described as an iterated join of (n+ 1) copies of the O-sphere: the 1-sphere
is SO %S9 52 is then SO« S1 = S0 & (SY « SO) and so on. For a graph group,
S(GG) ~ SIVOI-1 50 §(GG) is the [V(G)]-fold join of copies of S°. Each copy of
59 in S(GG) is simply two vertices in this simplicial decomposition; one of these
vertices is associated with a generator v € G, and the other is associated to v L
Each simplex in this decomposition is determined by its vertices; hence it can be
described by a list of generators, or their inverses, {vlﬂ7 e ,vkﬂ}, where v; and

v;l are not both present. Thus a character [x] € S(GG) belongs to the closed
simplex corresponding to {vj',... ,vf*} if and only if x(v;*) > 0 for 1 <i < k and
x is trivial on all other vertices of G; a character [x] € S(GG) belongs to the open
simplex corresponding to {vi',... ,v;*} if and only if x(v;*) > 0 for 1 < i <k
and x is trivial on all other vertices of G.

The subcomplex L, is determined by the living vertices in G corresponding to
x. All other characters y/ in the smallest open simplex of S(GG) containing x will
induce exactly the same living subcomplex. By our Main Theorem, all characters
in this open simplex are in " (GG) [resp. X" (GG, R)] or they are all not in X" (GG)
[resp. ¥.*(GG, R)]. This discussion essentially establishes the following result.

Proposition 7.1. An open simplex o defined by {vi',... v} is contained in
Y(GG) if and only if the full subcomplex 0f§ induced by the vertices {v1,..., v} is
an (n—1)-connected and (n—1)-Z-acyclic-dominating subcomplex of G, Similarly,
o is contained in X" (GG, R) if and only if the full subcomplex ong induced by the
vertices {vy, ..., v} is an (n—1)-acyclic and (n—1)-acyclic-dominating subcomplez

of G.
The following corollary generalizes Proposition 6.4 of [17].

Corollary 7.1. One can determine if the kernel of a map x : GG — Z" is F,
or FP,(R) by eramining the induced maps ¢ o x : GG — Z for finitely many
homomorphisms ¢ € Hom(Z™,Z).

Proof. Recall that, by Theorem 2.1, we need to determine whether or not the
(n — 1)-sphere S(GG,ker(x)) is contained in ¥"*(GG) or X" (GG, R). However, by
Proposition 7.1, a point z € S(GG) is contained in ¥"(GG) or ¥"(GG, R) if and
only if the minimal open simplex in S(GG) containing  is contained in ¥."(GG)
or ¥X*(GG,R). Thus one simply needs to check a single representative point —
and hence a single ¢ € Hom(Z",Z) — in each of the simplices of S(GG) which
S(GG, ker(x)) passes through. O
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Examples indicating that one can indeed carry out useful computations along
these lines are presented in [16].

Notice that a simplex o ~ {v{',...,v;*} determines a great subsphere S(o) C
S(GG) which is the closure of all simplices corresponding to k-tuples {vlﬂ, A vffl 1.
By Theorem 2.2 the complements of the Y.-invariants are closed in S(GG), so
Proposition 7.1 yields the following corollary which will be used in the next sec-
tion.

Corollary 7.2. If an open simplex o ~ {vi,...,vf*} is in X"(GG, R)® [resp.
Y(GG)e], then S(o) C X" (GG, R)¢ [resp. S(o) C ¥X"(GG)<].

The main result of this section is the following computation of the dimensions
of the simplicial complexes determined by the complements of the geometric in-
variants.

Theorem 7.1. Let GG be a graph group based on a simplicial graph G and let
0 < d < |V(G)| be an integer. If the character sphere S(GG) is equipped with its
natural simplicial decomposition, then the dimension of the subcompler ¥"(GG)°
[resp. YX"(GG, R)¢] is less then d if and only if G is (m—1)-(n—1)-connected [resp.
(m — 1)-(n — 1)-acyclic] where m = |V(G)| — d.

Recall that a simplicial complex K is m-n-connected [resp. m-n-acyclic] if for
any set )V of k vertices of K, where 0 < k < m and k < |V (K|, the full subcomplex
K -V of K generated by all vertices in V(K)—V, is n-connected [resp. n-acyclic].

Lemma 7.1. If a simplicial complex K is m-n-acyclic then the entire link 1k(v) C
K of any vertex v € K is (m — 1)-(n — 1)-acyclic. In particular, if K is m-n-
connected, then the entire link k(v) C K of any vertex v € K is (m —1)-(n — 1)-
Z-acyclic.

Proof. If K is n-connected, then it is n-Z-acyclic, so we only need to prove the
assertion in the homological setting. Given a vertex v, let V be a set of 0 < k <
m — 1 vertices of lk(v). Then the link of v with respect to the subcomplex K —V
is Ik y(v) = Ik(v) N (K — V) = lk(v) — V. Putting V* = VU {v} yields

K-V=(K-V"Ustg pw) and (K -V nstx p(v) = Tkg p(v),

where strx_y(v) = st(v) N (K — V) = st(v) — V is the closed star of v in the
subcomplex K — V. Since V and VT both have less than or equal to m vertices,
K-V and K—VT are n-acyclic. Certainly stx_(v) is n-acyclic, hence lkx_y(v) =
lk(v) — V is (n — 1)-acyclic by the Mayer-Vietoris Theorem. O

Proof. (Theorem 7.1) We only give the proof in the homological case; the homo-
topical case follows similarly.



38 J. Meier, H. Meinert and .. VanWyk CMH

If G is not (m — 1)-(n — 1)-acyclic then there is a set V of k < m — 1 vertices
where §—V is not (n—1)-acyclic. One can easily construct a character y : GG — R
whose living subcomplex Ex equals G — V. Since m = [V(G)| — d, x has at least
d+1 living vertices, and [x] € X" (GG, R)¢ by our Main Theorem, so the d-simplex
determined by the vertices in V belongs to %" (GG, R)°.

The proof of the converse is by induction on the number of vertices of QA , the
case of one vertex being trivial. In the induction step we’ll show that any character
x : GG — R with less then |V(G)| — d dead vertices belongs to >" (GG, R). Notice
that Ex is (n — 1)-acyclic because Gis (IV(G)| —d—1)-(n— 1)-acyclic. Also notice
that x|cgv is non-zero for each vertex v € G — £, (as in §5, G¥ denotes the 1-
skeleton of the entire link lk(v) C QA), for otherwise one would get a disconnected
complex G — V(G¥) by removing |V (G)| —d — 1 or fewer (dead) vertices.

By Lemma 7.1 we know that lk(v) is (m — 2)-(n — 2)-acyclic for any vertex
v e G — L. We then apply the induction hypothesis; if m —2 > |V(G")| — 1 then
»7—1(GGY, R) is empty; if m —1 < |V(G?)] then the dimension of X"~ 1(GG", R)°
is less then |[V(GY)|—(m—1) = |V(G")|— |V (G)|+d+1. Summarizing we find that
any character of GG¥ with less than [V (G)|—d—1 dead vertices is in ¥~ (GG, R).

We finish the proof by an appeal to Theorem 5.1. From the discussion above
we infer that [x|cz,] € ¥"(GLy, R) and that [x|cg-] € ¥ GG, R) for each
vertex v € § — L, hence [x] € ¥"(GG, R). O

8. The space of kernels

We now turn to the proof of Corollary B from the introduction.

Let £™(G) denote the space of all normal subgroups N in G with G/N free
abelian of integral rank m. Let &*(G) be the subspace of {™(G) where N is
additionally required to be F,,; similarly £ (G, R) is the subspace of {™(G) where
N is additionally required to be FP,,(R).

The space £™(G) is topologized as follows. Each normal subgroup N with
G/N = Z™ induces a great (m—1)-dimensional subsphere S(G, V) of the character
sphere S(G). Thus there is an actual distance between these normal subgroups
given by taking the Hausdorff distance between these subspheres.

Corollary B. For any graph G, and for any choice of m and n:
i) The space E(GQG) is dense in E™(GG) if G is (m — 1)-(n — 1)-connected,
and is empty otherwise;
it) The space (GG, R) is dense in ™ (GG) if G is (m — 1)-(n — 1)-acyclic,
and is empty otherwise.

A normal subgroup N € £™(GQG) is in general position if for any character
(Xl € S(GG, N), [V(Ly)| > [V(G)] —m.
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Lemma 8.1. The set of all general position subgroups N € {™(GG) is dense in
M(GG).

Proof. Given the kernel N of any epimorphism ¢ : GG — Z™ we will find an
N € ¢&™(GG) which is arbitrarily close to N € {™(GG) and is in general position.
In the following it will be convenient to endow the various R*’s with the 1-norm.

First, order the vertices in G such that {¢(v1), ..., d(vm)} is a basis for R™, and
define a homomorphism ¢ : GG — R™ as follows. Start by having ¢(v;) = ¢(v;)
for 1 < ¢ < m. Because {¢(v1),...,¢(vn)} is a basis for R™, each ¢(vy) can be
expressed as a linear combination

d(vr) = cp1d(v1) + cp2d(v2) + - -+ + ckm@(Vm)

for k > m. Note: Since the image of ¢ is Z™, each of these coefficients is rational.
We define our associated map ¢ to be

o(vr) = (ep1 +ep1)ow) + (cr2 +ep2)p(v2) + -+ -+ (Chym + Ekm ) D(Um)

where the ey, ; are small, rational, and chosen so that ¢(vy) is not a linear combi-
nation of any collection of m — 1 vectors from {p(v1),...,o(vr_1)}. This can be
achieved because removing a finite number of (m — 1)-dimensional linear subspaces
from R™ leaves a dense subset of R™.

Let N be the kernel of ¢. As ¢ agrees with ¢ on the first m generators, the
image of ¢, and hence GG/N, is isomorphic to Z™.

Assume for the moment that there is a character x : GG — R that vanishes on
N and has at least m dead vertices. Clearly, x splits as ¢ o ¢ for some homomor-
phism ) : Z"™ — R. As the image under ¢ of any m vertices forms a basis of R™,
1) must be trivial. This contradicts our assumptions that y is non-zero; hence N
is a general position subgroup.

Finally it remains to prove that N can be chosen arbitrarily close to N in
€™(GG). We shall identify S(GG) with the unit sphere in RIV(9! the identifi-
cation being induced by mapping a homomorphism x : GG — R onto the vector
(x(v1),- -+ s x(vv(g))) € RV, Now note that each y with [x] € S(GG, N) [resp.
S(GG, N )] factors as 1o [resp. o] for some non-zero homomorphism + : Z™ —
R. Consequently, it suffices to show that for each ¢ € Hom(Z™,R) the points on
the unit sphere of RIV(9)| represented by the vectors (Yop(v1),... ,T/JOLP(UW(Q)\ )

and (Yo @(v1),...,¥0¢(v)y(g))) can be chosen to be arbitrarily close. Assuming
these vectors are rescaled so that their associated points are actually on the unit
sphere, we see that the Hausdorff distance between N and N is bounded by

IV (9)l V(| m VIl m

S opn) —podw)l < DY leri-vopw) < YD lekl-
k=1

k=1 i=1 k=1 =1
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But because the e ; can be chosen to be arbitrarily small, the normal subgroup
N can be made arbitrarily close to IV in {™(GG). O

Proof. (Corollary B) We only give the proof in the homotopic setting, the homo-
logical one is similar. If G is not (m — 1)-(n — 1)-connected then the dimension of
Y™(GG)¢ is greater than or equal to |V (G)| —m by Theorem 7.1. However, Corol-
lary 7.2 shows that X™(GG)° not only contains a simplex of dimension |V (G)|—m
but, in fact, a great subsphere of this dimension. Because S(GG) is a sphere of
dimension |V(G)| — 1 we see that each great subsphere of dimension m — 1 must
intersect ¥ (GG)¢. Thus £*(GG) = 0 by Theorem 2.1.

If G is (m — 1)-(n — 1)-connected then the dimension of ¥."(GG)° is less than
|V (G)| —m. Consequently any general position subgroup N with G/N 22 Z™ must
be of type F,,. These normal subgroups form a dense subset of £™(GG). O

9. Appendix: On the invariants of groups acting on trees

This appendix contains work of Susanne Schmitt which was used in our proof of
Theorem 5.1. As her thesis [24] is not widely accessible, we sketch the proof of
her theorem. We have divided these results into several parts which seem to be of
independent interest.

Throughout this appendix G will denote a group, M an RG-module, and y :
G — R a non-trivial homomorphism.

Theorem 9.1. (Schmitt [24]) Suppose that G acts on a tree T' such that T is
finite modulo the action of G. Suppose further that the restriction x, : G, — R
of x to the stabilizer G, of a vertex or an edge o of T' is non-zero.
i) If n > 1, if [xo] € ¥R(Gy, M) for all vertices v of T, and if [x.] €
E;ﬁfl(GmM) for all edges e of T', then [x] € ¥'%(G, M).
i) If n >0, if [x] € X%(G, M), and if [x.] € X%(Ge, M) for all edges e of T,
then [xv] € YX'%(Gy, M) for all vertices v of T
i) Ifn>1,if [x] € X5(G, M), and if [xv] € E?{l(Gv,M) for all vertices v of
T, then [xe] € E?{l(G&M) for all edges e of T.

Remark 9.1. Replacing the short exact sequence of a tree with the cellular
chain complex, the proof of (i) generalizes easily to CW-complexes of arbitrary
dimension. This provides a proof of Theorem 3.2 (ii).

Lemma 9.1. Suppose that H < G is a subgroup, that N is an RH-module, and
that x restricts to a non-zero character, also denoted by x, of H.

i) The monoid ring RGy, is flat as (left or right) RH, -module.

ii) The embeddings Gy, — G and Hy, — H induce an isomorphism RG\ ®rp,
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N = RG®rg N of left RGy-modules.

Proof. (1) We only prove that RG,, is flat as left RH,-module, the right hand case
follows similarly. Choose a transversal 7 for the cosets in H\G. Then RG, is the
direct sum of the RH,-submodules R(HtNG, ) with ¢ € 7, and it suffices to show
that the latter are RH,-flat. As x(Ht N G, ) is bounded from below, there is a
sequence (g;);>1 of elements in HtNG, such that x(g;) > x(gi41) and x(HING,)
is contained in the union of the intervals [x(g;),00). Hence H,g; C Hygit1,
and the sequence (H,g;);>1 exhausts Ht N G,,. Consequently R(Ht N G,) is the
ascending union of the free RH,-submodules R(H,g;). It follows that R(HtNG,)
is flat over RH,.

(it) To verify this assertion one shows that the inverse ¢ of the obvious ho-
momorphism RGy ®py, N — RG ®pg N can be defined as follows: Given
A € RG and n € N, choose an element h € H, such that \h € RG,, and
put p(A®n) = A @ h~ln. O

Theorem 9.2. Let H < G be a subgroup, and N an RH-module. If x|g # 0 then
[x|u] € ¥R(H,N) if and only if [x] € X3(G, RG ®pu N).

Proof. By the lemma above, applying the functor RG\® g, to an RH,-free reso-
lution of N with finitely generated n-skeleton produces an RG,-free resolution of
RG ®py N with finitely generated n-skeleton.

The proof of the converse relies on the Bieri-Eckmann criterion (see [3]): A
A-module A is of type FP,, if and only if, for any index set 7, the natural map
Torfc\ (Il A A) =11, Tor{,} (A, A) is an isomorphism for k < n and an epimorphism
for k = n.

So for any index set 7 the natural map

Tor, ([ [ RGx, RG ®r N) — [ ] Tor“*(RGy, RG ® gy N)
T Z.

is an isomorphism for & < n and an epimorphism for & = n. As RG, is flat
over RH,, it follows that Tor, *(B, RG ® gr N) = Tory “*(B, RGy ®ru, N) is
isomorphic to TorkRHX(B7N ) for each RG,-module B. Consequently the natural
map

Tory ([ [ RGy, N) — [] Tord™ (RG, N)
Z Z

is an isomorphism for £ < n and an epimorphism for k = n.
Since the embedding ¢ : RH, — RG, of RH,-modules splits, with split projec-
tion ¢ : RG\ — RH, say, we have a commutative diagram with monomorphisms



42 J. Meier, H. Meinert and .. VanWyk CMH
L+, ty and epimorphisms oy, oy:

Torg ™ ([T RHy,N) — [l Tory (RH,, N)
J{L* T@* lLﬁ Tgﬁ
Tor)™([[; RGy,N) — [l Tor}"™(RG,, N).

From the criterion above one now concludes that N is of type FP,, over RH,. [

The following finite index result was first obtained by Bieri and Strebel (1987,
unpublished). The presentation here is taken from [24].

Theorem 9.3. Suppose that H < G is a subgroup of finite index, and that x
restricts to a non-zero homomorphism of H. Then |x|u| € Y%(H, M) if and only
if [x] € ¥%(G, M).

Proof. All we have to show is that M is of type FP,, over RG, if and only if the
module R(G/H)®g M, with diagonal RG,-action, is FP,. This follows from the
theorem above together with the fact that RG @ gy M =~ R(G/H) ®r M where
RG acts on the left hand side of the first module and diagonally on the second.

So assume first that M admits a free resolution F — M over RG, with finitely
generated n-skeleton. Tensoring yields an exact chain complex

R(G/H) ®rF —>R(G/H) RKr M — 0

where RG,, acts diagonally. Hence it suffices to show that R(G/H)® rF has finitely
generated n-skeleton over RG,. As H has finite index in G, this follows from the
observation that R(G/H) ®r RG, with diagonal RG,-action is isomorphic to
R(G/H)®gr RG,, with single RG,-action on the right hand side: the isomorphism

can be defined by A® g — g !A® g for A € R(G/H) and g € Gy
To prove the converse, we may assume that H is normal in G since every
subgroup of finite index, in fact, contains a normal one of finite index. Then we
take a free resolution F, with finitely generated modules in all dimensions, of the
trivial R(G/H)-module R and tensor it, over R, with the RG-module M. As
F splits over R this produces an RG-resolution E — M, the modules FE; being
finite direct sums of R(G/H) ® g M with diagonal RG-action. Our assumption
now implies that there is an RG-free resolution with finitely generated n-skeleton
for each of the modules F; (see Lemma 9.2 (ii) below). Finally the mapping cone
construction yields an RG,-free resolution of M with finitely generated n-skeleton.
O

Beside these results all we need to prove Theorem 9.1 is the following general
observation (see Proposition 1.4 of [3]):
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Lemma 9.2. Suppose that 0 — M"” — M’ — M — 0 is a short exact sequence
of RG-modules.
i) Ifn > 1, if ] € SR(G,M), and if [x] € X% NG, M"), then [x] €
s (G, M).
i) Ifn >0, if [x] € Z%(G, M), and if [x] € $%(G, M"), then [x] € (G, M").
i) If n > 1, if [x] € Y0(G,M), and if [x] € S5 HG, M), then [x]| €
yula, m”).

Proof. (Theorem 9.1) The cellular chain complex C(T, R) of the tree T' with R-
coefficients gives an RG-resolution of the trivial module R. A careful study shows
that after tensoring this free R-complex with M over R we obtain a short exact
sequence

0— @EES(RG ®RG5 Me) — @UEV(RG ®RGU M'u) — M —0

of RG-modules (see, e.g., [8]). Here £ is a finite set of representatives for the edges
of T', and V is a finite G-transversal for the vertices. Moreover, for e € £, M, is
the RGe-module M with RG.-action twisted by a homomorphism 7. : G, — {+1}
which takes into account whether an element preserves the orientation of the edge
e or not. The modules M, are defined similarly.

We only prove (i); the assertions (ii) and (iii) follow similarly. Given a vertex
or an edge o € YV UZE, there is a subgroup of finite index in G, which maps onto
the identity under 7,. Using the above theorem, our assumptions now imply that
[xo] € S5(Cy, M) for all v € V and [x.] € X% 1(G., M) for all e € £. Referring
to Theorem 9.2 along with Lemma 9.2 we see that [x] € X'%(G, M). O

Note added in proof: Bux and Gonzalez have recently written an alternate
proof of our Main Theorem, more along the lines of the Bestvina-Brady Morse
theory approach [9].
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