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Fano contact manifolds and nilpotent orbits

Arnaud Beauville *

Abstract. A contact structure on a complex manifold M is a corank 1 subbundle F of Ty
such that the bilinear form on F with values in the quotient line bundle L = Ty/F deduced
from the Lie bracket of vector fields is everywhere non-degenerate. In this paper we consider the
case where M is a Fano manifold; this implies that L. is ample.

If g is a simple Lie algebra, the unique closed orbit in P(g) (for the adjoint action) is a Fano
contact manifold; it is conjectured that every Fano contact manifold is obtained in this way. A
positive answer would imply an analogous result for compact quaternion-Kahler manifolds with
positive scalar curvature, a longstanding question in Riemannian geometry.

In this paper we solve the conjecture under the additional assumptions that the group of
contact automorphisms of M is reductive, and that the image of the rational map M --+
P(H°(M, L)*) associated to L has maximum dimension. The proof relies on the properties of
the nilpotent orbits in a semi-simple Lie algebra, in particular on the work of R. Brylinski and
B. Kostant.

Mathematics Subject Classification (1991). Primary 14J45, 53C15; Secondary 14L30,
14M17.

Keywords. Contact structure, Fano manifolds, quaternion-Kahler manifolds, nilpotent orbits,
contact moment map.

Introduction

A contact structure on a complex manifold M is a corank 1 subbundle F C Ty
such that the bilinear form on F with values in the quotient line bundle L = Ty¢/F
deduced from the Lie bracket on Ty is everywhere non-degenerate. This implies
that the dimension of M is odd, say dimM = 2n + 1, and that the canonical
bundle Ky is isomorphic to L1 In this paper we will consider the case
where M is compact and L is ample, that is, M is a Fano manifold.

This turns out to be a strong restriction on the manifold M ; the only examples
known so far are obtained as follows (see Prop. 2.6 and 2.2 below). Let g be a
simple complex Lie algebra; the adjoint group acting on P(g) has exactly one
closed orbit POy, , which is the projectivization of the minimal nilpotent orbit

* Partially supported by the European HCM project “Algebraic Geometry in Europe” (AGE).
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Omin C g. The Kostant-Kirillov symplectic structure on Oy, defines a contact
structure on POpnin .

It is generally conjectured that every Fano contact manifold is obtained in
this way. This problem is motivated by Riemannian geometry, more precisely by
the study of compact quaternion-Kdhler manifolds. I will say only a few words
here, referring for instance to [[-S], [L] and the bibliography therein for a more
complete treatment. A quaternion-Kéahler manifold Q is a Riemannian manifold
with holonomy  (n) (1). It carries a natural S2-bundle M — Q, the twistor
space, which turns out to be a complex contact manifold; moreover if Q is compact
and its scalar curvature is positive, M is a Fano contact manifold. The only known
examples of positive quaternion-Kéhler manifolds are certain symmetric spaces
associated to each compact simple Lie group, the so-called “Wolf spaces”; thanks
to the work of LeBrun and Salamon, a positive answer to the above conjecture
would imply that every compact quaternion-Kéahler manifold with positive scalar
curvature is isometric to a Wolf space.

Our result is the following:

Theorem 0.1. Let M be a Fano contact manifold, satisfying the following con-
ditions:

(H1) The rational map @ : M --» P(HO(M, L)*) associated to the line bundle
L is generically finite (that is, dim (M) = dimM );

(H2) The group G of contact automorphisms of M is reductive.

Then the Lie algebra g of G is simple, and M is isomorphic to the minimal
orbit POnin C P(g) .

While hypothesis (H1) is rather strong, (H2) is harmless from the point of
view of Riemannian geometry: by the results of [L], it always holds for the twistor
spaces of positive quaternion-Kéahler manifolds.

We will get an apparently stronger result, namely that M and POy, are iso-
morphic as contact complex manifolds. It is however a general fact that whenever
two compact simply-connected contact manifolds are isomorphic, the isomorphism
can be chosen compatible with the contact structures ([L], Prop. 2.3).

The strategy of the proof is as follows. Using some elementary symplectic
geometry, the map ¢ can be viewed as a “contact moment map” M — P(g).
Then (H1) implies that G has an open orbit in M, whose image by ¢ is
a nilpotent orbit PO C P(g). We are thus led to classify finite G-equivariant
coverings M — PO, where M is smooth. Examples of such coverings appear in
[B-K], with M being the minimal orbit in P(g’) for some simple Lie algebra g’
containing g; our key result is that all possible examples arise essentially in this
way. Theorem 0.1 follows then easily.
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1. Contact geometry

Let M be a complex contact projective manifold. Recall that the contact struc-
ture is given by an exact sequence

0—>F—>TML>L—>O7

such that the ( Opj-bilinear) alternate form (X,Y) — 0([X,Y]) on F is every-
where non-degenerate. Alternatively the contact structure can be described by
the twisted 1-form 6 € HY(M,Q}; ® L), the contact form.

We denote by G the neutral component of the group of automorphisms of
M preserving F. This is an algebraic group, whose Lie algebra g consists of
the vector fields X € HO(M, Ty;) such that [X,F] Cc F. The following result is
well-known (see e.g. [L]):

Proposition 1.1. The map H°(0) : HO (M, Ty) — HO(M, L) maps g isomorphi-
cally onto HO(M, L) .

Proof. Let us first prove the decomposition HO(M,Ty;) = HO(M,F)@g. Let
X € HO(M, Ty1). The map U w— 0(|X,U]) from F to L is Opj-linear, hence
there exists a unique vector field X’ in F such that 0([X,U]) = 0([X',U]) for
all U in F. This means that [X — X',U] belongs to F, that is that X — X'
belongs to g. Writing X = X'+ (X — X’) provides the required direct sum
decomposition.

Let £ C Typ be the subsheaf of infinitesimal contact transformations. Apply-
ing the above result to each open subset of M we get Ty =F @ L, so that 0
induces a ( C-linear) isomorphism of £ onto L. Our statement follows by taking
global sections. O

(1.2) For each g € G the automorphism T(g) of Ty; induces an automor-
phism of L above g; in other words, the line bundle L has a canonical G-
linearization. In particular the group G acts on HO(M,L); the isomorphism
0:g— HO(M,L) is G-equivariant with respect to this action and the adjoint ac-
tion on g. Also the rational map ¢ : M —-» P(HO(M, L)*) associated to the line
bundle L is G-equivariant.

(1.3) Let L* be the principal C*-bundle associated to the dual line bundle
L* — that is the complement of the zero section in L*, on which C* acts by
homotheties. We will say that a p-form w on L* is C*-equivariant if \*w = Aw
for every A € C*.

Let us denote by p the projection of L* onto M. We have a canonical linear
form 7 :p*L — O, which is bijective on L*: if s is a local section of L. on
M, the function 7(p*s) maps a point (m,&) of L* (£ € L(m)*) to (s(m),§).
We use 7 to trivialize p*L on L*. We can therefore consider p*@ as a 1-form
on L*; it is C*-equivariant. The following lemma is classical (see for instance
[A], App. 4 E, or [L], p. 425):



Vol. 73 (1998) Fano contact manifolds and nilpotent orbits 569

Lemma 1.4. The 2-form d(p*@) is a symplectic structure on L* . Conversely,
any C*-equivariant symplectic 2-form on L™ is of the form d(p*®) , where 0 is
a contact form on M , which is uniquely determined. O

(1.5) To each point (m,§&) of L* (me M, § € L(m)*), we associate the lin-
ear form pr,(m,€) on HO(M,L) defined by (ur,(m,£),s) = (s(m),&) for each
s € HO(M,L) . This gives a morphism g, : L* — HO(M, L)* which is C*-equiva-
riant and induces on the projectivizations the rational map ¢ : M--»P(HO(M, L)*).
Using the isomorphism 6 : g — HO(M,L) (Prop. 1.1), we get a commutative G-
equivariant diagram

As we have seen in (1.2), the action of G on M lifts to an action on L*,
which is linear on the fibres; as a consequence, any field X € g lifts to a vector

field X on L* which projects to X on M.

Proposition 1.6. p is a moment map for the action of G on the symplectic
manifold L* .

Proof. This means by definition that for each X € g, the vector field X is the
Hamiltonian vector field associated to the function (u, X) on L*. To prove
this, we first observe that since the 1-form 7= p*# is preserved by G, its Lie
derivative L¢n vanishes for each X € g. By the Cartan homotopy formula, this

implies #(X)dn = —d{(n,X). But we have X)=71(p*0(X)) = X)), thus
p (X)dn {n, X) (n, X) =7(p*0(X)) = (1, X},

(X)) dn = —d{u, X}, which proves our claim. O
The classical computation of the differential of the moment map gives:

Proposition 1.7. Let m &€ M, and & a point of L* above m . The following
conditions are equivalent:

(i) ¢ is defined at m and its differential T\, (@) is injective;

(ii) the G-orbit of £ is open in L* ;

(iii) the G-orbit of m is open in M and £ is conjugate under G to €§ for
every £ € C* .

Proof. Since p is C*-equivariant, condition (i) is equivalent to:

(V") u(&) #0 and Te(p) is injective.
Let w be the symplectic 2-form on L*; for v € T¢(L*) and X € g, the
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formula z()?)w = —d{p, X) (1.6) gives

(Te(p) v, X) = =(i{(X)we , v) = we(v, X(£)) ,
so that the kernel of T¢(y) is the orthogonal of T¢(G - &) in Te(L*) (with respect
to we ). This gives the equivalence of (i’) and (ii); since the action of G commutes
with the homotheties, (ii) is equivalent to (iii). O

Corollary 1.8. a) If L is very ample, M is homogeneous.
b) If ¢ is generically finite, M contains an open G-orbil.

Proof. Under the hypothesis of a), each point of M has an open orbit, thus
necessarily equal to M. The hypothesis of b) implies that ¢ is an immersion at
a general point of M. O

Cor. 1.8 a) has also been obtained by J. Wisniewski (private communication).

2. Coadjoint orbits

(2.1) Let g be a Lie algebra; the adjoint group G acts on the dual g* of g
through the coadjoint representation. Recall that each coadjoint orbit O carries
a canonical G-invariant symplectic structure Q, the Kostant-Kirillov structure:
for & € O, the tangent space T¢(O) is canonically isomorphic to g/ 3¢ » Where
3 = Ker(€o ad) is the annihilator of ¢ in g; the 2-form ¢ is induced by the
alternate form (X,Y) — &([X,Y]) on g. The following result shows that when-
ever O is invariant under homotheties, its image PO in P(g*) carries a natural
contact structure:

Proposition 2.2, Let g be a Lie algebra, G its adjoint group, £ a nonzero
linear form on g, O its coadjoint orbit in g*, PO the image of O in P(g*).
The following conditions are equivalent:
) PO is odd-dimensional;
i) the orbit O C g* is invariant by homotheties;
iii) for each €& C*, £& is G-conjugate to & ;
iv) there exists H € g such that o ad(H) = ¢ ;
v) the annihilator 3. of § in g is contained in Ker .

When these conditions are satisfied, the Kostant-Kirillov symplectic structure
on O comes from a G-invariant contact structure on PO .

i
i

(
(
(
(
(

(i) < (ili): Let Z¢ be the stabilizer of ¢ in G, and Zp the stabilizer of
the image [¢] of ¢ in P(g*). The action of Zj; on the line [¢] defines a
homomorphism ¢ : Z[E] — C* | and we have an exact sequence

0 — Ze — Zyg — C* .
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Since the orbit O is even-dimensional, (i) is equivalent to dim Z[g] =dimZ;+1,
that is to the surjectivity of ¢, which is nothing but condition (iii).

(il) < (iii): Clear.

(iti) < (iv): The Lie algebra 3] of Zjg consists of the elements H of g such
that o ad(H) = A¢ for some A = A(H) € C. The homomorphism A : 3 — C
thus defined is the Lie derivative of ¢, so the surjectivity of £ is equivalent to the
surjectivity of A, that is to (iv).

(iv)< (v): The linear map u: H — Eoad(H) of g into g* is antisym-
metric, hence Imu = (Keru)®™. But (iv) is equivalent to ¢ € Imu and (v) to
¢ e (Keru)t.

Finally when © is invariant by homotheties, the Kostant-Kirillov 2-form on

O is C*-equivariant, and therefore comes from a G-invariant contact structure
on PO (lemma 1.4). O

Remark 2.3. Assume that the equivalent conditions of Prop. 2.2 hold; the
contact structure on PO can be described explicitely as follows. Let ¢ € O;
the tangent space T[w](P(’)) is canonically isomorphic to g/3 [¢] - Observe that
3[y| is contained in Kert: each element Z of 3, satisfies 1o ad(Z) = Ay for
some A€ C; if A=0 we have ¢(Z) =0 by (v) above, while if A # 0 we have
W(Z) =X"1([Z,7])) =0. Then the contact structure F C Tpe is defined by
Fly) = (Rer¢)/31y) -

(2.4) Suppose that the Lie algebra g is semi-simple. Using the Killing form we
identify the G-module g* to g endowed with the adjoint action. The element &
corresponds to a nonzero element N of g. Conditions (iii) to (v) read:

(iii’) for each € € C*, ¢N is G-conjugate to N ;

(iv’) there exists H € g such that [H,N] = N;

(v') the centralizer 3, of N in g is orthogonal to N .

They are equivalent to N being nilpotent: (iii’) implies Tr p(IN)? =0 for any
representation p of g and any p > 1; conversely, if N is nilpotent, (iv’) holds
by the Jacobson-Morozov theorem.

(2.5) Let h be a Cartan subalgebra of g, R = R(g,h) the root system of g
relative to ). We have a direct sum decomposition g =h@ @ g%. A nonzero

acR
vector X, € g¢ is called a root vector (relative to « ).

If g is simple, the Weyl group acts transitively on the set of roots with a
given length, and the corresponding root vectors are conjugate. This defines the
(nilpotent) orbits Oy, of a long root vector and Ogpere of a short root vector;
these orbits coincide if and only if all roots have the same length (types A;,D;, E; ).

Proposition 2.6. Let g be a simple compler Lie algebra. There exists exactly
one closed orbit in P(g) (for the adjoint action), namely the orbit POy of a
long root vector. Fvery orbit contains PO,y in its closure.
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Proof. Let N be a nonzero element of g. The orbit of [N] in P(g) is closed if
and only if B[N contains a Borel subalgebra b, so that there exists a linear form

A on b such that ad(X) - N =AX)N for all X € b. This means that N is a
highest weight vector for the adjoint representation; since g is simple, the adjoint
representation is irreducible, and its highest weight vector is Xy, where 6 is the

highest root with respect to the basis of R(g,h) such that b =hd @ g~. We
a>0
conclude that the orbit PO,,;, of Xy is the unique closed orbit in P(g) . O

Examples 2.7. For the classical case, we get the following Fano contact mani-
folds:

A;: the projectivized cotangent bundle PT*(P!);

B, Dy : the Grassmannian Gis,(2, V) of isotropic 2-planes in a quadratic vec-
tor space V , of dimension 2/ + 1 and 2! respectively;

Cy : the projective space p2-1,

For the type Gg we get a Fano 5-fold of index 3 which appears in the work of
Mukai [Mu]. The other exceptional Lie algebras give rise to Fano contact manifolds
of dimension 15, 21, 33 and 57.

Remark 2.8. It follows from [L], Cor. 3.2, or from a direct computation, that if
g is not of type C; the manifold PO,,;, admits a unigue contact structure; in
all cases, the contact structure we have defined is the unique G-invariant contact
structure.

3. First consequences of (H1) and (H2)

(3.1) From now on we assume that ¢ is generically finite (or equivalently,
dimp(M) =dimM ). By Cor. 1.8, this implies that G has an open orbit M°
in M. Since ¢ is G-equivariant, it is everywhere defined on M?; the image
»(M°) is an orbit PO of G in P(g*), and the induced map ¢°: M° — PO is
a finite étale covering.

Let us mention at once an immediate consequence: if a connected normal
subgroup of G fixes a point [§] € PO, it acts trivially on M°, hence on M it
follows that the stabilizer 3 of [€§] in g contains no nonzero ideal of g. In

particular, the center of g is trivial.

Lemma 3.2. Assume that the character group of G is trivial, and Pic(M) =7Z.
Then M —M° has codimension > 2 in M.

Proof. Let m be a point of M°, [¢] its image in P(g*). The stabilizer Z,,
of m in G is a subgroup of finite index in the stabilizer Z[E] of [¢]. Since M°
and therefore PO are odd-dimensional, the equivalent conditions of Prop. 2.2 are
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satisfied; hence the homomorphism ¢ : Z[é] — C* deduced from the action of Z[S]
on the line [€] is surjective, and so is its restriction to Z,, .

Recall that the group PicG(MO) of G-linearized line bundles on M° 2 G/%Z,,
is canonically isomorphic to the character group X(Z,,). On the other hand, the
hypothesis on G ensures that the forgetful map PicG(MO) — Pic(M®) is injective
([M], Ch. 1, Prop. 1.4). Since we have found a surjective character of Z,, , it follows
that Pic(M®°) contains an infinite cyclic group.

Let (D;);er be the family of one-codimensional components of M —M®°. We
have an exact sequence

Z! e Pic(M) — Pi¢(M®) — 0 .
Since Pic(M) =Z and each D; has anonzero class in Pic(M), the only possibility
is [=9. O

Lemma 3.3. Let M be a normal projective variety, L. an ample line bundle
on M, ¢:M--+»P" the associated rational map, N C P" its image. Assume
that there are open subsets M® C M and N° C N, whose complemenis have codi-
mension > 2, such that ¢ is defined everywhere on M°, ©(M°) = N° and the
induced morphism ¢° : M® — N© is finite. Then ¢ is everywhere defined and
finite.

Proof. Replacing N by its normalization we may assume that N is normal; then

the restriction maps HO(N, Ox(n))—HO(N°, Ox(n)) and HO(M, L")—H(M°, L")

are bijective. Let CM = Spec e HO(M, L") and CN = Spec & HO(N, On(n))
n> n>

be the cones over M and N re_spectively associated to the line bundles L and
On(1) . The homomorphism (p°)* induces a finite morphism Cy : CM — CN,
which is C*-equivariant. The inverse image of the vertex of CN under Cy is
finite and stable under C*, hence reduced to the vertex of CM . Therefore Cyp
induces a finite morphism M — N which extends ¢° . O

(3.4) Let us now assume that g is reductive (this is our hypothesis (H2)). By
(3.1) this actually implies that g is semi-simple. We will always identify g* with
g using the Killing form. We also make a third hypothesis:

(H3) Pic(M) =17Z.

This is innocuous because Theorem 0.1 is known to be true when by > 2, as a
consequence of a theorem of Wisniewski (see [L-S], cor. 4.2).

Proposition 3.5. Under the hypotheses (H1) to (H3), the map ¢ : M — P(g) is
a finite morphism onto the closure of a nilpotent orbit PO . M has only finitely
many orbits; each orbit is a finite étale covering of a nilpotent orbit in P(g) .

Proof. Since G is semi-simple, the hypotheses of lemma 3.2 hold. We have already
seen that the orbit O is C*-invariant, hence nilpotent (2.4). Therefore PO is a
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finite union of nilpotent orbits in P(g) . Since such an orbit is odd-dimensional, the
codimension of PO in PO is > 2, so we can apply lemma 3.3; the Proposition
follows. |

Remark 3.6. Conversely, suppose given a compact manifold M with an action of
G and a finite surjective G-equivariant morphism ¢ : M — PO onto the closure
of a nilpotent orbit in P(g). Then M is a Fano contact manifold. Indeed, let
M® = ¢ 1 (PO), and L =¢*O(1). The contact structure of PO pulls back to
a contact structure §° € HO(M®, Ql{/[o ® L), which extends to a contact structure
0e HO(I\/LQII\/[ ® L) because M —M?® has codimension > 2. Since L is ample,
M is a Fano contact manifold.

We have thus reduced our problem to a question about nilpotent orbits of
semi-simple Lie algebras, which we will study in the next sections.

4. Nilpotent orbits

(4.1) At this point we need to recall Dynkin’s classification of nilpotent orbits in
a semi-simple Lie algebra g (a general reference for the material in this section
is [C-M]). We fix a nilpotent element Ny of g, and denote by O its orbit in g
(under the adjoint action).

By the Jacobson-Morozov theorem, there exist elements H and Np in g
satisfying

[H,No] =2No  [H,Ni]=-2N1  [N1,No]=H ,

so that the subspace of g spanned by Ng, Ny, H is a Lie subalgebra isomorphic
to sly. As a slo-module, g is then isomorphic to a direct sum of simple modules
S*V | where V is the standard 2-dimensional representation. It follows easily that:
(4.1.a) there is a direct sum decomposition g = @Z g(¢), where g(¢) is the

ic

subspace of elements X € g with [H, X]|=14X.
(4.1.5) Put p= 690 g(i), n= 692 g(¢). Then p is a parabolic subalgebra of g;
> i>

n is a nilpotent ideal in p. The map ad(Ng) : p — n is surjective.

(4.1.¢) Let b be a Cartan subalgebra of g containing H . There exists a
basis B of the root system R(g,h) such that «(H) € {0,1,2} for each o € B.
The weighted Dynkin diagram of Ny is obtained by labelling each node o € B of
the Dynkin diagram of g with the number a(H) € {0,1,2}. It depends only on
the orbit O of Ny ; two different nilpotent orbits give rise to different weighted
diagrams.

(4.2) Let P be the parabolic subgroup of G with Lie algebra p. We denote
by G xPn the quotient of G xn by P acting by p-(g,N) = (gp*,Ad(p)N);
in other words, G xPn is the G-homogeneous vector bundle on G/P associated
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to the adjoint action of P on n. For g € G, N € n, we denote by (g,/N) the

image of (g,N) in G x"n; the tangent space to G xFn at (g, N) is canonically

isomorphic to the quotient of g X n by the subspace of elements ( ,[N, ]) with
€p.

The orbit G- (1,Ng) is open in G xPn. Since the stabilizer in G of (1, No)
is Zn, , there is a unique G-equivariant isomorphism O — G- (1, Ny) mapping
Ny onto (1,Np). We will identify @ to the open orbit of G x¥n through this
isomorphism. The following lemma is due to D. 1. Panyushev [P] (I am indebted
to the referee for pointing out this reference).

Lemma 4.3. The Kostant-Kirillov symplectic 2-form on O extends to a G-
inwvariant 2-form w on G x¥n. Let (g, Ny e G xPu ; the kernel of W(g Ny CON~

sists of the images of the elements (X,[N,X]), with X ent = EBl g(¢) and
P
[N, X]en.

Proof. Consider the alternate bilinear form on g x n defined by

(X,Q), (X, @)~ (N|IX, XN+ (X|Q) - (X']Q),

where (| ) stands for the Killing form. Its kernel consists of pairs (X,Q) with
X enl and @ =[N, X]; in particular, it contains the elements ( ,[N, ]) for

€ p, so that our form factors through T<97N)-(G xPn) and defines a G-invariant
2-form w on G xFn

The isomorphism O — G - (1, Ng) induces on the tangent spaces the isomor-
phism g/3y, — T(l,No)‘(G xPn) which maps the class of X € g to the class of
(X,0). Through this isomorphism, w1, Ny corresponds to the alternate form
(X, X))~ (Ng | [X,X]), that is to the Kostant-Kirillov 2-form wg at Ny . Since
w and wg are G-invariant, the restriction of w to O is equal to wq . O

The following lemma will be the key technical ingredient for our proof of the
main theorem. We put g* =g={0}, n* =n={0}.

Lemma 4.4. Let N en. Let O be the closure of O in g* . Assume that the

normalization O of O is smooth above N . Then the centmlzzer 3y s contained
L

in n

Proof. Consider the morphism G xPn* — g* which maps (g, N} to Ad(g)N
it is proper. Its image is the closure O of O in g*; smce G xpn is smooth
it factors through @ . The induced morphism = : G X Pax 5 0 is proper and
birational: it induces the identity on the open orbit O C G x P>,

Since the complement of O in O has codimension > 2, the symplectic 2-form
on O extends to a 2- form w on the smooth part Osm of (9 the pull-back of w

to w 1((’)Sm) C G xPn coincides with the restriction of w . It follows that every
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tangent vector at the point = = (1, N} of G xPn* killed by T,(r) belongs to
the kernel of w, . Since the orbit of # under Z%, maps to a point in (5, the
vectors ( ,0) with € 3, must belong to the kernel of w, ; in view of Lemma
4.3, this means that 3, is contained in nt . O

5. The birational case

In this section we will prove Theorem 0.1 in the simpler case when the map ¢,
is assumed to be birational. We start with a technical lemma about Lie algebras;
we keep the notation of (4.1).

Lemma 5.1. Assume that Ng is not contained in a proper ideal of g, and
that for every nonzero elements N € g(2) and Q € g(—2) the bracket [N,Q] is
nonzero. Then g is simple, and either O is the minimal orbit, or g is of type
Go and O is the orbit of a short root vector.

Proof. Assume first that g is a product of two nonzero semi-simple Lie algebras g’
and g”. Write No = (N§,NY), H=(H',H"), Ny =(N{,N{); the hypothesis
on Ny ensures that Nj and Nj (and therefore also H', H”, N{, N{ ) are nonzero.
We have Ni € g(—2), N§ € g(2) and [N{, N}| =0, contrary to the hypothesis.
Thus g is simple.

For any nonzero N € g(2), we have 3, Ng(—2) = (0); by [C-M], 3.4.17, this
implies that N is conjugate to Ny . There exists a root o with a(H) =2 (the
corresponding root vectors span g(2) ); therefore Np is conjugate to X, .

Assume that g is of type B;,C; or Fy, and that « is a short root. According
to [C-M] the weighted Dynkin diagram of X, is one of the following:

2 0 0 0 0
—O—=0 e Oo——20
0 1 0 0 0
———— D cee e o—=—0
0 0 0 1
G > O

In each case the highest root @ satisfies 0(H) = 2, hence Xy should be conjugate
to X, — a contradiction. Therefore either « is a long root, or g is of type Go.

O

Proposition 5.2. Let O be a nilpotent orbit in g and O its closure in g~ .
Assume that O is not contained in a proper ideal of g, and that the normalization
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of O is smooth. Then g is simple, and either O is the minimal nilpotent orbit,
or g is of type Go and O is the orbit of a short root vector.

In the first case O is equal to @, hence smooth. In the second case O is
not normal, and its normalization is isomorphic to the minimal nilpotent orbit in
s0(7) [L-Sm].

Proof. By Lemma 4.4, we have 3, C nl for each nonzero element N of n.
Taking N in g(2), we see that the hypotheses of Lemma 5.1 are satisfied, hence
the result. O

Corollary 5.3. Let M be a Fano contact manifold, such that
(i) the rational map ¢ : M --» P(g) is generically injective;
(i) the group G of contact automorphisms of M is reductive.
Then ¢ induces an isomorphism of M onto the minimal nilpotent orbit in

P(g).

Proof. Consider the commutative diagram (1.5)

LX gX

I

M P(g) .

By Prop. 3.5 ¢ is a finite birational morphism onto the closure of a nilpotent orbit
PO in P(g); since the diagram is cartesian, u is finite and birational onto O,
hence realizes L* as the normalization of @ . Since the image PO of ¢ spans
P(g), O cannot be contained in any proper subspace of g. By Prop. 5.2, this
implies either that @ is a minimal orbit, or that g is of type Go and O is the
orbit of a short root vector; in that case M is isomorphic to PO’ , where O’ is
the minimal orbit in s0(7), and this isomorphism preserves the contact structures
(remark 2.8). But then g contains so0(7), a contradiction. O

6. The general case
(6.1) As explained in Remark 3.6, we want to classify finite G-equivariant sur-

jective morphisms ¢ : M — PO, where M is smooth and @ C g is a nilpotent
orbit; such a morphism will be called for short a G-covering of PO . Examples of
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G-coverings appear in the classification of “shared orbit pairs” [B-K], associated
to certain pairs g C g’ of simple Lie algebras: the manifold M is the minimal

orbit PO! .~ for g, while the orbit O C g is given in the list below. Brylinski
and Kostant find the following cases:

g g o degep

As Ty O 3

B, Dyy1 O, 1) 2

By Fy Op2922.1) 2

C Agiq Qa1 1) 2 (6.2)

D, B Oi1,...1) 2

Dy F4 Blapa) 4

Fy Es Oshort 2

Go Bs Oshort 1

Go Dy Osub 6

The notation for the orbit O requires some explanation: in the classical
cases, g is viewed as an algebra of matrices via the standard representation;
then Oy, 4,y denote the conjugacy class of a matrix in g with Jordan type
(di,...,dr). Asin (2.5), Ogport is the orbit of a short root vector. Finally Ogyp
is the so-called subregular orbit, that is the unique codimension 2 orbit in the
nilpotent cone.

Proposition 6.3. Let G be a simple compler Lie group acting on a manifold
M, g the Lie algebra of G, O C g a nilpotent orbit, ¢ : M — PO a finite G-
equivariant surjective morphism. Then either O = Opn, and @ is an isomor-
phism, or ¢ is (up to isomorphism) one of the G-coverings appearing in the list
(6.2).

Proof. (6.4) Let M®° be the open G-orbit in M ; let m be a point of M°, H® its

stabilizer in G and H the stabilizer of ¢(m) . Since M is Fano, M and therefore

M® are simply connected; this implies that H° is the neutral component of H.

So the covering M° — PO is a Galois covering, with Galois group I':= H/H°.

Since M = Proj G>90 HO(MO7 L™), the action of I' on M extends to an action on
n

M, which commutes with the G-action.

Observe that the G-covering M — PO is uniquely determined by @: the
open G-orbit M° C M is the simply-connected covering of PO, and M is the
integral closure of PO in M°. Thus our task is to prove that only the orbits
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listed in (6.2) can occur.

(6.5) We will prove this by induction on the dimension of O, the case O = Oy,
being clear in view of (6.4). By Prop. 5.2 we can assume deg(p) > 1. Let v €T,
and let F be a component of the fixed locus of . Then F is a closed submanifold
of M, stable under G; the map ¢ induces a G-covering F — POp for some
orbit Op C @. By the induction hypothesis, F is isomorphic to the minimal
orbit PO/ . for some simple Lie algebra g’ containing g; either g’ =g, or the
pair (g,g’) is one of the pairs appearing in the list (6.2).

Let us say for short that an orbit @' C @ is ramified if ¢~ 1(PO’) is contained
in the fixed locus of some nontrivial element of I'. Let ¢ C O an orbit which
is not ramified; since ¢ induces an isomorphism of M/I" onto the normalization
PO of PO ), we have:

(6.5.a) PO is smooth along PO’ ; in particular, the centralizer of any element
of O’ Nn is contained in n (lemma 4.4).

(6.5.b) Any nonzero element N € @' Ng(2) satisfies 3, Ng(—2) = (0), hence
is conjugate to Ny by [C-M], 3.4.17; therefore if O’ Ng(2)+# (0), then @' =0O.

(6.5.¢) Assume that O is normal along @’ . Then ¢ is étale above PO’ so
that T,,(¢) is injective at each point m of ¢~ 1(P¢’). But this implies that m
belongs to the open orbit M° (Prop. 1.7), hence O' = O again.

(6.5.d) Assume that the Galois group I' is cyclic of prime order, and that O is
normal. Let M! be the fixed locus of I' in M. Then ¢ induces an isomorphism
of ML onto its image; in particular, Lp(MF) is smooth. By Prop. 5.2, this implies
that the only ramified orbit is O,ir , s0 by (6.5.¢) we have O=0U0On .

(6.6) Now we examine which orbits @ C g may occur. We order the nilpotent
orbits by the relation “ @’ < @ iff @' C ©”. Given the Lie algebra g, the possible
ramified orbits are those contained in the closure of the orbit © in (6.2). Using the
above arguments we will show that only one more orbit is allowed: its boundary
must contain only ramified orbits. This gives us for each Lie algebra g a small
list of orbits, among which we may eliminate those which are simply connected;
we will show that the remaining ones are those which appear in the list (6.2).

Type Ay (1 > 4)

All orbit closures in case A; are normal [K-P1], so by (6.5.¢) there is only one
orbit which is not ramified. There is no shared orbit pair, so the only ramified
orbit is the minimal one. The next orbit in the partial ordering is Q91 y,
which is simply-connected [C-M, p. 92].

Type As

The possible ramified orbits are O,,;, and (9(2’2) ; the next orbit in the partial
ordering is O3 1y . The orbit Oy 9y gives rise to case (D3, B3) of (6.2); O3 )
is simply-connected.

Type Asg

There are only two orbits, O,,;, and the principal orbit (9<3) , which gives rise
to case (Ag,Go) of (6.2).
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For the types B, C; or D;, most orbit closures are normal, with the following
exceptions [K-P2]:

a) There may exist an orbit O whose closure is non-normal along a codimension
2 orbit @', but whose normalization is singular along O’. In this case by (6.5.a)
O’ is ramified;

b) When g is of type D, there are orbits (corresponding to the so-called
“very even” classes) whose closure is not known to be normal. However these
orbit closures have a boundary component of codimension 2 along which they are
normal, so that (6.5.¢) still applies.

Type By and Dy, 1 >5

The Lie algebra g is so(n) (n > 10). The possible ramified orbits are O,ip
and Oz y; the only possible next orbitis O 9991 ) ((9(37272717”» is exclud-
ed because its closure contains Q9991 ) Which is not ramified). The orbit
O@,1,...) gives rise to cases (B;,Dyy1) and (Dy,Bi); Op299;1,..) Is simply-
connected ([C-M], p. 92).

Type By

The configuration of orbits is the same as above, but here the orbit O 999 1
can be ramified. Therefore the next orbit O399 11) might occur. However its
fundamental group is Z/2, and its closure is normal [K-P2], so we deduce from
(6.5.d) that this orbit does not occur.

The orbit 0(272}2’2}1) is no longer simply-connected; it gives rise to case (B4, Fy)
in (6.2).

Type Bs

Again the orbit O399y can occur a priori; the same argument as for By
applies.

Type Dy

The possible ramified orbits are O, , the three orbits next to O, in the
partial ordering (namely O3 ) and the two orbits O 999y ), and O a9 1);
the next orbit is Og31 1) -

The three orbits next to Oy, have the same weighted Dynkin diagram up to
automorphisms, and are therefore isomorphic; they give the case (D4,B4). The
orbit O3 99 1y gives the case (D4, F4q) . Finally O(33 1 1) has fundamental group
Z/2 and normal closure [K-P2], so is excluded by (6.5.d).

Type C; (1 > 2)

The possible ramified orbits are Opin and Ogggq  y; the next orbit is
Op,221,.) if 123, and Oy if [ =2. This orbit has fundamental group Z/2
and is normal [K-P2], so it is excluded again by (6.5.d). The orbit O 51 ) gives
the case (C;,Ag 1).

Type E
The only possible ramified orbit is the minimal one. If O is not reduced to
Omin 1t contains the next orbit @1 in the partial ordering, which is the orbit of
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Xa+ X, , where XA and p are two orthogonal roots. By (6.5.a) the centralizer of
an element of @1 Nn is contained in nt .

Let o be the sum of the simple roots, and «, 3,y the simple roots corre-
sponding to the three ends of the Dynkin graph. Then o, 0 — o, 0 — 3, 0 —~ are
roots ([B], §1, n°6, cor. 3 of prop. 19); since (clo) =2 and (o|a) = (¢]8) =1,
o—«a and o—§ are orthogonal. The element N = X,_, + X,_35 satisfies
[N, X, 5] =0. Let s=0(H) and m = max{a(H),(H),y(H)}. If s —m >2
we have N € n and X, , ¢ nl, a contradiction.

Suppose s =2 and a(H)=p3(H)=0. Then N belongs to g(2), which by
(6.5.0) implies @ = Oy ; this is excluded because @1 is simply-connected ([C-M],
pp. 129, 130, 132).

Looking at the list of possible weighted Dynkin diagrams in loc. cit. and elimi-
nating the simply-connected orbits, the above constraints leave us with only one
possible case, the weighted Dynkin diagram

1 0 0 0 0 0 1
G l O
0

for Eg. In that case one finds easily two orthogonal roots A and g with
AH) = p(H) = 2, for instance (with the notation of [B], planche VII) X = % >
and p = eg —e7; we conclude again by (6.5.5) that O = Oy .

Type Fyq

The orbits which can be ramified are O, and Ogpope . If O is bigger than
Oshort , it contains the orbit @1 next to Ogpops ; this is the orbit of X, + Xz,
where « and § are two orthogonal roots of distinct lengths. Let

be the weighted Dynkin diagram of @ . Assume first l1 +Ilo + I3 > 2. Using the
notation of [B], planche VIII, let

a=cgy=a1tastaz, [=c1—c4=0qa1+2a9+2a3+ 204,
y=¢€1+4+¢64 =1+ 2090 + 4z + 204 .

We have [X, + X5, X_4] =0, X, + X €n and X_, ¢ n' contradicting (6.5.a).

A glance at the tables ([C-M], p. 128) shows that the nilpotent orbits with
l1+lo+ 13 <1 are simply-connected, with the exception of Ogpore ; the latter
gives the case (Fy,Eg).
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Type Go
The only orbit which is not simply-connected is the subregular orbit ([C-M],
p. 128), which gives rise to case (Gg,Dy) . O

Example 6.7. Let us give an example of a G-covering when g is not simple. Let
n = (n1,...,n,) be asequence of positive integers; for each 7, let g; be the Lie
algebra sp(2n;), and V; (=2 C?*) its standard representation. Then g; can be
identified with S2V@- ; the minimal nilpotent orbit O; C g; is then Eentiﬁed with
the cone of rank one tensors, so that we have a 2-to-1 map p; : V; — O, = O; U {0}
mapping a vector v to v?. We put g=[lg;, ©=TI0;, M=P(V) with
V=& V;. The maps p; define a G-covering ¢p : P(V) — PO, of degree 2F-1.
Note that M is a minimal orbit in P(g’), with g’ =sp(V).

Proposition 6.8. Assume that g is a product of simple Lie algebras g1,... 0k
(k>1). Let p: M — PO be a G-covering. Then there exists a sequence n =
(n1,...,nk) of positive integers such that ¢ is isomorphic to the G-covering ¢n

of example 6.7. In particular, g, is isomorphic to sp(2n;) for each i, the orbit
O is the product of the minimal orbits O; C g;, and M is isomorphic to p2n—1
with n=">n;.

Proof. The orbit O is a product of nontrivial orbits O; C g;. Let Oj° be the
simply-connected covering of O;, and OJ° the integral closure of O; in 03°
(contrary to an earlier notation, we denote by O; the closure of @; in g). The
action of G x C* on O; extends to an action on O and O3°. There is only
one point o, of O;° above 0 €& g; the open subset O_fc— {o0;} is a principal
C*-bundle over a variety M; which admits a finite G-equivariant morphism onto
PO;.

Let M’ = ([[O°)*/C* , where the superscript * means that we take out the

%

point (oy,...,0;). This is a normal variety, with a finite morphism onto PO ; the

open subset ([[O$¢)/C* is simply-connected and its complement has codimension

> 2. This implies that M’ is isomorphic to M .

Since M is smooth, it follows that each O_fc must be smooth. This implies
first of all that M; is smooth, hence by Prop. 5.2 and 6.3 isomorphic to the
minimal orbit PO, for some simple Lie algebra g; containing g; . Then 03¢ is
the simply-connected cover of O}, and O3° is its integral closure in O;. Since
Os¢ is smooth, this happens if and only if g; = g} = sp(2n;) for some integer
n; > 1 ([B-K], thm. 4.6); then O; = O, by Prop. 6.3, so we are in the situation
of example 6.7. O

The above results imply directly Theorem 0.1, in a slightly more precise form:
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Theorem 6.9. Let M be a Fano contact manifold, satifying the conditions (H1)
and (H2) of Theorem 0.1. Then the Lie algebra g of infinitesimal contact trans-
formations of M is simple, and the canonical map ¢ : M — P(g) induces an
isomorphism of M onto the minimal orbit POy, C P(g) .

Proof. By (3.4), we can assume that M satisfies also (H3); then ¢ induces a
G-covering M — PO onto the closure of some nilpotent orbit in P(g) (Prop.
3.5). By Prop. 6.3 and 6.8, M is isomorphic to the minimal orbit in P(g’) for
some simple Lie algebra g’ containing g; moreover if ¢ is not an embedding,
g’ contains strictly g, which is impossible since g’ is an algebra of infinitesimal
contact transformations of M (see remark 2.8). Therefore ¢ is an embedding
and g’ =g. O
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